ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (417)
  • Environment Pollution  (233)
  • Spacecraft Propulsion and Power  (184)
  • Animals
  • 1995-1999  (417)
  • 1999  (417)
  • 1
    Publication Date: 2011-08-24
    Description: The Mayak Production Association was the first Russian site for the production and separation of plutonium. The extensive increase in plutonium production during 1948-1955, as well as the absence of reliable waste-management technology, resulted in significant releases of liquid radioactive effluent into the rather small Techa River. This resulted in chronic external and internal exposure of about 30,000 residents of riverside communities; these residents form the cohort of an epidemiologic investigation. Analysis of the available historical monitoring data indicates that the following reliable data sets can be used for reconstruction of doses received during the early periods of operation of the Mayak Production Association: Temporal pattern of specific beta activity of river water for several sites in the upper Techa region since July 1951; average annual values of specific beta activity of river water and bottom sediments as a function of downstream distance for the whole river since 1951; external gamma-exposure rates near the shoreline as a function of downstream distance for the whole Techa River since 1952; and external gamma-exposure rate as a function of distance from the shoreline for several sites in the upper and middle Techa since 1951.
    Keywords: Environment Pollution
    Type: Health physics (ISSN 0017-9078); Volume 76; 6; 605-18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.
    Keywords: Environment Pollution
    Type: Health physics (ISSN 0017-9078); Volume 77; 2; 142-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This presentation discusses the problem of local air quality as it is affected by modern aircraft engine exhaust and the objective of this workshop. It begins with a discussion on the nature and sources of particulates and aerosols. The problems, and the technical considerations of how to regulate the aircraft emissions, are reviewed. There is no local (i.e., state or county) regulations of the aircraft operations. Amongst the conclusions are: (1) there is an inadequate database of information regarding the emittants from aircrafts. (2) That data which does exist represents older engines and aircraft, it is not representative of the advanced and future fleet.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 21-44; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: This conference paper presented in viewgraph form discusses space power, both stationary and mobile extraterrestrial power, passive, dynamic and future technologies and some concluding remarks.
    Keywords: Spacecraft Propulsion and Power
    Type: Space Mechanisms Technology Workshop Proceedings; 125-162; NASA/CP-1999-209200
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The assignments and charges to the three workgroups are discussed. The three workgroups were: (1) Trace Chemistry, (2) Instrumentation, (3) Venues and procedures.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 163-176; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: We presented results from the SASS Near-Field Interactions Flight (SNIF-III) Experiment which was conducted during May and June 1997 in collaboration with the Vermont and New Jersey Air National Guard Units. The project objectives were to quantify the fraction of fuel sulfur converted to S(VI) species by jet engines and to gain a better understanding of particle formation and growth processes within aircraft wakes. Size and volatility segregated aerosol measurements along with sulfur species measurements were recorded in the exhaust of F-16 aircraft equipped with F-100 engines burning fuels with a range of fuel S concentrations at different altitudes and engine power settings. A total of 10 missions were flown in which F-16 exhaust plumes were sampled by an instrumented T-39 Sabreliner aircraft. On six of the flights, measurements were obtained behind the same two aircraft, one burning standard JP-8 fuel and the other either approximately 28 ppm or 1100 ppm S fuel or an equal mixture of the two (approximately 560 ppm S). A pair of flights was conducted for each fuel mixture, one at 30,000 ft altitude and the other starting at 35,000 ft and climbing to higher altitudes if contrail conditions were not encountered at the initial flight level. In each flight, the F-16s were operated at two power settings, approx. 80% and full military power. Exhaust emissions were sampled behind both aircraft at each flight level, power setting, and fuel S concentration at an initial aircraft separation of 30 m, gradually widening to about 3 km. Analyses of the aerosol data in the cases where fuel S was varied suggest results were consistent with observations from project SUCCESS, i.e., a significant fraction of the fuel S was oxidized to form S(VI) species and volatile particle emission indices (EIs) in comparably aged plumes exhibited a nonlinear dependence upon the fuel S concentration. For the high sulfur fuel, volatile particle EIs in 10-second-old-plumes were 2 to 3 x 10 (exp 17) / kg of fuel burned and exhibited no obvious trend with engine power setting or flight altitude. In contrast, about 8-fold fewer particles were observed in similarly aged plumes from the same aircraft burning fuel with 560 ppm S content and EIs of 1 x 10(exp 15)/ kg of fuel burned were observed in the 28 ppm S fuel case. Moreover, data recorded as a function of plume age indicates that formation and growth of the volatile particles proceeds more slowly as the fuel S level is reduced. For example, ultrafine particle concentrations appear to stabilize within 5 seconds after emission in the 1100 ppm S cases but are still increasing in 20-second old plumes produced from burning the 560 ppm S fuel.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 83-100; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The overall focus of our research is to document long-term elevation change of the Greenland ice sheet using satellite altimeter data. In addition, we are investigating seasonal and interannual variations in the ice-sheet elevations to place the long-term measurements in context. Specific objectives of this research include: 1) Developing new techniques to significantly improve the accuracy of elevation-change estimates derived from satellite altimetry. 2) Measuring the elevation change of the Greenland ice sheet over a 10-year time period using Seasat (1978) and Geosat GM (1985-86) and Geosat ERM (1986-88) altimeter data. 3) Quantifying seasonal/interannual variations in the elevation-change estimates using the continuous time series of surface elevations from the Geosat GM and ERM datasets. 4) Extending the long-term elevation change analysis to two decades by incorporating data from the ERS-1/2 missions (1991-99) and, if available, the Geosat-Follow On (GFO) mission (1998-??).
    Keywords: Environment Pollution
    Type: Program for Arctic Regional Climate Assessment (PARCA); 6-11; NASA/TM-1999-209205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.
    Keywords: Environment Pollution
    Type: Models and Measurements Intercomparison 2; 10-109; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Solid (soot) and liquid (presumed sulfate) particle emissions from aircraft engines may have serious impacts on the atmosphere. While the direct radiative impact of these particles is expected to be small relative to those from natural sources (Atmospheric Effects of Subsonic Aircraft: Interim Assessment of the Advanced Subsonic Technology Program, NASA Ref. Pub. 1400, 1997), their indirect effects on atmospheric chemistry and cloud formation may have a significant impact. The potential impacts of primary concern are the increase of sulfate surface area and accelerated heterogeneous chemical reactions, and the potential for either modified soot or sulfate particles to serve as cloud nuclei which would change the frequency or radiative characteristics of clouds. Volatile (sulfate) particle concentrations measured behind the Concorde aircraft in flight in the stratosphere were much higher than expected from near-field model calculations of particle formation and growth. Global model calculations constrained by these data calculate a greater level of stratospheric ozone depletion from the proposed High speed Civil Transport (HSCT) fleet than those without particle emission. Soot particles have also been proposed as important in heterogeneous chemistry but this remains to be substantiated. Aircraft volatile particle production in the troposphere has been shown by measurements to depend strongly on fuel sulfur content. Sulfate particles of sufficient size are known to provide a good nucleating surface for cloud growth. Although pure carbon soot is hydrophobic, the solid particle surface may incorporate more suitable nucleating sites. The non-volatile (soot) particles also tend to occupy the large end of aircraft particle size spectra. Quantitative connection between aircraft particle emissions and cloud modification has not been established yet, however, even small changes in cloud amount or properties could have a significant effect on the radiative balance of the atmosphere.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 55-60; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.
    Keywords: Environment Pollution
    Type: Program for Arctic Regional Climate Assessment (PARCA); 12-15; NASA/TM-1999-209205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The primary role of models in the assessment process is to predict changes to ozone. It is crucial therefore that the ability of the models to reproduce the actual distribution of ozone be tested. Historically, maps of the ozone column (latitude by month) have been used for this purpose. In MM I a climatology was developed for the vertical distribution of ozone for 15-60 km, based on SBUV data for 1979-80. SBUV profiles are reported with vertical resolution of approx. 5 km, but the true resolution is lower, approx. 8 km above the ozone maximum and approx. 15 km for 10-25 km. The climatology was considered valid to about 20-30% at 20 km and to 50% at 15 km. Comparisons were made with models in mixing ratio (ppm), which emphasizes the middle and upper stratosphere. A new ozone climatology was developed for the vertical distribution of ozone for MM II. Our goal was to develop a product that could be used to evaluate models in the lower stratosphere, the region where most of the ozone column resides and where most of the ozone loss is occurring, as well as the middle and upper stratosphere.
    Keywords: Environment Pollution
    Type: Models and Measurements Intercomparison 2; 307-362; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: Solid rockets, including the Space Shuttle solid rocket motor, are generally manufactured in large segments which are then shipped to their final destination where they are assembled. These large segments are sealed with a system of primary and secondary 0-rings to contain combustion gases inside the rocket which are at pressures of up to 900 psi and temperatures of up to 5500 F. The seals are protected from hot combustion gases by thick layers of phenolic insulation and by joint-filling compounds between these layers. Recently, though, routine inspections of nozzle-to-case joints in the Shuttle solid rocket motors during disassembly revealed erosion of the primary O-rings. Jets of hot gas leaked through gaps in the joint-filling compound between the layers of insulation and impinged on the O-rings. This is not supposed to take place, so NASA and Thiokol, the manufacturer of the rockets, initiated an investigation and found that design improvements could be made in this joint. One such improvement would involve using NASA Lewis braided thermal barriers as another level of protection for the O-ring seals against the hot combustion gases.
    Keywords: Spacecraft Propulsion and Power
    Type: 1998 NASA Seal/Secondary Air System Workshop; Volume 1; 205-217; NASA/CP-1999-208916/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations downstream of the nozzle). Actual locations with potential for extractive or non-intrusive measurements depend upon the test article and test configuration. Committee members expressed the importance of making investigators aware of various ports that could allow access to various stages of the existing engines. Port locations are engine si)ecific and might allow extractive sampling or innovative hybrid optical-probe access. The turbine stage region was one the most desirable locations for obtaining samples and might be accessed through boroscope ports available in some engine designs. Discussions of probes and sampling systems quickly identified issues dependent on particular measurement quantities. With general consensus, the group recommends SAE procedures for measurements and data analyses of currently regulated exhaust species (CO2, CO, THC, NO(x),) using conventional gas sampling techniques. Special procedures following sound scientific practices must be developed as required for species and/or measurement conditions not covered by SAE standards. Several issues arose concerning short lived radicals and highly reactive species. For conventional sampling, there are concerns of perturbing the sample during extraction, line losses, line-wall reactions, and chemical reactions during the sample transport to the analyzers. Sample lines coated with quartz.or other materials should be investigated for minimization of such effects. The group advocates the development of innovative probe techniques and non-intrusive optical techniques for measurement of short lived radicals and highly reactive species that cannot be sampled accurately otherwise. Two innovative probe concepts were discussed. One concept uses specially designed probes to transfer optical beams to and from a region of flow inaccessible by traditional ports or windows. The probe can perturb the flow field but must have a negligible impact on the region to be optically sampled. Such probes are referred to as hybrid probes and are under development at AEDC for measurement in the high pressure, high temperature of a combustor under development for power generation. The other concept consists of coupling an instrument directly to the probe. The probe would isolate a representative sample stream, freeze chemical reactions and direct the sample into the analyzer portion of the probe. Thus, the measurement would be performed in situ without sample line losses due either to reactions or binding at the wall surfaces. This concept was used to develop a fast, in situ, time-of-flight mass spectrometer measurement system for temporal quantification of NO in the IMPULSE facility at AEDC. Additional work is required in this area to determine the best probe and sampling technique for each species measurement requirement identified by the Trace Chemistry Working Group. A partial list of Venues was used as a baseline for discussion. Additional venues were added to the list and the list was broken out into the following categories: (1)Engines (a) Sea Level Test Stands (b) Altitude Chambers; (2) Annular Combustor Test Stands, (3) Sector Flametube Test Stands, (4) Fundamentals Rigs/Experiments.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 187-237; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 123-134; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and, in addition, of the pressure, temperature, and velocity. A near term goal of the experimental program should be to confirm the nonlinear effects of sulfur speciation, and if present, to provide an explanation for them. It is also desirable to examine if the particulate matter retains any sulfur. The recommendation is to examine the effects on SOx production of variations in fuel-bound sulfur and aromatic content (which may affect the amount of particulates formed). These experiments should help us to understand if there is a coupling between particulate formation and SO, concentration. Similarly, any coupling with NOx can be examined either by introducing NOx into the combustion air or by using fuel-bound nitrogen. Also of immediate urgency is the need to establish and validate a detailed mechanism for sulfur oxidation/aerosol formation, whose chemistry is concluded to be homogeneous, because there is not enough surface area for heterogeneous effects. It is envisaged that this work will involve both experimental and theoretical programs. The experimental work will require, in addition to the measurements described above, fundamental studies in devices such as flow reactors and shock tubes. Complementing this effort should be modeling and theoretical activities. One impediment to the successful modeling of sulfur oxidation is the lack of reliable data for thermodynamic and transport properties for several species, such as aqueous nitric acid, sulfur oxides, and sulfuric acid. Quantum mechanical calculations are recommended as a convenient means of deriving values for these properties. Such calculations would also help establish rate constants for several important reactions for which experimental measurements are inherently fraught with uncertainty. Efforts to implement sufficiently detailed chemistry into computational fluid dynamic codes should be continued. Zero- and one-dimensional flow models are also useful vehicles for elucidating the minimal set of species and reactions that must be included in two- and three-dimensional modeling studies.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 177-178; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: This paper reviews the relationships of the programs and projects and reviews the purpose of the Engine Exhaust Trace Chemistry (EETC) Committee. The charges of the Committee are: (1) to prioritize the engine trace constituents for assessing impacts of aircraft; (2) Assess both extractive and insitu measurement techniques; and (3) Determine the best venues for performing the necessary measurements. A synopsis of evidence supporting and questions concerning the role(s) of aerosol/particulates was presented. The presentation also reviewed how sulfur oxidation kinetics interactions in the hot-section and nozzle play a role in the formation of aerosol precursors. The objective of the workshop, and its organization is reviewed.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 5-19; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: ORBITEC is developing methods for producing, testing, and utilizing Mars-based ISRU fuel/oxidizer combinations to support low cost, planetary surface and flight propulsion and power systems. When humans explore Mars we will need to use in situ resources that are available, such as: energy (solar); gases or liquids for life support, ground transportation, and flight to and from other surface locations and Earth; and materials for shielding and building habitats and infrastructure. Probably the easiest use of Martian resources to reduce the cost of human exploration activities is the use of the carbon and oxygen readily available from the CO2 in the Mars atmosphere. ORBITEC has conducted preliminary R&D that will eventually allow us to reliably use these resources. ORBITEC is focusing on the innovative use of solid CO as a fuel. A new advanced cryogenic hybrid rocket propulsion system is suggested that will offer advantages over LCO/LOX propulsion, making it the best option for a Mars sample return vehicle and other flight vehicles. This technology could also greatly support logistics and base operations by providing a reliable and simple way to store solar or nuclear generated energy in the form of chemical energy that can be used for ground transportation (rovers/land vehicles) and planetary surface power generators. This paper describes the overall concept and the test results of the first ever solid carbon monoxide/oxygen rocket engine firing.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Microgravity Combustion Workshop; 399-402; NASA/CP-1999-208917
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-23
    Description: Analyses of satellite, ground-based, and balloon measurements allow updated estimates of trends in the vertical profile of ozone since 1979. The results show overall consistency among several independent measurement systems, particularly for northern hemisphere midlatitudes where most balloon and ground-based measurements are made. Combined trend estimates over these latitudes for the period 1979-96 show statistically significant negative trends at ail attitudes between 10 and 45 km, with two local extremes: -7.4 +/- 2.0% per decade at 40 km and -7.3 +/- 4.6% per decade at 15 km attitude. There is a strong seasonal variation in trends over northern midlatitudes in the altitude range of 10 to 18 km, with the largest ozone loss during winter and spring. The profile trends are in quantitative agreement with independently measured trends in column ozone, the amount of ozone in a column above the surface. The vertical profiles of ozone trends provide a fingerprint for the mechanisms of ozone depletion over the last two decades.
    Keywords: Environment Pollution
    Type: Science; Volume 285; 1689-1692
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-23
    Description: We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-23
    Description: The SASS (Subsonic Assessment) Ozone and NO(x) Experiment (SONEX) was an airborne field campaign conducted in October-November 1997 in the vicinity of the North Atlantic Flight Corridor Lo study the impact of aircraft emissions on NOx and ozone (03). A fully instrumented NASA DC-8 aircraft was used as the primary SONEX platform. SONEX activities were closely coordinated with the European POLINAT-2 (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) program, which used a Falcon-20 aircraft and an instrumented in-service Swissair B-747. Both campaigns focused on the upper troposphere/"lowermost" stratosphere (UT/LS) as the region of greatest interest. Specific sampling goals were achieved with the aid of a state-of-the art modeling and meteorological support system, which allowed targeted sampling of air parcels with desired characteristics. A substantial impact of aircraft emissions on NO(x) and O3 in the UT/LS of the study region is shown to be present. It is further shown that the NO(x)- HO(x)-O3 relationships are highly nonlinear and must be accurately simulated to make meaningful future predictions with global models. SONEXIPOLINAT-2 results are being published in Special Sections of GRL and JGR. Here we provide a brief overview of SONEX design, implementation, and expected results to provide a context within which these publications can be understood.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-23
    Description: To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-31
    Description: To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.
    Keywords: Environment Pollution
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-08-31
    Description: This century, especially in the last few decades, Earth's history was marked by intense study and concern about our environment and how we affect it. Scientific studies show that the level of carbon dioxide in the atmosphere is rising, the ocean's productivity is changing, and the average global temperatures have risen by 0.511. What we do not completely understand is: What fraction of this variation is due to human interference with the environment? What fraction is due to natural phenomena? How do these changes correlate with each other? In order to obtain a better understanding of how land, atmosphere and ocean interact to produce changes on Earth's climate and how human intervention affects these changes, NASA started planning for the Earth Observing System (EOS) in the early 1980's. As a result, a series of satellites will be sent into orbit to monitor the Earth for the next 18 years, providing scientists with necessary data to help them answer these questions.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-08-29
    Description: Measurements of NO(x) and ozone performed during the NOXAR project are compared with results from the coupled chemistry-climate models ECHAM4.L39(DLR)/CHEM and GISS-model. The measurements are based on flights between Europe and the East coast of America and between Europe and the Far East in the latitude range 40 deg N to 65 deg N. The comparison concentrates on tropopause altitudes and reveals strong longitudinal variations of seasonal mean NO,, of 200 pptv. Either model reproduced strong variations 3 km below but not at the tropopause, indicating a strong missing NO(x) or NO(y) sink over remote areas, e.g. NO(x) to HNO3 conversion by OH from additional OH sources or HNO3 wash-out. Vertical profiles show maximum NO(x) values 2-3 km below the tropopause with a strong seasonal cycle. ECHAM4.L39(DLR)/CHEM reproduces a maximum, although located at the tropopause with a less pronounced seasonal cycle, whereas the GISS model reproduces the seasonal cycle but not the profile's shape due to its coarser vertical resolution. A comparison of NO(x) frequency distributions reveals that both models are capable of reproducing the observed variability, except that ECHAM4.L39(DLR)/CHEM shows no very high NO(x) mixing ratios. Ozone mean values, vertical profiles and frequency distributions are much better reproduced in either model, indicating that the NO(x) frequency distribution, namely the most frequent NO(x) mixing ratio, is more important for the tropospheric photochemical ozone production than its mean value. Both models show that among all sources, NO(x) from lightning contributes most to the seasonal cycle of NO(x) at tropopause altitudes. The impact of lightning in the upper troposphere on NO(x) does not vary strongly with altitude, whereas the impact of surface emissions decreases with altitude. However, the models show significant differences in lightning induced NO(x) concentrations, especially in winter, which may be related to the different treatment of the lower stratospheric coupling between dynamics and chemistry.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-08-29
    Description: Annual zonal averages of ozone amounts from Nimbus-7/TOMS (Total Ozone Mapping Spectrometer) (1979 to 1992) are used to estimate the interannual variability of ozone and UVB (290 - 315 nm) irradiance between plus or minus 60 deg. latitude. Clear-sky interannual ozone and UVB changes are mainly caused by the Quasi Biennial Oscillation (QBO) of stratospheric winds, and can amount to plus or minus 15% at 300 nm and plus or minus 5% at 310 nm (or erythemal irradiance) at the equator and at middle latitudes. Near the equator, the interannual variability of ozone amounts and UV irradiance caused by the combination of the 2.3 year QBO and annual cycles implies that there is about a 5-year periodicity in UVB variability. At higher latitudes, the appearance of the interannual UVB maximum is predicted by the QBO, but without the regular periodicity. The 5-year periodic QBO effects on UVB irradiance are larger than the currently evaluated long-term changes caused by the decrease in ozone amounts.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-08-29
    Description: Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-08-29
    Description: A thermal/fluids analysis of a direct gain solar thermal upper stage engine is presented and the results are discussed. The engine was designed and constructed at the NASA Marshall Space Flight Center for ground testing in a facility that can provide about 10 kilowatts of concentrated solar energy to the engine. The engine transfers energy to a coolant (hydrogen) that is heated and accelerated through a nozzle to produce thrust. For the nominal design values and a hydrogen flowrate of 2 lb./hr., the results of the analysis show that the hydrogen temperature in the chamber (nozzle entrance) reaches about 3800 F after 30 minutes of heating and about 3850 F at steady-state (slightly below the desired design temperature of about 4100 F. Sensitivity analyses showed these results to be relatively insensitive to the values used for the absorber surface infrared emissivity and the convection coefficient within the cooling ducts but very sensitive to the hydrogen flowrate. Decreasing the hydrogen flowrate to 1 lb./hr. increases the hydrogen steady-state chamber temperature to about 4700 F, but also of course causes a decrease in thrust.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-08-29
    Description: An algorithm is presented for retrieving vertical profiles of O3 concentration using measurements of UV and visible light scattered from the limb of the atmosphere. The UV measurements provide information about the O3 profile in the upper and middle stratosphere, while only visible wavelengths are capable of probing the lower stratospheric O3 profile. Sensitivity to the underlying scene reflectance is greatly reduced by normalizing measurements at a tangent height high in the atmosphere (approximately 55 km), and relating measurements taken at lower altitudes to this normalization point. To decrease the effect of scattering by thin aerosols/clouds that may be present in the field of view, these normalized measurements are then combined by pairing wavelengths with strong and weak O3 absorption. We conclude that limb scatter can be used to measure O3 between 15 km and 50 km with 2-3 km vertical resolution and better than 10% accuracy.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-08-29
    Description: The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-08-29
    Description: Two instruments were flown on shuttle flight STS-87 to test a new technique for inferring the ozone vertical profile using measurements of scattered sunlight from the Earth's limb. The instruments were an ultraviolet imaging spectrometer designed to measure ozone between 30 and 50 km, and a multi-filter imaging photometer that uses 600 nm radiances to measure ozone between 15 km and 35 km. Two orbits of limb data were obtained on December 2, 1997. For the scans analyzed the ozone profile was measured from 15 km to 50 km with approximately 3 km vertical resolution. Comparisons with a profile from an ozonesonde launched from Ascension Island showed agreement mostly within +/- 5%. The tropopause at 15 km was clearly detected.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-08-29
    Description: During the Aerosols99 trans-Atlantic cruise from Norfolk, VA, to Cape Town, South Africa, daily ozonesondes were launched from the NOAA R/V Ronald H Brown between 17 January and 6 February l999. A composite of tropospheric ozone profiles along the latitudinal transect shows 4 zones, which are interpreted using correlative shipboard ozone, CO, water vapor, and overhead aerosol optical thickness measurements. Elevated ozone associated with biomass burning north of the ITCZ (Intertropical Convergence Zone) is prominent at 3-5 km from 10-0N, but even higher ozone (100 ppbv, 7-10 km) occurred south of the ITCZ, where it was not burning. Column-integrated tropospheric ozone was 44 Dobson Units (DU) in one sounding, 10 DU lower than the maximum in a January-February 1993 Atlantic cruise with ozonesondes [Weller et al., 1996]. TOMS tropospheric ozone shows elevated ozone extending throughout the tropical Atlantic in January 1999. Several explanations are considered. Back trajectories, satellite aerosol observations and shipboard tracers suggest a combination of convection and interhemispheric transport of ozone and/or ozone precursors, probably amplified by a lightning NO source over Africa.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-08-29
    Description: The Goddard trajectory chemistry model was used with ER-2 aircraft data to test our current knowledge of radical photochemistry during the POLARIS (Polar Ozone Loss in the Arctic Region In Summer) campaign. The results of the trajectory chemistry model with and without trajectories are used to identify cases where steady state does not accurately describe the measurements. Over the entire mission, using trajectory chemistry reduces the variability in the modeled NO(x) comparisons to data by 25% with respect to the same model simulating steady state. Although the variability is reduced, NO(x)/NO(y) trajectory model results were found to be systematically low relative to the observations by 20-30% as seen in previous studies. Using new rate constants for reactions important in NO(y) partitioning improves the agreement of NO(x)/NO(y) with the observations but a 5-10% bias still exists. OH and HO2 individually are underpredicted by 15% of the standard steady state model and worsen with the new rate constants. Trajectory chemistry model results of OH/HO2 were systematically low by 10-20% but improve using the new rates constants because of the explicit dependence on NO. This suggests that our understanding of NO(x) is accurate to the 20% level and HO(x) chemistry is accurate to the 30% level in the lower stratosphere or better for the POLARIS regime. The behavior of the NO(x) and HO(x) comparisons to data using steady state versus trajectory chemistry and with updated rate coefficients is discussed in ten-ns of known chemical mechanisms and lifetimes.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-08-29
    Description: Using state-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 AA-monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analyses of rainfall and SST are carried out globally over the entire tropics and regionally over the AA-monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions during the boreal summer and winter respectively. The observed 1997-98 AA-monsoon anomalies are found to be very complex with approximately 34% of the anomalies of the Asian (boreal) summer monsoon and 74% of the Australia (austral) monsoon attributable to basin-scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19% and 10%, leaving about 47% and 16% due to internal dynamics for the boreal and austral monsoon respectively. For the boreal summer monsoon, it is noted that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also intrinsic monsoon regional coupled processes.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-08-29
    Description: The impact of aircraft emissions on reactive nitrogen in the upper troposphere (UT) and lowermost stratosphere (LS) was estimated using the NO(y)-O3 correlation obtained during the SASS Ozone and NO(x) Experiment (SONEX) carried out over the US continent and North Atlantic Flight Corridor (NAFC) region in October and November 1997. To evaluate the large scale impact, we made a reference NO(y)-O3 relationship in air masses, upon which aircraft emissions were considered to have little impact. For this purpose, the integrated input of NO(x) from aircraft into an air mass along a 10-d back trajectory (DELTA-NO(y)) was calculated based on the ANCAT/EC2 emission inventory. The excess NO(y) (dNO(y)) was calculated from the observed NO(y) and the reference NO(y)-O3 relationship. As a result, a weak positive correlation was found between the dNO(y) and DELTA-NO(y), and dNO(y) and NO(x)/NO(y) values, while no positive correlation between the dNO(y) and CO values was found, suggesting that dNO(y) values can be used as a measure of the NO(x) input from aircraft emissions. The excess NO(y) values calculated from another NO(y)-O3 reference relationship made using in-situ CN data also agreed with these dNO(y) values, within the uncertainties. At the NAFC region (45 N - 60 N), the median value of dNO(y) in the troposphere increased with altitude above 9 km and reached 70 pptv (20% of NO(y)) at 11 km. The excess NO(x) was estimated to be about half of the dNO(y) values, corresponding to 30% of the observed NO(x) level. Higher dNO(y) values were generally found in air masses where O3 = 75 - 125 ppbv, suggesting a more pronounced effect around the tropopause. The median value of dNO(y) in the stratosphere at the NAFC region at 8.5 - 11.5 km was about 120 pptv. The higher dNO(y) values in the LS were probably due to the accumulated effect of aircraft emissions, given the long residence time of affected air in the LS. Similar dNO(y) values were also obtained in air masses sampled over the US continent.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-08-29
    Description: For the past decade, the NASA Atmospheric Effects of Aviation Project (AEAP) has been the U.S. focal point for research on aircraft effects. In conjunction with U.S. basic research programs, AEAP and concurrent European research programs have driven remarkable progress reports released in 1999 [IPCC, 1999; Kawa et al., 1999]. The former report primarily focuses on aircraft effects in the upper troposphere, with some discussion on stratospheric impacts. The latter report focuses entirely on the stratosphere. The current status of research regarding aviation effects on stratospheric ozone and climate, as embodied by the findings of these reports, is reviewed. The following topics are addressed: Aircraft Emissions, Pollution Transport, Atmospheric Chemistry, Polar Processes, Climate Impacts of Supersonic Aircraft, Subsonic Aircraft Effect on the Stratosphere, Calculations of the Supersonic Impact on Ozone and Sensitivity to Input Conditions.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-08-29
    Description: During a routine ER-2 aircraft high-altitude test flight on April 18, 1997, an unusual aerosol cloud was detected at 20 km altitude near the California coast at about 370 degrees N latitude. Not visually observed by the ER-2 pilot, the cloud was characterized bv high concentration of soot and sulfate aerosol in a region over 100 km in horizontal extent indicating that the source of the plume was a large hydrocarbon fueled vehicle, most likely a launch vehicle powered only by rocket motors burning liquid oxygen and kerosene. Two Russian Soyuz rockets could conceivably have produced the plume. The first was launched from the Baikonur Cosmodrome, Kazakhstan on April 6th; the second was launched from Plesetsk, Russia on April 9. Air parcel trajectory calculations and long-lived tracer gas concentrations in the cloud indicate that the Baikonur rocket launch is the most probable source of the plume. The parcel trajectory calculations do not unambiguously trace the transport of the Soyuz plume from Asia to North America, illustrating serious flaws in the point-to-point trajectory calculations. This chance encounter represents the only measurement of the stratospheric effects of emissions from a rocket powered exclusively with hydrocarbon fuel.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-08-29
    Description: The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal- hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-08-29
    Description: Chemical data from flight 8 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) exhibited signatures consistent with aircraft emissions, stratospheric air, and surface-based pollution. These signatures are examined in detail, focussing on the broad aircraft emission signatures that are several hundred kilometers in length. A mesoscale meteorological model provides high resolution wind data that are used to calculate backward trajectories arriving at locations along the flight track. These trajectories are compared to aircraft locations in the North Atlantic Flight Corridor over a 27-33 hour period. Time series of flight level NO and the number of trajectory/aircraft encounters within the NAFC show excellent agreement. Trajectories arriving within the stratospheric and surface-based pollution regions are found to experience very few aircraft encounters. Conversely, there are many trajectory/aircraft encounters within the two chemical signatures corresponding to aircraft emissions. Even many detailed fluctuations of NO within the two aircraft signature regions correspond to similar fluctuations in aircraft encountered during the previous 27-33 hours. Results indicate that high resolution meteorological modeling, when coupled with detailed aircraft location data, is useful for understanding chemical signatures from aircraft emissions at scales of several hundred kilometers.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-08-29
    Description: Flight 10 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) extended southwest of Lajes, Azores. A variety of chemical signatures were encountered. These signatures are examined in detail, relating them to meteorological data from a high resolution numerical model having horizontal grid spacing of 30 and 90 km and 26 vertical levels. The meteorological output at hourly intervals is used to create backward trajectories from the locations of the chemical signatures. Four major categories of chemical signatures are discussed-stratospheric, lightning, continental pollution, and a transition layer. The strong stratospheric signal is encountered just south of the Azores in a region of depressed tropopause height. Three chemical signatures at different altitudes in the upper troposphere are attributed to lightning. Backward trajectories arriving at locations of these signatures are related to locations of cloud-to-ground lightning. Results show that the trajectories pass through regions of lightning 1-2 days earlier over the eastern Gulf of Mexico and off the southeast coast of the United States. The lowest leg of the flight exhibits a chemical signature consistent with continental pollution. Trajectories arriving at this signature are found to pass over the highly populated Northeast Corridor of the United States. Surface based pollution apparently is lofted to the altitudes of the trajectories by convective clouds along the East Coast that did not contain lightning. Finally, a chemical transition layer is described. Its chemical signature is intermediate to those of lightning and continental pollution. Trajectories arriving in this layer pass between the trajectories of the lightning and pollution signatures. Thus, they probably are impacted by both sources.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-29
    Description: We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The relevance of the results to the assessment of the environmental impact of aircraft effluence is also discussed.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-08-29
    Description: We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-08-29
    Description: In the framework of the project POLINAT 2 (Pollution in the North Atlantic Flight Corridor) we measured NO(x) (NO and NO2) and ozone on 98 flights through the North Atlantic Flight Corridor (NAFC) with a fully automated system permanently installed aboard an in-service Swissair B-747 airliner in the period of August to November 1997. The averaged NO, concentrations both in the NAFC and at the U.S. east coast were similar to that measured in autumn 1995 with the same system. The patchy occurrence of NO(x), enhancements up to 3000 pptv over several hundred kilometers (plumes), predominately found over the U.S. east coast lead to a log-normal NO(x) probability density function. In three case-studies we examine the origins of such plumes by combining back-trajectories with brightness temperature enhanced (IR) satellite imagery, with lightning observations from the U.S. National Lightning Detection Network (NLDN) or with the Optical Transient Detector (OTD) satellite. For frontal activity above the continental U.S., we demonstrate that the location of NO(x) plumes can be well explained with maps of convective influence. For another case we show that the number of lightning flashes in a cluster of marine thunderstorms is proportional to the NO(x) concentrations observed several hundred kilometers downwind of the anvil outflows and suggest that lightning was the dominant source. From the fact that in autumn the NO, maximum was found several hundred kilometers off the U.S. east coast, it can be inferred that thunderstorms triggered over the warm Gulf Stream current are an important source for the regional upper tropospheric NO(x) budget in autumn.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-08-29
    Description: Key questions to which SONEX was directed were the following: Can aircraft corridors be detected? Is there a unique tracer for aircraft NO(x)? Can a "background" NO(x) (or NO(y) be defined? What fraction of NO(x) measured during SONEX was from aircraft? How representative was SONEX of the North Atlantic in 1997 and how typical of other years? We attempt to answer these questions through species-species correlations, probability distribution functions (PDFs), and meteorological history. There is not a unique aircraft tracer, largely due to the high variability of air mass origins and tracer ratios, which render "average" quantities meaningless. The greatest NO and NO(y) signals were associated with lightning and convective NO sources. Well-defined background CO, NO(y) and NO(y)/ozone ratio appear in subsets of two cross-track flights with subtropical origins and five flights with predominantly mid-latitude air. Forty percent of the observations on these 7 flights showed NO(y)/ozone to be above background, evidently due to unreacted NO(x). This NO(x) is a combination of aircraft, lightning and surface pollution injected by convection. The strongly subtropical signatures in SONEX observations, confirmed by pv (potential vorticity) values along flight tracks, argues for most of the unreacted NO(x) originating from lightning. Potential vorticity statistics along SONEX flight tracks in 1992-1998, and for the North Atlantic as a whole, show the SONEX meteorological environment to be representative of the North Atlantic flight corridor in the October-November period.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-08-29
    Description: Airborne measurements of NO(x) total reactive nitrogen (NO(y)), O3 and condensation nuclei (CN) were made within air traffic corridors over the U.S. and North Atlantic regions (35-60 deg N) in the fall of 1997. NO(x) and NO(y) data obtained in the lowermost stratosphere (LS) were examined using the calculated increase in NO(y) ((delta)NO(y)) along five-day back trajectories as a parameter to identify possible effects of aircraft on reactive nitrogen. It is very likely that aircraft emissions had a significant impact on the NO(x) levels in the LS inasmuch as the NO(s), mixing ratios at 8.5-12 km were significantly correlated with the independent parameters of aircraft emissions, i.e., (delta)NO(y) levels and CN values. In order to estimate quantitatively the impact of aircraft emissions on NO(x), and CN, the background levels of CN and NO(x) at O3 = 100-200 ppbv were derived from the correlations of these quantities with (delta)NO(y)). On average, the aircraft emissions are estimated to have increased the NO(x) and CN values by 130 pptv and 400 STP,cc, respectively, which corresponds to 70 -/+ 30 % and 30 -/+ 20 % of the observed median values.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-29
    Description: The superior energy density of antimatter annihilation has often been pointed to as the ultimate source of energy for propulsion. However, the limited capacity and very low efficiency of present-day antiproton production methods suggest that antimatter may be too costly to consider for near-term propulsion applications. We address this issue by assessing the antimatter requirements for six different types of propulsion concepts, including two in which antiprotons are used to drive energy release from combined fission/fusion. These requirements are compared against the capacity of both the current antimatter production infrastructure and the improved capabilities that could exist within the early part of next century. Results show that although it may be impractical to consider systems that rely on antimatter as the sole source of propulsive energy, the requirements for propulsion based on antimatter-assisted fission/fusion do fall within projected near-term production capabilities. In fact, a new facility designed solely for antiproton production but based on existing technology could feasibly support interstellar precursor missions and omniplanetary spaceflight with antimatter costs ranging up to $6.4 million per mission.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-29
    Description: The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-29
    Description: The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-23
    Description: Analyses of satellite, ground-based, and balloon measurements allow updated estimates of trends in the vertical profile of ozone since 1979. The results show overall consistency among several independent measurement systems, particularly for northern hemisphere midlatitudes where most balloon and ground-based measurements are made. Combined trend estimates over these latitudes for the period 1979-96 show statistically significant negative trends at all altitudes between 10 and 45 km, with two local extremes: -7.4 plus or minus 2.0% per decade at 40 km and -7.3 plus or minus -4.6% per decade at 15 km altitude. There is a strong seasonal variation in trends over northern midlatitudes in the attitude range of 10 to 18 km, with the largest ozone loss during winter and spring. The profile trends are in quantitative agreement with independently measured trends in column ozone, the amount of ozone in a column above the surface. The vertical profiles of ozone trends provide a fingerprint for the mechanisms of ozone depletion over the last two decades.
    Keywords: Environment Pollution
    Type: Science; Volume 285; 1689-1692
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-02-04
    Description: Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-23
    Description: We discuss the methodology of interpreting channel 1 and 2 AVHRR radiance data to retrieve tropospheric aerosol properties over the ocean and describe a detailed analysis of the sensitivity of monthly average retrievals to the assumed aerosol models. We use real AVHRR data and accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. Our analysis shows that two-channel algorithms can provide significantly more accurate retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening is the largest source of errors in the retrieved optical thickness. Both underestimating and overestimating aerosol absorption as well as strong variability of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-06-07
    Description: The purpose of this presentation is to discuss the developmental approach to the Environmental Impact Statement regarding the X-33 vehicle.
    Keywords: Environment Pollution
    Type: Third Aerospace Environmental Technology Conference; 43-53; NASA/CP-1999-209258
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Opto-Knowledge Systems, Inc. was founded in 1991 specifically to take advantage of the emergence of a new technology field related to spectral imaging. The technology has applications in diverse areas such as Earth remote sensing, agriculture, geology, medical diagnosis, manufacturing, forensics, and more. Under the NASA/Goddard Space Flight Center STTR project, OKSI developed several major aspects to further the state of the art, resulting in several commercial products.
    Keywords: Environment Pollution
    Type: Spinoff 1999; 70; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-08
    Description: The ST4/Champollion mission is designed to rendezvous with and land on the comet Tempel 1 and return data from the first-ever sampling of a comet surface.
    Keywords: Spacecraft Propulsion and Power
    Type: Joint Propulsion Conference; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-08
    Description: A feasibility investigation for a newly proposed microfabricated, normally-closed isolation valve was initiated.
    Keywords: Spacecraft Propulsion and Power
    Type: 35th AIAA/ASME SAE/ASEE Joint Propulsion Conference and Exhibit; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-08
    Description: Low-temperature (LTO) chemical vapor deposited (CVD) silicon dioxide was investigated for use as an insulator material in microfabricated ion engine accelerator grids.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Journal of Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-08
    Description: Recent advances in the development of several micropropulsion components performed at JPL for microscpacecraft applications are reported upon.
    Keywords: Spacecraft Propulsion and Power
    Type: IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-08
    Description: NASA is considering missions to explore new-interstellar space (40-250 Astronomical Units) early in the next decade as the first step toward a vigorous interstellar exploration program.
    Keywords: Spacecraft Propulsion and Power
    Type: International Astronautical Federation (IAF) Congress; Amsterdam; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-05
    Description: The NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program has provided a single-string primary propulsion system to NASA's Deep Space 1 spacecraft. This spacecraft will carry about 81 kg of xenon propellant for the ion thruster, which can be throttled down from 2.3 to 0.5 kW as the spacecraft moves away from the Sun. The propellant load will provide about 20 months of propulsion at the one-half power throttle setpoint of 1.2 kW. This mission will validate the 2.5-kW ion propulsion system and will fly by the asteroid 1992 KD in 1999. If funding permits, Deep Space 1 also will encounter comets Wilson-Harrington and Borrelly in 2001. NASA Lewis Research Center's On-Board Propulsion Branch was responsible for the development of the 30-cm-diameter ion thruster, the 2.5-kW power processor unit (PPU), and the Digital Control and Interface Unit (DCIU) that controls the PPU/thruster/feed system and provides data and recovery from fault conditions. Lewis transferred the thruster and PPU technologies to the Hughes Electron Dynamics Division, which was selected to build two sets of flight thrusters, as well as the PPU's and DCIU's. Hughes subcontracted the DCIU development to Spectrum Astro Incorporated. The Jet Propulsion Laboratory (JPL) was primarily responsible for the NSTAR project management, thruster lifetests, the feed system, diagnostics, and the propulsion subsystem integration. A total of four engineering model thrusters and three breadboard PPU's were built, integrated, and tested. More than 50 development tests were conducted along with thruster design verification tests of 2000 and 1000 hours. In addition, an 8000-hr life demonstration test was successfully completed and demonstrated wear-rates consistent with full-power lifetimes in excess of 12,000 hours.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-05
    Description: The Environmental Health activity for the Extended Duration Orbiter Medical Project (EDOMP) was formed to develop an overall strategy for safeguarding crew members from potential airborne hazards anticipated on missions of extended duration. These efforts were necessary because of major modifications to the air revitalization system of the U.S. Space Shuttle and an increased potential for environmental health risks associated with longer space flights. Degradation of air quality in the Shuttle during a space flight mission has the potential to affect the performance of the crew not only during piloting, landing, or egress, but also during space flight. It was anticipated that the risk of significant deterioration in air quality would increase with extended mission lengths and could result from: (1) a major chemical contamination incident, such as a thermodegradation event or toxic leak, (2) continual accumulation of volatile organic compounds to unacceptable levels, (3) excessive levels of airborne particles, (4) excessive levels of microorganisms, or (5) accumulation of airborne pathogens.
    Keywords: Environment Pollution
    Type: Extended Duration Orbiter Medical Project; 4-1 - 4-12; NASA/SP-1999-534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-02
    Description: A major modification of and addition to existing Closed Brayton Cycle (CBC) space power system optimization codes was completed. These modifications relate to the global minimum mass search driver programs containing three nested iteration loops comprising iterations on cycle temperature ratio, and three separate pressure ratio iteration loops--one loop for maximizing thermodynamic efficiency, one for minimizing radiator area, and a final loop for minimizing overall power system mass. Using the method of steepest ascent, the code sweeps through the pressure ratio space repeatedly, each time with smaller iteration step sizes, so that the three optimum pressure ratios can be obtained to any desired accuracy for each of the objective functions referred to above (i.e., maximum thermodynamic efficiency, minimum radiator area, and minimum system mass). Two separate options for the power system heat source are available: 1. A nuclear fission reactor can be used. It is provided with a radiation shield 1. (composed of a lithium hydride (LiH) neutron shield and tungsten (W) gamma shield). Suboptions can be used to select the type of reactor (i.e., fast spectrum liquid metal cooled or epithermal high-temperature gas reactor (HTGR)). 2. A solar heat source can be used. This option includes a parabolic concentrator and heat receiver for raising the temperature of the recirculating working fluid. A useful feature of the code modifications is that key cycle parameters are displayed, including the overall system specific mass in kilograms per kilowatt and the system specific power in watts per kilogram, as the results for each temperature ratio are computed. As the minimum mass temperature ratio is encountered, a message is printed out. Several levels of detailed information on cycle state points, subsystem mass results, and radiator temperature profiles are stored for this temperature ratio condition and can be displayed or printed by users.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-02
    Description: Fundamental research into the feasibility of microrockets for primary propulsion and attitude control for far-term micro/integrated spacecraft is being performed. These rockets would be fabricated using microelectrical and mechanical systems (MEMS) technology. The enabling technology is being developed at the Massachusetts Institute of Technology (MIT). The NASA/MIT program leverages a very large Army Research Office and Defense Advanced Research Projects Agency (DARPA) program for the development of microturbine technology. The microrocket motor is complete with regenerative cooling, turbopumps, and control valves etched onto the same chip. They would be fabricated in large numbers in parallel using semiconductor manufacturing techniques. The technology may lead to the development of microsatellites as fully integrated MEMS devices that could be mass produced at a fraction of the cost of current satellites.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-02
    Description: Most combustion processes in industrial applications (e.g., furnaces and engines) and in nature (e.g., forest fires) are turbulent. A better understanding of turbulent combustion could lead to improved combustor design, with enhanced efficiency and reduced emissions. Despite its importance, turbulent combustion is poorly understood because of its complexity. The rapidly changing and random behavior of such flames currently prevents detailed analysis, whether experimentally or computationally. However, it is possible to learn about the fundamental behavior of turbulent flames by exploring the controlled interaction of steady laminar flames and artificially induced flow vortices. These interactions are an inherent part of turbulent flames, and understanding them is essential to the characterization of turbulent combustion. Well-controlled and defined experiments of vortex interaction with laminar flames are not possible in normal gravity because of the interference of buoyancy- (i.e., gravity) induced vortices. Therefore, a joint microgravity study was established by researchers from the Science and Technology Development Corp. and the NASA Lewis Research Center. The experimental study culminated in the conduct of the Turbulent Gas-Jet Diffusion Flames (TGDF) Experiment on the STS-87 space shuttle mission in November 1997. The fully automated hardware, shown in photo, was designed and built at Lewis. During the mission, the experiment was housed in a Get Away Special (GAS) canister in the cargo bay.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-02
    Description: The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-05
    Description: Stirling Technology Co., as part of a NASA Lewis Research Center Phase II Small Business Innovation Research contract, has successfully demonstrated paralleling two thermodynamically independent Stirling converters. A system of four Stirling converters is being developed by NASA and the Department of Energy as an alternative high-efficiency radioisotope power source for spacecraft onboard electric power for NASA deep space missions. The high Stirling efficiency, exceeding 20 percent for this application, will greatly reduce the necessary isotope inventory in comparison to the current radioisotope thermoelectric generators (RTG s), significantly reducing mission cost and risk. Stirling is the most developed converter option of the advanced power technologies under consideration.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-05
    Description: An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (〉85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-05
    Description: TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance (15 to 20 sec). To determine the merits of a powder rhenium thrust chamber, Lewis On-Board Propulsion Branch directed TRW (under the Space Storable Rocket Technology Program and the High Pressure Earth Storable Rocket Technology Program) to design, fabricate, and test an engineering model to serve as a technology demonstrator.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-05
    Description: At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: ICIS'99; Kyoto; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Plasmadynamics & Lasers Conference; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-08
    Description: Cold field emission cathodes are being considered as the electron sources for propellant ionization and ion beam neutralization in electric propulsion systems.
    Keywords: Spacecraft Propulsion and Power
    Type: IEEE, Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: After having been in development for many years at Glenn Research Center, the NASA design 30 cm ring-cusp xenon ion engine was launched on the DS1 spacecraft on 24 October 1998 from the Kennedy Space Center in Florida.
    Keywords: Spacecraft Propulsion and Power
    Type: ISIS 1999; Kyoto; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-08
    Description: NASA's drive to reduce mission costs and accept the risk of incorporating innovative, high payoff technologies into it's missions while simultaneously undertaking ever more difficult missions has sparked a greatly renewed interest in solar sails.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA/ASME/SAE/ASEE, 35th Joint Propulsion Conference and Exhibit; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-08
    Description: A microfabricated vaporizing liquid thruster was constructed and successfully tested for the first time.
    Keywords: Spacecraft Propulsion and Power
    Type: Journal of Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-27
    Description: The backscattered ultraviolet (BUV) technique has been used for almost 3 decades to monitor global total ozone and the distribution of ozone in the stratosphere. Satellite BUV measurements in the 250-340 mn wavelength region are technically challenging because the Earth's radiance varies by approximately 4 orders of magnitude during a single scan. Further, the observed signal increases by over three orders of magnitude in about 2 minutes as the satellite emerges into daylight. The gain of the instrument's photomultiplier tube (PMT) detector is low when the spacecraft first emerges into the sunlit portion of the orbit relative to the gain observed after the PMT has experienced moderately high current levels. This "hysteresis" effect was first observed on the Nimbus-7 SBUV and TOMS instruments. The effect is difficult to characterize prelaunch because of the high signal levels and rapid variations required. We have recently observed and quantified the hysteresis effect for the NOAA-9 SBUV/2 instrument, which collected ozone data from February 1985 to February 1998. The instrument gain is observed to be up to 3% low at high solar zenith angles [Chi = 85-90 degrees] in the emergent hemisphere (i.e. Southern Hemisphere at launch). The gain error decreases as the SZA decreases and average PMT current increases, and is generally negligible for Chi 〈 65 degrees. The magnitude of the hysteresis effect varies with season, and exhibits long-term changes as the NOAA-9 sun-synchronous orbit drifts. In the latter portion of the record, when the spacecraft emerged from the dark in the Northern Hemisphere, hysteresis effects were then observed in the North. NOAA-9 total ozone errors due to the hysteresis effect are typically on the order of 2%, but can reach 5% in extreme cases. We have developed a quantitative correction for the hysteresis effect that incorporates both seasonal and long-term variations in magnitude. Results of similar analyses for the NOAA-11 and NOAA-14 SBUV/2 instruments will also be discussed. The characterization of the hysteresis effect in high solar zenith angle SBUV/2 ozone data represents a significant step towards reconciling polar ozone measurements from different satellite instruments.
    Keywords: Environment Pollution
    Type: NEWRAD 1999; 25-27 O t. 1999; Madrid; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-27
    Description: A transient model of the Propulsion Test Article 1 (PTA1) Helium Pressurization System was developed using the Generalized Fluid System Simulation Program (GFSSP). The model included feed lines from the facility interface to the engine purge interface and Liquid Oxygen (LOX) and Rocket Propellant 1 (RP-1) tanks, the propellant tanks themselves including ullage space and propellant feed lines to their respective pump interfaces. GFSSPs capability was extended to model a control valve to maintain ullage pressure within a specified limit and pressurization processes such as heat transfer between ullage gas, propellant and the tank wall. The purpose of the model is to predict the flow system characteristics in the entire pressurization system during 80 seconds of pre-pressurization operation, 420 seconds of pressurization stand-by operation and 150 seconds of engine operation. Subsequent to the work presented here, the PTA1 model has been updated to include the LOX and RP-1 pumps, while the pressurization option itself has been modified to include the effects of mass transfer. This updated model will be compared with PTA1 test data as it becomes available.
    Keywords: Spacecraft Propulsion and Power
    Type: Thermal and Fluids Analysis; 13-17 Sept. 1999; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-17
    Description: A chemical analysis of soil-water mixtures and the first microscopic images of martian soil will be among the results to be returned by the Mars Environmental Compatibility Assessment (MECA) payload on the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's primary goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. As a survey of soil properties, the MECA data set will also be rich in information relevant to basic geology, paleoclimate, and exobiology. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases. Cyclic voltammetry will address oxidants, and anodic stripping voltammetry will probe potentially hazardous trace metals. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in a controlled illumination environment to image dust and soil particles from millimeters to nanometers in size. Careful selection of substrates and an abrasion tool allows experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. Mounted on the end of the robot arm, MECA's electrometer consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultra-violet- light-induced ions and a low-voltage break-down threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. In addition, the electrostatic environment is key to transport of dust and, consequently, martian meteorology. MECA will also observe natural dust accumulation on engineering materials. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the inter-action between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. Dust accumulation as a function of conductivity, magnetic field strength, and other parameters will be explored. The MECA instruments described above will assess potential hazards that the Martian soil might present to human explorers and their equipment. In addition, MECA will provide information on the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-17
    Description: The observation that the Mars Pathfinder landing site probably looks very similar to when it was deposited by catastrophic floods some 1.8-3.5 Ga allows quantitative constraints to be placed on the rate of change at the landing site since that time. When combined with interpretations of data recently returned by the Mars Pathfinder and Global Surveyor missions and perspectives drawn from 20 years of analysis and interpretation of Viking data, these observations and inferences suggest an early warmer and wetter environment with vastly different erosion rates and a major climatic change on Mars. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-17
    Description: NASA is pursuing the technology and advanced development of a non-toxic (NT) orbital maneuvering system (OMS) and reaction control system (RCS) for shuttle upgrades, RLV, and reusable first stages. The primary objectives of the shuttle upgrades program are improved safety, improved reliability, reduced operations time and cost, improved performance or capabilities, and commonality with future space exploration needs. Non-Toxic OMS/RCS offers advantages in each of these categories. A non-toxic OMS/RCS eliminates the ground hazards and the flight safety hazards of the toxic and corrosive propellants. The cost savings for ground operations are over $24M per year for 7 flights, and the savings increase with increasing flight rate up to $44M per year. The OMS/RCS serial processing time is reduced from 65 days to 13 days. The payload capability can be increased up to 5100 Ibms. The non-toxic OMS/RCS also provides improved space station reboost capability up to 20 nautical miles over the current toxic system of 14 nautical miles. A NT OMS/RCS represents a clear advancement in the SOA over MMH/NTO. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The simple and reliable pressure-fed design uses sub-cooled liquid oxygen at 250 to 350 psia, which allows a propellant to remain cryogenic for longer periods of time. The key technologies are thermal insulation and conditioning techniques are used to maintain the sub-cooling. Phase I successfully defined the system architecture, designed an integrated OMS/RCS propellant tank, analyzed the feed system, built and tested the 870 lbf RCS thrusters, and tested the 6000 lbf OMS engine. Phase 11 is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000
    Keywords: Spacecraft Propulsion and Power
    Type: Space Shuttle Development Conference; Jul 28, 1999 - Jul 30, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-17
    Description: The particle simulations in a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) currently include self-consistent calculation of. 1) stationary magnetic field in plasma, 2) ion density and velocity, 3) ion-cyclotron radio-frequency heating, 4) ambipolar electric field. The assumptions of quasineutral and collissionless plasma are based on the range of operating VASIMR parameters. The main motivation for the particle simulation in VASIMR is plasma detachment from the magnetic field in the exhaust area. The plasma detachment is caused mainly by the Larmor radius increase. The plasma beta effect on detachment is observed and investigated as well. The results of particle simulations are compared with those from MHD simulations.
    Keywords: Spacecraft Propulsion and Power
    Type: Plasma Propulsion Physics Mini Conferencw; Nov 15, 1999 - Nov 19, 1999; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-17
    Description: Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: Ninth Annual V. M. Goldschmidt Conference; LPI-Contrib-971
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-17
    Description: Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.
    Keywords: Environment Pollution
    Type: IUGG99; Jan 01, 1999; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-18
    Description: As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol-size distributions were measured on board the CIRPAS Pelican aircraft through the use of a Differential Mobility Analyzer (DMA) and 2 Optical Particle Counters (OPCs). During the campaign, the boundary-layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free-tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on 4 missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol-size distributions and those measured directly by an airborne 14-wavelength sunphotometer and 3 nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size-distribution-based calculations. Simultaneous comparison with such a wide range of directly-measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly-measured optical properties varied for different measurements and for different cases. Averaged over the 4 case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotometer by 2.5% in the clean boundary layer, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and non-dusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured scattering coefficient were -9.6%, +4.7%, +17%, and -41% for measurements within the clean boundary layer, polluted boundary layer, free troposphere with a dust layer, and free troposphere without a dust layer, respectively. Each of these quantities, as well as the majority of the more than 100 individual comparisons from which they were averaged, were within estimated uncertainties.
    Keywords: Environment Pollution
    Type: TELLUS (ISSN 0280-6509); 52B; 2; 498-525
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.
    Keywords: Spacecraft Propulsion and Power
    Type: Space Transportation Vehicles, Operations, and Technology; May 28, 1999; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The Earth's rotation is not constant but exhibits minute changes on all observable time scales ranging from subdaily to secular. This rich spectrum of observed Earth rotation changes reflects the rich variety of astronomical and geophysical phenomena that are causing the Earth's rotation to change, including, but not limited to, ocean and solid body tides, atmospheric wind and pressure changes, oceanic current and sea level height changes, post-glacial rebound, and torques acting at the core-mantle boundary. In particular, the decadal-scale variations of the Earth's rotation are thought to be largely caused by interactions between the Earth's outer core and mantle. Comparing the inferred Earth rotation variations caused by the various core-mantle interactions to observed variations requires Earth rotation observations spanning decades, if not centuries. During the past century many different techniques have been used to observe the Earth's rotation. By combining the individual Earth rotation series determined by each of these techniques, a series of the Earth's rotation can be obtained that is based upon independent measurements spanning the greatest possible time interval. In this study, independent observations of the Earth's rotation are combined to generate a length-of-day series spanning 1832-1997. The observations combined include lunar occultation measurements spanning 1832-1955, optical astrometric measurements spanning 1956-1982, lunar laser ranging measurements spanning 1970-1997, and very long baseline interferometric measurements spanning 1978-1998. These series are combined using a Kalman filter developed at JPL for just this purpose. The resulting combined length-of-day series will be presented and compared with other available length-of-day series of similar duration.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-17
    Description: Heterogeneous reactions on the surface of aerosols lead to a decrease in the concentration of nitrogen radicals and an increase in the concentration of chlorine and hydrogen radical species. As a consequence, enhanced sulfate aerosol levels in the lower stratosphere resulting from volcanic eruptions lead to lower concentrations of ozone due to more rapid loss by chlorine and hydrogen radicals. This study focuses on continuing the effort to quantify the effect of sulfate aerosols on the partitioning of inorganic chlorine species at midlatitudes. The study begins with an examination of balloon-borne measurements of key chlorine species obtained by the JPL MkIV interferometer for different aerosol loading conditions. A detailed comparison of the response of HCl to variations in aerosol surface area observed by MkIV, ER-2 instruments, HALOE, and ATMOS is carried out by examining HCl vs CH4 correlation diagrams, since CH4 is the only tracer measured on each platform. Finally, the consistency between theory and observed changes in ClO and HCl due to variations in aerosol surface area is examined.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The objectives of this project were: (1) To incorporate into an existing version of the University of Maryland Surface Radiation Budget (SRB) model, optical parameters of forest fire aerosols, using best available information, as well as optical properties of other aerosols, identified as significant. (2) To run the model on regional scales with the new parametrization and information on forest fire occurrence and plume advection, as available from NASA LARC, and test improvements in inferring surface fluxes against daily values of measured fluxes. (3) Develop strategy how to incorporate the new parametrization on global scale and how to transfer modified model to NASA LARC.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-1999-209638 , NAS 1.15:209638 , E-11968 , 32nd Intersociety Energy Conversion Engineering Conference; Jul 27, 1997 - Aug 01, 1997; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented.
    Keywords: Spacecraft Propulsion and Power
    Type: Nov 18, 1999; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.
    Keywords: Environment Pollution
    Type: P698
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: An axisymmetric, 110 N class, rocket configured with a free expansion between the rocket nozzle and a surrounding duct was tested in an altitude simulation facility. The propellants were gaseous hydrogen and gaseous oxygen and the hardware consisted of a heat sink type copper rocket firing through copper ducts of various diameters and lengths. A secondary flow of nitrogen was introduced at the blind end of the duct to mix with the primary rocket mass flow in the duct. This flow was in the range of 0 to 10% of the primary massflow and its effect on nozzle performance was measured. The random measurement errors on thrust and massflow were within +/-1%. One dimensional equilibrium calculations were used to establish the possible theoretical performance of these rocket-in-a-duct nozzles. Although the scale of these tests was small, they simulated the relevant flow expansion physics at a modest experimental cost. Test results indicated that lower performance was obtained at higher free expansion area ratios and longer ducts, while, higher performance was obtained with the addition of secondary flow. There was a discernable peak in specific impulse efficiency at 4% secondary flow. The small scale of these tests resulted in low performance efficiencies, but prior numerical modeling of larger rocket-in-a-duct engines predicted performance that was comparable to that of optimized rocket nozzles. This remains to be proven in large-scale, rocket-in-a-duct tests.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-1999-209440 , NAS 1.15:209440 , E-11918 , AIAA Paper 99-2101 , Joint Propulsion Conference and Exhibit; Jun 20, 1999 - Jun 24, 1999; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-1999-209307 , E-11833 , NAS 1.15:209307 , AIAA Paper 99-2872 , Joint Propulsion; Jun 20, 1999 - Jun 24, 1999; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS) will be presented. Comparisons and contrasts among the different sensors will be drawn. Results will also be compared to previous rainfall climatologies generated from the SSM/I instrument. In particular this paper will focus on the synergy between the TRMM radar and passive microwave radiometer and what we have learned from is synergy.
    Keywords: Environment Pollution
    Type: Climate, Environmental Change and Regional Impacts: Seasonal-to-Interannual Climate Variability; Sep 21, 1999 - Sep 24, 1999; Beijing; China|Impacts of Ocean Variability on Climate Change; Sep 23, 1999 - Sep 24, 1999; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: High spectral resolution (0.003 per cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5N, 155.6W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4-16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first 2 years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4-16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32'N and 45'S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4-16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during the strong El Nino warm phase of 1997- 1998 are the likely source of the elevated emission products.
    Keywords: Environment Pollution
    Type: Paper-1999JD900366 , Journal of Geophysical Research (ISSN 0148-0227); 104; D15; 18,667-18,680
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Risk management has received considerable attention in the X-33 and Reusable Launch Vehicle (RLV) program due to aggressive schedules, limited funding. and planned private investment to develop the commercial VentureStar vehicle. As an X-33 and RLV team member and main propulsion supplier, Boeing Rocketdyn Propulsion and Power has addressed risk through a methodical application of systems engineering in identifying, assessing, and mitigating risks. The methods employed involve rigorous risk mitigation planning early in development, continuous risk monitoring and assessment during the course of development, and the systematic verification of compliance with technical requirements prior to delivery. In addition, an engine system reliability analysis was conducted to reduce risk. In July 1996, NASA selected Lockheed Martin's "Skunk Works" (LMSW) as the lead contractor for the X-33 and RLV program. The X-33 vehicle is a half-scale pathfinder for the full-scale RLV. The LMSW RLV design is a lifting body shaped vehicle employing linear aerospike engine provided propulsion. The initial X-33 flight is planned for the summer of 2000, and the initial VentureStar flight is planned for between 2005 and 2007.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 99-2338 , Joint Propulsion; Jun 20, 1999 - Jun 24, 1999; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: The first Clouds and the Earth's Radiant Energy System (CERES) instrument has been returning useful data on Earth's radiation budget from the Tropical Rainfall Measuring Mission (TRMM) spacecraft since late 1997. Validation of the initial data is now intensively underway. As one component of this validation, the CERES Students' Cloud Observations On-Line (S'COOL) project has been operational since April 1998 - the 2nd CERES validation month. S'COOL involves school children in over 140 schools in 15 countries on 5 continents in making and reporting observations and measurements which they and CERES scientists can then compare to the satellite retrievals. The project is planned to continue through the life of the CERES Project (nominally 15 years), and new participants are invited to join on a continuous basis. This paper will report on the first year of the operational phase of the project, during which a number of exciting events occurred (a demonstration of the project to First Lady Hillary Rodham Clinton, and visits by CERES personnel to participating schools, among others). It will further report on some of the noteworthy observations and comparisons which have been made possible by this project. We have found that schools are often located in interesting places, in terms of the clouds found there and the satellite's ability to observe these clouds. The paper will also report on the learning opportunities delivered by this project, and on new questions about the planet and its climate which arise in the students' minds as a result of their active participation.
    Keywords: Environment Pollution
    Type: Education; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: This effort was for the participation of Dr. William S. Kurth in the study of the application of spacecraft using solar electric propulsion (SEP) for a range of space physics missions. This effort included the participation of Dr. Kurth in the Tropix Science Definition Team but also included the generalization to various space physics and planetary missions, including specific Explorer mission studies.
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The Linear Aerospike SR-71 Experiment (LASRE) was a propulsion flight experiment for advanced space vehicles such as the X-33 and reusable launch vehicle. A linear aerospike rocket engine was integrated into a semi-span of an X-33-like lifting body shape (model), and carried on top of an SR-71 aircraft at NASA Dryden Flight Research Center. Because no flight data existed for aerospike nozzles, the primary objective of the LASRE flight experiment was to evaluate flight effects on the engine performance over a range of altitudes and Mach numbers. Because it contained a large quantity of energy in the form of fuel, oxidizer, hypergolics, and gases at very high pressures, the LASRE propulsion system posed a major hazard for fire or explosion. Therefore, a propulsion-hazard mitigation system was created for LASRE that included a nitrogen purge system. Oxygen sensors were a critical part of the nitrogen purge system because they measured purge operation and effectiveness. Because the available oxygen sensors were not designed for flight testing, a laboratory study investigated oxygen-sensor characteristics and accuracy over a range of altitudes and oxygen concentrations. Laboratory test data made it possible to properly calibrate the sensors for flight. Such data also provided a more accurate error prediction than the manufacturer's specification. This predictive accuracy increased confidence in the sensor output during critical phases of the flight. This paper presents the findings of this laboratory test.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-1999-206589 , NAS 1.15:206589 , H-2377 , 9th International Space Planes and Hypersonic Systems; Nov 01, 1999 - Nov 05, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The objective of the research was the development of a new small, lightweight instrument for the detection of ClONO2, NO2, ClO, and BrO, carried aboard a robotic aircraft, specifically the NASA ER-2. The schematic of the instrument is shown. Some of the observations which this instrument is designed to make are discussed. The observations of the instrument during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission are also reviewed.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...