ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Space Sciences (General)  (295)
  • 2005-2009  (295)
  • 2007  (130)
  • 2006  (165)
  • 1
    Publication Date: 2018-06-11
    Description: Arecibo delay-Doppler measurements of (99942) Apophis in 2005 and 2006 resulted in a five standard-deviation trajectory correction to the optically predicted close approach distance to Earth in 2029. The radar measurements reduced the volume of the statistical uncertainty region entering the encounter to 7.3% of the pre-radar solution, but increased the trajectory uncertainty growth rate across the encounter by 800% due to the closer predicted approach to the Earth. A small estimated Earth impact probability remained for 2036. With standard-deviation plane-of-sky position uncertainties for 2007-2010 already less than 0.2 arcsec, the best near-term ground-based optical astrometry can only weakly affect the trajectory estimate. While the potential for impact in 2036 will likely be excluded in 2013 (if not 2011) using ground-based optical measurements, approximations within the Standard Dynamical Model (SDM) used to estimate and predict the trajectory from the current era are sufficient to obscure the difference between a predicted impact and a miss in 2036 by altering the dynamics leading into the 2029 encounter. Normal impact probability assessments based on the SDM become problematic without knowledge of the object's physical properties; impact could be excluded while the actual dynamics still permit it. Calibrated position uncertainty intervals are developed to compensate for this by characterizing the minimum and maximum effect of physical parameters on the trajectory. Uncertainty in accelerations related to solar radiation can cause between 82 and 4720 Earth-radii of trajectory change relative to the SDM by 2036. If an actionable hazard exists, alteration by 2-10% of Apophis' total absorption of solar radiation in 2018 could be sufficient to produce a six standard-deviation trajectory change by 2036 given physical characterization; even a 0.5% change could produce a trajectory shift of one Earth-radius by 2036 for all possible spin-poles and likely masses. Planetary ephemeris uncertainties are the next greatest source of systematic error, causing up to 23 Earth-radii of uncertainty. The SDM Earth point-mass assumption introduces an additional 2.9 Earth-radii of prediction error by 2036. Unmodeled asteroid perturbations produce as much as 2.3 Earth-radii of error. We find no future small-body encounters likely to yield an Apophis mass determination prior to 2029. However, asteroid (144898) 2004 VD17, itself having a statistical Earth impact in 2102, will probably encounter Apophis at 6.7 lunar distances in 2034, their uncertainty regions coming as close as 1.6 lunar distances near the center of both SDM probability distributions.
    Keywords: Space Sciences (General)
    Type: Icarus; Volume 193; Issue 1; 1-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Currently, International Space Station (ISS) crews use a laptop computer to display procedures for performing onboard maintenance tasks. This approach has been determined to be suboptimal. A heuristic evaluation and two studies have been completed to test commercial off-the-shelf (COTS) "near-eye" heads up displays (HUDs) for support of these types of maintenance tasks. In both studies, subjects worked through electronic procedures to perform simple maintenance tasks. As a result of the Phase I study, three HUDs were down-selected to one. In the Phase II study, the HUD was compared against two other electronic display devices - a laptop computer and an e-book reader. Results suggested that adjustability and stability of the HUD display were the most significant acceptability factors to consider for near-eye displays. The Phase II study uncovered a number of advantages and disadvantages of the HUD relative to the laptop and e-book reader for interacting with electronic procedures.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.
    Keywords: Space Sciences (General)
    Type: Oral Presentation Given for Invited Colloquium at NCSU requesting to Post Webcast on Colloquium Series WebSite
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A general overview of NASA Dryden Flight Research Center is presented. The topics include: 1) Personal Background; 2) NASA Background; 3) Dryden History; and 4) Recent and Current Dryden Projects.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-12
    Description: Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-28
    Description: The current status of aerothermal and thermal protection system modeling for civilian entry missions is reviewed. For most such missions, the accuracy of our simulations is limited not by the tools and processes currently employed, but rather by reducible deficiencies in the underlying physical models. Improving the accuracy of and reducing the uncertainties in these models will enable a greater understanding of the system level impacts of a particular thermal protection system and of the system operation and risk over the operational life of the system. A strategic plan will be laid out by which key modeling deficiencies can be identified via mission-specific gap analysis. Once these gaps have been identified, the driving component uncertainties are determined via sensitivity analyses. A Monte-Carlo based methodology is presented for physics-based probabilistic uncertainty analysis of aerothermodynamics and thermal protection system material response modeling. These data are then used to advocate for and plan focused testing aimed at reducing key uncertainties. The results of these tests are used to validate or modify existing physical models. Concurrently, a testing methodology is outlined for thermal protection materials. The proposed approach is based on using the results of uncertainty/sensitivity analyses discussed above to tailor ground testing so as to best identify and quantify system performance and risk drivers. A key component of this testing is understanding the relationship between the test and flight environments. No existing ground test facility can simultaneously replicate all aspects of the flight environment, and therefore good models for traceability to flight are critical to ensure a low risk, high reliability thermal protection system design. Finally, the role of flight testing in the overall thermal protection system development strategy is discussed.
    Keywords: Space Sciences (General)
    Type: Experiment, Modeling and Simulation of Gas-Surface Interactions for Reactive Flows in Hypersonic Flights; 17-1 - 17-24; RTO-EN-AVT-142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: This paper presents a method for using the SPENVIS on-line computational suite to implement the displacement damage dose (D(sub d)) methodology for calculating end-of-life (EOL) solar cell performance for a specific space mission. This paper builds on our previous work that has validated the D(sub d) methodology against both measured space data [1,2] and calculations performed using the equivalent fluence methodology developed by NASA JPL [3]. For several years, the space solar community has considered general implementation of the D(sub d) method, but no computer program exists to enable this implementation. In a collaborative effort, NRL, NASA and OAI have produced the Solar Array Verification and Analysis Tool (SAVANT) under NASA funding, but this program has not progressed beyond the beta-stage [4]. The SPENVIS suite with the Multi Layered Shielding Simulation Software (MULASSIS) contains all of the necessary components to implement the Dd methodology in a format complementary to that of SAVANT [5]. NRL is currently working with ESA and BIRA to include the Dd method of solar cell EOL calculations as an integral part of SPENVIS. This paper describes how this can be accomplished.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 25-33; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: It is common to have liquid crystal displays and electronic circuit boards with area sizes of the order of 20x20 sq cm on board of satellites and space vehicles. Usually irradiating them at different fluence values assesses the radiation damage in these types of devices. As a result, there is a need for a radiation source with large spatial fluence uniformity for the study of the damage by radiation from space in those devices. Kent State University s Program on Electron Beam Technology has access to an electron accelerator used for both research and industrial applications. The electron accelerator produces electrons with energies in the interval from 1 to 5 MeV and a maximum beam power of 150 kW. At such high power levels, the electron beam is continuously scanned back and forth in one dimension in order to provide uniform irradiation and to prevent damage to the sample. This allows for the uniform irradiation of samples with an area of up to 1.32 sq m. This accelerator has been used in the past for the study of radiation damage in solar cells (1). However in order to irradiate extended area solar cells there was a need to measure the uniformity of the irradiation zone in terms of fluence. In this paper the methodology to measure the fluence uniformity on a sample handling system (linear motion system), used for the irradiation of research samples, along the irradiation zone of the above-mentioned facility is described and the results presented. We also illustrate the use of the electron accelerator for the irradiation of large area solar cells (of the order of 156 sq cm) and include in this paper the electrical characterization of these types of solar cells irradiated with 5 MeV electrons to a total fluence of 2.6 x 10(exp 15) e/sq cm.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 34-44; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda 〉 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 165-171; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 195-208; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: The high altitude aircraft method has been used at NASA GRC since the early 1960's to calibrate solar cell short circuit current, ISC, to Air Mass Zero (AMO). This method extrapolates ISC to AM0 via the Langley plot method, a logarithmic extrapolation to 0 air mass, and includes corrections for the varying Earth-Sun distance to 1.0 AU and compensating for the non-uniform ozone distribution in the atmosphere. However, other characteristics of the solar cell I(V) curve do not extrapolate in the same way. Another approach is needed to extrapolate VOC and the maximum power point (PMAX) to AM0 illumination. As part of the high altitude aircraft method, VOC and PMAX can be obtained as ISC changes during the flight. These values can then the extrapolated, sometimes interpolated, to the ISC(AM0) value. This approach should be valid as long as the shape of the solar spectra in the stratosphere does not change too much from AMO. As a feasibility check, the results are compared to AMO I(V) curves obtained using the NASA GRC X25 based multi-source simulator. This paper investigates the approach on both multi-junction solar cells and sub-cells.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 126-134; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: An analysis of the effects of low energy proton irradiation on the electrical performance of triple junction (3J) InGaP2/GaAs/Ge solar cells is presented. The Monte Carlo ion transport code (SRIM) is used to simulate the damage profile induced in a 3J solar cell under the conditions of typical ground testing and that of the space environment. The results are used to present a quantitative analysis of the defect, and hence damage, distribution induced in the cell active region by the different radiation conditions. The modelling results show that, in the space environment, the solar cell will experience a uniform damage distribution through the active region of the cell. Through an application of the displacement damage dose analysis methodology, the implications of this result on mission performance predictions are investigated.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 8-17; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: This paper gives an overview of the space plasma test program for thin-film photovoltaics (TFPV) technologies developed at the Air Force Research Laboratory (AFRL). The main objective of this program is to simulate the effects of space plasma characteristic of LEO and MEO environments on TFPV. Two types of TFPV, amorphous silicon (a-Si) and copper-indium-gallium-diselenide (CIGS), coated with two types of thin-film, multifunctional coatings were used for these studies. This paper reports the results of the first phase of this program, namely the results of preliminary electrostatic charging, arcing, dielectric breakdown, and collection current measurements carried out with a series of TFPV exposed to simulated space plasma at the NASA Glenn Plasma Interaction Facility. The experimental data demonstrate that multifunctional coatings developed for this program provide effective protection against the plasma environment while minimizing impact on power generation performance. This effort is part of an ongoing program led by the Space Vehicles Directorate at the AFRL devoted to the development and space qualification of TFPV and their protective coatings.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 118-125; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Workshop Format: 1) 1:00 - 3:00 to cover various topics as appropriate; 2) At last SPRAT, conducted Workshop topic on solar cell and array qualification standards. Brad Reed will present update on status of that effort; 3) Second workshop topic: The Future of PV Research within NASA. 4) Any time remaining, specific topics from participants. 5) Reminder for IAPG Members! RECWG today 3:00-5:00 in Federal Room, 2nd Floor OAI. a chart is presented showing: Evaluation of Solar Array Technology Readiness Levels.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 251-252; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: Conducting space experiments with small budgets is a fact of life for many design groups with low-visibility science programs. One major consequence is that specialized space grade electronic components are often too costly to incorporate into the design. Radiation mitigation now becomes more complex as a result of being restricted to the use of commercial off-the-shelf (COTS) parts. Unique hardware and software design techniques are required to succeed in producing a viable instrument suited for use in space. This paper highlights some of the design challenges and associated solutions encountered in the production of a highly capable, low cost space experiment package.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 95-117; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits and receives in the Amateur Radio band providing a node on the Amateur Radio Satellite Service. This paper presents an overview of the various aspects of MISSE-5 and a sample of the first measured on orbit data.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 79-94; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 253-261; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: Elemental in-line evaporation on glass substrates has been a viable process for the large-area manufacture of CuInSe2-based photovoltaics, with module efficiencies as high as 12.7% [1]. However, lightweight, flexible CuInSe2-based modules are attractive in a number of applications, such as space power sources. In addition, flexible substrates have an inherent advantage in manufacturability in that they can be deposited in a roll-to-roll configuration allowing continuous, high yield, and ultimately lower cost production. As a result, high-temperature polymers have been used as substrates in depositing CuInSe2 films [2]. Recently, efficiency of 14.1% has been reported for a Cu(InGa)Se2-based solar cell on a polyimide substrate [3]. Both metal foil and polymer webs have been used as substrates for Cu(InGa)Se2-based photovoltaics in a roll-to-roll configuration with reasonable success [4,5]. Both of these substrates do not allow, readily, the incorporation of Na into the Cu(InGa)Se2 film which is necessary for high efficiency devices [3]. In addition, polymer substrates, can not be used at temperatures that are optimum for Cu(InGa)Se2 deposition. However, unlike metal foils, they are electrically insulating, simplifying monolithically-integrated module fabrication and are not a source of impurities diffusing into the growing film. The Institute of Energy Conversion (IEC) has modified its in-line evaporation system [6] from deposition onto glass substrates to roll-to-roll deposition onto polyimide (PI) film in order to investigate key issues in the deposition of large-area Cu(InGa)Se2 films on flexible polymer substrates. This transition presented unexpected challenges that had to be resolved. In this paper, two major problems, spitting from the Cu source and the cracking of Mo back contact film, will be discussed and the solution to each will be presented.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 189-194; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: Cover glasses have been a necessary and integral part of space solar arrays since their inception. The main function of the cover glass is to protect the underlying solar cell from the harsh radiation environment of space. They are formed either from fused silica or specially formulated ceria doped glass types that are resistant to radiation damage, for example Pilkington's CMX, CMG, CMO. Solar cells have steadily increased in performance over the past years, from Silicon cells through textured Silicon cells to GaAs cells and the multijunction cells of today. The optimum coverglass solution for each of these cells has been different. The glass itself has also evolved. In some cases it has had its expansion coefficient matched to the cell substrate material, and in addition, added value has been derived from the application of thin film optical coatings to the coverglass. In the majority of cases this has taken the form of a single layer of MgF2 which acts as an antireflection coating. There are also conductive coatings to address electrostatic discharge issues (ESD) and Ultra Violet Reflective (UVR) and Infrared Reflective (IRR) coatings designed for thermal enhancement. Each type of coating can be applied singly or in combination. This paper describes a new type of UVR/IRR (or blue red reflector BRR) specifically designed for triple junction solar cells. For space applications, where radiation is the principal mechanism for removing heat from the satellite, it is the emittance and solar absorptance that primarily determine the temperature of the array. It is therefore essential that any coatings designed to have an effect on the temperature by reducing the solar absorption have a minimal effect on the overall emittance.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 243-250; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to ~1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 67-78; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was selected as representative of a moderately high dose that might be expected for a solar powered mission. Fluences much greater than this would require large increases in array area and mass, compromising the ability of PV to compete with non-solar alternatives.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 1-7; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: Development of multijunction space solar cells is much like that for any high technology product. New products face two major pressures from the market: improving performance while maintaining heritage. This duality of purpose is not new and has been represented since ancient times by the Roman god Janus.[1] This deity was typically represented as two faces on a single head: one facing forward and the other to the rear. The image of Janus has been used as symbolism for many combined forces of dual purpose, such as the balance in life between beginnings and endings, or between art and science. For our purposes, Janus represents our design philosophy balance between looking to the future for improvement while simultaneously blending past heritage. In the space photovoltaics industry there are good reasons for both purposes. Looking to the past, a product must have a space flight heritage to gain widespread use. The main reason being that this is an unforgiving business. Spacecraft are expensive to build, launch and operate. Typically once a satellite is launched, in-field service for a power systems problem is near impossible.[2Balanced with this is looking forward. New missions typically require more power than previous programs or attempt new objectives such as a new orbit. And there is always the cost pressure for both the satellite itself as well as the launch costs. Both of which push solar technology to improve power density at a lower cost. The consequence of this balance in a high-risk environment is that space PV develops as a series of infrequent large technology steps or generational changes interspersed with more frequent small technology steps or evolutionary changes. Figure 1 gives a bit of clarification on this point. It depicts the historical progress in space solar cells tracked by efficiency against first launch date for most major products introduced by Spectrolab. The first generation is the Si-based technology reaching a peak values near 15% AM0 (herein denoted for max. power, AM0, 1.353 W/cm2, 28 C). The GaAs single junction device generation supplanted this technology with first flight of GaAs on GaAs substrate in 1982.[3] More recently this generation has been supplanted by the multijunction solar cell GaInP/GaAs/Ge generation. The first launch of a commercial satellite powered by multijunction technology was in 1997 (Hughes HS 601HP) using solar arrays based on Spectrolab s dual junction (DJ) cells. The cells at that time were an impressive 21.5% efficient at beginning-of-life (BOL).[4] Eight years later, the multijunction device has evolved through several versions. The incorporation of an active Ge subcell formed the Triple Junction (TJ) product line at 25.1% efficient, on orbit since November 2001. The evolution of the TJ into the Improved Triple Junction (ITJ) at 26.8% efficient has been on orbit since June of 2002.[5]
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 153-159; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: The GaInP2/InGaAs/Ge triple junction device lattice matched to germanium has achieved the highest power conversion efficiency and the most commercial success for space applications [1]. What are the practical performance limits of this technology? In this paper we will describe what we consider to be the practical performance limits of the lattice matched GaInP2/InGaAs/Ge triple junction cell. In addition, we discuss the options for next generation space cell performance.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 145-152; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: A high efficient In0.48Ga0.52P/In0.01Ga0.99As/Ge triple junction solar cell has been developed for application in space and terrestrial concentrator PV system [1-3]. Recently, a high conversion efficiency of 31.5% (AM1.5G) has been obtained in InGaP/(In)GaAs/Ge triple junction solar cell, and as a new top cell material of triple junction cells, (Al)InGaP [1] has been proposed to improve the open-circuit voltage (Voc) because it shows a higher Voc of 1.5V while maintaining the same short-circuit current (ISC) as a conventional InGaP top cell under AM1.5G conditions as seen in figure 1 (a). Moreover, the spectral response of 1.96eV AlInGaP cell with a thickness of 2.5..m shows a higher response in the long wavelength region, compared with that of 1.87eV InGaP cell with 0.6..m thickness, as shown in figure 1 (b). Its development will realize next generation multijunction (MJ) solar cells such as a lattice mismatched AlInGaP/InGaAs/Ge 3-junction and lattice matched AlInGaP/GaAs/InGaAsN/Ge 4-junction solar cells. Figure 2 shows the super high-efficiency MJ solar cell structures and wide band spectral response by MJ solar cells under AM1.5G conditions. For realizing high efficient MJ space solar cells, the higher radiation-resistance under the electron or proton irradiation is required. The irradiation studies for a conventional top cell InGaP have been widely done [4-6], but little irradiation work has been performed on AlInGaP solar cells. Recently, we made the first reports of 1 MeV electron or 30 keV proton irradiation effects on AlInGaP solar cells, and evaluated the defects generated by the irradiation [7,8]. The present study describes the recovery of 1 MeV electron / 30 keV proton irradiation-induced defects in n+p- AlInGaP solar cells by minority-carrier injection enhanced annealing or isochronal annealing. The origins of irradiation-induced defects observed by deep level transient spectroscopy (DLTS) measurements are discussed.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 18-24; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: The SPRAT conference series at NASA Glenn Research Center has devoted a workshop to the topic of thin-film solar cell technology and potential aerospace applications. With the advent of aerospace applications requiring very-high, mass, specific power, there has been a renewed interest in thin film materials and solar cells. Aerospace applications such as station-keeping for high-altitude airships, space solar power, lunar and planetary surface power, and solar electric propulsion would be enhanced or enabled by the development of flexible, very-high, mass specific power thin film arrays. To initiate discussion, a series of questions were asked of the attendees. These questions, three generated by the group, and the attendees comments follow.
    Keywords: Space Sciences (General)
    Type: Proceedings of the 19th Space Photovoltaic Research and Technology Conference; 262-264; NASA/CP-2007-214494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-11
    Description: We present retrievals of IO total columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. We analyze data for October 2005 in the polar regions to demonstrate for the first time the capability to measure IO column abundances from space. During the period of analysis (i.e. Southern Hemisphere springtime), enhanced IO vertical columns over 3 x 10(exp 13) molecules cm(exp -2) are observed around coastal Antarctica; by contrast during that time in the Arctic region IO is consistently below the calculated instrumental detection limit for individual radiance spectra (2-4 x 10(exp 12) molecules cm(exp -2) for slant columns). The levels reported here are in reasonably good agreement with previous ground-based measurements at coastal Antarctica. These results also demonstrate that IO is widespread over sea-ice covered areas in the Southern Ocean. The occurrence of elevated IO and its hitherto unrecognized spatial distribution suggest an efficient iodine activation mechanism at a synoptic scale over coastal Antarctica.
    Keywords: Space Sciences (General)
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-11
    Description: External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-27
    Description: This paper describes the system engineering approach used to develop distributed multi-purpose simulations. The multi-purpose simulation architecture focuses on user needs, operations, flexibility, cost and maintenance. This approach was used to develop an International Space Station (ISS) simulator, which is called the International Space Station Integrated Simulation (ISIS)1. The ISIS runs unmodified ISS flight software, system models, and the astronaut command and control interface in an open system design that allows for rapid integration of multiple ISS models. The initial intent of ISIS was to provide a distributed system that allows access to ISS flight software and models for the creation, test, and validation of crew and ground controller procedures. This capability reduces the cost and scheduling issues associated with utilizing standalone simulators in fixed locations, and facilitates discovering unknowns and errors earlier in the development lifecycle. Since its inception, the flexible architecture of the ISIS has allowed its purpose to evolve to include ground operator system and display training, flight software modification testing, and as a realistic test bed for Exploration automation technology research and development.
    Keywords: Space Sciences (General)
    Type: IAC-07-D1.3.08 , 58th International Astronautical Congress 2007; 24-28 September; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: This paper gives an overview of the education outreach initiatives that the authors have personally been involved with, their successes and shortcomings are discussed with ways to overcome the difficulties encountered. Recommendations are given on how to navigate the obstacles. Industry professionals, college professors and even church groups participate in education outreach initiatives. For a successful experience, one has to navigate through various phases of the process. The strategy is to convince stakeholders that there is value in doing the outreach activity, form a partnership with the school, circumnavigate the security and administrative procedures, and finally deliver the material to the students. Successful education outreach programs have well-defined objectives, roles and expectations. Success depends on the level of commitment of all parties involved. Taking a look at individual programs, focusing on their shortcomings and best practices, this paper serves as a compilation of useful ideas for effective science and math education outreach. Navigation techniques mentioned in this paper systematically address each obstacle encountered, making solid recommendations for the future. One of the biggest challenges is showing the direct benefits of the outreach activity to stakeholders, so they can see how they profit from sacrificing their workers as outreach mentors.
    Keywords: Space Sciences (General)
    Type: KSC-2007-156 , International Conference on Engineering Education (ICEE 2007); Sep 03, 2007 - Sep 07, 2007; Coimbra; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Software provides access to many sophisticated scientific instrumentation (Scanning Electron Microscope (SEM), a Light Microscope, a Scanning Probe Microscope (covering Scanning Tunneling, Atomic Force, and Magnetic Force microscopy), and an Energy Dispersive Spectrometer for the SEM). Flash animation videos explain how each of the instruments work. Videos on how they are used at NASA and the sample preparation. Measuring and labeling tools provided with each instrument. Hands on experience of controlling the virtual instrument to conduct investigations, much like the real scientists at NASA do. Very open architecture. Open source on SourceForge. Extensive use of XML Target audience is high school and entry-level college students. "Many beginning students never get closer to an electron microscope than the photos in their textbooks. But anyone can get a sense of what the instrument can do by downloading this simulator from NASA's Kennedy Space Center." Science Magazine, April 8th, 2005
    Keywords: Space Sciences (General)
    Type: JSC-2007-081 , Developing Educational Cyber Communities: Beyond E-Learning Conference; Jul 17, 2007 - Jul 18, 2007; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: KSC-2007-241
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: I worked for the United Space Alliance, LLC (USA) with the Solid Rocket Booster (SRB) Materials and Process engineers (M&P). I was assigned a project in which I needed to research and collect chemical and physical properties information, material safety data sheets (MSDS), and other product information from the vendor's websites and existing "inhouse" files for a select group of materials used in building and refurbishing the SRBs. This information was then compiled in a report that summarized the information collected. My work site was at the Kennedy Space Center (KSC). This allowed for many opportunities to visit and tour sites operated by NASA, by USA, and by the Air Force. This included the vehicle assembly building (VAB), orbital processing facilities (OPF), the crawler with the mobile launch pad (MLP), and the SRB assembly and refurbishment facility (ARF), to name a few. In addition, the launch, of STS- 117 took place within the first week of employment allowing a day by day following of that mission including post flight operations for the SRBs. Two Delta II rockets were also launched during these 7 weeks. The sights were incredible and the operations witnessed were amazing. I learned so many things I never knew about the entire program and the shuttle itself. The entire experience, especially my work with the SRB materials, inspired my plan for implementation into the classroom.
    Keywords: Space Sciences (General)
    Type: KSC-2007-126
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: NASA's educational programs benefit students while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields, while the Cooperative Education program allows undergraduate and graduate students the chance to gain work experience in the field. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identiFy the parameters that will predict the response fairly accurately during the initial stages of design. NASA's Cooperative Education Program trains the next wave of new hires while allowing graduate and undergraduate college students to gain valuable "real-world" work experience. It gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a paper resume, while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. In addition, graduate students serve as mentors for undergrad students and provide a unique learning environment. Providing students with a unique opportunity to work on "real-world" aerospace problems ultimately reinforces their problem solving abilities and their communication skills (in terms of interviewing, resume writing, technical writing, presentation, and peer review) that are vital for the workforce to succeed.
    Keywords: Space Sciences (General)
    Type: KSC-2007-001
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: KSC-2007-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: It is generally accepted that field aligned electrons in the solar wind can follow field lines connected to Earth and precipitate in the polar ionosphere where they are known as polar rain. Few-hundred eV, field-aligned electrons of the solar wind "strahl" carry the interplanetary heat flux moving out from the sun and these electrons precipitate in either the northern or southern hemisphere depending on the magnetic field direction. These electrons produce enhanced polar rain in one hemisphere or the other although weaker polar rain is usually produced in the opposite hemisphere by whatever electrons are moving in the opposite direction. Although much evidence exists for this simple free entry mechanism, it has also long been known that there are spatial variations in the energies and intensities of the precipitating electrons. The present work compares electron distribution functions measured by the ACE spacecraft in the solar wind with those measured by the DMSP spacecraft at 800 km altitude over the polar cap. It is found that shifting the DMSP distribution functions in energy by amounts ranging from 10's to a few hundred eV produces quite good agreement with simultaneous ACE measurements. Over most of the polar cap this DMSP energy shift must be positive to achieve this agreement, suggesting the electrons have been decelerated by a field aligned potential as they move from the solar wind to low altitudes. The largest shifts occur on the nightside and on the dawn or dusk side, with the latter depending on the plasma convection pattern which is controlled by the orientation of the IMF. Nearer the cusp the shift is smaller or even negative. Since more massive tailward flowing magnetosheath ions are unable io follow the field lines into the magnetotail like the electrons, a field aligned potential is expected to develop to exclude low energy electrons and prevent an excessive charge imbalance. Such a potential would also produce the deceleration of those electrons that reach low altitudes. This improved understanding of polar rain should increase the utility of polar rain measurements as a diagnostic of the magnetosphere magnetic field configuration.
    Keywords: Space Sciences (General)
    Type: 2007 Fall AGU Meeting; Dec 09, 2007 - Dec 15, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: Magnetospherically reflected, lightning-generated whistler waves are an important potential contributor to pitch-angle scattering loss processes of the electron radiation belts. While lightning-generated whistlers are a common feature at, and just inside, the plasmapause, they are infrequently observed outside the plasmasphere. As such, their potential contribution to outer radiation belt loss processes is more tenuous. Recently, Platino et al. [2005] has reported on whistlers observed outside the plasmasphere by Cluster. Here, we present correlative global observations of the plasmasphere, for the reported periods of Cluster-observed whistlers outside the plasmasphere, using IMAGE-EUV data. The intent of this study is to seek the underlying mechanisms that result in whistlers outside the plasmasphere and consequently the anticipated morphology and significance these waves may have on radiation belt dynamics.
    Keywords: Space Sciences (General)
    Type: 2007 American Geophysical Union (AGU) Fall Meeting; Dec 10, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.
    Keywords: Space Sciences (General)
    Type: American Geophysical Union (AGU) 2007 Fall Meeting; Dec 09, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.
    Keywords: Space Sciences (General)
    Type: Colloquium at City Technical College; Nov 01, 2007 - Nov 02, 2007; Brooklyn, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: As the environment that puts space vehicles at risk can never be eliminated, space vehicles must implement protection against the MMOD environment. In general, this protection has been implemented on a risk estimate basis, largely focused on estimates of impactor size and estimated flux. However, there is some uncertainty in applying these methods from data gathered in earth orbit to excursions outside. This paper discusses different past thresholds and processes of the past and suggests additional refinement or methods that could be used for future space endeavors.
    Keywords: Space Sciences (General)
    Type: International Association for the Advancement of Space Safety Meeting; May 01, 2007; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: Molecular fossils are particularly valuable in early Earth studies because they provide information about microbial sources and ecology. Here we report on the distribution of 2- methyl and 3-methylhopanes preserved in a 2.72-2.56 billion-year-old section of shallow and deepwater sediments of the Hamersley Province [Eigenbrode et aI., submitted]. These biomarkers are mostly from cyanobacteria and oxygen-respiring methanotrophs, respectively. The relative abundance of 2-methylhopanes increases with carbonate abundance in shallow-water facies indicating cyanobacteria were key microbes in shallow ecosystems and suggesting they supplied both molecular oxygen and fixed carbon. The relative abundance of 3-methylhopane strongly correlates with kerogen-carbon isotopic values, and is more abundant in the samples with 13C-enriched signatures. Thus, molecular data provides evidence for cycling of methane in shallow settings, even though the anoxic deeper environments bear stronger 13C-depletion, which together suggests a more complex methane cycle than previously envisioned. Detailed facies analysis of the Hamersley carbon-isotope record reveals temporal changes suggesting continued oxidation of shallow settings favoring the expansion of aerobic ecosystems and respiring organisms [Eigenbrode et aI., 2006, PNAS, 103: 15759]. Similar analysis of published carbon-isotopic records suggests similar, but diachronous, expansion of oxygenated habitats in shallow then deep waters as anaerobic microbial communities gave way to respiring communities fueled by oxygenic photosynthesis before the post 2.45-Ga atmospheric oxygenation event [Eigenbrode et aI., 2006]. The robust relationships observed provide geochemical support for methanogenesis, aerobic methanotrophy, and oxygenic photosynthesis in the late Archean, as well as major ecological shifts linked to biogeochemical reorganization.
    Keywords: Space Sciences (General)
    Type: Astrobiolosv Science Conference (AbSciCon); Apr 14, 2008 - Apr 17, 2008; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Except for Hydrogen, Helium, and Lithium (which were around from the beginning) all the chemicals that you learned about this year were made in stars. We really are made out of stardust! I'm going to bring you on a tour of the lives of stars to show you how all the chemicals in the Universe were made during different stages of a stars life.
    Keywords: Space Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: Planning for sample preservation and curation was part of mission design from the beginning. One of the scientific objectives for Genesis included collecting samples of three regimes of the solar wind in addition to collecting bulk solar wind during the mission. Collectors were fabricated in different thicknesses for each regime of the solar wind and attached to separate frames exposed to the solar wind during specific periods of solar activity associated with each regime. The original plan to determine the solar regime sampled for specific collectors was to identify to which frame the collector was attached. However, the collectors were dislodged during the hard landing making identification by frame attachment impossible. Because regimes were also identified by thickness of the collector, the regime sampled is identified by measuring fragment thickness. A variety of collector materials and thin films applied to substrates were selected and qualified for flight. This diversity provided elemental measurement in more than one material, mitigating effects of diffusion rates and/or radiation damage. It also mitigated against different material and substrate strengths resulting in differing effects of the hard landing. For example, silicon crystal substrates broke into smaller fragments than sapphire-based substrates and diamond surfaces were more resilient to flying debris damage than gold. The primary responsibility of the curation team for recovery was process documentation. Contingency planning for the recovery phase expanded this responsibility to include not only equipment to document, but also gather, contain and identify samples from the landing area and the recovered spacecraft. The team developed contingency plans for various scenarios as part of mission planning that included topographic maps to aid in site recovery and identification of different modes of transport and purge capability depending on damage. A clean tent, set-up at Utah Test & Training Range to control the environment for processing the sample return capsule and cleanly installing a nitrogen purge to the canister, was used to control the environment for extracting collector fragments from the damaged canister and to document and package over 10,000 collector fragments.
    Keywords: Space Sciences (General)
    Type: Discovery@15 Lessons Learned; Sep 19, 2007 - Sep 20, 2007; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Any discussion of expanding the capabilities of Space Surveillance Networks to include tracking and cataloging smaller objects will require a good understanding of orbital debris. In the current U.S. catalog of over 11,000 objects, more than 50% are classified as "debris" to include fragmentation debris, operational debris, liquid metal coolant, and Westford needles. If the catalog is increased to 100,000 objects by lowering the tracked object size threshold, almost all of the additional objects will be orbital debris. The Orbital Debris Program Office has been characterizing the small orbital debris environment through measurements and modeling for many years. This presentation will specifically discuss two different studies conducted at NASA. The first study was done in 1992 and examined the requirements and produced a conceptual design for a Collision Avoidance Network to protect the Space Station Freedom from centimeter sized orbital debris while minimizing maneuvers. The second study was conducted last year and produced NASA s estimate of the orbital population for the years 2015 and 2030 for objects 2 cm and larger.
    Keywords: Space Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: Iron oxide and hydroxide minerals, including hematite, can mineralize and preservemicrofossils and physical biomarkers (Allen at al., 2004). Preserved remnants of phototrophic microorganisms are recognized as biosignatures of past life on Earth (Schopf, 2006). To date, two types of surface iron depositing environments have been studied as analogs to possible habitable environments on earliest Mars: the highly acidified Rio Tinto River (Iberian Belt, Spain) [Gomez Ortis et al., 2007], and the nearneutral iron depositing Chocolate Pots Hot Spring (Yellowstone National Park, US) [Parenteau at al., 2005]. While phototrophs in the Rio Tinto are only represented by eukaryotic algae (Amaral Zettler et all., 2002), Chocolate Pots is mainly populated with cyanobacteria (Pierson et all., 2000; Brown et all., 2007). Which of these environments is the closer analog to a potentially habitable early Mars? Paleobiological data, combined with recent "tree of life" interpretations, suggest that phototrophic eukaryotes evolved not earlier than 2.5 - 2.8 b.y. after Earth s accretion (4.6 b.y.), while cyanobacteria and /or their iron-tolerant predecessors evolved between 1 - 1.5 b.y. after accretion (Brown et al., 2007). Lindsay and Brasier (2002) postulated that microbial life on Mars surface could have lasted no more than 1-1.5 b.y. after Mars accretion (also 4.6 b.y.). Recent multispectral mapping of Mars suggests that near-neutral wet environments prevailed at approximately this time (Bibring, et al., 2006). Thus, near-neutral iron depositing hot springs such as Chocolate Pots Hot Spring seem to be the more likely habitable analogs for earliest Mars.
    Keywords: Space Sciences (General)
    Type: 2nd International Workshop Exploring Mars and Its Earth Analogues; Jun 19, 2007 - Jun 23, 2007; Trento; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Meteoroid Engineering Model (MEM), the Divine-Staubach model and the Interplanetary Meteoroid Engineering Model (IMEM). They typically cover mass ranges from 10-12 g (or lower) to 1 g and are applicable for model specific sun distance ranges between 0.2 A.U. and 10 A.U. Near 1 A.U. averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Gr?n et. al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical, radar) and in-situ (captured IDPs, in-situ detectors and analysis of retrieved hardware) measurements and simulations. Remaining uncertainties and potential additional studies to overcome the existing model discrepancies are discussed.
    Keywords: Space Sciences (General)
    Type: Meteoroids 2007; Jun 11, 2007 - Jun 15, 2007; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.
    Keywords: Space Sciences (General)
    Type: 2006 Cedar Workshop; Jun 19, 2006 - Jun 23, 2006; Santa Fe, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
    Keywords: Space Sciences (General)
    Type: American Geophysical Union Fall Meeting; Dec 09, 2007 - Dec 15, 2007; San Francisco; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-27
    Description: Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross sections indicate that the random variations in the albedo follow a log-normal distribution quite well. In addition, this distribution appears to be independent of object size over a considerable range in size. Note that this relation appears to hold for debris only, where the shapes and other properties are not primarily the result of human manufacture, but of random processes. With this information in hand, it now becomes possible to estimate the actual size distribution we are sampling from. We have identified two characteristics of the space debris population that make this process tractable and by extension have developed a methodology for performing the transformation.
    Keywords: Space Sciences (General)
    Type: Advanced Maui Optical and Space Surveillance Technologies Conference; 12 - 15 Sept. 2007; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The EOS Aura mission, launched in 2004, provides a comprehensive assessment of the stratospheric dynamics and chemistry. This talk will focus on results from Aura including the chemistry of polar ozone depletion. The data from Aura can be directly linked to UARS data to produce long term trends in stratospheric trace gases.
    Keywords: Space Sciences (General)
    Type: Scientific Symposium on the 20th Anniversary of the Montreal Protocol; Sep 23, 2007 - Sep 26, 2007; Athens; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: The Antarctic ozone hole develops each year and culminates by early spring (late September - early October). The severity of the hole has been assessed from satellites using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average area coverage during this September-October period. Profile information shows that ozone is completely destroyed in the 14-2 1 km layer by early October. Ozone is mainly destroyed by halogen (chlorine and bromine) catalytic cycles, and these losses are modulated by temperature variations. Because atmospheric halogen levels are responding to international a'greements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We estimate that the ozone hole will begin to show first signs of size decrease in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. Estimates of the ozone hole's recovery from models reveal important differences that will be discussed.
    Keywords: Space Sciences (General)
    Type: Symposium for the 20th Anniversary of the Montreal Protocol; Sep 23, 2007 - Sep 26, 2007; Athens; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: Satellite measurements provide a unique global view of the stratospheric ozone layer. The perspective from satellites allowed for the early mapping of the extent of the phenomenon that became known as the ozone hole. The use of the satellite data for global trends outside of the ozone hole confronts the problem of the possible drift of the calibration of the instrument. The TOMS and SBUV instruments on Nimbus 7 lasted for more than a decade. During that time, the diffuser plate used to reflect sunlight into the measurement degraded (darkened) and the instruments each had a number of events that made calibration determination difficult. Initially the TOMS data were used for global trends by adjusting the overall calibration to agree with a set of ground-based measurement stations. But this was unsatisfactory because the record was not independent of those ground measurements and problems were found in many of the ground stations by using TOMS as a transfer standard. After many years of dedicated work, the TOMS/SBUV team learned how to correct for instrument drift, remove the interfering effects of aerosols, and establish instrument-to-instrument calibrations resulting in a long-term record that can be used for accurate trend and recovery determination. The global view of the satellites allows for determination not only of temporal change in ozone, but spatial fingerprints that allow more confidence in assigning cause to observed changes.
    Keywords: Space Sciences (General)
    Type: Symposium for the 20th Anniversary of the Montreal Protocol; Sep 23, 2007 - Sep 26, 2007; Athens; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: Geomagnetic storms are the most dramatic manifestations of solar influences on the magnetosphere. Storms are accompanied by substantial Space Weather effects. For these, as well as for scientific reasons, storms have been a special target of magnetospheric modeling for quite some time. Accordingly, there has been considerable interest and success in improving the application of magnetospheric models to storm-time dynamics, an to compare to data from arctic observatories. In this presentation, we present an overview of CCMC-studies of storm-time model capabilities, and we will provide an overall assessment of capabilities. In addition, we will present an analysis of future challenges, and we will suggest strategies for future model development.
    Keywords: Space Sciences (General)
    Type: Greenland International Polar Year (IPY) 2007 Space Science; May 03, 2007 - May 10, 2007; Kangerlussuaq; Greenland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The upcoming years will see a formidable synergy of high-energy observatories for the study of extragalactic objects, especially AGN. In particular, the launch of GLAST will allow us coordinated monitoring of sources with Suzaku over a very large energy band, from medium X-rays to GeV energies. In this talk I will review the science issues that such a remarkable coverage will enable us to address.
    Keywords: Space Sciences (General)
    Type: 2007 Suzaku Conference; Dec 09, 2007 - Dec 12, 2007; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: Several optical witness samples included in the Materials for International Space Station Experiment (MISSE) trays have been analyzed with a variable angle spectroscopic ellipsometer or VASE. Witness samples of gold or platinum mirrors are extremely useful as collectors of space-borne contamination, due to the relative inertness of these noble metals in the atomic oxygen-rich environment of LEO. Highly accurate thickness measurements, typically at the sub-nanometer scale, may be achieved with this method, which uses polarized light in a spectral range of 300 to 1300 nanometers at several angles of incidence to the sample surface.
    Keywords: Space Sciences (General)
    Type: 2007 National Space and Missile Materials Symposium MISSE Materials/Experiments General Dynamics Information Technology; Jun 25, 2007 - Jun 29, 2007; Keystone, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: TOA (top-of-atmosphere) radiance from high-spatial-resolution satellite imagery systems is important for a wide variety of research and applications. Many research initiatives require data with absolute radiometric accuracy better than a few percent. The conversion of satellite digital numbers to radiance depends on accurate radiometric calibration. A common method for determining and validating radiometric calibrations is to rely upon vicarious calibration approaches. Historically, vicarious calibration methods use radiative transfer codes with ground-based atmosphere and surface reflectance or radiance inputs for estimating TOA radiance values. These TOA radiance values are compared against the satellite digital numbers to determine the radiometric calibration. However, the radiative transfer codes used depend on many assumptions about the aerosol properties and the atmospheric point spread function. A measurement-based atmospheric radiance estimation approach for high-spatial-resolution, multispectral, visible/near-infrared sensors is presented that eliminates the use of radiative transfer codes and many of the underlying assumptions. A comparison between the radiative transfer and non-radiative transfer approaches is made.
    Keywords: Space Sciences (General)
    Type: SSTI-2220-0101 , JACIE 2007 Civil Commercial Imagery Evaluation Workshop; Mar 20, 2007 - Mar 22, 2007; Fairfax, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: The at-launch version of the OM1 NO2 total and tropospheric NO2 algorithm made a number of assumptions about instrument performance. Our knowledge of tropospheric NO2 has increased in the 3 years since the inital version was delivered. The results of the post-launch validation campaigns and improved atmospheric modelling has lead to changes in the NO2 retrieval algorithm. The algorithm changes and the impacts on the data products will be presented.
    Keywords: Space Sciences (General)
    Type: Tropospheric NO2 Measured by Satellites Conference; Sep 11, 2007 - Sep 12, 2007; De Bilt; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-12
    Description: An overview of the reconstruction analyses performed for the Genesis capsule entry is described. The results indicate that the actual entry prior to the drogue deployment failure was very close to the pre-entry predictions. The capsule landed 8.3 km south of the desired target at Utah Test and Training Range. Analysis on infrared video footage (obtained from the tracking stations) during the descent estimated the onset of the capsule tumble at Mach 0.9. Frequency analysis on the infrared video data indicates that the aerodynamics generated for the Genesis capsule reasonably predicted the drag and static stability. Observations of the heatshield support the pre-entry simulation estimates of a small hypersonic angles-of-attack, since there is very little, if any, charring of the shoulder region or the aftbody. Through this investigation, an overall assertion can be made that all the data gathered from the Genesis entry is consistent with flight performance that was close to the nominal preentry prediction. Consequently, the design principles and methodologies utilized for the flight dynamics, aerodynamics, and aerothermodynamics analyses have been corroborated.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-24
    Description: This paper presents a performance analysis of the instrument pointing control system for NASA's Space Interferometer Mission (SIM). SIM has a complex pointing system that uses a fast steering mirror in combination with a multirate control architecture to blend feed forward information with feedback information. A pointing covariance analysis tool (PCAT) is developed specifically to analyze systems with such complexity. The development of PCAT as a mathematical tool for covariance analysis is outlined in the paper. PCAT is then applied to studying performance of SIM's science pointing system. The analysis reveals and clearly delineates a fundamental limit that exists for SIM pointing performance. The limit is especially stringent for dim star targets. Discussion of the nature of the performance limit is provided, and methods are suggested to potentially improve pointing performance.
    Keywords: Space Sciences (General)
    Type: 2007 SPIE Optics and Photonics; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-27
    Description: Over the next few months, the International Space Station (ISS), and human spaceflight in general, will undergo momentous change. The European Columbus and Japanese Kibo Laboratories will be added to the station joining U.S. and Russian elements already on orbit. Columbus, Jules Vernes Automated Transfer Vehicle (ATV) and Kibo Control Centers will soon be joining control centers in the US and Russia in coordinating ISS operations and research. The Canadian Special Purpose Dexterous Manipulator (SPDM) will be performing extra vehicular activities that previously only astronauts on EVA could do, but remotely and with increased safety. This paper will address the integration of these international elements and operations into the ISS, both from hardware and human perspectives. Interoperability of on-orbit systems and ground control centers and their human operators from Europe, Japan, Canada, Russia and the U.S. pose significant and unique challenges. Coordination of logistical support and transportation of crews and cargo is also a major challenge. As we venture out into the cosmos and inhabit the Moon and other planets, it's the systems and operational experience and partnership development on ISS, humanity's orbiting outpost that is making these journeys possible.
    Keywords: Space Sciences (General)
    Type: IAC-07-B3.1.01 , International Astronautical Congress 2007; Sep 24, 2007 - Sep 28, 2007; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-27
    Description: NASA uses a structured process for managing projects that develop advanced space technologies and transition them into the designs of flight systems. The four-part process consists of formulation, approval, implementation, and transition. In the formulation phase, technology needs are derived from mission concept studies, various technical approaches for meeting the technology needs are identified, technical performance goals called Key Performance Parameters (KPPs) are established, and a project plan is developed. Prior to project approval, an Independent Formulation Review is conducted to ensure that the project objectives are aligned with the mission needs, and that the project is well planned to meet the objectives. In the implementation phase, the technology development project matures the technology, and progress towards the KPPs is evaluated in periodic status reviews. Technology Readiness Levels (TRLs) are used throughout the project lifecycle to assess the progress of technology maturation. In the transition phase, technologies that are successful in achieving the required level of maturity are transitioned to a customer for further development, are used in system designs, or are thoroughly documented for resumption of development at a later date. The customer or end-user of the technology is involved in all phases of the technology development process.
    Keywords: Space Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-13
    Description: The new Mars-GRAM auxiliary profile capability, using data from TES observations, mesoscale model output, or other sources, allows a potentially higher fidelity representation of the atmosphere, and a more accurate way of estimating inherent uncertainty in atmospheric density and winds. Figure 3 indicates that, with nominal value rpscale=1, Mars-GRAM perturbations would tend to overestimate observed or mesoscale-modeled variability. To better represent TES and mesoscale model density perturbations, rpscale values as low as about 0.4 could be used. Some trajectory model implementations of Mars-GRAM allow the user to dynamically change rpscale and rwscale values with altitude. Figure 4 shows that an mscale value of about 1.2 would better replicate wind standard deviations from MRAMS or MMM5 simulations at the Gale, Terby, or Melas sites. By adjusting the rpscale and rwscale values in Mars-GRAM based on figures such as Figure 3 and 4, we can provide more accurate end-to-end simulations for EDL at the candidate MSL landing sites.
    Keywords: Space Sciences (General)
    Type: MSFC-306 , MSFC-340 , 7th International Conference on Mars; Jul 09, 2007 - Jul 13, 2007; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-13
    Description: Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.
    Keywords: Space Sciences (General)
    Type: 10th Spacecraft Charging and Technology Conference; Jun 18, 2007 - Jun 21, 2007; Biarritz; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: KSC-2007-158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The Terrestrial Planet Finder - Occulter (TPF-O) mission has two Spacecraft (SC) buses, one for a space telescope and the other for a formation-flying occulter. SC buses typically supply the utilities (support structures, propulsion, attitude control, power, communications, etc) required by the payloads. Unique requirements for the occulter SC bus are to provide the large delta V required for the slewing maneuvers of the occulter, and comunications for formation flying. The TPF-O telescope SC bus shares some key features of the one for the Hubble Space Telescope (HST): both support space telescopes designed to observe in the visible to near infrared range of wavelengths with comparable primary mirror apertures (2.4 m for HST, 2.4 - 4.0 m for TPF-O). However, TPF-O is expected to have a Wide Field Camera (WFC) with a Field of View (FOV) much larger than that of HST. Ths WFC is also expected to provide fine guidance. TPF-O is designed to operate in an orbit around the Sun-Earth Lagrange 2 (SEL2) point. The longer communications range to SEL2 and the large science FOV require higher performance communications than HST. Maintaining a SEL2 orbit requires TPF-O, unlike HST, to have a propulsion system. The velocity required for reachng SEL2 and the limited capabilities of affordable launch vehicles require both TPF-O elements to have compact, low-mass designs. Finally, it is possible that TPF-O may utilize a modular design derived fiom that of HST to allow servicing in the SEL2 orbit.
    Keywords: Space Sciences (General)
    Type: SPIE Conference; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could support NASA's RPS technology development planning, and provide an understanding of fuel need trades over the next three decades.
    Keywords: Space Sciences (General)
    Type: Space Technology and Applications International Forum (STAIF-2007); Feb 12, 2007 - Feb 15, 2007; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: The NASA Extravehicular Mobility Unit (EMU) micrometeoroid and orbital debris protection ability has recently been assessed against an updated, higher threat space environment model. The new environment was analyzed in conjunction with a revised EMU solid model using a NASA computer code. Results showed that the EMU exceeds the required mathematical Probability of having No Penetrations (PNP) of any suit pressure bladder over the remaining life of the program (2,700 projected hours of 2 person spacewalks). The success probability was calculated to be 0.94, versus a requirement of 〉0.91, for the current spacesuit s outer protective garment. In parallel to the probability assessment, potential improvements to the current spacesuit s outer protective garment were built and impact tested. A NASA light gas gun was used to launch projectiles at test items, at speeds of approximately 7 km per second. Test results showed that substantial garment improvements could be made, with mild material enhancements and moderate assembly development. The spacesuit s PNP would improve marginally with the tested enhancements, if they were available for immediate incorporation. This paper discusses the results of the model assessment process and test program. These findings add confidence to the continued use of the existing NASA EMU during International Space Station (ISS) assembly and Shuttle Operations. They provide a viable avenue for improved hypervelocity impact protection for the EMU, or for future space suits.
    Keywords: Space Sciences (General)
    Type: HVIS 07-138 , 10th Hypervelocity Impact Symposium; Sep 23, 2007 - Sep 27, 2007; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: Space debris mitigation practices will be insufficient to prevent the continued growth of the Earth satellite population. Removal of orbital debris can improve the reliability of present and future space systems. The challenges of developing an effective, affordable debris removal capability are considerable. The time is right for a new look at space remediation concepts. In concert with or following the current IAA study An international approach to the remediation of the near-Earth space environment will likely be required.
    Keywords: Space Sciences (General)
    Type: Space Situational Awareness Conference; Oct 25, 2007 - Oct 26, 2007; London; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.
    Keywords: Space Sciences (General)
    Type: Icarus (ISSN 0019-1035); 186; 436-447
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma. Vehicle size (L) and velocity (v), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during high latitude flight (〉+/- 45deg) during each orbit. In addition, ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals species are largely excluded. ISS must fly in a very limited number of approved flight attitudes, so that exposure of a particular material or system to environmental factors depends upon: 1) location on ISS, 2) ISS flight configuration, 3) ISS flight attitude, and 4) variation of solar exposure (Beta angle), and hence thermal environment, with time. Finally, an induced ionizing radiation environment is produced by trapped radiation and solar/cosmic ray interactions with the relatively massive ISS structural shielding.
    Keywords: Space Sciences (General)
    Type: ISCD 2007; May 25, 2007 - May 28, 2007; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: EVA timeline development occurs using task execution data generated through underwater training and simulation. This project collected task time data during final training events for several Space Shuttle and International Space Station missions and compared like task time data collected during on-orbit execution. Analysis was performed to compare types of activities and times required for each looking specifically for how activities can be accurately trained from a timeline planning perspective. The data revealed two significant aspects of flight timeline planning; Zero-g task times will match training times for activities that can be accurately simulated with appropriate fidelity hardware; and not all activities can be simulated sufficiently to produce training task times that will reflect required zero-g times. An approach for timeline planning utilizing this knowledge is also presented.
    Keywords: Space Sciences (General)
    Type: 07ICES-54 , International Conference on Environmental Systems; Jul 09, 2007 - Jul 12, 2007; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.
    Keywords: Space Sciences (General)
    Type: Engineering Symposium; Apr 10, 2007; GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: A flexible method of parametric, full life-cycle cost analysis has been combined with data on NASA's future communication needs to estimate the required number and operational dates of new antennas for the Deep Space Network (DSN). The requirements were derived from a subset of missions in the Integrated Mission Set database of NASA's Space Communications Architecture Working Group. Assuming that no new antennas are 'constructed', the simulation shows that the DSN is unlikely to meet more than 20% of mission requirements by 2030. Minimum full life-cycle costs result when antennas in the diameter range, 18m-34m, are constructed. Architectures using a mixture of antenna diameters produce a slightly lower full life-cycle cost.
    Keywords: Space Sciences (General)
    Type: IEEAC Paper #1386, Version 4 , IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The characterization of the electromagnetic interaction for a spacecraft in the lunar environment, and identification of viable charging mitigation strategies, is a critical lunar mission design task, as spacecraft charging has important implications both for science applications and for astronaut safety. To that end, we have performed surface charging calculations of a candidate lunar spacecraft for lunar orbiting and lunar landing missions. We construct a model of the spacecraft with candidate materials having appropriate electrical properties using Object Toolkit and perform the spacecraft charging analysis using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. We use nominal and atypical lunar environments appropriate for lunar orbiting and lunar landing missions to establish current collection of lunar ions and electrons. In addition, we include a geostationary orbit case to demonstrate a bounding example of extreme (negative) charging of a lunar spacecraft in the geostationary orbit environment. Results from the charging analysis demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as expected. We compare charging results to data taken during previous lunar orbiting or lunar flyby spacecraft missions.
    Keywords: Space Sciences (General)
    Type: 10th Spacecraft Charging Technology Conference; Jun 18, 2007 - Jun 21, 2007; Biarritz; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Extensive data would be required for the qualification of a fission surface power (FSP) system. The strategy for qualifying a FSP system could have a significant programmatic impact. This paper explores potential options that could be used for qualifying FSP systems, including cost-effective means for obtaining required data. three methods for obtaining qualification data are analysis, non-nuclear testing, and nuclear testing. It has been over 40 years since the US qualified a space reactor for launch. During that time, advances have been made related to all three methods. Perhaps the greatest advancement has occurred in the area of computational tools for design and analysis. Tools that have been developed, coupled with modem computers, would have a significant impact on a FSP qualification. This would be especially true for systems with materials and fuels operating well within temperature, irradiation damage, and burnup limits. The ability to perform highly realistic non-nuclear testing has also advanced throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modem FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.} and extensive data to be taken from the core region. Both steady-state and transient operation can be tested. For transient testing, reactivity feedback is calculated (or measured in cold/warm criticals) based on reactor temperature and/or dimensional changes. Pin power during a transient is then calculated based on the reactivity feedback that would occur given measured values of temperature and/or dimensional change. In this way nonnuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. Realistic non-nuclear testing is most useful for systems operating within known temperature, irradiation damage, and burnup capabilities.
    Keywords: Space Sciences (General)
    Type: Space Nuclear Conference 2007; Jun 24, 2007 - Jun 28, 2007; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The purpose of this paper is to constrain the total water contents from crystal H2O and OH in several materials analyzed by the Mars Exploration Rovers (MER). Crystal H2O is part of the unit cell and cannot be removed without changing the structure. Minerals that contain only OH in their structures are anhydrous minerals containing hydroxyls, although they are formed as a product of aqueous activity and will decompose with evolution of H2O when heated. The crystal water and OH contents of a bulk material at the MER landing sites can be estimated from mineralogical composition, which is determined by a combination of Fe-mineralogy obtained by the Mossbauer Spectrometer and mineral abundances based upon the chemical composition determined by the Alpha Particle X-ray Spectrometer. Jarosite, along with Ca- and Mg-sulfates, have been suggested as the sulfur-bearing phases in Meridiani Planum outcrop. Models of various hydration states of Fe-, Ca-, and Mg-sulfates and other possible secondary phases suggest that 6 to 22 wt.% of the outcrop may occur as crystal H2O and/or OH (Clark et al., 2005). This estimate of water is consistent with measurements from the Odyssey orbiter, where 7 % H2O-equivalent H was measured down to a depth of approximately 1 m for the region (Feldman et al., 2004).
    Keywords: Space Sciences (General)
    Type: Goldschmidt 2007 Conference; Aug 19, 2007 - Aug 24, 2007; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: In November 2007, the International Space Station (ISS) will have supported seven years of continuous presence in space, with 15 Expeditions completed. These years have been characterized by the numerous technical challenges of assembly as well as operational and logistical challenges related to the availability of transportation by the Space Shuttle. During this period, an active set of early research objectives have also been accomplished alongside the assembly. This paper will review the research accomplishments on ISS to date, with the objective of drawing insights on the potential of future research following completion of ISS assembly. By the end of Expedition 15, an expected 121 U.S.-managed investigations will have been conducted on ISS, with 91 of these completed. Many of these investigations include multiple scientific objectives, with an estimated total of 334 scientists served. Through February 2007, 101 scientific publications have been identified. Another 184 investigations have been sponsored by ISS international partners, which independently track their scientists served and results publication. Through this survey of U.S. research completed on ISS, three different themes will be addressed: (1) How have constraints on transportation of mass to orbit affected the types of research successfully completed on the ISS to date? What lessons can be learned for increasing the success of ISS as a research platform during the period following the retirement of the Space Shuttle? (2) How have constraints on crew time for research during assembly and the active participation of crewmembers as scientists affected the types of research successfully completed on the ISS to date? What lessons can be learned for optimizing research return following the increase in capacity from 3 to 6 crewmembers (planned for 2009)? What lessons can be learned for optimizing research return after assembly is complete? (3) What do early research results indicate about the various scientific disciplines represented in investigations on ISS? Are there lessons specific to human research, technology development, life sciences, and physical sciences that can be used to increase future research accomplishments? Research has been conducted and completed on ISS under a set of challenging constraints during the past 7 years. The history of research accomplished on ISS during this time serves as an indicator of the value and potential of ISS when full utilization begins. By learning from our early experience in completing research on ISS, NASA and our partners can be positioned to optimize research returns as a full crew complement comes onboard, assembly is completed, and research begins in full.
    Keywords: Space Sciences (General)
    Type: International Space Development Symposium; May 25, 2007 - May 26, 2007; Hyderabad; India|International Astronautical Congress; Sep 24, 2007 - Sep 28, 2007; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG s unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to the MSG facility to further enhance the resources provided to investigations.
    Keywords: Space Sciences (General)
    Type: 45th AIAA Aerospace Sciences Meeting and Exhibit; Jan 08, 2007 - Jan 11, 2007; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In order to sustain life on the moon, and especially on Mars, the inhabitants must be self-sufficient. As on Earth, electronic and mechanical systems will break down and must be repaired. It is not realistic to "send" parts to the moon or Mars in an effort to replace failed ones or have spares for all components. It will be important to have spares on hand and even better would be to have the capability to fabricate parts in situ. The In Situ Fabrication and Repair (ISFR) team is working to develop the Arcam Electron Beam Melting (EBM) machine as the manufacturing process that will have the capability to produce repair parts, as well as new designs, and tooling on the lunar surface and eventually on Mars. What materials will be available for the inhabitants to use? What materials would be most useful? The EBM process is versatile and can handle a multitude of materials. These include titanium, stainless steels, aluminums, inconels, and copper alloys. Research has shown what parts have failed during past space missions and this data has been compiled and assessed. The EBM machine is fully capable of processing these materials of choice. Additionally, the long-term goal is to use the lunar regolith as a viable feedstock. Preliminary work has been performed to assess the feasibility of using raw lunar regolith as a material source or use a binder combined with the regolith to achieve a good melt.
    Keywords: Space Sciences (General)
    Type: ARCAM User''s Group; Nov 14, 2007 - Nov 15, 2007; Simi Valley, Ca; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: This paper describes the guiding vision, progress to date and the plan forward for development of the Marshall Space Flight Center (MSFC) Systems Engineering Guide (SEG), a virtual systems engineering handbook and archive that describes the system engineering processes used by MSFC in the development of ongoing complex space systems such as the Ares launch vehicle and forthcoming ones as well. It is the intent of this website to be a "One Stop Shop' for MSFC systems engineers that will provide tutorial information, an overview of processes and procedures and links to assist system engineering with guidance and references, and provide an archive of relevant systems engineering artifacts produced by the many NASA projects developed and managed by MSFC over the years.
    Keywords: Space Sciences (General)
    Type: IAC-07-D1.5.01 , International Astronautical Federation; Sep 24, 2007 - Sep 28, 2007; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).
    Keywords: Space Sciences (General)
    Type: AIAA Space 2007: Avionics, Surface and Mission Operations Logistics Session; Sep 18, 2007 - Sep 20, 2007; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.
    Keywords: Space Sciences (General)
    Type: AIAA Space 2007; Sep 18, 2007 - Sep 20, 2007; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Space technology experiments and validation missions share a common dilemma with the aerospace industry in general: the high cost of access to space. Whether the experiment is a so-called university cubesat, a university measurement experiment, or a NASA New Millennium Program (NMP) technology validation mission, the access to space option can be scaled appropriately for the particular constraints. A cubesat might fly as one of a number of cubesats that negotiate a flight on an experimental vehicle. A university experiment might do the same. A NASA flight validation might partner with an Air Force experimental mission.
    Keywords: Space Sciences (General)
    Type: IEEEAC Paper #1175, Version 2 , IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This paper describes a demand access protocol for space communications, which is a messaging procedure that facilitates the exchange of resource requests and grants between users and service providers. A minimal set of operational and environmental needs and constraints are assumed since the intent is to keep the protocol flexible and efficient for a wide-range of envisioned NASA robotic and human exploration missions. The protocol described in this document defines the message format and procedures used to ensure proper and correct functioning of a demand access communications system, which must operate under customized resource management policies applied by the users and service providers. This protocol also assumes a minimal set of capabilities from the underlying communications system so that no unique requirements are imposed on the communications sub-systems.
    Keywords: Space Sciences (General)
    Type: IEEEAC Paper 1313 , IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The Advanced Materials for Exploration (AME) task Materials Analysis of Returned Hardware from Stardust received funding to perform non-destructive analyses of the non-primary science hardware components of the Stardust sample return capsule. These components were (a) the blunt body reentry heatshield, encased in Phenolic Impregnated Carbon Ablator (PICA); (b) the backshell of Super Lightweight Ablator 561 (SLA-561) material handpacked into phenolic Flexcore and coated with CV-1100 silicone; (c) the rope seal used in between the heatshield and backshell; (d) the internal multi-layer insulation (MLI) blankets; and (e) parts of the Kevlar straps left attached to the backshell. These components were analyzed to determine the materials' durability in the space environment. The goals of the task were (a) to determine how the various materials from which the components were built weathered the extreme temperatures and harsh space environment during the capsule's nearly 7-year voyage to and from its rendezvous with Comet Wild 2 and (b) to provide lessons-learned data for designers of future missions.
    Keywords: Space Sciences (General)
    Type: National Space and Missile Materials Symposium; Jun 25, 2007 - Jun 29, 2007; Keystone, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Twenty thin film specimens were flown on M1SSE-5 as a cooperative effort between several organizations. This presentation will report results of initial inspections and post-flight measurements of the optical properties and recession of these materials due to the approx.13 month exposure period on the exterior of the International Space Station. These specimens were located on the "anti-solar" side of the MISSE-5 container and received a low number of Equivalent Sun Hours of solar UV exposure. Profilometry and/or ATF measurements will be conducted to determine thickness changes and atomic oxygen-induced recession rates Six of the specimens were covered with thin Kapton films, 0.1 and 0.3 mil in thickness. The 0.1 mil Kapton was almost completely eroded, suggesting that the atomic oxygen fluence is 〈8 x 10(exp 19) atoms/sq cm, similar to levels experienced during Space Shuttle materials experiments in the 1980's and 1990's. A comparison of results from MISSE-5 and Space Shuttle experiments will be included for those materials common to both the short and long-term exposures.
    Keywords: Space Sciences (General)
    Type: National Space and Missile Materials Symposium; Jun 25, 2007 - Jun 29, 2007; Keystone, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
    Keywords: Space Sciences (General)
    Type: 2007 IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: NASA s Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA s Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.
    Keywords: Space Sciences (General)
    Type: 07ICES-10 , ICES; Jul 09, 2007 - Jul 12, 2007; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: According to ISS documentation, long-duration missions are defined as missions exceeding 30 days. The ISS medical organization has set a 180-day limit for ISS missions from a medical perspective, with a possibility of planning missions of up to 220days with additional consideration. The ISS medical community does not currently consider changes to the existing duration constraints for ISS mission planning. However, longer stays on orbit may be highly desirable or even necessary in certain foreseeable operational circumstances. To develop a methodology for contingency planning, the ISS medical community, led by NASA, has identified medically relevant risks associated with extended stays of crewmembers aboard the ISS.
    Keywords: Space Sciences (General)
    Type: Aerospace Medical Association Annual Conference; May 06, 2007 - May 10, 2007; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: NASA's Constellation program, initiated to fulfill the Vision for Space Exploration, will create a new generation of vehicles for servicing low Earth orbit, the Moon, and beyond. Space radiation specifications for space system hardware are necessarily conservative to assure system robustness for a wide range of space environments. Spectral models of solar particle events and trapped radiation belt environments are used to develop the design requirements for estimating total ionizing radiation dose, displacement damage, and single event effects for Constellation hardware. We first describe the rationale using the spectra chosen to establish the total dose and single event design environmental specifications for Constellation systems. We then compare variability of the space environment to the spectral design models to evaluate their applicability as conservative design environments and potential vulnerabilities to extreme space weather events
    Keywords: Space Sciences (General)
    Type: 2007 American Geophysical Union Fall Meeting; Dec 10, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
    Keywords: Space Sciences (General)
    Type: Defense and Security Symposium; Apr 09, 2007 - Apr 13, 2007; Orlando FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: In human space exploration missions (e.g. a return to the Moon and for future missions to Mars), there will be a need to provide voice communications services. In this work we focus on the performance of Voice over IP (VoIP) techniques applied to space networks, where long range latencies, simplex links, and significant bit error rates occur. Link layer and network layer overhead issues are examined. Finally, we provide some discussion on issues related to voice conferencing in the space network environment.
    Keywords: Space Sciences (General)
    Type: IEEEAC Paper #1526, Version 1 , IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of Mars. This paper describes the current MSL EDL system performance as predicted by end-to-end EDL simulations, highlights the sensitivity of this baseline performance to several key environmental assumptions, and discusses some of the challenges faced in delivering such an unprecedented rover payload to the surface of Mars.
    Keywords: Space Sciences (General)
    Type: Paper-1467 , 2007 IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big SKy, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: By September of 2007, continuous human presence on the International Space Station will reach a milestone of eighty months. The many astronauts and cosmonauts, who live onboard the station during the last fourteen Increments over that time span, spend their time building the station as well as performing science on a daily basis. Over those eighty months, the U.S astronauts crew members logged over 2954 hours of research time. Far more research time has been accumulated by experiments controlled by investigators on the ground. The U.S astronauts conducted over one hundred and twenty six (126) science investigations. From these hundred and twenty six science investigations, many were operated across multiple Increments. The crew also installed, activated and operated nine (9) science racks that supported six science disciplines ranging from material sciences to life science. By the end of Increment 14, a total of 5083 kg of research rack mass were ferried to the station as well as 5021 kg of research mass. The objectives of this paper are three-fold. (1) To briefly review the science conducted on the International Space Station during the previous eleven Increments; (2) to discuss in detail the science investigations that were conducted on the station during Increments 12 and 13. The discussion will focus mainly on the primary objectives of each investigation and their associated hypotheses that were investigated during these two Increments. Also, some preliminary science results will be discussed for each of the investigation as science results availability permit. (3) The paper will briefly touch on what the science complement planning was and what was actually accomplished due to real time science implementation and challenges during these two Increments in question to illustrate the challenges of daily science activity while the science platform is under construction. Finally, the paper will briefly discuss the science research complements for the other two Increments, Increments 14 and 15, to preview how much science might be accomplished during these two Increments.
    Keywords: Space Sciences (General)
    Type: 58th International Astronautical Congress; Sep 24, 2007 - Sep 28, 2007; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: A radiometric calibration assessment of the AWiFS (Advanced Wide Field Sensor) on the Indian Remote Sensing Resourcesat-1 satellite was performed by the NASA Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) at the John C. Stennis Space Center. A reflectance-based vicarious calibration approach, requiring ground-based measurements coincident with satellite acquisitions and radiative transfer calculations, was used to estimate at-sensor radiance. The AWiFS is a 4-band, multispectral, moderate-resolution (60 m) imaging sensor that operates in the visible through short-wave infrared spectrum and is currently being considered as a Landsat-like alternative. Several study sites near the Stennis Space Center that attempted to span the dynamic range of the sensor were employed. Satellite at-sensor radiance values were compared to those estimated to determine the sensor's radiometric accuracy. The results of this evaluation provide the user community with an independent assessment of the radiometric accuracy of AWiFS image products, which are commercially available through GeoEye. These results are an extension of an independent assessment made by the University of Arizona Remote Sensing Group, the South Dakota State University Satellite Calibration Group & Image Processing Lab, and the NASA Applied Sciences Directorate at the John C. Stennis Space Center the previous year.
    Keywords: Space Sciences (General)
    Type: SSTI-2220-0099 , JACIE Civil Commercial Imagery Evaluation Workshop; Mar 20, 2007 - Mar 22, 2007; Fairfax, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Space weathering on the moon and asteroids results largely from the alteration of the outer surfaces of regolith grains by the combined effects of solar ion irradiation and other processes that include deposition of impact or sputter-derived vapors. Although no longer considered the sole driver of space weathering, solar ion irradiation remains a key part of the space weathering puzzle, and quantitative data on its effects on regolith minerals are still in short supply. For the lunar regolith, previous transmission electron microscope (TEM) studies performed by ourselves and others have uncovered altered rims on ilmenite (FeTiO3) grains that point to this phase as a unique "witness plate" for unraveling nanoscale space weathering processes. Most notably, the radiation processed portions of these ilmenite rims consistently have a crystalline structure, in contrast to radiation damaged rims on regolith silicates that are characteristically amorphous. While this has tended to support informal designation of ilmenite as a "radiation resistant" regolith mineral, there are to date no experimental data that directly and quantitatively compare ilmenite s response to ion radiation relative to lunar silicates. Such data are needed because the radiation processed rims on ilmenite grains, although crystalline, are microstructurally and chemically complex, and exhibit changes linked to the formation of nanophase Fe metal, a key space weathering process. We report here the first ion radiation processing study of ilmenite performed by in-situ means using the Intermediate Voltage Electron Microscope- Tandem Irradiation facility (IVEM-Tandem) at Argonne National Laboratory. The capability of this facility for performing real time TEM observations of samples concurrent with ion irradiation makes it uniquely suited for studying the dose-dependence of amorphization and other changes in irradiated samples.
    Keywords: Space Sciences (General)
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Water ice is exposed in the martian north polar cap, but is rarely exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60deg. We have examined mid-latitude areas of the northern plains displaying residual ice-rich layers, and report evidence of present-day surface exposures of water ice. These exposures, if confirmed, could con-strain the latitudinal and temporal stability of surface ice on Mars.
    Keywords: Space Sciences (General)
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: In the fall of 2009, the Mars Science Laboratory (MSL) will be launched to Mars. The purpose of this mission is to assess biologic potential and geology and to investigate planetary processes of relevance to past habitability. MSL will be able to provide visual, chemical, radiation, and environmental data with its suite of instruments [1]. In order to be selected for the MSL landing site, certain engineering requirements must be met [1] and the area should contain geologic features suggestive of past habitability, so that the overriding science goal of the mission will be attained. There are a total of 33 proposed landing sites as of the first MSL Landing Site Workshop held in Pasadena, CA from May 31st to June 2nd, 2006 [1]. There will be an opportunity to gather high resolution visual and hyperspectral data on all proposed landing sites from the now-orbiting Mars Reconnaissance Orbiter (MRO) which entered martian orbit and began its main science phase in November of 2006 [2]. The data being gathered are from: the high resolution imaging science experiment (HiRISE), the context (CTX) camera and the compact reconnaissance imaging spectrometer (CRISM) onboard the spacecraft. The footprints of these instruments are centered on a single point, and each proposer must submit these coordinates, along with the coordinates of the proposed landing ellipse. Data from these instruments, along with new MOC images and THEMIS mosaics, will be used to enhance our understanding of the geologic and engineering parameters of each site.
    Keywords: Space Sciences (General)
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The influence of reduced gravitational forces (in space and on the lunar or Martian surfaces) on manufacturing processes must be understood for effective fabrication and repair of structures and replacement parts during long duration space missions. The electron beam freeform fabrication (EBF3) process uses an electron beam and wire to fabricate metallic structures. The process efficiencies of the electron beam and the solid wire feedstock make the EBF3 process attractive for use in-space. This paper will describe the suitability of the EBF3 process in the space environment and will highlight preliminary testing of the EBF3 process in a zero-gravity environment.
    Keywords: Space Sciences (General)
    Type: 45th AIAA Aerospace Sciences Meeting and Exhibit; Jan 08, 2007 - Jan 11, 2007; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...