ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (1,601)
  • 2005-2009  (1,596)
  • 1970-1974  (5)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-26
    Description: The designers of the Orion Crew Exploration Vehicle (CEV) utilize an intensive simulation program in order to predict the launch and landing characteristics of the Crew Impact Attenuation System (CIAS). The CIAS is the energy absorbing strut concept that dampens loads to levels sustainable by the crew during landing and consists of the crew module seat pallet that accommodates four to six seated astronauts. An important parameter required for proper dynamic modeling of the CIAS is knowledge of the suited center of mass (COM) variations within the crew population. Significant center of mass variations across suited crew configurations would amplify the inertial effects of the pallet and potentially create unacceptable crew loading during launch and landing. Established suited, whole-body, and posture-based mass properties were not available due to the uncertainty of the final CEV seat posture and suit hardware configurations. While unsuited segmental center of mass values can be obtained via regression equations from previous studies, building them into a model that was posture dependent with custom anthropometry and integrated suit components proved cumbersome and time consuming. Therefore, the objective of this study was to quantify the effects of posture, suit components, and the expected range of anthropometry on the center of mass of a seated individual. Several elements are required for the COM calculation of a suited human in a seated position: anthropometry; body segment mass; suit component mass; suit component location relative to the body; and joint angles defining the seated posture. Anthropometry and body segment masses used in this study were taken from a selection of three-dimensional human body models, called boundary manikins, which were developed in a previous project. These boundary manikins represent the critical anthropometric dimension extremes for the anticipated astronaut population. Six male manikins and 6 female manikins, representing a subset of the possible maximum and minimum sized crewmembers, were segmented using point-cloud software to create 17 major body segments. The general approach used to calculate the human mass properties was to utilize center of volume outputs from the software for each body segment and apply a homogeneous density function to determine segment mass 3-D coordinates. Suit components, based on the current consensus regarding predicted suit configuration values, were treated as point masses and were positioned using vector mathematics along the body segments based on anthropometry and COM position. A custom MATLAB script then articulates the body segment and suit positions into a selected seated configuration, using joint angles that characterize a standard seated position and a CEV specific seated position. Additional MATLAB(r) scripts are finally used to calculate the composite COM positions in 3-D space for all 12 manikins in both suited and unsuited conditions for both seated configurations. The analysis focused on two aspects: (1) to quantify how much the whole body COM varied from the smallest to largest subject and (2) the impacts of the suit components on the overall COM in each seat configuration. The location across all boundary manikins of the anterior- posterior COM varied by approximately 7cm, the vertical COM varied by approximately 9-10cm, and the mediolateral COM varied by approximately 1.2 cm from the midline sagittal plane for both seat configurations. This variation was surprisingly large given the relative proportionality of the mass distribution of the human body. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration is in the standard posture, the suited vertical COM shifts inferiorly by up to 1 cm whereas in the CEV posture the vertical COM has no appreciable change. These general differences were due the high proportion of suit mass located in the boots and lower legs and their corresponding distance from the body COM as well as the prevalence of suit components on the right side of the body.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19203 , 3rd International Conference on Applied Human Factors and Ergonomics; 17-20 Jul. 2010; Miami, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); Volume 18; 2; 93-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.
    Keywords: Man/System Technology and Life Support
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 76; 5; 469-74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Operation of aerobic biological reactors in space is controlled by a number of challenging constraints, mainly stemming from mass transfer limitations and phase separation. Immobilized-cell packed-bed bioreactors, specially designed to function in the absence of gravity, offer a viable solution for the treatment of gray water generated in space stations and spacecrafts. A novel gravity-independent wastewater biological processor, capable of carbon oxidation and nitrification of high-strength aqueous waste streams, is presented. The system, consisting of a fully saturated pressurized packed bed and a membrane oxygenation module attached to an external recirculation loop, operated continuously for over one year. The system attained high carbon oxidation efficiencies often exceeding 90% and ammonia oxidation reaching approximately 60%. The oxygen supply module relies on hydrophobic, nonporous, oxygen selective membranes, in a shell and tube configuration, for transferring oxygen to the packed bed, while keeping the gaseous and liquid phases separated. This reactor configuration and operating mode render the system gravity-independent and suitable for space applications.
    Keywords: Man/System Technology and Life Support
    Type: Water environment research : a research publication of the Water Environment Federation (ISSN 1061-4303); Volume 77; 2; 138-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: This paper describes a technique for viewing and interacting with 2-D medical data in three dimensions. The approach requires little pre-processing, runs on personal computers, and has a wide range of application. Implementation details are discussed, examples are presented, and results are summarized.
    Keywords: Man/System Technology and Life Support
    Type: Studies in health technology and informatics (ISSN 0926-9630); Volume 111; 321-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: In this paper, we will present a new methodology that measures the "worth" of deploying an additional testing instrument (sensor) in terms of the amount of information that can be retrieved from such measurement. This quantity is obtained using a probabilistic model of RLV's that has been partially developed in the NASA Ames Research Center. A number of correlated attributes are identified and used to obtain the worth of deploying a sensor in a given test point from an information-theoretic viewpoint. Once the information-theoretic worth of sensors is formulated and incorporated into our general model for IHM performance, the problem can be formulated as a constrained optimization problem where reliability and operational safety of the system as a whole is considered. Although this research is conducted specifically for RLV's, the proposed methodology in its generic form can be easily extended to other domains of systems health monitoring.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).
    Keywords: Man/System Technology and Life Support
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 36-37; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.
    Keywords: Man/System Technology and Life Support
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 122-123; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: A spacecraft's Environmental Control and Life Support (ECLS) system enables and maintains a habitable and sustaining environment for its crew. A typical ECLS system provides for atmosphere consumables and revitalization, environmental monitoring, pressure, temperature and humidity control, heat rejection (including equipment cooling), food and water supply and management, waste management, and fire detection and suppression. The following is a summary of ECLS systems used in United States (US) and Russian human spacecraft.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic rates of 1000 BTU/hr and peaks of up to 2200 BTU/hr. Mobility was further augmented with the Lunar Roving Vehicle. The Apollo extravehicular mobility unit (EMU) was made up of over 15 components, ranging from a biomedical belt for capturing and transmitting biomedical data, urine and fecal containment systems, a liquid cooling garment, communications cap, a modular portable life support system (PLSS), a boot system, thermal overgloves, and a bubble helmet with eye protection. Apollo lunar astronauts performed successful EVAs on the lunar surface from a 5 psia (34.4 kPa) 100% oxygen environment in the Lunar Lander. A maximum of three EVAs were performed on any mission. For Skylab a modified A7LB suit, used for Apollo 15, was selected. The Skylab astronaut life support assembly (ALSA) provided umbilical support through the life support umbilical (LSU) and used open loop oxygen flow, rather than closed-loop as in Apollo missions. Thermal control was provided by liquid water circulated by spacecraft pumps and electrical power also was provided from the spacecraft via the umbilical. The cabin atmosphere of 5 psia (34.4 kPa), 70% oxygen, provided a normoxic atmosphere and because of the very low nitrogen partial pressures, no special protocols were required to protect against decompression sickness (DCS) as was the case with the Apollo spacecraft with a 5 psi, 100% oxygen environment.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Analytical methods have not changed from earlier reports. The Shuttle atmosphere was acceptable for human respiration.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-28
    Description: Optimal cognition during complex and sustained operations is a critical component for success in current and future military operations. "Cognitive Performance, Judgment, and Decision-making" (CPJD) is a newly organized U.S. Army Medical Research and Materiel Command research program focused on sustaining operational effectiveness of Future Force Warriors by developing paradigms through which militarily-relevant, higher-order cognitive performance, judgment, and decision-making can be assessed and sustained in individuals, small teams, and leaders of network-centric fighting units. CPJD evaluates the impact of stressors intrinsic to military operational environments (e.g., sleep deprivation, workload, fatigue, temperature extremes, altitude, environmental/physiological disruption) on military performance, evaluates noninvasive automated methods for monitoring and predicting cognitive performance, and investigates pharmaceutical strategies (e.g., stimulant countermeasures, hypnotics) to mitigate performance decrements. This manuscript describes the CPJD program, discusses the metrics utilized to relate militarily applied research findings to academic research, and discusses how the simulated combat capabilities of a synthetic battle laboratory may facilitate future cognitive performance research.
    Keywords: Man/System Technology and Life Support
    Type: Strategies to Maintain Combat Readiness during Extended Deployments: A Human Systems Approach; 14-1 - 14-15; RTO-MP-HFM-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-12
    Description: Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.
    Keywords: Man/System Technology and Life Support
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XX-1 - XX-24; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-11
    Description: In this paper, we present a space invariant architecture to enable the Independent Component Analysis (ICA) to solve chemical detection from two unknown mixing chemical sources. The two sets of unknown paired mixture sources are collected via JPL 16-ENose sensor array in the unknown environment with, at most, 12 samples data collected. Our space invariant architecture along with the maximum entropy information technique by Bell and Sejnowski and natural gradient descent by Amari has demonstrated that it is effective to separate the two mixing unknown chemical sources with unknown mixing levels to the array of two original sources under insufficient sampled data. From separated sources, they can be identified by projecting them on the 11 known chemical sources to find the best match for detection. We also present the results of our simulations. These simulations have shown that 100% correct detection could be achieved under the two cases: a) under-completed case where the number of input (mixtures) is larger than number of original chemical sources; and b) regular case where the number of input is as the same as the number of sources while the time invariant architecture approach may face the obstacles: overcomplete case, insufficient data and cumbersome architecture.
    Keywords: Man/System Technology and Life Support
    Type: Journal of Advanced Computational Intelligence and Intelligent Informatics; Volume 11; No. 10; 1197-1203
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: The candidate crops for planetary food systems include: wheat, white and sweet potatoes, soybean, peanut, strawberry, dry bean including le ntil and pinto, radish, rice, lettuce, carrot, green onion, tomato, p eppers, spinach, and cabbage. Crops such as wheat, potatoes, soybean, peanut, dry bean, and rice can only be utilized after processing, while others are classified as ready-to-eat. To process foods in space, the food processing subsystem must be capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food produ cts from pre-packaged and resupply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. D esigning, building, developing, and maintaining such a subsystem is b ound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste , and other equivalent system mass (ESM) parameters must be considere d in the selection of processing equipment and techniques.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-11
    Description: Over the past year, NASA's focus has turned to crewed long duration and exploration missions. On these journeys, crewmembers will be required to execute thousands of procedures to maintain life support systems, check out space suits, conduct science experiments, and perform medical exams. To support the many complex tasks crewmembers undertake in microgravity, NASA is interested in providing crewmembers a hands-free work environment to promote more efficient operations. The overarching objective is to allow crewmembers to use both of their hands for tasks related to their mission, versus holding a paper manual or interacting with a display. The use of advanced, hands-free tools will undoubtedly make the crewmembers task easier, but they can also add to overall task complexity if not properly designed. A leading candidate technology for supporting a hands-free environment is the Head-Mounted Display (HMD). A more recent technology (e-book reader) that could be easily temp-stowed near the work area is also a potential hands-free solution. Previous work at NASA involved the evaluation of several commercially available HMDs for visual quality, comfort, and fit, as well as suitability for use in microgravity. Based on results from this work, three HMDs were selected for further evaluation (along with an e-book reader), using International Space Station (ISS)-like maintenance procedures. Two evaluations were conducted in the Space Station Mockup and Trainer Facility (SSMTF) located at the NASA Johnson Space Center (building 9). The SSMTF is a full scale, medium fidelity replica of the pressurized portions of the ISS. It supports crew training such as ingress and egress, habitability, and emergency procedures. In each of the two evaluations, the participants performed two maintenance procedures. One maintenance procedure involved inspecting air filters in a life support system and replacing them with a clean filter if one were found to be contaminated. The second maintenance procedure focused on working in a confined space; specifically, pulling down a rack to inspect wiring configurations, and rewiring in a different pattern. The maintenance procedures were selected to assess mobility, tool use, and access to multiple document sources during task performance. That is, the participant had to move from rack to rack, use a wrench, a camera, etc., replace components, and refer to diagrams to complete tasks. A constraint was imposed that the ISS-like format of the procedures was to be retained, and not modified or optimized for the electronic device ("plug and play" approach). This was based on future plans to test with real procedures on ISS.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: The NASA Software Assurance Research Program (in part) performs studies as to the feasibility of technologies for improving the safety, quality, reliability, cost, and performance of NASA software. This study considers the application of commercial automated source code analysis tools to mission critical ground software that is in the operations and sustainment portion of the product lifecycle.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-05
    Description: A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, October 2007; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-05
    Description: An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (〉1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically 〉10(exp 6) charge/discharge cycles).
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, July 2008; 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-02
    Description: A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, May 2007; 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-11
    Description: This viewgraph presents a review of the development of food systems for the use during a Mars Mission. It review some of the food delivery systems developed for all of the NASA space programs from Mercury, Gemini, and Apollo, to the Space Shuttle, International Space Station. The goals and objectives of the program are to: provide an adequate food system and develop a safe food system, that is nutritious and acceptable to astronauts, and to provide a food system that efficiently balances vehicle resources.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-11
    Description: Suited human performance studies in reduced gravity environments to date include limited observations from Apollo Lunar surface Extravehicular Activities (EVA) and from previous studies conducted in partial gravity simulation environments. The Constellation Program EVA Systems Project office has initiated tests to develop design requirements for the next generation Lunar EVA suit. Theses studies were conducted in the Space Vehicle Mock-Up Facility (SVMF) at Johnson Space Center from which the results provided recommendations for suit weight, mass, center of gravity, pressure, and suit kinematic constraints that optimize human performance in partial gravity environments.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-11
    Description: The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: Famine early warning systems use remote sensing in combination with socio-economic and household food economy analysis to provide timely and rigorous information on emerging food security crises. The Famine Early Warning Systems Network (FEWS NET) is the US Agency for International Development's decision support system in 20 African countries, as well as in Guatemala, Haiti and Afghanistan. FEWS NET provides early and actionable policy guidance for the US Government and its humanitarian aid partners. As we move into an era of climate change where weather hazards will become more frequent and severe, understanding how to provide quantitative and actionable scientific information for policy makers using biophysical data is critical for an appropriate and effective response.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-05
    Description: A tool makes it possible to couple a torque wrench to an externally knurled, internally threaded, round cable connector. The purpose served by the tool is to facilitate the tightening of multiple such connectors (or the repeated tightening of the same connector) to repeatable torques. The design of a prior cable-connector/ torque-wrench coupling tool provided for application of the torque-wrench jaws to a location laterally offset from the axis of rotation of the cable connector, making it necessary to correct the torque reading for the offset. Unlike the design of the prior tool, the design of the present tool provides for application of the torque-wrench jaws to a location on the axis of rotation, obviating correction of the torque reading for offset. The present tool (see figure) consists of a split collet containing a slot that provides clearance for inserting and bending the cable, a collet-locking sleeve, a collet-locking nut, and a torque-wrench adaptor that is press-fit onto the collet. Once the collet is positioned on the cable connector, the collet-locking nut is turned to force the collet-locking sleeve over the collet, compressing the collet through engagement of tapered surfaces on the outside of the collet and the inside of the locking sleeve. Because the collet is split and therefore somewhat flexible, this compression forces the collet inward to grip the connector securely. The torque wrench is then applied to the torque-wrench adaptor in the usual manner for torquing a nut or a bolt.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, July 2006; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-05
    Description: On-the-Fly Reprocessing (OTFR) is a collection of data-processing routines that work within the context of the Hubble Space Telescope (HST) pipeline data-flow system. The purpose served by OTFR is to generate, on demand, scientifically useful data products from raw HST data stored in an archive. First, on the basis of the requested final data products, OTFR retrieves the corresponding sets of raw data from the archives. Next, OTFR processes the raw data sets to remove artifacts and to establish proper header and other template information. Finally, the calibration routines appropriate to the specific data sets are invoked to produce the requested data products, and the data products are released to an archive distribution system for transmission to the requesting party. OTFR offers two notable advantages: (1) Inasmuch as calibrated data occupy about 8 times as much storage space as do raw data, by obviating storage of calibrated data, OTFR reduces the storage capacity needed by the archive; and (2) the calibration routines can be updated to give requesters the benefit of the most recent calibrations.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, March 2007; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-11
    Description: Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.
    Keywords: Man/System Technology and Life Support
    Type: NASA Summer Faculty Fellowship Program 2004, Volumes 1 and 2; 12-1 - 12-17; NASA/CR-2005-213690/VOL1/2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-11
    Description: Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.
    Keywords: Man/System Technology and Life Support
    Type: KC-135 and Other Microgravity Simulations; 19-26; NASA/TM-2005-213162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: After forty years of experience with human space flight (Table 1), the current emphasis is on the design of space vehicles, habitats, and missions to ensure mission success. What lessons have we learned that will affect the design of spacecraft for future space exploration, leading up to exploring Mars? This chapter addresses this issue in four sections: Anthropometry and Biomechanics; Environmental Factors; Habitability and Architecture; and Crew Personal Sustenance. This introductory section introduces factors unique to space flight. A unique consideration for design of a habitable volume in a space vehicle is the lack of gravity during a space flight, referred to as microgravity. This affects all aspects of life, and drives special features in the habitat, equipment, tools, and procedures. The difference in gravity during a space mission requires designing for posture and motion differences. In Earth s gravity, or even with partial gravity, orientation is not a variable because the direction in which gravity acts defines up and down. In a microgravity environment the working position is arbitrary; there is no gravity cue. Orientation is defined primarily through visual cues. The orientation within a particular crew station or work area is referred to as local vertical, and should be consistent within a module to increase crew productivity. Equipment was intentionally arranged in various orientations in one module on Skylab to assess the efficiency in use of space versus the effects of inconsistent layout. The effects of that arrangement were confusion on entering the module, time spent in re-orientation, and conflicts in crew space requirements when multiple crew members were in the module. Design of a space vehicle is constrained by the three major mission drivers: mass, volume and power. Each of these factors drives the cost of a mission. Mass and volume determine the size of the launch vehicle directly; they can limit consumables such as air, water, and propellant; and they impact crew size and the types of activities the crew performs. Power is a limiting factor for a space vehicle. All environmental features (e.g., atmosphere, temperature, lighting) require power to maintain them. Power can be generated from batteries, from fuel cells, or from solar panels. Each of these sources requires lifting mass and volume from Earth, driving mission cost. All engineering decisions directly impact the design for habitation design and usage. For instance, if fuel cells are used they produce water, which is used for drinking and food preparation. If a different power source is used water has to be carried and stored on the vehicle which then directly impacts the food system choice as well as the launch weight of the vehicle.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-05
    Description: European Automated Transfer Vehicles (ATVs) can begin sending tons of logistics supplies to the International Space Station as early as 2006, now that the U.S./Russian crew has outfitted the exterior of the ISS with the final communications and GPS antennas needed for ATV rendezvous and docking. During their extravehicular activity (EVA) on Mar. 28, Expedition 10 commander astronaut Leroy Chiao and Russian flight engineer cosmonaut Salizhan Sharipov also coordinated the hand-launch by Sharipov of a small Russian technology satellite. The crew wore Russian Orlan space suits during the 4 hr. 30 min. EVA, which they completed an hour earlier than expected. The EVA was the sixth for Chiao and the second for Sharipov. Both Expedition 10 crewmen had been outside together on Jan. 25 at the start of their six- month mission. The Expedition 11 replacement crew is to launch to the ISS Apr. 15, enabling the current crew to return to Earth Apr. 25. A detailed discussion about Chiao and Sharipov's EVA is presented.
    Keywords: Man/System Technology and Life Support
    Type: Aviation Week and Space Technology (ISSN 0005-2175); Volume 162; No. 14; 32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-12
    Description: This article reports on research into atmospheric revitalization systems for long-term space travel and the use ofCOMSOL Multiphysics to understand how structured sorbents can be used to improve the performance of adsorption processes via thermal management. We are developing the next generation of atmosphere revitalization systems, which will reach for new levels of resource conservation via a high percentage of loop closure. For example, a high percentage of carbon dioxide, exhaled by crew, can be converted via reaction to drinking water, closing the loop from human metabolic waste to supply. Adsorption processes play a lead role in these new/closed loop systems.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-11
    Description: This document constitutes the publication of work performed by the Space Human Factors Laboratory (mail code SF5 at the time) at the Johnson Space Center (JSC) in the months of June and July of 2000. At that time, the Space Human Factors Laboratory was part of the Space Human Factors Branch in the Flight Projects Division of the Space and Life Directorate. This report was originally to be a document for internal consumption only at JSC as it was seen to be only preliminary work for the further development of solid state illumination for general lighting on future space vehicles and the International Space Station (ISS). Due to funding constraints, immediate follow-on efforts were delayed and the need for publication of this document was overcome by other events. However, in recent years and with the development and deployment of a solid state light luminaire prototype on ISS, the time was overdue for publishing this information for general distribution and reference. Solid state lights (SSLs) are being developed to potentially replace the general luminaire assemblies (GLAs) currently in service in the International Space Station (ISS) and included in designs of modules for the ISS. The SSLs consist of arrays of light emitting diodes (LEDs), small solid state electronic devices that produce visible light in proportion to the electrical current flowing through them. Recent progressive advances in electrical power-to-light conversion efficiency in LED technology have allowed the consideration of LEDs as replacements for incandescent and fluorescent light sources in many circumstances, and their inherent advantages in ruggedness, reliability, and life expectancy make them attractive for applications in spacecraft. One potential area of application for the SSLs in the U.S. Laboratory Module of the ISS. This study addresses the suitability of the SSLs as replacements for the GLAs in this application.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-11
    Description: This document contains some of the descriptions of payload and experiment related to life support and habitation. These describe experiments that have or are scheduled to fly on the International Space Station. There are instructions, and descriptions of the fields that make up the database. The document is arranged in alphabetical order by the Payload
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-27
    Description: A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
    Keywords: Man/System Technology and Life Support
    Type: 38th International Conference on Environmental Systems; 29 Jun.?2 Jul. 2008; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-27
    Description: NASA's exploration mission is to send humans to the Moon and Mars, in which the purpose is to learn how to live and work safely in those harsh environments. A critical aspect of living in an extreme environment is habitation, and within that habitation element there are key systems which monitor the habitation environment to provide a safe and comfortable living and working space for humans. Expandable habitats are one of the options currently being considered due to their potential mass and volume efficiencies. This paper discusses a joint project between the National Science Foundation (NSF), ILC Dover, and NASA in which an expandable habitat was deployed in the extreme environment of Antarctica to better understand the performance and operations over a one-year period. This project was conducted through the Innovative Partnership Program (IPP) where the NSF provided the location at McMurdo Station in Antarctica and support at the location, ILC Dover provided the inflatable habitat, and NASA provided the instrumentation and data system for monitoring the habitat. The outcome of this project provided lessons learned in the implementation of an inflatable habitat and the systems that support that habitat. These lessons learned will be used to improve current habitation capabilities and systems to meet the objectives of exploration missions to the moon and Mars.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18707 , AIAA Space 2009; 14-17 Sept. 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18306 , Lunar Science Forum 2009; Jul 21, 2009 - Jul 23, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and MSFC, and Ohio State University and MIT. Progress in measuring cell efficiency for oxygen production, development of non reacting electrodes, and cell feeding and withdrawal will be discussed.
    Keywords: Man/System Technology and Life Support
    Type: MSFC-2201 , Space Propulsion and Energy Sciences International Forum; Feb 24, 2009 - Feb 27, 2009; Hunstville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: In 2009, the Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, CA) was assessed in the National Aeronautics and Space Administration (NASA) Exploration Life Support (ELS) distillation comparison test. The purpose of the test was to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. The CDS portion of the comparison test was conducted between May 6 and August 19, 2009. The system was challenged with two pretreated test solutions, each intended to represent a feasible wastewater generated in a surface habitat. The 30-day equivalent wastewater loading volume for a crew of four was processed for each wastewater solution. Test Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. Test Solution 2 contained the addition of human-generated hygiene wastewater to the solution 1 waste stream components. Approximately 1500 kg of total wastewater was processed through the CDS during testing. Respective recoveries per solution were 93.4 +/- 0.7 and 90.3 +/- 0.5%. The average specific energy of the system was calculated to be less than 130 W-hr/kg. The following paper provides detailed information and data on the performance of the CDS as challenged per the ELS distillation comparison test.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19250 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: This paper summarizes investigations conducted on different orthostatic intolerance protection garments. This paper emphasizes on the engineering and operational aspects of the project. The current Shuttle pneumatic Anti-G Suit or AGS at 25 mmHg (0.5 psi) and customized medical mechanical compressive garments (20-30 mmHg) were tested on human subjects. The test process is presented. The preliminary results conclude that mechanical compressive garments can ameliorate orthostatic hypotension in hypovolemic subjects. A mechanical compressive garment is light, small and works without external pressure gas source; however the current garment design does not provide an adjustment to compensate for the loss of mass and size in the lower torso during long term space missions. It is also difficult to don. Compression garments that do not include an abdominal component are less effective countermeasures than garments which do. An early investigation conducted by the Human Adaptation and Countermeasures Division at Johnson Space Center (JSC) has shown there is no significant difference between the protection function of the AGS (at 77 mmHg or 1.5 psi) and the Russian anti-g suit, Kentavr (at 25 mmHg or 0.5 psi). Although both garments successfully countered hypovolemia-induced orthostatic intolerance, the Kentavr provided protection by using lower levels of compression pressure. This more recent study with a lower AGS pressure shows that pressures at 20-30 mmHg is acceptable but protection function is not as effective as higher pressure. In addition, a questionnaire survey with flight crewmembers who used both AGS and Kentavr during different missions was also performed.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19236 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Reston, Virginia; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19238 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive results that encompass the variation within the entire population. The current EMU does not accommodate humans at the extremes of the anthropometric spectrum. To account for this and to ensure that these requirements cover the population, another phase of testing will be conducted in a differential pressure glove box. This phase will focus on smaller females and very large males that do not have a properly fitted EMU suit. Instead, they would wear smaller or larger gloves and be tested in the glove box as a means to compare and contrast their strength capabilities against the EMU accommodated hand size subjects. The glove box s ability to change pressures easily will also allow for a wider range of glove pressures to be tested. Compared to the data collected on the subjects wearing the EMU suit, it is expected that there will be similar ratios to bare-hand. It is recommended that this topic be sent to the Physical Ergonomics Board for review.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19276 , 3rd International Conference on Applied Human Factors and Ergonomics; Jul 17, 2010 - Jul 20, 2010; Miami, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities varying pressure environments.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19177 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) crew compliment has increased in size from 3 to 6 crew members . In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19173 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19228 , 40tt International Conference on Environmental System (ICES); Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19212 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for CSSE pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19039 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Reston, Virginia; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19149 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at low pressures that simulate a PLSS environment. We obtained head/flow performance curves over a range of operating speeds, identified the maximum efficiency point for the blower, and used these results to specify the design and operating conditions for the ventilation fan. We designed a compact motor that can drive the blower under all anticipated operating requirements and operate with high efficiency during normal operation. We identified materials for the blower that will enhance safety for operation in a lunar environment. We produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSS ventilation subsystem while running at 5400 rpm and consuming only 9 W of electric power and using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power blower can meet the performance requirements for future PLSSs.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19038 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: The Lab-on-a-Chip Application Development - Portable Test System, known as LOCAD-PTS, was launched to the International Space Station (ISS) aboard Space Shuttle Discovery (STS-116) on December 9th,2006. Since that time, it has remained onboard ISS and has been operated by the crew on 10 separate occasions LOCAD-PTS is a handheld device for rapid biochemical analysis; it consists of a spectrophotometer, a series of interchangeable cartridges, a pipette and several clean/sterilized swabbing kits to obtain samples from ISS surfaces. Sampling, quantitative analysis and data retrieval is performed onboard, therefore reducing the need to return samples to Earth. Less than 20 minutes are required from sampling to data, significantly faster than existing culture-based methods on ISS, which require 3-5 days. Different cartridges are available for the detection of different target molecules (simply by changing the formulation within each cartridge), thereby maximizing the benefit and applications addressed by a single instrument. Initial tests on ISS have focused on the detection of the bact.erial macromolecule endotoxin, a component of bacterial cell walls. LOCAD-PTS detects endotoxin with a cartridge that contains a formulation known as Limulus Amebocyte Lysate (LAL) assay. LAL is derived from blood of the horseshoe crab, Limulus polyphemus, and detects enodotoxin with an enzyme cascade that triggers generation Of a yellow colored dye, p-nitroanaline. The more p-nitroanaline product, the more endotoxin is in the original sample. To enable quantitative analysis, the absorbance of this color is measured by LOCAD-PTS through a 395 nm filter and compared with an internal calibration curve, to provide a reading on the LED display that ranges from 0.05 Endotoxin Units (EU)/ml to 5 EU/ml. Several surface sites were analyzed within ISS between March 2007 and February 2008, including multiple locations in the US Laboratory Destiny, Node 1 Unity, AMock, and Service Module Zvezda. The goals of this initial study were to i) test the cleanliness of reagents/supplies on orbit, ii) test the crew's ability to collect and process a sample in microgravity without contamination, iii) demonstrate nominal function of the LOCAD-PTS, and iv) provide a general survey of endotoxin within the ISS. The surface sites varied greatly in terms of their frequency-of-use and material texture/composition; from relatively smooth aluminum, to fabric, to the room temperature vulcanizing (RTV) rubber of a Extravehicular Mobility Unit (EMU) spacesuit. Results showed that: i) the swabbing kits and reagents remained clean on orbit, ii) the crew could collect and process a sample without contamination, and iii) the LOCAD-PTS functioned nominally in 〉 99% of the 55 tests completed. We will present detailed results of the survey of endotoxin on ISS surfaces. These results and technology are important in the near-term - by providing an extra tool in the toolbox for ISS microbial monitoring. They are also important in the longer term as valuable preparation for human exploration of the Moon and Mars. One of the proposed science goals for the human exploration of Mars will be to detect and characterize any indigenous biological molecules that may exist on the Martian surface. To achieve that goal, the crew must have the technology available onboard to differentiate indigenous biology from any terrestrial biological material brought to Mars by the spacecraft and crew (termed 'forward contamination'). The LAL assay is already one of the official methods used by NASA's planetary protection program to certify cleanliness of interplanetary robotic spacecraft prior to launch; and therefore endotoxin is a good marker of forward contamination (as well as other microbial molecules detectable with LOCAD-PTS e.g. box-1, 3-glucan and lipoteichoic acid). Furthermore, the distribution and abundance of these molecules on the ISS provides a good indicator of what to expect on the Crew Exploratioehicle Orion, the lunar lander Antares, and future crewed spacecraft destined for Mars. In addition, technology such as LOCAD-PTS has been proposed to help evaluate forward contamination during lunar surface operations by the crew, as preparation for the human exploration of Mars.
    Keywords: Man/System Technology and Life Support
    Type: M09-2055 , AIAA 2008 Conference; Sep 09, 2008 - Sep 11, 2008; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: An EMU water processing kit (Airlock Coolant Loop Recovery A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of postflight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives was implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit components, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements. The intent of this paper is to summarize the findings of that evaluation, and to outline updated schedules for A/L CLR use and component life.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: Human exposure to microgravity during spaceflight causes bone loss. Calcium and other metabolic byproducts are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is essential to determining crew bone loss and the effectiveness of countermeasures. Previous US Space Shuttle (SS) Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to cross contamination between users and fluid system instabilities. Currently, urine voids must be collected manually in a flexible plastic bag containing a known tracer quantity. The crew member must completely mix the bag then withdraw a representative syringe sample for later ground analysis. The current bag system accuracy is highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures the void volume, and allows for syringe sampling. After operations, the ISS UMS delivers the urine to the WHC for normal processing then flushes its plumbing with a small water volume. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, greatly reduces cross contamination between urine voids (〈 0.5 ml urine), and provides accurate volume measurements (〈 +/- 2% error for 100 to 1000 ml void volumes). The system performance has been validated with extensive ground tests and reduced gravity aircraft flights. The lockersized ISS UMS is currently being modified to interface with the ISS Node 3 WHC Russian ACY hardware. The operation principles, characteristics, and results are outlined in the paper.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: For future lunar extravehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon(Registered Trademark) membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using this membrane was successfully tested by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of a compact sheet membrane SWME development unit for use in the Constellation System Spacesuit Element Portable Life Support System (Vogel and et. al., ICES 2008). Major design objectives included minimizing mass, volume, and manufacturing complexity while rejecting a minimum of 810 watts of heat from water flowing through the SWME at 91 kg/hr with an inlet temperature of 291K. The design meeting these objectives consisted of three concentric cylindrical water channels interlaced with four water vapor channels. Two units were manufactured for the purpose of investigating manufacturing techniques and performing thermal testing. The extensive thermal test measured SWME heat rejection as a function of water inlet temperatures, water flow-rates, water absolute pressures, water impurities, and water vapor back-pressures. This paper presents the test results and subsequent analysis, which includes a comparison of SWME heat rejection measurements to pretest predictions. In addition, test measurements were taken such that an analysis of the commercial-off-the-shelf vapor pressure control valve could be performed.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: The Constellation Program requires the development of a space suit system to meet new requirements for launch, entry, and abort crew survival functions, microgravity intravehicular and extravehicular activities, and lunar surface exploration. This paper summarizes recent work and the current status of the NASA Constellation Space Suit Element Pressure Garment and Crew Survival Subsystem (PG/CS). The emphasis of the work by the PGS/CS team has been in the areas of feasibility studies toward PGS/CS architecture definition, risk mitigation, and requirements development. Included are results from component level engineering studies, testing in the Orion Vehicle and Orion seat mockups, microgravity testing on the Reduced Gravity Aircraft, occupant protection sled testing, analyses and studies, and their implications on Constellation PG/CS subsystem.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft(Registered TradeMark) Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of the Exploration Life support (ELS) regenerative system technologies. This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically. The latest ALSSAT related publication in ICES 2004 detailed ALSSAT s development status including the completion of all six ELS Subsystems (ELSS), namely, the Air Management Subsystem, the Biomass Subsystem, the Food Management Subsystem, the Solid Waste Management Subsystem, the Water Management Subsystem, and the Thermal Control Subsystem and two external interfaces, including the Extravehicular Activity and the Human Accommodations. Since 2004, many more regenerative technologies in the ELSS were implemented into ALSSAT. ALSSAT has also been used for the ELS Research and Technology Development Metric Calculation for FY02 thru FY06. It was also used to conduct the Lunar Outpost Metric calculation for FY08 and was integrated as part of a Habitat Model developed at Langley Research Center to support the Constellation program. This paper will give an update on the analysis tool s current development status as well as present the analytical results of one of the trade studies that was performed.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: NASA is planning to return to the moon and then explore Mars. A permanent base at the south pole of the moon will be the test bed for Mars. At the moon base, two crewmembers are expected to conduct Extravehicular Activity (EVA) six days every week. Current spacesuits are cooled by the sublimation of water ice into vacuum. A single 7 hour EVA near the lunar equator in daylight can expend up to 5 kilograms of water. Because of the high cost of transporting spacesuit cooling water to the moon, the water for one EVA could cost hundreds of thousands of dollars. The lunar south pole and Mars have low surface temperatures that make cooling much easier than at the lunar equator. Alternate cooling methods and keeping to cool environments can reduce or eliminate the loss of water for spacesuit cooling. If cooling water is not needed, a recycling life support system can provide all the required crew water and oxygen without transporting additional water from Earth.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN455 , International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, G; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: A habitable atmosphere is a fundamental requirement for human spaceflight. To meet such a requirement, the cabin atmosphere must be constantly scrubbed to maintain human life and system functionality. The primary system for atmospheric scrubbing of the US on-orbit segment (USOS) of the International Space Station (ISS) is the Trace Contaminant Control System (TCCS). As part of the Environmental Control and Life Support Systems (ECLSS) atmosphere revitalization rack in the US Lab, the TCCS operates continuously, scrubbing trace contaminants generated primarily by two sources: the metabolic offgassing of crew members and the offgassing of equipment in the ISS. It has been online for approximately 95% since activated in February 2001. The TCCS is comprised of a charcoal bed, a catalytic oxidizer, and a lithium hydroxide post-sorbent bed, all of which are designed to be replaced onorbit when necessary. In 2006, all three beds were replaced following an observed increase in the system resistance that occurred over a period several months. The beds were returned to ground and subjected to a test, teardown and evaluation to investigate the root cause(s) of the decrease in flow rate through the system. In addition, various chemical and physical analyses of the bed materials were performed to determine contaminant loading and any changes in performance. This paper will mainly focus on the results of these analyses and how this correlates with what has been observed from archival sampling and onorbit events. This may provide insight into the future performance of the TCCS and rate of change for orbital replacement units in the TCCS.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: Field of view has always been a design feature paramount to helmet design, and in particular space suit design, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. For Project Constellation, a slightly different approach to helmet requirement maturation was utilized; one that was less a direct function of body position and suit pressure and more a function of the mission segment in which the field of view is required. Through taxonimization of various parameters that affect suited FOV, as well as consideration for possible nominal and contingency operations during that mission segment, a reduction process was able to condense the large number of possible outcomes to only six unique field of view angle requirements that still captured all necessary variables without sacrificing fidelity. The specific field of view angles were defined by considering mission segment activities, historical performance of other suits, comparison between similar requirements (pressure visor up versus down, etc.), estimated requirements from other teams for field of view (Orion, Altair, EVA), previous field of view tests, medical data for shirtsleeve field of view performance, and mapping of visual field data to generate 45degree off-axis field of view requirements. Full resolution of several specific field of view angle requirements warranted further work, which consisted of low and medium fidelity field of view testing in the rear entry ISuit and DO27 helmet prototype. This paper serves to document this reduction progress and followup testing employed to write the Constellation requirements for helmet field of view.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Sciences; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: NASA is currently engaged in an activity to facilitate effective operations on the International Space Station (ISS) after the Space Shuttle retires. Currently, the Space Shuttle delivers crew and cargo to and from ISS. The Space Shuttle provides the only large scale method of hardware return from ISS to the ground. Hardware that needs to be periodically repaired, refurbished, or recalibrated must come back from ISS on the Shuttle. One example of NASA flight hardware that is used on ISS and refurbished on the ground is the Compound Specific Analyzer for Oxygen (CSA-O2). The CSA-O2 is an electrochemical sensor that is used on orbit for about 12 months (depending on Shuttle launch schedules), then returned to the ground for sensor replacement. The shuttle is scheduled to retire in 2010, and the ISS is scheduled to operate until 2016. NASA needs a hand held sensor that measures oxygen in the ISS environment and has a 5-10 year service life. After conducting a survey of oxygen sensor systems, NASA selected a Tunable Diode Laser Absorption Spectrometer (TDLAS) as the method of measurement that best addresses the needs for ISS. These systems are compact, meet ISS accuracy requirements, and because they use spectroscopic techniques, the sensors are not consumed or altered after making a measurement. TDLAS systems have service life ratings of 5-10 years, based on the lifetime of the laser. NASA is engaged in modifying a commercially available sensor, the Vaisala OMT 355, for the ISS application. The Vaisala OMT 355 requires three significant modifications to meet ISS needs. The commercial sensor uses a wall mount power supply, and the ISS sensor needs to use a rechargeable battery as its source of power. The commercial sensor has a pressure correction setpoint: the sensor can be adjusted to operate at reduced pressure conditions, but the sensor does not self correct dynamically and automatically. The ISS sensor needs to operate in the airlock, and make accurate measurements in an environment that can change from 14.7 psia to 10.2 psia in 15 minutes. The commercial sensor needs to be repackaged into a configuration that is more compact, and better suited for ISS airlock operations. NASA has recently completed a prototype of the reconfigured system. The unit has been repackaged in a way that the optical path of the spectrometer is unchanged, but the electronics has been integrated into a case measuring 10.7 X 7.2 X 3.0 inches. Two flight qualified rechargeable batteries have been integrated into system. The batteries can power the sensor for 10 hours on a single charge. A pressure sensor has been added to the system. The modified unit automatically compensates for changes in pressure, and meets 0.2% accuracy requirements for oxygen measurements in an environment with 18 to 32% oxygen across a pressure range of 10.0 to 15.0 psia.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18968 , SAMAP 2009 (Submarine Air Monitoring and Purification); Oct 20, 2009 - Oct 21, 2009; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.
    Keywords: Man/System Technology and Life Support
    Type: 80th Annual Scientific Meeting of the Aerospace Medical Association (ASMA); May 03, 2009 - May 07, 2009; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: NASA s Constellation Program (CxP) will conduct a series of human space expeditions of increasing scope, starting with missions supporting the International Space Station and expanding to encompass the Moon and Mars. Although human-rating is an integral part of all CxP activities throughout their life cycle, NASA Procedural Requirements document NPR 8705.2B, Human-Rating Requirements (HRR) for Space Flight Systems, defines the additional processes, procedures, and requirements necessary to produce human-rated space systems that protect the safety of crew members and passengers on these NASA missions. In order to be in compliance with 8705.2B the CxP must show appropriate implementation or progression toward the HRR, or justification for an exception. Compliance includes an explanation of how the CxP intends to meet the HRR, analyses to be performed to determine implementation; and a matrix to trace the HRR to CxP requirements. The HRR requires the CxP to establish a human system integration team (HSIT), consisting of astronauts, mission operations personnel, training personnel, ground processing personnel, human factors personnel, and human engineering experts, with clearly defined authority, responsibility, and accountability to lead the human-system integration. For example, per the HRR the HSIT is involved in the evaluation of crew workload, human-in-the-loop usability evaluations, determining associated criteria, and in assessment of how these activities influenced system design. In essence, the HSIT is invaluable in CxP s ability to meet the three fundamental tenets of human rating: the process of designing, evaluating, and assuring that the total system can safely conduct the required human missions; the incorporation of design features and capabilities that accommodate human interaction with the system to enhance overall safety and mission success; and the incorporation of design features and capabilities to enable safe recovery of the crew from hazardous situations.
    Keywords: Man/System Technology and Life Support
    Type: 80th Annual Scientific Meeting of the Aerospace Medical Association (AsMA); May 03, 2009 - May 07, 2009; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: The next generation space suit requires additional capabilities for controlling and adjusting internal pressure than previous design suits. Next generation suit pressures will range from slight pressure, for astronaut prebreath comfort, to hyperbaric pressure levels for emergency medical treatment. Carleton was awarded a contract in 2008 to design and build a proof of concept bench top demonstrator regulator having five setpoints which are selectable using input electronic signaling. Although the basic regulator architecture is very similar to the existing SOP regulator used in the current EMU, the major difference is the electrical selectivity of multiple setpoints rather than the mechanical On/Off feature found on the SOP regulator. The concept regulator employs a linear actuator stepper motor combination to provide variable compression to a custom design main regulator spring. This concept allows for a continuously adjustable outlet pressures from 8.2 psid (maximum) down to "firm" zero thus effectively allowing it to serve as a shutoff valve. This paper details the regulator design and presents test results on regulation band width, command set point accuracy; slue rate and regulation stability, particularly when the set point is being slued. Projections for a flight configuration version are also offered for performance, architectural layout and weight.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The design and mass cost of a starship and its life support system are investigated. The mission plan for a multi generational interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Only current technology is assumed. Highly reliable life support systems can be provided with reasonably small additional mass, suggesting that they can support long duration missions. Bioregenerative life support, growing crop plants that provide food, water, and oxygen, has been thought to need less mass than providing stored food for long duration missions. The large initial mass of hydroponics systems is paid for over time by saving the mass of stored food. However, the yearly logistics mass required to support a bioregenerative system exceeds the mass of food solids it produces, so that supplying stored dehydrated food always requires less mass than bioregenerative food production. A mixed system that grows about half the food and supplies the other half dehydrated has advantages that allow it to breakeven with stored dehydrated food in about 66 years. However, moderate increases in the hydroponics system mass to achieve high reliability, such as adding spares that double the system mass and replacing the initial system every 100 years, increase the mass cost of bioregenerative life support. In this case, the high reliability half food growing, half food supplying system does not breakeven for 389 years. An even higher reliability half and half system, with three times original system mass and replacing the system every 50 years, never breaks even. Growing food for starship life support requires more mass than providing dehydrated food, even for multigeneration voyages of hundreds of years. The benefits of growing some food may justify the added mass cost. Much more efficient recycling food production is wanted but may not be possible. A single multigenerational interstellar voyage to colonize a new planet would have cost similar to that of the Apollo program. Cost is reduced if a small crew travels slowly and lands with minimal equipment. We can go to the stars!
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN506 , International Conference On Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: CO2 acquisition and utilization technologies will have a vital role in determining sustained and affordable life support and in-situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture and chemically reduce the metabolic CO2 from the cabin air to restitute oxygen consumption. Technologies that facilitate the in-situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars and their demonstration on the moon is critical as well. This paper describes the concept and experimental investigation of a CO2 capture and reduction system that comprises an adsorption compressor and a CO2 and steam co-electrolysis unit. The process products include oxygen for life support and Syngas (CO and H2) for synthetic fuel production. Electrochemical performance in terms of CO2 conversion, oxygen production, and power consumption of a system with a capacity to process 1kg CO2 per day (1-person equivalent) will be discussed.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN408 , International Conference On Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-18
    Description: A previous study reported that inadequate weigh outs of suited subjects contribute to fatigue and the risk of injury during training in the Neutral Buoyancy Laboratory (NBL). Another study suggested that shoulder injuries observed in suited subjects who train in the NBL may be attributed to excessive righting moments caused by a non-optimal weigh out. The purpose of this study was to develop a mathematical model to predict and maintain the neutral buoyancy of suited subjects during training operations at the NBL. Due to time constraints, one certified NBL support diver served as a subject (height: 66.54 in; weight: 182 lbs) for this study and only one complete test was conducted. The study was divided into two runs for which the first run required the NBL divers to perform a weigh out similar to a suited astronaut on a scuba diver wearing a mock Portable Life Support System and a Displays and Control Module. For the second run, the same subject and equipment were weighed out according to the mathematical model. The objective of each run was to achieve a neutrally buoyant subject floating 450 to the pool floor. Motion data was collected using two underwater cameras and analyzed using Dartfish video analysis software while force and moment data were recorded using an AMTI force plate. The results from the NBL divers visual run indicate that the subject was floating at an angle of 29.50 while the resultant force and moment data were 1.139 lb and 1.125 ft-lb respectively. The mathematical model s weigh out resulted in the subject floating at an angle of 37.40 and a resultant force of 0.765 lb and resultant moment of 1.248 ft-lb. The mathematical model was better able to orient the subject and reduce resultant moment and force as compared to the NBL divers.
    Keywords: Man/System Technology and Life Support
    Type: 36th International Conference on Environmental; Jul 17, 2006 - Jul 20, 2006; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-18
    Description: Outline of Content to be Presented: Session 1: Background on Human Space Flight, NASA Human Space Flight Programs: Apollo, Shuttle, ISS, U.S. Vision for Space Exploration, Goals of Human Spaceflight. Session. 2: Use of Polymers in NASA Technology Development, Life Support & Habitation Program, Spacecraft and Space Suit Requirements and Constraints Applications - Past, Current, Future Technologies in Development. Session 3: NASA Materials Database, Classes of Useful Polymers and Composites, Unique Requirements on Polymers in Space Applications of Synthetic and Biological Polymers. Session 4: Design of Polymer Parts for a Lunar Space Suit, Sample Activities for Teachers to Use in High School Classrooms.
    Keywords: Man/System Technology and Life Support
    Type: Teaching TEKS with Polymers: High School CHemistry with Meaningful Applications Workshop; Jan 31, 2005; Abilene, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-18
    Description: Experience on International Space Station (ISS) provides many important lessons for future space flight. NASA human factors engineers have been systematically collecting lessons learned from crew debriefs, as well as working with ground support teams to continuously improve crew operations. This paper describes the methods for collecting data from debriefs, lessons learned through that process, and an example of a technology development task funded through the Space Human Factors Engineering (SHFE) program element in response to an identified operational need. Each ISS increment crew spends many hours after the flight answering questions from the various subsystem leads. The Flight Crew Integration subsystem lead asks questions specific to human factors and habitability issues. In addition, crew comments on many other subsystems provide insight into interface designs, operability and maintainability. The debrief comments are unique to each crew, and must be categorized to provide operational lessons learned. Personal identifiers are removed and comments aggregated to separate consistent issues from personal preferences. Examples will be given, and the procedure for incorporating the lessons into requirements and guidelines for the next human space vehicle will be described. In flight, very few astronauts are medical doctors. Written medical procedures during flight need to be easy to follow and quick to understand. The problem was analyzed as part of a SHFE task. Organization was analyzed and reorganizations were created and tested. Results will be reported. The ISS is a very important analog for planning future long-term missions. Collection of data from debriefs, studying the lessons learned and focusing on requirements for future missions are examples of the accomplishments through the SHFE program.
    Keywords: Man/System Technology and Life Support
    Type: 15th IAA Humans In Space Symposium; May 22, 2005 - May 26, 2005; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: Three NASA centers are working together to address the challenge of operating robotic assets in support of human exploration of the Moon. This paper describes the combined work to date of the Ames Research Center (ARC), Jet Propulsion Laboratory (JPL) and Johnson Space Center (JSC) on a common support framework to control and monitor lunar robotic assets. We discuss how we have addressed specific challenges including time-delayed operations, and geographically distributed collaborative monitoring and control, to build an effective architecture for integrating a heterogeneous collection of robotic assets into a common work. We describe the design of the Robot Application Programming Interface Delegate (RAPID) architecture that effectively addresses the problem of interfacing a family of robots including the JSC Chariot, ARC K-10 and JPL ATHLETE rovers. We report on lessons learned from the June 2008 field test in which RAPID was used to monitor and control all of these assets. We conclude by discussing some future directions to extend the RAPID architecture to add further support for NASA's lunar exploration program.
    Keywords: Man/System Technology and Life Support
    Type: IEEE Aerospace Conference; Mar 07, 2009 - Mar 14, 2009; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2008-029 , Space Technology and Application International Forum (STAIF); Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of the bed media increased with decrease in initial compaction of the bed media. This effect could be attributed to the greater tendency for inter-particle sliding/rub bing due to smaller internal friction angles, as seen from the shear tests, at lesser initial compacted levels. Upon unloading, it was obse rved that there was no change in displacement (especially rebounding) in the bed media. This effect could be attributed to the fact that th e porous activated alumina particles fracture/break upon increase in applied load (during loading phase) and occupy void spaces in between the material grains; thereby leading to settling of the media. The lo ad-displacement curve becomes more linear with increase in initial compaction of the bed media. It is concluded that compaction considerabl y affects the load-displacement behavior of the bed media. A series of tests were also conducted on the packed bed media to determine the f orce required to mobilize the friction between the bed media and the housing cylinder. The results from these tests showed the existence of significant friction between the bed media and the encasing stainles s steel cylinder. Further, it was found that friction effects were more pronounced for media with higher initial compaction. Internal frict ion of the granular media was measured using direct shear apparatus. It was observed that the internal friction increased with increase in initial compaction of the bed media. In this study, a computational m odel (CM) is also developed using finite element software ANSYS to verify experimental results obtained for the distribution of the axial n ormal stress and axial displacement along the length of the full-scal e activated alumina bed media. In the computational model, the granular material is considered to have appropriate failure and frictional c ontact exists between the wall and the granular media. It is observed that the model predicts results closely with the experimental method. The compational results show that the axial normal stress distribution along the length of the activated alumina media decreases non-linea rly from the loading end and is negligible beyond a certain depth. Th is can be attributed to the existence of friction between the walls and the media and that the friction takes up most of the applied load.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2005-018 , NASA Workshop on Granular Materials in Lunar and Martian Exploration; Feb 02, 2005 - Feb 03, 2005; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: PISCES, the Pacific International Space Center for Exploration Systems. This paper describes the PISCES development plans, particularly in the areas of In-Situ Resource Utilization, Robotics and Education and Outreach.
    Keywords: Man/System Technology and Life Support
    Type: Earth and Science Conference 2008; Mar 03, 2008; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: As part of an In-Situ Resource Utilization infrastructure to sustain long term-human presence on the lunar surface, the production of oxygen and metals by electrolysis of lunar regolith has been the subject of major scrutiny. There is a reasonably large body of literature characterizing the candidate solvent electrolytes, including ionic liquids, molten salts, fluxed oxides, and pure molten regolith itself. In the light of this information and in consideration of available electrolytic technologies, the authors have determined that direct molten oxide electrolysis at temperatures of approx 1600 C is the most promising avenue for further development. Results from ongoing studies as well as those of previous workers will be presented. Topics include materials selection and testing, electrode stability, gas capture and analysis, and cell operation during feeding and tapping.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2008-025 , Space Technology and Applications International Forum; Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: KSC-2006-056 , 2nd International Workshop on Agrospace: Territory and Research; May 25, 2006 - May 26, 2006; Sperlonga; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: KSC-2009-069
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-12
    Description: Aerogel composites that are both nonflammable and hydrophobic have been developed for use as lightweight thermal- insulation materials for cryogenic systems. Aerogels are well known in the industry for their effectiveness as thermal insulators under cryogenic conditions, but the treatments used heretofore to render them hydrophobic also make them flammable. Nonflammability would make it safer to use aerogel insulation, especially in oxygen-rich environments and on cryogenic systems that contain liquid oxygen. A composite of this type is a silica aerogel reinforced with fibers. In comparison with unreinforced aerogels, the aerogel composite is about ten times as stiff and strong, better able to withstand handling, and more amenable to machining to required shapes. The composite can be made hydrophobic and nonflammable by appropriate design of a sol-gel process used to synthesize the aerogel component. In addition to very low thermal conductivity needed for insulation, aerogel composites of this type have been found to exhibit high resistance to moisture and nonflammability in oxygen-rich atmospheres: Samples floating on water for months gained no weight and showed no signs of deterioration. Samples were found to be nonflammable, even in pure oxygen at atmospheric pressure [14.7 psia (0.10 MPa)]
    Keywords: Man/System Technology and Life Support
    Type: MSC-23265 , NASA Tech Briefs, September 2005; 10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-12
    Description: Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.
    Keywords: Man/System Technology and Life Support
    Type: KSC-12436 , NASA Tech Briefs, September 2005; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A prototype of an electroporation system for sterilizing wastewater or drinking water has been developed. In electroporation, applied electric fields cause transient and/or permanent changes in the porosities of living cells. Electroporation at lower field strengths can be exploited to increase the efficiency of chemical disinfection (as in chlorination). Electroporation at higher field strengths is capable of inactivating and even killing bacteria and other pathogens, without use of chemicals. Hence, electroporation is at least a partial alternative to chlorination. The transient changes that occur in micro-organisms at lower electric-field strengths include significantly increased uptake of ions and molecules. Such increased uptake makes it possible to achieve disinfection at lower doses of chemicals (e.g., chlorine or ozone) than would otherwise be needed. Lower doses translate to lower costs and reduced concentrations of such carcinogenic chemical byproducts as trichloromethane. Higher electric fields cause cell membranes to lose semipermeability and thereby become unable to function as selective osmotic barriers between the cells and the environment. This loss of function is the cause of the cell death at higher electric-field intensities. Experimental evidence does not indicate cell lysis but, rather, combined leaking of cell proteins out of the cells as well as invasion of foreign chemical compounds into the cells. The concept of electroporation is not new: it has been applied in molecular biology and genetic engineering for decades. However, the laboratory-scale electroporators used heretofore have been built around small (400-microliter) cuvettes, partly because the smallness facilitates the generation of electric fields of sufficient magnitude to cause electroporation. Moreover, most laboratory- scale electroporators have been designed for testing static water. In contrast, the treatment cell in the present system is much larger and features a flow-through geometry, such that electric fields strong enough to effect 99.9- percent disinfection can be applied to water flowing in a pipe.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23377 , NASA Tech Briefs, October 2005; 25-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-12
    Description: yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user
    Keywords: Man/System Technology and Life Support
    Type: NPO-40761 , NASA Tech Briefs, September 2005; 17-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A rugged iris mechanism has been designed to satisfy several special requirements, including a wide aperture in the "open" position, full obscuration in the "closed" position, ability to function in a cryogenic or other harsh environment, and minimization of friction through minimization of the number of components. An important element of the low-friction aspect of the design is maximization of the flatness of, and provision of small gaps between, adjacent iris blades. The tolerances of the design can be very loose, accommodating thermal expansions and contractions associated with large temperature excursions. The design is generic in that it is adaptable to a wide range of aperture sizes and can be implemented in a variety of materials to suit the thermal, optical, and mechanical requirements of various applications. The mechanism (see figure) includes an inner flat ring, an outer flat ring, and an even number of iris blades. The iris blades shown in front in the figure are denoted as "upper," and the iris blades shown partly hidden behind the front ones are denoted as "lower." Each iris blade is attached to the inner ring by a pivot assembly and to the outer ring by a roller/slider assembly. The upper and lower rings are co-centered and are kept in sliding contact. The iris is opened or closed by turning the outer ring around the center while holding the inner ring stationary. The mechanism is enclosed in a housing (not shown in the figure) that comprises an upper and a lower housing shell. The housing provides part of the sliding support for the outer ring and keeps the two rings aligned as described above. The aforementioned pivot assemblies at the inner ring also serve as spacers for the housing. The lower housing shell contains part of the lower sliding surface and features for mounting the overall mechanism and housing assembly. The upper housing shell contains part of the upper sliding surface.
    Keywords: Man/System Technology and Life Support
    Type: GSC-14550 , NASA Tech Briefs, September 2005; 19-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23537 , NASA Tech Briefs, September 2005; 16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23425 , NASA Tech Briefs, August 2005; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: A portable electron-beam free-form fabrication (EB F3) system, now undergoing development, is intended to afford a capability for manufacturing metal parts in nearly net sizes and shapes. Although the development effort is oriented toward the eventual use of systems like this one to supply spare metal parts aboard spacecraft in flight, the basic system design could also be adapted to terrestrial applications in which there are requirements to supply spare parts on demand at locations remote from warehouses and conventional manufacturing facilities. Prior systems that have been considered for satisfying the same requirements (including prior free-form fabrication systems) are not easily portable because of their bulk and massive size. The mechanical properties of the components that such systems produce are often inferior to the mechanical properties of the corresponding original, conventionally fabricated components. In addition, the prior systems are not efficient in the utilization of energy and of feedstock. In contrast, the present developmental system is designed to be sufficiently compact and lightweight to be easily portable, to utilize both energy and material more efficiently, and to produce components that have mechanical properties approximating those of the corresponding original components. The developmental EB F3 system will include a vacuum chamber and associated vacuum pumps, an electron-beam gun and an associated power supply, a multiaxis positioning subsystem, a precise wire feeder, and an instrumentation system for monitoring and control. The electron-beam gun, positioning subsystem, and wire feeder will be located inside the vacuum chamber (see figure). The electron beam gun and the wire feeder will be mounted in fixed positions inside the domed upper portion of the vacuum chamber. The positioning subsystem and ports for the vacuum pumps will be located on a base that could be dropped down to provide full access to the interior of the chamber when not under vacuum. During operation, wire will be fed to a fixed location, entering the melted pool created by the electron beam. Heated by the electron beam, the wire will melt and fuse to either the substrate or with the previously deposited metal wire fused on top of the positioning table. Based on a computer aided design (CAD) model and controlled by a computer, the positioning subsystem
    Keywords: Man/System Technology and Life Support
    Type: MSC-23518 , NASA Tech Briefs, August 2005; 17-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: The variable-pressure washer (VPW) is a proposed device that is so named because (1) it would play the role similar to that played by an ordinary washer, except that (2) the clamping pressure applied by it would vary with either circumferential or radial position. In a typical contemplated application, the radially varying clamping pressure would be used to obtain more nearly uniform compression on a pair of concentric seals (e.g., an O-ring or a gasket) in an assembly that experiences larger deformations normal to the sealing surface for locations around the outer diameter of the attachment flange when compared to locations around the inner diameter. The VPW (see figure) would include two interlocking channel rings pushed axially away from each other by compression spring-like components located at two or more radial positions. Each spring would have a different stiffness based on the radial location. Overlapping splits in each interlocking channel ring would allow for the non-uniform deformation in the rings. Each spring would be held in place by retaining cups attached to the inner flat surfaces of the channel rings. A plunger attached to one channel ring on the central axis would be captured in a plunger housing attached to the other channel ring: The capture of the plunger would hold the VPW together. When the VPW was clamped between two flat surfaces, the clamping force would be distributed unevenly across the face of the washer in the radial direction. The different stiffnesses of the springs would be chosen, in conjunction with other design parameters, to obtain a specified radial variation of clamping pressure in the presence of a specified clamping force.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31323 , NASA Tech Briefs, July 2005; 18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: Three improvements have been devised for the cold-box process, which is a special molding process used to make sand/binder cores for casting hollow metal parts. These improvements are: The use of fiber-reinforced composite binder materials (in contradistinction to the non-fiber-reinforced binders used heretofore), The substitution of a directed-vortex core-blowing subprocess for a prior core-blowing process that involved a movable gassing plate, and The use of filters made from filtration-grade fabrics to prevent clogging of vents. For reasons that exceed the scope of this article, most foundries have adopted the cold-box process for making cores for casting metals. However, this process is not widely known outside the metal-casting industry; therefore, a description of pertinent aspects of the cold-box process is prerequisite to a meaningful description of the aforementioned improvements. In the cold-box process as practiced heretofore, sand is first mixed with a phenolic resin (considered to be part 1 of a three-part binder) and an isocyanate resin (part 2 of the binder). Then by use of compressed air, the mixture is blown into a core box, which is a mold for forming the core. Next, an amine gas (part 3 of the binder) that acts as a catalyst for polymerization of parts 1 and 2 is blown through the core box. Alternatively, a liquid amine that vaporizes during polymerization can be incorporated into the sand/resin mixture. Once polymerization is complete, the amine gas is purged from the core box by use of compressed air. The finished core is then removed from the core box.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31819/20/21 , NASA Tech Briefs, July 2005; 21-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on spools until needed. Long-shelf-life towpreg materials suitable for such use could include thermoplastic-coated carbon fibers and metal-coated SiC fibers. When a spare part was needed, the part could be fabricated by CLM under control by a CAD data file; thus, the part could be built automatically, at the scene, within hours or minutes.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22993 , NASA Tech Briefs, July 2005; 22-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact impedance between the pins and the load. The instrument includes a signal generator and voltage-measuring circuitry, and is connected to the load and the base as shown in Figure 2. The output of the signal generator (typically having amplitude of the order of a volt) is applied to the load via a 50-resistor, and the voltage between the load and the pins is measured. When the load and the pins are not in contact, the impedance between them is relatively high, causing the measured voltage to exceed a threshold value. When the load and the pins are in contact, the impedance between them falls to a much lower value, causing the voltage to fall below the threshold value. The voltage-measuring circuitry turns on a red light-emitting diode (LED) to indicate the lower-voltage/ contact condition. Whenever the contact has been broken and the non-contact/higher-voltage condition has lasted for more than 2 ms, the voltage-measuring circuitry indicates this condition by blinking a green LED.
    Keywords: Man/System Technology and Life Support
    Type: KSC-12702 , NASA Tech Briefs, July 2005; 7-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: Units of superconducting circuitry that exploit the concept of the single- Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom. An SCB is an artificial two-level quantum system that comprises a nanoscale superconducting electrode connected to a reservoir of Cooper-pair charges via a Josephson junction. The logical quantum states of the device, .0. and .1., are implemented physically as a pair of charge-number states that differ by 2e (where e is the charge of an electron). Typically, some 109 Cooper pairs are involved. Transitions between the logical states are accomplished by tunneling of Cooper pairs through the Josephson junction. Although the two-level system contains a macroscopic number of charges, in the superconducting regime, they behave collectively, as a Bose-Einstein condensate, making possible a coherent superposition of the two logical states. This possibility makes the SCB a candidate for the physical implementation of a qubit. A set of quantum logic operations and the gates that implement them is characterized as universal if, in principle, one can form combinations of the operations in the set to implement any desired quantum computation. To be able to design a practical quantum computer, one must first specify how to decompose any valid quantum computation into a sequence of elementary 1- and 2-qubit quantum gates that are universal and that can be realized in hardware that is feasible to fabricate. Traditionally, the set of universal gates has been taken to be the set of all 1-qubit quantum gates in conjunction with the controlled-NOT (CNOT) gate, which is a 2-qubit gate. Also, it has been known for some time that the SWAP gate, which implements square root of the simple 2-qubit exchange interaction, is as computationally universal as is the CNOT operation.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30213 , NASA Tech Briefs, July 2005; 12-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Three documents discuss a method of controlling the diameter of a laser beam projected from Earth to any altitude ranging from low orbit around the Earth to geosynchronous orbit. Such laser beams are under consideration as means of supplying power to orbiting spacecraft at levels of the order of tens of kilowatts apiece. Each such beam would be projected by use of a special purpose telescope having an aperture diameter of 15 m or more. Expanding the laser beam to such a large diameter at low altitude would prevent air breakdown and render the laser beam eyesafe. Typically, the telescope would include an adaptive-optics concave primary mirror and a convex secondary mirror. The laser beam transmitted out to the satellite would remain in the near field on the telescope side of the beam waist, so that the telescope focal point would remain effective in controlling the beam width. By use of positioning stages having submicron resolution and repeatability, the relative positions of the primary and secondary mirrors would be adjusted to change the nominal telescope object and image distances to obtain the desired beam diameter (typically about 6 m) at the altitude of the satellite. The limiting distance D(sub L) at which a constant beam diameter can be maintained is determined by the focal range of the telescope 4 lambda f(sup 2) where lambda is the wavelength and f the f/number of the primary mirror. The shorter the wavelength and the faster the mirror, the longer D(sub L) becomes.
    Keywords: Man/System Technology and Life Support
    Type: MFS-32039-1 , NASA Tech Briefs, July 2005; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
    Keywords: Man/System Technology and Life Support
    Type: NPO-30357 , NASA Tech Briefs, July 2005; 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17432-1 , NASA Tech Briefs, June 2005; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: A report presents a short discussion of one company's effort to develop composites of carbon nanotubes in epoxy and other polymer matrices. The focus of the discussion is on the desirability of chemically modifying carbon nanotubes to overcome their inherent chemical nonreactivity and thereby enable the formation of strong chemical bonds between nanotubes and epoxies (or other polymeric matrix materials or their monomeric precursors). The chemical modification is effected in a process in which discrete functional groups are covalently attached to the nanotube surfaces. The functionalization process was proposed by the company and demonstrated in practice for the first time during this development effort. The covalently attached functional groups are capable of reacting with the epoxy or other matrix resin to form covalent bonds. Furthermore, the company uses this process to chemically modify the nanotube surfaces, affording tunable adhesion to polymers and solubility in select solvents. Flat-sheet composites containing functionalized nanotubes demonstrate significantly improved mechanical, thermal, and electrical properties.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23428 , NASA Tech Briefs, June 2005; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17438 , NASA Tech Briefs, June 2005; 28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: Shapes different from the traditional ones have been proposed for face worm gears and for conical and cylindrical worms that mesh with them. The proposed shapes are based on the concept of generating a face worm gear surface by use of a tilted head cutter instead of by the traditional use of a hob. (As used here, head cutter is also meant to signify, alternatively, a head grinding tool.) The gear-surface-generation equipment would be similar to that used for generation of spiral bevel and hypoid gears. In comparison with the corresponding traditional hob, a tilted head cutter according to the proposal would be larger, could be fabricated with greater precision, and would enable the generation of gear surfaces with greater precision and greater productivity. A face worm gear would be generated (see figure) by use of a tilted head cutter, the blades or grinding surfaces of which would have straight-line profiles. The tilt of the head cutter would prevent interference with teeth adjacent to the groove being cut or ground. A worm to mesh with the face worm gear would be generated by use of a tilted head cutter mounted on the cradle of a generating machine. The blades or grinding surfaces of the head cutter would have a parabolic profile and would deviate from the straight-line profiles of the head cutter for the face worm gear. The shortest distance between the worm and the cradle would follow a parabolic function during the cycle of meshing in the generating process to provide a parabolic function of transmission errors to the gear drive. The small mismatch between the profiles of the face-worm-gear and worm head cutters would make it possible to localize the bearing contact in the worm gear drive. The parabolic function of transmission errors could absorb discontinuous linear functions of transmission errors caused by errors of alignment; this could afford a significant benefit, in that such errors are main sources of noise and vibration in gear drives. The main advantage of using tilted head cutters is that cutting speeds are independent of the shape-generation processes, making it possible to choose cutting speeds that are optimum with respect to requirements to minimize temperatures and deformations during fabrication and improve the quality of finished parts.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17596-1 , NASA Tech Briefs, June 2005; 19-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical conductivities of individual carbon nanotubes can be so high that the mat of carbon nanotubes could be made sparse enough to be adequately transparent while affording adequate lateral electrical conductivity of the mat as a whole. The thickness of the nanotube layer would be chosen so that the layer would contribute significant lateral electrical conductivity, yet would be as nearly transparent as possible to incident light. A typical thickness for satisfying these competing requirements is expected to lie between 50 and 100 nm. The optimum thickness must be calculated by comparing the lateral electrical conductivity, the distance between front metal stripes, and the amount of light lost by absorption in the nanotube layer.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17562/3-1 , NASA Tech Briefs, June 2005; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: Two short reports discuss modifications of a small, lightweight combustion chamber that comprises a carbon/carbon composite outer shell and an iridium/ rhenium inner liner. The first report discusses chamber design modifications made as results of hot-fire tests and post-test characterization. The Books & Reports 32 NASA Tech Briefs, June 2005 modifications were intended to serve a variety of purposes, including improving fabrication, reducing thermal-expansion mismatch stresses, increasing strength-to-weight ratios of some components, and improving cooling of some components. The second report discusses (1) the origin of stress in the mismatch between the thermal expansions of the Ir/Re liner and a niobium sleeve and flange attached to the carbon/ carbon shell and (2) a modification intended to relieve the stress. The modification involves the redesign of an inlet connection to incorporate a compressible seal between the Ir/Re liner and the Nb flange. A nickel alloy was selected as the seal material on the basis of its thermal-expansion properties and its ability to withstand the anticipated stresses, including the greatest stresses caused by the high temperatures to be used in brazing during fabrication.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22981/82 , NASA Tech Briefs, June 2005; 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: The Fastener Starter is a creative solution to prevent the loss of small fasteners during their installation. This is the only currently available tool that can firmly grip and hold a single screw, bolt, nut, washer, spacer, or any combination of these parts. Other commercially available fastener starters are unable to accommodate a variety of parts simultaneously. The Fastener Starter is a more capable and easier tool to use than prior tools. Its compact size allows it to be used effectively in cramped, difficult-to-see locations. Its design also allows it to be used with or without handles and extenders in other difficult-to-reach locations. It provides better protection against cross threading and loss of fasteners and associated parts. The Fastener Starter is non-magnetic and does not off-gas, thus meeting flight hardware requirements. The Fastener Starter incorporates a combination of features of several commercially available tools, providing an improved means of installing small fasteners. The Fastener Starter includes a custom molded insert that can be removed easily and replaced with a conventional tool bit (e.g., a screwdriver or hex-driver bit). When used with the insert, the Fastener Starter prevents cross threading and damage to internal threaded holes. This is achieved by allowing the fastener to slip within the tool insert when used without a conventional tool bit. Alternatively, without the insert and with a tool bit, the Fastener Starter can torque a fastener. The Fastener Starter has a square recess hole that accepts a conventional square drive handle or extension to accommodate a variety of applications by providing flexibility in handle style and length.
    Keywords: Man/System Technology and Life Support
    Type: KSC-12224 , NASA Tech Briefs, May 2005; 5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: A method of applying open-operating-system standard interfaces to the NASA User Interface Language (UIL) has been devised. UIL is a computing language that can be used in monitoring and controlling automated processes: for example, the Timeliner computer program, written in UIL, is a general-purpose software system for monitoring and controlling sequences of automated tasks in a target system. In providing the major elements of connectivity between UIL and the target system, the present method offers advantages over the prior method. Most notably, unlike in the prior method, the software description of the target system can be made independent of the applicable compiler software and need not be linked to the applicable executable compiler image. Also unlike in the prior method, it is not necessary to recompile the source code and relink the source code to a new executable compiler image. Abstraction of the description of the target system to a data file can be defined easily, with intuitive syntax, and knowledge of the source-code language is not needed for the definition.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22971 , NASA Tech Briefs, May 2005; 30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...