ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2,703)
  • Lunar and Planetary Science and Exploration  (1,839)
  • Spacecraft Design, Testing and Performance  (864)
  • 2005-2009  (2,703)
  • 1
    Publication Date: 2013-04-10
    Description: This presentation reviews the International Lunar Network (ILN) mission, a cooperative effort designed to coordinate individual lunar landers in a geophysical network on the lunar surface. The presentation also includes information on the geophysical network, mission operations, and recent accomplishments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0817 , NLSI Lunar Science Forum; 21-23 Jul. 2009; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The distribution and enantiomeric composition of the 5-carbon (C(sub 5)) amino acids found in Cl-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/Nacetyl- l-cysteine derivatization. A large L-enantiomeric excess (ee) of the a-methyl amino acid isovaline was found in the CM meteorite Murchison (L(sub ee) = 18.5 +/- 2.6%) and the Cl meteorite Orguell (L(sub ee) = 15.2 +/- 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any Cl meteorite. The L-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C(sub 5) amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no L-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for L-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other alpha-dialkyl amino acids found in altered Ct and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the National Academy of Sciences of the United States of America (PNAS); Volume 106; No. 14; 5487-5492
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: We present the mass X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find 2-3 times the scatter around the best fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at radii 500 than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results also argue for a closer study of the systematic errors due to instrumental calibration and modeling method variations between analyses. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: Titan displays seasonal changes in the distribution of gas and hazes in its atmosphere, in the character of its methane clouds, and in its temperatures and winds. While Cassini has observed some of these cha rges in detail, some are observable from Earth, and the period of mos t rapid change may be just about to begin in the years after equinox,
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete. The few suitable discrete clouds that have been found for tracking indicate smaller velocities than aloft, consistent: with the Huygens measurements, Along the descent trajectory, the Huygens measurements indicate eastward zonal winds down to 7 km, where they shift westward, and then eastward again below 1 km dawn to the surface. The low-latitude dune fields seen in Cassini RADAR images have been interpreted as longitudinal dunes occurring in a mean eastward zonal wind. This is not like Earth, where the low-latitude winds are westward above the surface. Because the net zonal-mean time-averaged torque exerted by the surface on the atmosphere should vanish, there must be westward flow over part of the surface; the question is where and when. The meridional contrast in tropospheric temperatures deduced from radio occultations at low, mid, and high latitudes. is small, approximately 5 K at the tropopause and approximately 3 K at the surface. This implies efficient heat transport, probably by axisymmetric meridional circulations. The effect of the methane "hydrological" cycle on the atmospheric circulation is not well constrained by existing measurements, Understanding the mature of the surface-atmosphere coupling will be critical to elucidating the atmospheric transports of momentum, heat, and volatiles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Titan from Cassini-Huygens
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: The Moon is our closest planetary neighbor and the only extraterrestrial body to which humans have traveled, yet many questions about its origin and early history remain unanswered. Four papers published in this issue by scientific teams of the Japanese SELENE (Kaguya) mission offer a new global view of the Moon that helps to elucidate how the Moon evolved to its present state. The Moon is lopsided: Its visible nearside (tidally locked to face the Earth) is covered with smooth, dark volcanic mare, whereas the farside mainly consists of more heavily cratered, bright highland material. The differences in crustal thickness and density, apparent surface age, composition, and volcanic activity between the two sides are variously ascribed to external causes (such as a giant impact) or to internal causes (such as core formation, mantle convection, and crustal differentiation). The key to resolving these questions will be better data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science; Volume 323; No. 5916; 885-887
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: The combined use of altimetry, Earth-based Doppler and Earth-based range measurements in the lunar reconnaissance orbiter (LRO) mission (Chin et al. in Space Sci Rev 129:391-419, 2007) has been examined in a simulation study. It is found that in the initial phases of the mission orbit and altimeter geolocation accuracies should be better than 10m in the radial component and 60m overall. It is demonstrated that LRO's precise 1-way laser range measurement from Earth-based stations (Smith et al. in Proceedings of the 15th International Laser Ranging Workshop, Canberra, Australia, October 15-20, 2006) will be useful for gravity recovery. The advantages of multiple laser beams are demonstrated for altimeter calibration, orbit determination and gravity recovery in general planetary settings as well as for LRO.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geodesy; Volume 83; No. 8; 709-721
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-08-10
    Description: Tracking of the Mars Global Surveyor spacecraft has been used to measure changes in the long-wavelength gravity field of Mars and to estimate the seasonal mass of carbon dioxide that is deposited in the polar regions each fall and winter and sublimed back into the atmosphere every spring and summer. Observations spanning 4 Mars years have been analyzed. A clear and well-defined seasonal signal, composed of annual and semiannual periods, is seen in the lowest odd degree 3 coefficient but with less confidence in the lowest even degree 2, which is expected to be smaller and is also much more difficult to observe. Direct estimation of the seasonal mass exchange employing a simple, seasonally varying model of the size and height of each cap provides values that indicate some systematic departures from the deposition predicted by a general circulation model. Estimates are also obtained for the precession and nutation of the pole of rotation of Mars, the degree 2 tidal Love number, k2, and the mass of Phobos, the larger of Mars' two natural satellites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: Mars may possess a global sub-surface groundwater table as an integral part of its current hydrological system, However, the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the 'Mars Express (MEx) spacecraft has yet to make a definitive detection of such a body of liquid water. In this work, we quantify. the conditions that would allow a detection of a deep aquifer and demonstrate that the lack of radar detection doses not uniquely role out the presence of such a body. Specifically, if the overlying crustal material has a conductivity above approximately 10(exp -5) S/m (equivalent to a loss tangent of 0.008), a radar echo frown an aquifer could be sufficiently attenuated by the intetvening medium to prevent its detection by MARSIS. As such, the lack of direct detection by MARSIS -- a "null result" does not rule out the possibility of the water table's existence.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysical Research Letters; Volume 36; L10203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330 ) and December 2008 (MY 29, Ls=183). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at approximately 5:00 PM local time than in the TES retrievals at approximately 2:00 PM, suggestive of possible local time variation of clouds.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 202; Iss. 2; 444-452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: The Laser Interferometer Space Antenna (LISA) mission. a space based gravitational wave detector. uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that the three spacecraft and their associated operations form one distributed science instrument. unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LISA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." Here we describe some of the unique features of the LISA spacecraft design that help create the quiet environment necessary for gravitational wave observations.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: Tectonic patterns on Europa are influenced by tidal stress. An important well-organized component is associated with the orbital eccentricity, which produces a diurnally varying stress as Jupiter's apparent position in Europa's sky oscillates in longitude. Cycloidal lineaments seem to have formed as cracks propagated in this diurnally varying stress field. Maps of theoretical cycloid patterns capture many of the characteristics of the observed distribution on Europa. However, a few details of the observed cycloids distribution have not reproduced by previous models. Recently, it has been shown that Europa has a finite forced obliquity, so Jupiter's apparent positon in Europa's sky will also oscillate in latitude. We explore this new type of diurnal effect on cycloid formation. We find that stress from obliquity may be the key to explaining several characteristics of observed cycloids such as the shape of equator-crossing cycloids and the shift in the crack patterns in the Argadnel Regio region. All of those improvements of the fit between observaiton and theory seem to require Jupiter crossing Europa's equatorial plane 45 deg. to 180 deg after perijove passage. Suggestive of complex orbital dynamics that lock the direction of Europe's pericenter with the direction of the ascending node at the time these cracks were formed.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-27
    Description: Completed thermal-mechanical and mechanical load testing: a) 6 re-entry heating tests (3 with loading to 50% DLL), 3 hypersonic cruise tests with loading to 50% DLL and 4 high-temperature modal survey tests. b) 9 tests to 100% DLL. High-temperature modal survey results were inconclusive due to exceeding capability of some accelerometers. Overall good correlation between analysis and measured results for windward and leeward surface temperatures. Generally poor correlation between analysis and measured results for spindle area temperatures. Excellent test-to-test repeatability in strain and deflection data for 100% DLL testing. In-situ thermography images taken before and after thermal testing showed only minor changes in initial defects. Final detailed thermography tests scheduled for completion in Oct 09. In process of completing test documentation and test data analysis. Final reports complete by Dec 09. All analysis, test data, test plans, reports, photos, etc. will be made available to the technical community via the CMC Wiki.
    Keywords: Spacecraft Design, Testing and Performance
    Type: DFRC-1069 , 2009 Fundamental Aeronautics Program Annual Meeting; 29 Sep. 1 Oct. 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: The outermost layers of the Martian atmosphere are thought to be scientifically unique due to the large influences exerted by the highly dynamic lower atmosphere and the direct input of the solar wind from above. The nature of the solar wind interaction with the upper atmosphere is of particular interest because Mars lacks a global magnetic field, but is well shielded over some regions by strong crustal magnetic fields. Under such circumstances, the direct impact of solar wind plasma may have resulted in enhanced loss of volatiles over the ages including the components of water. The history of upper atmosphere and solar wind interaction measurements at Mars will be reviewed, recent results from the Mars Global Surveyor and Mars Express summarized, and prospects for new scientific advances enabled by the measurements that will be made by planned orbiter and penetrator missions. Special attention will be given to planetary magnetic field measurements, the measurement of ionospheric currents driven by the solar wind, and the role of space weather modeling and forecasting in the future of Mars exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-19
    Description: Presolar grains were identified in meteorite residues 20 years ago based on their exotic isotopic compositions. Their study has provide new insights into stellar evolution and the first view of the original building blocks of the solar system. Organic matter in meteorites and IDPs is highly enriched in D/H and N-15/N-14 at micrometer scales, possibly due to presolar organic grains. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material. Identifying the carriers of these anomalies and elucidating their physical and chemical properties may give new views of interstellar chemistry and better understanding of the original components of the protosolar disk. However, identifying the carriers has been hampered by their small size and the inability to chemically isolate them. Thanks to immediate careful collection of Tagish Lake meteorite specimen, as well as major advances in nano-scale analytical techniques and advanced sample preparation, we were able to show that in the Tagish Lake meteorite, the principle carriers of these isotopic anomalies are sub-micrometer, hollow organic globules. The organic globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk. Organic globules with similar physical, chemical, and isotopic properties are also recently found from Bells CM2 carbonaceous chondrite, in IDPs and in the comet Wild-2 samples returned by Stardust. These results support the view that microscopic organic grains were widespread constituents of the protoplanetary disk. Their exotic isotopic compositions trace their origins to the outermost portions of the protosolar disk or a presolar cold molecular cloud.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18214 , AGU 2009 Joint Assembly, Meeting of the Americas; May 24, 2009 - May 27, 2009; Toronto; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-19
    Description: Minimizing mass and volume is critically important for space hardware. Microchannel technology can be used to decrease both of these parameters for heat exchangers. Working in concert with NASA, Pacific Northwest National Laboratories (PNNL) has developed a microchannel liquid/liquid heat exchanger that has resulted in significant mass and volume savings. The microchannel heat exchanger delivers these improvements without sacrificing thermal and pressure drop performance. A conventional heat exchanger has been tested and the performance of it recorded to compare it to the microchannel heat exchanger that PNNL has fabricated. The microchannel heat exchanger was designed to meet all of the requirements of the baseline heat exchanger, while reducing the heat exchanger mass and volume. The baseline heat exchanger was designed to have an transfer approximately 3.1 kW for a specific set of inlet conditions. The baseline heat exchanger mass was 2.7 kg while the microchannel mass was only 2.0 kg. More impressive, however, was the volumetric savings associated with the microchannel heat exchanger. The microchannel heat exchanger was an order of magnitude smaller than the baseline heat exchanger (2180cm3 vs. 311 cm3). This paper will describe the test apparatus designed to complete performance tests for both heat exchangers. Also described in this paper will be the performance specifications for the microchannel heat exchanger and how they compare to the baseline heat exchanger.
    Keywords: Spacecraft Design, Testing and Performance
    Type: International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-19
    Description: NASA's Constellation Program has been developed to successfully return humans to the Lunar surface prior to 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The Altair project has employed a rather unique development approach as compared with previous manned spacecraft programs. Altair started the design process by developing a single-string (no fault tolerance), minimum functionality design. This first design and analysis cycle resulted in the baseline design for the entire process. From this point of departure, Altair continued the development process by adding vehicle functionality for the purposes of minimizing the risk of Loss Of Crew (LOC) and Loss Of Mission (LOM). Through the subsequent design and analysis cycles, the project office compared the added mass associated with the reduction of LOC/LOM and selected the most mass efficient design solutions. The current paper will summarize the Altair mission profile, the operational phases, and the LOC/LOM decisions that were made during the various design cycles. The evolution of the thermal control system design through Lunar Design and Analysis Cycle 3 (LDAC-3) will also be described in this paper.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-19167 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The LISA Technology Package (LTP) is the payload of the European Space Agency's LISA Pathfinder mission. LISA Pathfinder was instigated to test, in a flight environment, the critical technologies required by LISA; namely, the inertial sensing subsystem and associated control laws and micro-Newton thrusters required to place a macroscopic test mass in pure free-fall. The UP is in the late stages of development -- all subsystems are currently either in the final stages of manufacture or in test. Available flight units are being integrated into the real-time testbeds for system verification tests. This poster will describe the UP and its subsystems, give the current status of the hardware and test campaign, and outline the future milestones leading to the UP delivery.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0711 , Scientific Organizing Committee; Sep 14, 2009 - Sep 18, 2009; Venice; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-19
    Description: The Lunar Surface System Habitat Demonstration Unit (HDU) will require the project team to integrate a variety of contributions from NASA centers and potential outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture. To accomplish the development of the HDU from conception in June 2009 to rollout for operations in July 2010, the HDU team is using several strategies to mitigate risks and bring the separate efforts together. First, a set of design standards is being developed to define the interfaces between the various systems of HDU and to the payloads, such as the Geology Lab, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU. A coordinated effort to establish simplified Computer Aided Design standards and the utilization of a modeling and simulation systems will aid in design and integration concept development. Finally, decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19096 , Earth and Space 2010; Mar 14, 2010 - Mar 17, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: One of the goals of In-Situ Resource Utilization (ISRU) on the moon is to produce oxygen from the lunar regolith which is present in the form of Ilmenite (FeTi03) and other compounds. A reliable and attainable method of extracting some of the oxygen from the lunar regolith is to use the hydrogen reduction process in a hot reactor to create water vapor which is then condensed and electrolyzed to obtain oxygen for use as a consumable. One challenge for a production system is to reliably acquire the regolith with an excavator hauler mobility platform and then introduce it into the reactor inlet tube which is raised from the surface and above the reactor itself. After the reaction, the hot regolith (-1000 C) must be expelled from the reactor for disposal by the excavator hauler mobility system. In addition, the reactor regolith inlet and outlet tubes must be sealed by valves during the reaction in order to allow collection of the water vapor by the chemical processing sub-system. These valves must be able to handle abrasive regolith passing through them as well as the heat conduction from the hot reactor. In 2008, NASA has designed and field tested a hydrogen reduction system called ROxygen in order to demonstrate the feasibility of extracting oxygen from lunar regolith. The field test was performed with volcanic ash known as Tephra on Mauna Kea volcano on the Big Island of Hawai'i. The tephra has similar properties to lunar regolith, so that it is regarded as a good simulant for the hydrogen reduction process. This paper will discuss the design, fabrication, operation, test results and lessons learned with the ROxygen regolith feed system as tested on Mauna Kea in November 2008.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-006 , 2nd Symposium On Space Resource Utilization at 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-18256 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Integrated testing (such as Multi-Element Integrated Test (MEIT)) is critical to reducing risks and minimizing problems encountered during assembly, activation, and on-orbit operation of large, complex manned spacecraft. Provides the best implementation of "Test Like You Fly:. Planning for integrated testing needs to begin at the earliest stages of Program definition. Program leadership needs to fully understand and buy in to what integrated testing is and why it needs to be performed. As Program evolves and design and schedules mature, continually look for suitable opportunities to perform testing where enough components are together in one place at one time. The benefits to be gained are well worth the costs.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2009-196R , Aerospace Testing Seminar; Oct 13, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: One of the primary objectives of NASA's Vision for Space Exploration is the creation of a permanently manned lunar outpost. Facing the challenge of establishing a human presence on the moon will require new innovations and technologies that will be critical to expanding this exploration to Mars and beyond. However, accomplishing this task presents an unprecedented set of obstacles, one of the more significant of which is the development of new strategies for ground test and verification. Present concepts for the Lunar Surface System (LSS) architecture call for the construction of a series of independent yet tightly coupled modules and elements to be launched and assembled in incremental stages. Many of these will be fabricated at distributed locations and delivered shortly before launch, precluding any opportunity for testing in an actual integrated configuration. Furthermore, these components must operate flawlessly once delivered to the lunar surface since there is no possibility for returning a malfunctioning module to Earth for repair or modification. Although undergoing continual refinement, this paper will present the current state of the plans and models that have been devised for meeting the challenge of ground based testing for Constellation Program LSS as well as the rationale behind their selection.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-196 , Aerospace Testing Seminar; Oct 13, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: A lightweight bulldozer blade prototype has been designed and built to be used as an excavation implement in conjunction with the NASA Chariot lunar mobility platform prototype. The combined system was then used in a variety of field tests in order to characterize structural loads, excavation performance and learn about the operational behavior of lunar excavation in geotechnical lunar simulants. The purpose of this effort was to evaluate the feasibility of lunar excavation for site preparation at a planned NASA lunar outpost. Once the feasibility has been determined then the technology will become available as a candidate element in the NASA Lunar Surface Systems Architecture. In addition to NASA experimental testing of the LANCE blade, NASA engineers completed analytical work on the expected draft forces using classical soil mechanics methods. The Colorado School of Mines (CSM) team utilized finite element analysis (FEA) to study the interaction between the cutting edge of the LANCE blade and the surface of soil. FEA was also used to examine various load cases and their effect on the lightweight structure of the LANCE blade. Overall it has been determined that a lunar bulldozer blade is a viable technology for lunar outpost site preparation, but further work is required to characterize the behavior in 1/6th G and actual lunar regolith in a vacuum lunar environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-226 , AIAA 2009 Space Conference and Exposition; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-032 , 11th International Conference on Electrostatics 2009; May 26, 2009 - May 29, 2009; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-282 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-133 , International Mars Society Convention; Jul 30, 2009 - Aug 02, 2009; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory (MSL) is the next step in NASA's Mars Exploration Program, currently scheduled for 2011. The spacecraft's descent into the Martian atmosphere will be slowed from Mach 2 to subsonic speeds via a large parachute system with final landing under propulsive control. A Disk-Band-Gap (DBG) parachute will be used on MSL similar to the designs that have been used on previous missions, however; the DBG parachute used by MSL will be larger (21.5 m) than in any of the previous missions due to the weight of the payload and landing site requirements. The MSL parachute will also deploy at higher Mach number (M 2) than previous parachutes, which can lead to instabilities in canopy performance. Both the increased size of the DBG above previous demonstrated configurations and deployment at higher Mach numbers add uncertainty to the deployment, structural integrity and performance of the parachute. In order to verify the performance of the DBG on MSL, experimental testing, including acquisition of Stereo Particle Imaging Velocimetry (PIV) measurements were required for validating CFD predictions of the parachute performance. A rigid model of the DBG parachute was tested in the 10x10 foot wind tunnel at GRC. Prior to the MSL tests, a PIV system had never been used in the 10x10 wind tunnel. In this paper we discuss some of the technical challenges overcome in implementing a Stereo PIV system with a 750x400 mm field-of-view in the 10x10 wind tunnel facility and results from the MSL hardshell canopy tests.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper 2007- 0070 , E-17866 , AIAA 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: Observations of the equatorial lunar sodium emission are examined to quantify the effect of precipitating ions on source rates for the Moon's exospheric volatile species. Using a model of exospheric sodium transport under lunar gravity forces, the measured emission intensity is normalized to a constant lunar phase angle to minimize the effect of different viewing geometries. Daily averages of the solar Lyman alpha flux and ion flux are used as the input variables for photon-stimulated desorption (PSD) and ion sputtering, respectively, while impact vaporization due to the micrometeoritic influx is assumed constant. Additionally, a proxy term proportional to both the Lyman alpha and to the ion flux is introduced to assess the importance of ion-enhanced diffusion and/or chemical sputtering. The combination of particle transport and constrained regression models demonstrates that, assuming sputtering yields that are typical of protons incident on lunar soils, the primary effect of ion impact on the surface of the Moon is not direct sputtering but rather an enhancement of the PSD efficiency. It is inferred that the ion-induced effects must double the PSD efficiency for flux typical of the solar wind at 1 AU. The enhancement in relative efficiency of PSD due to the bombardment of the lunar surface by the plasma sheet ions during passages through the Earth's magnetotail is shown to be approximately two times higher than when it is due to solar wind ions. This leads to the conclusion that the priming of the surface is more efficiently carried out by the energetic plasma sheet ions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4597.2011 , Icarus (ISSN 0019-1035); 205; 2; 364-374
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: LEGNEW-OLDGSFC-GSFC-LN-1225
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL), the National Aeronautics and Space Administration (NASA), AGI, Orbital Sciences Corporation, Praxis Incorporated, and SolidWorks. Specifically, the 2009 Virginia Tech CanSat Team is funded by BAE Systems, Incorporated of Manassas, Virginia. The objective of the 2009 CanSat competition is to complete remote sensing missions by designing a small autonomous sounding rocket payload. The payload designed will follow and perform to a specific set of mission requirements for the 2009 competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, reviews, and launch.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2009-092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: The Surface Systems team is working to learn about lunar regolith and how we can use it as a source of air, water, and fuel for spacecrafts. However, excavation of this valuable regolith is difficult because the robot has to conform to many specifications (mass limit, efficiency level, etc.). NASA has therefore decided to include college students and companies in the search to create the best robot by making it into a competition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The Lunar Regolith Excavation Competition is a new competition that needs graphics, logos, rules, as well as an arena. Although this is the first year of the competition, the competition is modeled after an existing competition, the Centennial Lunar Excavator Challenge. This competition however is aimed at college students. This makes the challenge identifying key aspects of the original competition and modeling them to fit into an easier task, and creating exciting advertisement that helps encourage participation. By using a youth focus group, young insight, as well as guiding advice from experts in the field, hopefully an arena can be designed and built, rules can be molded and created to fit, and alluring graphics can be printed to bring about a successful first year of the Lunar Regolith Excavation Competition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-155
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: In 2004, President George W. Bush proposed a new set of goals for NASA which have since been formalized by Congress as the revised United States Space Policy. A major goal is to return humans to the moon by 2020. This prompted a world-wide discussion about what our goals in space ought to be. In 2006 NASA surveyed potential stakeholders asking the question, "Why the Moon?" Responses were received from over 1000 entities including business, industry, academia, and 13 other space agencies. This presentation reports the responses to that questionnaire, as well as current plans for how the return to the moon will be accomplished.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-17341
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.5252.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC.JA.4770.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2009-159
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Presentation on hypothetical "Icebreaker" proposed robotic mission, a follow-on to the 2007Phoenix Mars polar lander which replaces the sco op with a lightweight drill.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN1010
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-096 , KSC-2009-115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: NASA has undertaken the In-Situ Resource Utilization (lSRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The RESOLVE chemical processing system was mounted within the CMU rover "Scarab" and successfully demonstrated on Hawaii's Mauna Kea volcano in November 2008. This technology could be used on Mars as well. As described at the 2008 Mars Society Convention, the Lunar Water Resource Demonstration (LWRD) supports the objectives of the RESOLVE project by capturing and quantifying water and hydrogen released by regolith upon heating. Field test results for the quantification of water using LWRD showed that the volcanic ash (tephra) samples contained 0.15-0.41% water, in agreement with GC water measurements. Reduction of the RH in the surge tank to near zero during recirculation show that the water is captured by the water beds as desired. The water can be recovered by heating the Water Beds to 230 C or higher. Test results for the capture and quantification of pure hydrogen have shown that over 90% of the hydrogen can be captured and 98% of the absorbed hydrogen can be recovered upon heating the hydride to 400 C and desorbing the hydrogen several times into the evacuated surge tank. Thus, the essential requirement of capturing hydrogen and recovering it has been demonstrated. ,
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at aMars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-60s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000 C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will illustrate through a variety of evolved gas experiments implemented under SAM-like gas flow and temperature ramp conditions on terrestrial analog minerals on high fidelity Sam breadboards the type of chemical information we expect SAM to provide.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6071.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2009 American Geophysical Union(AGU) Fall Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the or igin of these compounds could not be firmly established. Here, we pre sent the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardu st-returned foil samples measured by gas chromatography-mass spectrom etry coupled with isotope ratio mass spectrometry. The Delta C-13 value for glycine of +29 +/- ? 6%: strongly suggests an extraterrestrial origin For glycine, while the Delta C-13 value for EACA of -25 +/-2 % indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Submitted to Meteorites and Planetary Science for publication.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 5 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. Dielectric property measurements of lunar soil simulant have been measured. Microwave absorption and attenuation in lunar soil simulant has been correlated with measured dielectric properties. Future work will be discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-2197 , Space, Propulsion and Energy Sciences International Forum; Feb 24, 2009 - Feb 26, 2009; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only approximately 1000 km above the surface. An overview of the MESSENGER mission and its January 14th and October 6th, 2008 close flybys of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER will be discussed with an emphasis on the magnetic field and charged particle measurements.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional ~30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-18012 , Shock Compression of Condensed Matter; Jun 28, 2009 - Jul 03, 2009; Tennessee; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: A relatively unknown terrestrial fluvial environment, the mesoscale megafan, provides analogs for various Martian landscapes, including the etched unit (etched unit, Unite E of Arvidson et al., 2003; ridge-forming unit R of Edgett, 2005) of the Sinus Meridiani region on Mars. A global survey of Earth shows that megafans are very large partial cones of dominantly fluvial sediment with radii on the order of hundreds of km, and very low slopes. Responsible fluvial processes are sufficiently different from those of classical arid alluvial fans and deltas that it is useful to class megafans as separate features. The megafan model calls into question two commonly held ideas. 1. Earth examples prove that topographic basins per se are unnecessary for the accumulation of large sedimentary bodies. 2. River channels are by no means restricted to valleys (Meridiani sediments are termed a "valley-ed volume" of Edgett). These perspectives reveal unexpected parallels with features at Meridiani-several channel-like features that are widespread, mostly as ridges inverted by eolian erosion; channel networks covering thousands of sq km, especially on intercrater plains; and regional relationships of sediment bodies situated immediately downstream of highland masses. These all suggest that fluvial explanations are at least part of the Meridiani story.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-17901
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with 〈100〉{010} slip. The deformation bands are unlike curved morphology of crystal-plastic microstructures in tectonically deformed terrestrial zircon, and geometrically similar to dislocation microstructures reported in experimentally shocked zircon. We interpret these crystal-plastic deformation microstructures to have resulted from a significant impact, either directly from impact shock, or during ductile flow directly following the impact. The deformation bands appear to continue undeflected through the non-indexed, radiation-damaged areas of the grain, which suggests that the orientation variation predates any significant mechanical weakening from radiation damage in the grain, and therefore occurred early in its history.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-17743 , 10th Australian Microbeam Analysis Society Meeting; Feb 11, 2009 - Feb 13, 2009; Adelaide; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: INTRODUCTION: NASA's plans for lunar surface exploration include pressurized suitport rovers that are quickly ingressed and egressed with minimal consumables losses. This capability enables crewmembers to perform multiple short extravehicular activities (EVAs) at different locations in a single day versus a single 8-hr EVA. Modeling work and empirical human and animal data indicate that intermittent recompressions between EVA suit pressure and cabin pressure reduce decompression stress. Savings in crew time and gas losses may also be achieved if the N2 purge is shortened to 2 minutes, achieving 80% O2 (vs. 8 minutes, 95% O2). METHODS: A validated Tissue Bubble Dynamics Model was used to predict decompression stress using 80% and 95% O2 breathing mixtures during 3 x 2-hr EVAs (4.3 PSIA) with 1hr recompressions back to 8.0 PSIA (32% O2) versus a single 8-hr EVA. 15 minutes was spent at 6.0 PSIA before depressurizations to 4.3 PSIA; initial EVA tasks could be performed during this time. Model validation was based on significant prediction (p〈0.001) and goodness of fit with 84 cases of DCS in 668 altitude exposures (McFadden s rho-squared=0.214). RESULTS: A 2.2% predicted increase in DCS risk due to the shortened purge is more than compensated for by a predicted 2.5% reduction in DCS risk due to intermittent recompression. 15 minutes at 80% O2, 6.0 PSIA prior to a 4.3 PSIA EVA prevents supersaturation in the brain and spinal cord (5-10 minute half-time compartments) and reduces tissue tensions in 40 min compartments, where most of the body s inert gas is located, to approximately the same levels (4.39 vs 4.00 PSIA) as achieved during a 40 min 95% O2 prebreathe at 10.2 PSIA. CONCLUSIONS: Intermittent recompressions between lunar EVAs may enable reductions in suit purge and prebreathe requirements, decompression stress, and/or suit operating pressures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-17863 , UHMS Annual Scientific Meeting; Jun 25, 2009 - Jun 27, 2009; Cabo San Lucas; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17570 , 5th European Conference on Space Debris; Mar 30, 2009 - Apr 02, 2009; Darmstadt; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: LISA Pathfinder (formerly known as SMART-2) is a European Space Agency (ESA) mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for spaceborne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder is currently in the integration and test phase of the development, and is due to be launched on a dedicated launch vehicle in late 2011, with first results on the performance of the system being available approx 6 months later. This poster will describe the mission in detail, give the current status of the spacecraft development, and highlight the future milestones in the integration and test campaign.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: The formation of cometary CS molecules from carbon disulfide, CS2 , was proposed about 20 years before the latter's detection in comet 122P/de Vico by Jackson et al. (2002). However, the origin of CS2 has received little attention from either experimentalists or theorists. As part of our on-going laboratory program to investigate cometary molecules we have examined chemical reactions that lead to CS2 in the solid state. Icy mixtures of known cometary molecules were proton irradiated near 10 K to doses of several eV per molecule. Mid-IR spectroscopy was used as an in situ probe to record both CS2 formation in the ices and the destruction of precursors. We find that the most likely route to cometary CS2 is through OCS by way of the S + CO reaction.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 11226010-ST 41st annual meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Association (AAS); Oct 04, 2009 - Oct 08, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: NASA's successful conduct of the Apollo Program greatly enhanced the prestige of the United States and remains broadly accepted as America's gift to all Mankind. NASA's accomplishments continue to amaze the world. With the Vision for Space Exploration (VSE) Americans once again tasked NASA to carry out a project that is expected to provide inspiration and economic stimulus to the United States and to the world. In preparation NASA has thoroughly examined space program precedents. There is, however, another precedent which has not been examined in this context but whose scope and environment in many ways parallel the VSE. This project was initiated by a team that had, ten years before, successfully completed an effort that, at a cost of $151 billion (2008 values), had pushed the envelope of technology, brought economic growth, established their country as the world leader in engineering, and been broadly accepted as their country s gift to Mankind. The new project was again inspired by popular desire to enhance national prestige and make yet another major contribution to Humanity. The new effort was predicted to require eight years and $156 billion (2008 values). However, after eight years and expenditures of 80% beyond the baseline, the project collapsed amid bankruptcy, political scandal, and criminal prosecution. This paper applies current aerospace project metrics, such as earned value analysis, to review the strategic decisions in this historic failure and describe its ultimate collapse. Key mistakes are identified, and lessons are drawn which may prove useful in guiding the VSE.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18687 , NASA Project Management Challenge; Feb 09, 2010 - Feb 10, 2010; Galveston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Telescope Science Institute (STSci): The Search for Life in the Universe; May 04, 2009 - May 07, 2009; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no observed drogue chute failures, Jeffreys Prior was used to calculate a reliability of R =.998. Based on these results, it is concluded that the LMP and drogue parachutes on the Shuttle SRB are suited to their mission and changes made over their life have improved the reliability of the parachute.
    Keywords: Spacecraft Design, Testing and Performance
    Type: MSFC-2223 , AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PCM) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19194 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the ISS configurations spanning ISS Stage 12A. The objective of this analysis is to validate and correlate analytical models used to verify the ISS critical interface dynamic loads and improve its fatigue life prediction. On-Orbit dynamic responses were measured during the ISS configurations throughout ISS Stage 12A by the two main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS) and the Structural Dynamic Measurement System (SDMS). These nominal on-orbit events include Russian vehicle docking and undockings. Also, the ISS photogrammetric system recorded the movements of the 2A and 4A solar arrays during a modified ISS maneuver. Modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shapes. Correlation and comparisons between the test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the ISS configurations under consideration.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Aging Aircraft Conference; May 04, 2009 - May 07, 2009; Missouri; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: The workshop revolved around three framing ideas or scenarios about the evolution of virtual environments: 1. Remote exploration: The ability to create high fidelity environments rendered from external data or models such that exploration, design and analysis that is truly interoperable with the physical world can take place within them. 2. We all get to go: The ability to engage anyone in being a part of or contributing to an experience (such as a space mission), no matter their training or location. It is the creation of a new paradigm for education, outreach, and the conduct of science in society that is truly participatory. 3. Become the data: A vision of a future where boundaries between the physical and the virtual have ceased to be meaningful. What would this future look like? Is this plausible? Is it desirable? Why and why not?
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/CP-2009-214598 , ARC-E-DAA-TN584 , Workshop Report on Virtual Worlds and Immersive Environments; May 15, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The ARTEMIS mission will be the first to navigate to and perform stationkeeping operations around the Earth-Moon L1 and L2 Lagrangian points. The NASA Goddard Space Flight Center (GSFC) has previous mission experience flying in the Sun-Earth L1 (SOHO, ACE, WIND, ISEE-3) and L2 regimes (WMAP) and have maintained these spacecraft in libration point orbits by performing regular orbit stationkeeping maneuvers. The ARTEMIS mission will build on these experiences, but stationkeeping in Earth-Moon libration orbits presents new challenges since the libration point orbit period is on the order of two weeks rather than six months. As a result, stationkeeping maneuvers to maintain the Lissajous orbit will need to be performed frequently, and the orbit determination solutions between maneuvers will need to be quite accurate. The ARTEMIS mission is a collaborative effort between NASA GSFC, the University of California at Berkeley (UCB), and the Jet Propulsion Laboratory (JPL). The ARTEMIS mission is part of the THEMIS extended mission. ARTEMIS comprises two of the five THEMIS spacecraft that will be maneuvered from near-Earth orbits into lunar libration orbits using a sequence of designed orbital maneuvers and Moon & Earth gravity assists. In July 2009, a series of orbit-raising maneuvers began the proper orbit phasing of the two spacecraft for the first lunar flybys. Over subsequent months, additional propulsive maneuvers and gravity assists will be performed to move each spacecraft though the Sun-Earth weak stability regions and eventually into Earth-Moon libration point orbits. We will present the overall orbit designs for the two ARTEMIS spacecraft and provide analysis results of the 3/4-body dynamics, and the sensitivities of the trajectory design to both maneuver errors and orbit determination errors. We will present results from the. initial orbit-raising maneuvers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LEGNEW-OLDGSFC-GSFC-LN-1099 , International Symposium on Space Flight Dynamics; Sep 28, 2009 - Oct 02, 2009; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: LEGNEW-OLDGSFC-GSFC-LN-1066 , The Citadel; Oct 08, 2009; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: We are developing the VAPoR (Volatile Analysis by Pyrolysis of Regolith) instrument towards studying soil composition, volatiles, and trapped noble gases in the polar regions of the Moon. VAPOR will ingest a soil sample and conduct analysis by pyrolysis and time-of-flight mass spectrometry (ToF-MS). Here, we describe miniaturization efforts within this development, including a carbon nanotube (CNT) field emission electron gun that is under consideration for use as the electron impact ionization source for the ToF-MS.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LEGNEW-OLDGSFC-GSFC-LN-1064 , Harsh Environment Mass Spectrometry (HEMS) Workshop 2009; Sep 21, 2009 - Sep 24, 2009; Santa Barbara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: Lightning has long been postulated as the agent of Chondru|e formation in the solar nebula, but it may have an additional role to play as well. Lightning bolts of almost any scale will both vaporize dust and liberate oxygen atoms that will then interact with both nebular gases as well as the refractory silicate vapor as it re-condenses. Such processes should result in the addition of the heavy oxygen isotopes to the growing silicate grains while the light oxygen-16 becomes part of the gas phase water. This process will proceed to some extent throughout the history of any turbulent nebula and will result in the gradual increase of O-16 in the gas phase and in a much larger relative increase in the O-17 and O-18 content of the nebular dust. Laboratory experiments have demonstrated the production of such "heavy oxygen enriched", non-mass-dependently-fractionated dust grains in a high voltage discharge in a hydrogen rich gas containing small quantities of silane, pentacarbonyl iron and oxygen.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Gordon Research Conferences; Jul 05, 2009 - Jul 10, 2009; South Hadley, MA; Yemen, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-27
    Description: Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0209 , AIAA Space 2009 Conference and Exposition; 14-17 Spe. 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-24
    Description: A prototype system for monitoring spacecraft operations and control, including an alert system, is highlighted.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-17963 , CCSDS Spring 2009 Technical Meeting; Apr 20, 2009 - Apr 25, 2009; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-12
    Description: Orbital measurements of neutrons by the Lunar Exploring Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter are being used to quantify the spatial distribution of near surface hydrogen (H). Inferred H concentration maps have low signal-to-noise (SN) and image restoration (IR) techniques are being studied to enhance results. A single-blind. two-phase study is described in which four teams of researchers independently developed image restoration techniques optimized for LEND data. Synthetic lunar epithermal neutron emission maps were derived from LEND simulations. These data were used as ground truth to determine the relative quantitative performance of the IR methods vs. a default denoising (smoothing) technique. We review and used factors influencing orbital remote sensing of neutrons emitted from the lunar surface to develop a database of synthetic "true" maps for performance evaluation. A prior independent training phase was implemented for each technique to assure methods were optimized before the blind trial. Method performance was determined using several regional root-mean-square error metrics specific to epithermal signals of interest. Results indicate unbiased IR methods realize only small signal gains in most of the tested metrics. This suggests other physically based modeling assumptions are required to produce appreciable signal gains in similar low SN IR applications.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4477.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-12
    Description: NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215821 , E-17083
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-12
    Description: The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-216270 , M-1272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-12
    Description: The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215948 , LF99-9595 , L-19789
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-12
    Description: An alternative has been developed to direct measurement for determining the density of the atmosphere of the Saturn moon Titan as a function of altitude. The basic idea is to deduce the density versus altitude from telemetric data indicative of the effects of aerodynamic torques on the attitude of the Cassini Saturn orbiter spacecraft as it flies past Titan at various altitudes. The Cassini onboard attitude-control software includes a component that can estimate three external per-axis torques exerted on the spacecraft. These estimates are available via telemetry.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NPO-46737 , NASA Tech Briefs, November 2009; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: A document describes the design of a lightweight (between 100 to 200 kg), light-tight shroud of about 3.9 meters in diameter that could be stowed into a very small volume, and be deployed to 12 meters. The shroud will consist of two concentric multi-layer blankets (MLIs) that are constructed in an accordion shape.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSC-15779-1 , NASA Tech Briefs, November 2009; 37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-12
    Description: A report discusses the development of a Mars surface, laboratory-based solar simulator to create solar cells that can function better on Mars. The Mars Optimized Solar cell Technology (MOST) required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and developing and testing commercial cells modified for the Mars surface spectrum.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NPO-46200 , NASA Tech Briefs, November 2009; 37-38
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-12
    Description: It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-19063
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-12
    Description: A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) was initiated to investigate both lubricated (Pennzane X2000 and Brayco 815Z) and unlubricated Si3N4, 440C SS, Rex 20, Cronidur X30 and X40 plates with Cerbec SN-101-C (Si3N4) and 440C balls. The hybrid wheel/bearing assembly will be used on the Linear Optical Delay Line (LODL) stage as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based systems. This measurement will provide the data to "infer" the existence of any plants, undetectable by other methods, orbiting these known stars.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/CR-2009-215682 , E-17053
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-12
    Description: The Dawn Ion Propulsion System is the ninth project in NASA s Discovery Program. The Dawn spacecraft is being developed to enable the scientific investigation of the two heaviest main-belt asteroids, Vesta and Ceres. Dawn is the first mission to orbit two extraterrestrial bodies, and the first to orbit a main-belt asteroid. The mission is enabled by the onboard Ion Propulsion System (IPS) to provide the post-launch delta-V. The three Ion Engines of the IPS are mounted on Thruster Gimbal Assembly (TGA), with only one engine operating at a time for this 10-year mission. The three TGAs weigh 14.6 kg.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/CR-2009-215681 , E-17052
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-12
    Description: This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215942 , LF99-8616 , L-19767
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: Small spacecraft have been increasing in popularity because of their low cost, short turnaround and relative efficiency. In the past, small spacecraft have been primarily used for technology demonstrations, but advances in technology have made the miniaturization of space science possible [1,2]. PharmaSat is a low cost, small three cube size spacecraft, with a biological experiment on board, built at NASA (National Aeronautics and Space Administration) Ames Research Center. The thermal design of small spacecraft presents challenges as their smaller surface areas translate into power and thermal constraints. The spacecraft is thermally designed to run colder in the Low Earth Orbit space environment, and heated to reach the temperatures required by the science payload. The limited power supply obtained from the solar panels on small surfaces creates a constraint in the power used to heat the payload to required temperatures. The pressurized payload is isolated with low thermally conductance paths from the large ambient temperature changes. The thermal design consists of different optical properties of section surfaces, Multi Layer Insulation (MLI), low thermal conductance materials, flexible heaters and thermal spreaders. The payload temperature is controlled with temperature sensors and flexible heaters. Finite Element Analysis (FEA) and testing were used to aid the thermal design of the spacecraft. Various tests were conducted to verify the thermal design. An infrared imager was used on the electronic boards to find large heat sources and eliminate any possible temperature runaways. The spacecraft was tested in a thermal vacuum chamber to optimize the thermal and power analysis and qualify the thermal design of the spacecraft for the mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN-252 , PK003
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: From May of 1973 to February of 1974, the National Aeronautics and Space Administration conducted a series of three manned missions to the Skylab space station, a voluminous vehicle largely descendant of Apollo hardware, and America s first space station. The crewmembers of these three manned missions spent record breaking durations of time in microgravity (28 days, 59 days and 84 days, respectively) and gave the U.S. space program its first experiences with long-duration space flight. The program overcame a number of obstacles (including a significant crippling of the Skylab vehicle) to conduct a lauded scientific program that encompassed life sciences, astronomy, solar physics, materials sciences and Earth observation. Skylab has more to offer than the results of its scientific efforts. The operations conducted by the Skylab crews and ground personnel represent a rich legacy of operational experience. As we plan for our return to the moon and the subsequent manned exploration of Mars, it is essential to utilize the experiences and insights of those involved in previous programs. Skylab and SMEAT (Skylab Medical Experiments Altitude Test) personnel have unique insight into operations being planned for the Constellation Program, such as umbilical extra-vehicular activity and water landing/recovery of long-duration crewmembers. Skylab was also well known for its habitability and extensive medical suite; topics which deserve further reflection as we prepare for lunar habitation and missions beyond Earth s immediate sphere of influence. The Skylab Medical Operations Summit was held in January 2008. Crewmembers and medical personnel from the Skylab missions and SMEAT were invited to participate in a two day summit with representatives from the Constellation Program medical operations community. The purpose of the summit was to discuss issues pertinent to future Constellation operations. The purpose of this document is to formally present the recommendations of the Skylab and SMEAT participants.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: An investigation of the aeroheating environment of the Project Orion Crew Exploration Vehicle was performed in the Arnold Engineering Development Center Hypervelocity Wind Tunnel No. 9 Mach 8 and Mach 10 nozzles and in the NASA Langley Research Center 20 - Inch Mach 6 Air Tunnel. Heating data were obtained using a thermocouple-instrumented approx.0.035-scale model (0.1778-m/7-inch diameter) of the flight vehicle. Runs were performed in the Tunnel 9 Mach 10 nozzle at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 20x10(exp 6)/ft, in the Tunnel 9 Mach 8 nozzle at free stream unit Reynolds numbers of 8 x 10(exp 6)/ft to 48x10(exp 6)/ft, and in the 20-Inch Mach 6 Air Tunnel at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 7x10(exp 6)/ft. In both facilities, enthalpy levels were low and the test gas (N2 in Tunnel 9 and air in the 20-Inch Mach 6) behaved as a perfect-gas. These test conditions produced laminar, transitional and turbulent data in the Tunnel 9 Mach 10 nozzle, transitional and turbulent data in the Tunnel 9 Mach 8 nozzle, and laminar and transitional data in the 20- Inch Mach 6 Air Tunnel. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the experimental data to help define the accuracy of computational method. In general, it was found that both laminar data and predictions, and turbulent data and predictions, agreed to within less than the estimated 12% experimental uncertainty estimate. Laminar heating distributions from all three data sets were shown to correlate well and demonstrated Reynolds numbers independence when expressed in terms of the Stanton number based on adiabatic wall-recovery enthalpy. Transition onset locations on the leeside centerline were determined from the data and correlated in terms of boundary-layer parameters. Finally turbulent heating augmentation ratios were determined for several body-point locations and correlated in terms of the boundary-layer momentum Reynolds number.
    Keywords: Spacecraft Design, Testing and Performance
    Type: LF99-6999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Since 1996, NASA has been developing a docking system that will simplify operations and reduce risks associated with mating spacecraft. This effort has focused on developing and testing an original, reconfigurable, active, closed-loop, force-feedback controlled docking system using modern technologies. The primary objective of this effort has been to design a docking interface that is tunable to the unique performance requirements for all types of mating operations (i.e. docking and berthing, autonomous and piloted rendezvous, and in-space assembly of vehicles, modules and structures). The docking system must also support the transfer of crew, cargo, power, fluid, and data. As a result of the past 10 years of docking system advancement, the Low Impact Docking System or LIDS was developed. The current LIDS design incorporates the lessons learned and development experiences from both previous and existing docking systems. LIDS feasibility was established through multiple iterations of prototype hardware development and testing. Benefits of LIDS include safe, low impact mating operations, more effective and flexible mission implementation with an anytime/anywhere mating capability, system level redundancy, and a more affordable and sustainable mission architecture with reduced mission and life cycle costs. In 1996 the LIDS project, then known as the Advanced Docking Berthing System (ADBS) project, launched a four year developmental period. At the end of the four years, the team had built a prototype of the soft-capture hardware and verified the control system that will be used to control the soft-capture system. In 2001, the LIDS team was tasked to work with the X- 38 Crew Return Vehicle (CRV) project and build its first Engineering Development Unit (EDU).
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17710
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-17778
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: Surface science operations on the Moon will require merging lessons from Apollo with new operation concepts that exploit the Constellation Lunar Architecture. Prototypes of lunar vehicles and robots are already under development and will change the way we conduct science operations compared to Apollo. To prepare for future surface operations on the Moon, NASA, along with several supporting agencies and institutions, conducted a high-fidelity lunar mission simulation with prototypes of the small pressurized rover (SPR) and unpressurized rover (UPR) (Fig. 1) at Black Point lava flow (Fig. 2), 40 km north of Flagstaff, Arizona from Oct. 19-31, 2008. This field test was primarily intended to evaluate and compare the surface mobility afforded by unpressurized and pressurized rovers, the latter critically depending on the innovative suit-port concept for efficient egress and ingress. The UPR vehicle transports two astronauts who remain in their EVA suits at all times, whereas the SPR concept enables astronauts to remain in a pressurized shirt-sleeve environment during long translations and while making contextual observations and enables rapid (less than or equal to 10 minutes) transfer to and from the surface via suit-ports. A team of field geologists provided realistic science scenarios for the simulations and served as crew members, field observers, and operators of a science backroom. Here, we present a description of the science team s operations and lessons learned.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-18020
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well underway, and integrated flight testing will begin in 2009. This white paper summarizes 3 years of Constellation Program progress and accomplishments, and it describes the foundation set for human lunar return in 2020.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-17840 , NASA/SP-2009
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: LEGNEW-OLDGSFC-GSFC-LN-1021 , Military and Aerospace Programmable Logic Devices (MAPLD) for 2009 Meeting; Aug 31, 2009 - Sep 03, 2009; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-13
    Description: Most Low Earth Orbit (LEO) debris lies in a limited number of inclination "bands" associated with launch latitudes, or with specific useful orbit inclinations (such as polar orbits). Such narrow inclination bands generally have a uniform spread over all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. This complicates concept of rendezvous and capture for debris removal. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a base can serve as a single space-based launch facility (a "mother ship") that can tend and then send tiny individual catcher devices for each debris object, as the facility drifts into the same RAAN as the higher object. This presentation will highlight characteristic system requirements of such an architecture, including structural and navigation requirements, power, mass and dV budgets for both the mother ship and the mass-produced common catcher devices that would clean out selected inclination bands. The altitude and inclination regime over which a band is to be cleared, the size distribution of the debris, and the inclusion of additional mission priorities all affect the sizing of the system. It is demonstrated that major LEO hazardous debris reductions can be realized in each band with a single LEO launch of a single mother ship, with simple attached catchers of total mass less than typical commercial LEO launch capability.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-19195 , International Conference on Orbital Debris Removal; Dec 08, 2009 - Dec 10, 2009; Chantilly, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: As the Constellation Program enters its fourth year, the Ares Projects have made substantial progress toward sending human explorers beyond Earth orbit. The Ares I crew launch vehicle, which will take six astronauts or cargo to the International Space Station or four astronauts to rendezvous with Ares V for missions to the Moon, is the first human-rated vehicle NASA has developed in over 30 years. Since the Exploration Systems Architecture Study in 2005, the Ares Projects have completed a successful system requirements review, system definition review, and preliminary design review for the Ares I crew launch vehicle. The Ares I elements are well into development, beginning with the Shuttle-derived, five-segment solid rocket motor that will provide first-stage propulsion. The first stage team has poured its first production simulation article motor and will be pouring and firing the first five-segment development motor in 2009. Large-scale tooling has been installed and tested to produce propellant tanks for the liquid-fuel upper stage at Marshall Space Flight Center (MSFC) in Alabama. The initial upper stage units and main propulsion test article will be manufactured and tested at MSFC before transferring to Michoud Assembly Facility in Louisiana. The upper stage engine team has completed powerpack testing using Apollo J-2 heritage hardware and begun construction of a new altitude test stand at Stennis Space Center in Mississippi. The flight and integrated testing group has designed and built hardware for the Ares I-X test flight scheduled for 2009, as well as begun refurbishing existing infrastructure to support ground testing. Additionally, a base configuration has been selected for the Ares V cargo launch vehicle, which will send the Altair lunar lander and Orion to the Moon. Today, the Ares Projects are well on the way to building America s next generation of exploration-capable launch vehicles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0083
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology; Seek Out and Explore: Upcoming and Future Missions; Mars: Early History and Impact Processes; Mars Analogs II: Chemical and Spectral; Achondrites and their Parent Bodies; and Planning for Future Exploration of the Moon The poster sessions were: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1; LRO and LCROSS; Geophysical Analysis of the Lunar Surface and Interior; Remote Observation and Geologic Mapping of the Lunar Surface; Lunar Spectroscopy; Venus Geology, Geophysics, Mapping, and Sampling; Planetary Differentiation; Bunburra and Buzzard Coulee: Recent Meteorite Falls; Meteorites: Terrestrial History; CAIs and Chondrules: Records of Early Solar System Processes; Volatile and Organic Compounds in Chondrites; Crashing Chondrites: Impact, Shock, and Melting; Ureilite Studies; Petrology and Mineralogy of the SNC Meteorites; Martian Meteorites; Phoenix Landing Site: Perchlorate and Other Tasty Treats; Mars Polar Atmospheres and Climate Modeling; Mars Polar Investigations; Mars Near-Surface Ice; Mars: A Volatile-Rich Planet; Mars: Geochemistry and Alteration Processes; Martian Phyllosilicates: Identification, Formation, and Alteration; Astrobiology; Instrument Concepts, Systems, and Probes for Investigating Rocks and Regolith; Seeing is Believing: UV, VIS, IR, X- and Gamma-Ray Camera and Spectrometer Instruments; Up Close and Personal: In Situ Analysis with Laser-Induced Breakdown Spectroscopy and Mass Spectrometry; Jupiter and Inscrutable Io; Tantalizing Titan; Enigmatic Enceladus and Intriguing Iapetus; Icy Satellites: Cryptic Craters; Icy Satellites: Gelid Geology/Geophysics; Icy Satellites: Cool Chemistry and Spectacular Spectroscopy; Asteroids and Comets; Comet Wild 2: Mineralogy and More; Hypervelocity Impacts: Stardust Models, LDEF, and ISPE; Presolar Grains; Early Nebular Processes: Models and Isotopes; Solar Wind and Genesis: Measurements and Interpretation; Education and Public Outreach; Mercury; Pursuing Lunar Exploration; Sources and Eruptionf Lunar Basalts; Chemical and Physical Properties of the Lunar Regolith; Lunar Dust and Transient Surface Phenomena; Lunar Databases and Data Restoration; Meteoritic Samples of the Moon; Chondrites, Their Clasts, and Alteration; Achondrites: Primitive and Not So Primitive; Iron Meteorites; Meteorite Methodology; Antarctic Micrometeorites; HEDs and Vesta; Dust Formation and Transformation; Interstellar Organic Matter; Early Solar System Chronology; Comparative Planetology; Impacts I: Models and Experiments; Impacts II: Craters and Ejecta; Mars: Volcanism; Mars: Tectonics and Dynamics; Martian Stratigraphy: Understanding the Geologic History of Mars Through the Sedimentary Rock Record; Mars: Valleys and Valley Networks; Mars: Aqueous Processes in Valles Marineris and the Southern Highlands; Mars: Aqueous Geomorphology; Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Remote Sensing; Mars: Geologic Mapping, Photogrammetry, and Cratering; Martian Mineralogy: Constraints from Missions and Laboratory Investigations; Mars Analogs: Chemical and Physical; Mars Analogs: Sulfates and Sulfides; Missions: Approaches, Architectures, Analogs, and Actualities; Not Just Skin Deep: Electron Microscopy, Heat Flow, Radar, and Seismology Instruments and Planetary Data Systems, Techniques, and Interpretation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LPI-Contrib-1468 , 40th Lunar and Planetary Science Conference; Mar 23, 2009 - Mar 27, 2009; The Woodlands, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-26
    Description: Jets of water ice from surface fractures near the south pole of Saturn's icy moon Enceladus produce a plume of gas and particles. The source of the jets may be a liquid water region under the ice shell-as suggested most recently by the discovery of salts in E-ring particles derived from the plume-or warm ice that is heated, causing dissociation of clathrate hydrates. Here we report that ammonia is present in the plume, along with various organic compounds, deuterium and, very probably, Ar-40. The presence of ammonia provides strong evidence for the existence of at least some liquid water, given that temperatures in excess of 180 K have been measured near the fractures from which the jets emanate. We conclude, from the overall composition of the material, that the plume derives from both a liquid reservoir (or from ice that in recent geological time has been in contact with such a reservoir) as well as from degassing, volatile-charged ice. As part of a general comprehensive review of the midsize saturnian satellites at the conclusion of the prime Cassini mission, PI McKinnon and co-I Barr contributed to three review chapters.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature; 460; 487-490
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-13
    Description: Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M09-0352 , M09-0400 , JANNAF Conference; 14-17 Apr.; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-13
    Description: During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure of the lunar dust to UV radiation under vacuum was also found to lead to hydroxyl radical production. After grinding, we have also monitored loss of reactivity of the dusts by exposing them to conditions of known humidity and temperature. From these tests, it was found that the reactivity half-life of lunar simulant is approximately 3 hours, while that of quartz is approximately 2 hours. Placing lunar dust in solution could lead to effects on mechanical and physiological systems, as well as other biological systems. For instance, while it is known that lunar dust is highly abrasive and caused a variety of problems with suits and equipment during Apollo, it is unknown as to how these properties might be affected in the presence of water or other liquids. It is possible that the dust may release minerals (e.g., metallic nanophase Fe) into solution that could speed corrosion or rust. Also, as lunar dust produces hydroxyl radicals (and possibly other reactive oxygen species) in solution, these radicals could also lead to the breakdown of suit or habitat materials. In the body (i.e., in lung solution), the effects could be two-fold. First, if the lunar dust dissolves, it may release an excess of elements (such as zero-valence metallic Fe) that are necessary for bodily functions but only in certain concentration ranges. For lunar dust, the presence of nanophase iron being released into the body is a concern. Secondly, the hydroxyl radicals or other reactive oxygen species produced by the dust in solution could conceivably interact with cells, leading to various problems. We have studied the dissolution of both ground and unground lunar simulant in buffer solutions of different pH. The concentration of a number of species was determined using mass spectrometry. These studies showed that lowering the pH of the solution causes a dramatic increase in the amount of each element released into solution and that grinding also produces higher concentrations. Finally, we have perfmed initial tests aimed at understanding the effects of lunar simulant on cellular systems. Alveolar epithelial cells were cultured and exposed to different concentrations of dust suspended in cell culture media. After predetermined amounts of time, the media was removed and the concentrations of important inflammatory cytokines (IL6, IL8, and TNF-alpha ) were measured. The results of these tests are being used to develop the correct protocols for tests to be performed using lunar dust samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Human Research Program Investigators Workshop; Feb 02, 2009 - Feb 04, 2009; Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-27
    Description: An androgynous mating system for mating two exoatmospheric space modules comprising a first mating assembly capable of mating with a second mating assembly; a second mating assembly structurally identical to said first mating assembly, said first mating assembly comprising; a load ring; a plurality of load cell subassemblies; a plurality of actuators; a base ring; a tunnel; a closed loop control system; one or more electromagnets; and one or more striker plates, wherein said one or more electomagnets on said second mating assembly are capable of mating with said one or more striker plates on said first mating assembly, and wherein said one or more striker plates is comprised of a plate of predetermined shape and a 5-DOF mechanism capable of maintaining predetermined contact requirements during said mating of said one or more electromagnets and said one or more striker plates.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-28
    Description: This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-STD-(I)-6001B , JSC-CN-23865
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The National Aeronautics and Space Administration (NASA) is fully committed to sharing the excitement of America's international space missions with its stakeholders, particularly the general public. In 2009, the Space Shuttle delivered astronauts to the Hubble Space Telescope to service that great observatory and to the International Space Station to install the observation platform on the Japanese Kibo laboratory. The Lunar Reconnaissance Orbiter is showing an unprecedented view of the Moon, confirming the presence of hardware left behind during the Apollo missions decades ago and helping scientists better understand Earth's natural satellite. These and numerous other exciting missions are fertile subjects for public education and outreach. NASA's core mission includes engaging the public face of space in many forms and forums. Agency goals include communicating with people across the United States and through international opportunities. NASA has created a culture where communication opportunities are valued avenues to deliver information about scientific findings and exploration possibilities. As this presentation will show, NASA's leaders act as ambassadors in the public arena and set expectations for involvement across their organizations. This presentation will focus on the qualities that NASA leaders cultivate to achieve challenging missions, to expand horizons and question "why". Leaders act with integrity and recognize the power of the team multiplier effect on delivering technical performance within budget and schedule, as well as through participation in education and outreach opportunities. Leaders are responsible for budgeting the resources needed to reach target audiences with compelling, relevant information and serve as role models, delivering key messages to various audiences. Examples that will be featured in this presentation include the Student Launch Projects and Great Moonbuggy race, which reach hundreds of students who are a promising pipeline for new scientists and engineers for a new generation of discovery. The popular Exploration Experience trailer is an interactive-exhibit environment that travels across the United States, conveying the innovation necessary for space travel and the wonder of discovery that comes from viewing our planet as part of the larger space-scape.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 14th International Space University; Feb 16, 2010 - Feb 18, 2010; Strasbourg; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-13
    Description: NASA's Science Mission Directorate s (SMD) International Lunar Network Anchor Nodes Mission continues its concept development and is scheduled to complete the first formal milestone gate of a Mission Concept Review (MCR) in Autumn 2009. The mission will establish two-four nodes of the International Lunar Network (ILN), a network of lunar geophysical stations envisioned to be emplaced by the many nations collaborating on this joint endeavor. This mission will operate over six years or more and make significant progress in satisfying many of the National Research Council s lunar science objectives, while strategically contributing to the U.S. Vision for Space Exploration Policy's objective for a robust robotic lunar program. This paper will provide a status report on the ILN Anchor Nodes mission and overview of the concept to date, which is being implemented jointly by NASA's Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0450 , M09-0815 , AAS Division for Planetary Science; Oct 05, 2009 - Oct 09, 2009; Fajardo; Puerto Rico|NASA 2009 Lunar Science Forum; Jul 21, 2009 - Jul 23, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...