ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (83,671)
  • GEOPHYSICS  (21,936)
  • Biochemistry and Biotechnology  (13,095)
Collection
Keywords
Language
Years
  • 1
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-04
    Description: The Frontiers in Chemistry Editorial Office team are delighted to present the inaugural “Frontiers in Chemistry: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the chemical sciences, and presents advances in theory, experiment and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Chemistry Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank our Chief Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact.
    Keywords: Green and Sustainable Chemistry ; Analytical Chemistry ; Theoretical and Computational Chemistry ; Polymer Chemistry ; Medicinal and Pharmaceutical Chemistry ; Organic Chemistry ; Nanoscience ; Catalysis and Photocatalysis ; Supramolecular Chemistry ; Electrochemistry ; Inorganic Chemistry ; Chemical Biology ; thema EDItEUR::P Mathematics and Science::PD Science: general issues
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-02-10
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-01-27
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-01-27
    Description: Polynitrogens have the potential for ultrahigh-performing explosives or propellants because singly or doubly bonded polynitrogens can decompose to triply bonded dinitrogen (N2) with an extraordinarily large energy release. The large energy content and relatively low activation energy toward decomposition makes the synthesis of a stable polynitrogen allotrope an extraordinary challenge. Many elements exist in different forms (allotropes)—for example, carbon can exist as graphite, diamond, buckyballs, or graphene. However, no stable neutral allotropes are known for nitrogen, and only two stable homonuclear polynitrogen ions had been isolated until now—namely, the N3− anion (1) and the N5+ cation (2). On page 374 of this issue, Zhang et al. (3) report the synthesis and characterization of the first stable salt of the cyclo-N5− anion, only the third stable homonuclear polynitrogen ion ever isolated. Author: Karl O. Christe
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-09
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-11-11
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 46-54 
    ISSN: 0006-3592
    Keywords: smooth muscle ; polyglycolic acid ; biodegradable ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 × 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 ± 0.8 × 108 cells/cm3 after 5 weeks, compared to 2.0 ± 1.1 × 108 cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 ± 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were implanted in rats for various times. In summary, the system defined by these studies shows promise for engineering a tissue comparable in many respects to native SM. This engineered tissue may find clinical applications and provide a tool to study molecular mechanisms in vascular development. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 46-54, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 518-528 
    ISSN: 0006-3592
    Keywords: ammonium ; UDP-GlcNAc ; N -glycosylation ; BHK-21 cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of different ammonium concentrations and glucosamine on baby hamster kidney (BHK)-21 cell cultures grown in continuously perfused double membrane bioreactors was investigated with respect to the final carbohydrate structures of a secretory recombinant glycoprotein. The human interleukin-2 (IL-2) mutant glycoprotein variant IL-Mu6, which bears a novel N-glycosylation site (created by a single amino acid exchange of Gln100 to Asn), was produced under different defined protein-free culture conditions in the presence or absence of either glutamine, NH4Cl, or glucosamine. Recombinant glycoprotein products were purified and characterized by amino acid sequencing and carbohydrate structural analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry, high-pH anion-exchange chromatography with pulsed amperometric detection, and methylation analysis. In the absence of glutamine, cells secreted glycoprotein forms with preponderantly biantennary, proximal fucosylated carbohydrate chains (85%) with a higher NeuAc content (58%). Under standard conditions in the presence of 7.5 mM glutamine, complex-type N-glycans were found to be mainly biantennary (68%) and triantennary structures (33%) with about 50% containing proximal α1-6-linked fucose; 37% of the antenna were found to be substituted with terminal α2-3-linked N-acetylneuraminic acid. In the presence of 15 mM exogenously added NH4Cl, a significant and reproducible increase in tri- and tetraantennary oligosaccharides (45% of total) was detected in the secretion product. In glutamin-free cultures supplemented with glucosamine, an intermediate amount of high antennary glycans was detected. The increase in complexity of N-linked oligosaccharides is considered to be brought about by the increased levels of intracellular uridine diphosphate-GlcNAc/GalNAc. These nucleotide sugar pools were found to be significantly elevated in the presence of high NH3/NH4+ and glucosamine concentrations. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 518-528, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 557-570 
    ISSN: 0006-3592
    Keywords: Alcaligenes eutrophus ; polyhydroxyalkanoates ; metabolic engineering ; mathematical modeling ; enzyme kinetics ; regulation of metabolism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model describing intracellular polyhydroxybutyrate (PHB) synthesis in Alcaligenes eutrophus has been constructed. The model allows investigation of issues such as the existence of rate-limiting enzymatic steps, possible regulatory mechanisms in PHB synthesis, and the effects different types of rate expressions have on model behavior. Simulations with the model indicate that activities of all PHB pathway enzymes influence overall PHB flux and that no single enzymatic step can easily be identified as rate limiting. Simulations also support regulatory roles for both thiolase and reductase, mediated through AcCoA/CoASH and NADPH/NADP+ ratios, respectively. To make the model more realistic, complex rate expressions for enzyme-catalyzed reactions were used which reflect both the reversibility of the reactions and the reaction mechanisms. Use of the complex kinetic expressions dramatically changed the behavior of the system compared to a simple model containing only Michaelis-Menten kinetic expressions; the more complicated model displayed different responses to changes in enzyme activities as well as inhibition of flux by the reaction products CoASH and NADP+. These effects can be attributed to reversible rate expressions, which allow prediction of reaction rates under conditions both near and far from equilibrium. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 557-570, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0006-3592
    Keywords: rhG-CSF ; fusion protein ; secretion efficiency ; glycosylation ; multimer ; conformation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The synthesis and secretion of recombinant human granulocyte colony-stimulating factor (rhG-CSF) are investigated in fed-batch cultures at high cell concentration of recombinant Saccharomyces cerevisiae, and some important characteristics of the secreted rhG-CSF are demonstrated. Transcription of the recombinant gene is regulated by a GAL1-10 upstream activating sequence (UASG), and the rhG-CSF is expressed in a hybrid fusion protein consisting of signal sequence of Kluyveromyces lactis killer toxin and N-terminal 24 amino acids of human interleukin 1β. The intracellular KEX2 cleavage leads to excretion of mature rhG-CSF into extracellular culture broth, and the cleavage process seems to be highly efficient. In spite of relatively low copy number the plasmid propagation is stably maintained even at nonselective culture conditions. The rhG-CSF synthesis does not depend on galactose level, whereas the production of extracellular rhG-CSF was significantly enhanced by increasing the inducer concentration above a certain level and also by supplementing the nonionic surfactant to the culture medium, which is notably due to the enhanced secretion efficiency. Various immunoblotting analyses demonstrate that none of the rhG-CSF is accumulated in the cell wall fraction and that a significant amount of intracellular rhG-CSF antibody-specific immunoreactive proteins is located in the ER. A core N-glycosylation at fused IL-1β fragment is likely to play a critical role in directing the high-level secretion of rhG-CSF, and the O-glycosylation of secreted rhG-CSF seems nearly negligible. Also the extracellular rhG-CSF is observed to exist as various multimers, and the nature of molecular interaction is evidently not the covalent disulfide bridges. The CD spectra of purified rhG-CSF and Escherichia coli-derived standard show that the conformations of both are similar and are almost identical to that reported for natural hG-CSF. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 600-609, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 101-116 
    ISSN: 0006-3592
    Keywords: biofilm ; structure ; shape ; surface ; cellular automata ; discrete ; modeling ; roughness ; fractal ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A hybrid differential-discrete mathematical model has been used to simulate biofilm structures (surface shape, roughness, porosity) as a result of microbial growth in different environmental conditions. In this study, quantitative two- and three-dimensional models were evaluated by introducing statistical measures to characterize the complete biofilm structure, both the surface structure and volume structure. The surface enlargement, coefficient of roughness, fractal dimension of surface, biofilm compactness, and solids hold-up were found to be good measures of biofilm structure complexity. Among many possible factors affecting the biofilm structure, the influence of biomass growth in relation to the diffusive substrate transport was investigated. Porous biofilms, with many channels and voids between the “finger-like” or “mushroom” outgrowth, were obtained in a substrate-transport-limited regime. Conversely, compact and dense biofilms occurred in systems limited by the biomass growth rate and not by the substrate transfer rate. The surface complexity measures (enlargement, roughness, fractal dimension) all increased with increased transport limitation, whereas the volume measures (compactness, solid hold-up) decreased, showing the change from a compact and dense to a highly porous and open biofilm. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:101-116, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 155-163 
    ISSN: 0006-3592
    Keywords: endogenous respiration ; activated sludge ; multi-time scales ; identifiability ; observability ; model reduction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, an autonomous four-compartment model that describes the endogenous respiration in an aerobic biodegradation process is proposed and analyzed theoretically. First, the multi-time scale of the system's behavior, to be taken into account in subsequent analyses, is emphasized. Then, an identifiability and observability study, given measurements of MLVSS (mixed liquor volatile suspended solids) and respiration rate, is performed for use under practical circumstances, such as in state and parameter estimation. It appears that the process is observable, but not fully identifiable. Hence, for the identification of some of the model parameters, additional measurements or experiments, also indicated here, have to be performed. Furthermore, it is shown that, under quasi-steady state conditions which, in general, appear shortly after initialization of an endogenous respiration experiment, the model can be reduced significantly. Finally, results of parameter estimation from available data are presented and discussed. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 155-163, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 0006-3592
    Keywords: hybridoma ; futile cycling ; hollow fiber bioreactor ; glutamine ; NMR ; C-13 ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of changes in extracellular glutamine level on metabolism of a murine hybridoma was examined with in vivo nuclear magnetic resonance (NMR) spectroscopy. Cells were cultured in a hollow-fiber bioreactor at high cell density to allow intracellular metabolite levels to be determined on a metabolically relevant time scale. Steady infusions of [1-13C] glucose were used to label glycolytic and tricarboxylic acid cycle intermediates, which permitted continuous monitoring with NMR spectroscopy during changes in environmental glutamine level. Samples of the extracellular medium were also analyzed to determine the effect of glutamine on other metabolites associated with primary and secondary metabolism. The changes in glutamine concentration had several effects on primary and secondary metabolism, depending on the rate the changes were made. For a brief reduction in feed glutamine concentration from 4 to 0 mM (which produced a rapid change from 0.67 to ∼0 mM in residual glutamine), large changes were observed in the rate of consumption of metabolites normally associated with energy production. Antibody synthesis was strongly stimulated and nitrogen metabolism was significantly altered. For a more prolonged reduction from 2.4 to 1.2 mM (which produced a slower reduction from 0.30 to 0.08 mM in residual glutamine), much smaller changes were observed even though the concentration of glutamine at the reduced feed level was very low. Energy metabolism did not appear to be limited by glutamine at 0.08 mM, which suggests that significant futile cycling may occur in energy producing pathways when excess glucose and glutamine are available. However, this concentration of extracellular glutamine appeared to affect some anabolic pathways, which require amino groups from glutamine. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 172-186, 1998.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 211-215 
    ISSN: 0006-3592
    Keywords: protein ; conformational memory ; organic solvent ; molecular imprinting ; enzyme ; catalysis ; transition state analogue ; bovine serum albumin ; β-lactoglobulin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The induction of catalytic activity in proteins by lyophilization in the presence of a transition state analogue (biomolecular imprinting) has been attempted. It was shown that proteins which were freeze-dried with n-isopropyl-4-nitrobenzyl-amine (a transition state analogue for the reaction of dehydrofluorination of 4-fluoro-4-[p-nitrophenyl] butan-2-one) displayed higher β-elimination activity as compared to their-non-imprinted counterparts. It was also found that native bovine serum albumin has a high dehydrofluorination activity towards the above substrate with kinetic parameters rather similar to those of a catalytic antibody prepared by Shokat et al. (1989). A comparison of the kinetic parameters determined in this study with those obtained for analogous catalytic antibodies and imprinted polymers was made. © 1998 John Wiley & Sons, Inc. Biotechnol. Bioeng. 57: 211-215, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 272-279 
    ISSN: 0006-3592
    Keywords: biofilm ; plasmid transfer ; conjugation ; retrotransfer ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A strain of Pseudomonas putida harboring plasmids RK2 and pDLB101 was exposed to a pure culture biofilm of Bacillus azotoformans grown in a rotating annular reactor under three different concentrations of the limiting nutrient, succinate. Experimental results demonstrated that the broad host range RSF1010 derivative pDLB101 was transferred to and expressed by B. azotoformans. At the lower concentrations, donor mediated plasmid transfer increased with increasing nutrient levels, but the highest nutrient concentration yielded the lowest rate of donor to recipient plasmid transfer. For transconjugant initiated transfer, the rate of transfer increased with increasing nutrient concentrations for all cases. At the lower nutrient concentrations, the frequency of plasmid transfer was higher between donors and recipients than between transconjugants and recipients. The reverse was true at the highest succinate concentration. The rates and frequencies of plasmid transfer by mobilization were compared to gene exchange by retrotransfer. The initial rate of retrotransfer was slower than mobilization, but then increased dramatically. Retrotransfer produced a plasmid transfer frequency more than an order of magnitude higher than simple mobilization. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 272-279, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 280-286 
    ISSN: 0006-3592
    Keywords: biofilm ; plasmid transfer ; conjugation ; mathematical models ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A strain of Pseudomonas putida that harbors plasmids RK2 and pDLB101 was exposed to a pure culture biofilm of Bacillus azotoformans grown in a rotating annular reactor. Transfer of the RK2 mobilizable pDLB101 plasmid to B. azotoformans was monitored over a 4-day period. Experimental results demonstrated that the broad host range, RSF1010 derivative pDLB101 was transferred to and expressed by B. azotoformans. In the companion article to this work, the rate of plasmid transfer was quantified as a function of the limiting nutrient, succinate, and as a function of the mechanism of transfer. A biofilm process simulation program (AQUASIM) was modified to analyze resultant experimental data. Although the AQUASIM package was not designed to simulate or predict genetic events in biofilms, modification of the rate process dynamics allowed successful modeling of plasmid transfer. For the narrow range of substrate concentrations used in these experiments, nutrient level had only a slight effect on the rate and extent of plasmid transfer in biofilms. However, further simulations using AQUASIM revealed that under nutrient poor conditions, the number of transconjugants appearing in the biofilm was limited. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 280-286, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 314-320 
    ISSN: 0006-3592
    Keywords: Phaffia rhodozyma ; chemostat ; continuous fermentation ; astaxanthin ; peat ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Response surface methodology was applied to optimize the growth of the yeast Phaffia rhodozyma in continuous fermentation using peat hydrolysates as substrate. A second-order, complete, factorial design of the experiments was used to develop empirical models providing a quantitative interpretation of the relationships between the two variables studied, dilution rate and pH. Maximum biomass concentration in the fermentor was obtained by employing the following predicted optimum fermentation conditions: a dilution rate of 0.017/h and a pH level of 7.19. A verification experiment, conducted at previously optimized conditions for maximum biomass volumetric productivity (a dilution rate of 0.022/h, and a pH level of 6.90), produced values for biomass concentration, residual substrate concentration, biomass yield, and biomass volumetric productivity that were very close to the predicted values, indicating the reliability of the empirical model. The concentration of the pigment astaxanthin produced by the yeast under the optimized growth conditions was found to be 544 mg astaxanthin/kg dry cell biomass. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 314-320, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 330-341 
    ISSN: 0006-3592
    Keywords: brewers' yeast ; collision theory ; flocculation ; modeling ; surface erosion ; floc splitting ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs.The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 330-341, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 367-379 
    ISSN: 0006-3592
    Keywords: fluidized-bed ; consecutive reaction kinetics ; distributed fraction of methanogens ; rate-limiting ; parametric sensitivity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A kinetic model involving the distributed fractions of acidogens and methanogens is proposed. To determine the fluxes and biochemical reaction rates of the substrate sucrose and its intermediates, volatile fatty acids (VFAs) in bulk liquid and within the biofilm, a kinetic model was developed by combining the solid-phase model with the liquid-phase model. The predicted substrate removal efficiencies of the conventional and tapered fluidized-bed bioreactors (CFB, TFBs) are in good agreement with the experimental results. The biofilm thickness in TFBs are thicker than that in CFB, resulting in performance enhancement with TFBs. The simulated results obtained from the kinetic model show that methanogenesis is the rate-limiting step of degradation of the simple organic compound (sucrose), and the chemical oxygen demand (COD) concentration in the effluent is mainly contributed by the intermediates VFAs. The distributed fractions of acidogens and methanogens determined experimentally are 0.4 and 0.6, respectively. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 367-379, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 0006-3592
    Keywords: depolymerization ; kinetics ; endo -enzymes ; theoretical equation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Monitoring the time evolution of the concentration of a selected range of molecular weights of substrate, referred to as “detectable” substrate, has been used to determine endo-enzymic activities in polysaccharide depolymerizing processes. In the methodologies based on the use of dye-labeled substrates, the “detectable” substrate extends from a given molecular weight threshold downward. On the contrary, in the fluorescent probe-flow injection analysis methodology, initially developed to determine (1 → 3)-(1 → 4)-β-d-glucanase activities, the “detectable” substrate extends from a given molecular weight threshold upward. Assuming that the time evolution of the molecular weight distribution of the substrate follows the most probable distribution (the enzymic attack is random and its mechanism is single attack), a theoretical equation describing the time evolution of the concentration of “detectable” substrate (from a given molecular weight threshold upward or downward) has been deduced. This equation, Wd = Wo · (1 + αt) · e-αt, where Wd is the concentration of “detectable” substrate, Wo is the initial concentration of the substrate, t is the depolymerization time, and α is a parameter correlated through a hyperbola with the initial concentrations of enzyme and substrate and the Michaelis-Menten constant, Km, has been tested against different (1 → 3)-(1 → 4)-β-d-glucan/(1 → 3)-(1 → 4)-β-d-glucanase systems using the fluorescent probe-flow injection analysis methodology and Calcofluor as the fluorescent probe. The most important predictions of the theoretical equation, which allow accurate determination of both endo-enzymic activities and kinetic constants, have been experimentally confirmed. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 387-393, 1998.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 438-446 
    ISSN: 0006-3592
    Keywords: DNA ; alginate ; encapsulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Alginate gels produced by an external or internal gelation technique were studied so as to determine the optimal bead matrix within which DNA can be immobilized for in vivo application. Alginates were characterized for guluronic/mannuronic acid (G/M) content and average molecular weight using 1H-NMR and LALLS analysis, respectively. Nonhomogeneous calcium, alginate, and DNA distributions were found within gels made by the external gelation method because of the external calcium source used. In contrast, the internal gelation method produces more uniform gels. Sodium was determined to exchange for calcium ions at a ratio of 2:1 and the levels of calcium complexation with alginate appears related to bead strength and integrity. The encapsulation yield of double-stranded DNA was over 97% and 80%, respectively, for beads formed using external and internal calcium gelation methods, regardless of the composition of alginate. Homogeneous gels formed by internal gelation absorbed half as much DNAse as compared with heterogeneous gels formed by external gelation. Testing of bead weight changes during formation, storage, and simulated gastrointestinal (GI) conditions (pH 1.2 and 7.0) showed that high alginate concentration, high G content, and homogeneous gels (internal gelation) result in the lowest bead shrinkage and alginate leakage. These characteristics appear best suited for stabilizing DNA during GI transit. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 438-446, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 454-461 
    ISSN: 0006-3592
    Keywords: propionic acid ; extractive fermentation ; solvent ; partition ; acid recovery ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Solvent selection for extractive fermentation for propionic acid was conducted with three systems: Alamine 304-1 (trilaurylamine) in 2-octanol, 1-dodecanol, and Witcohol 85 NF (oleyl alcohol). Among them, the solvent containing 2-octanol exhibited the highest partition coefficient in acid extraction, but it was also toxic to propionibacteria. The most solvent-resistant strain among five strains of the microorganism was selected. Solvent toxicity was eliminated via two strategies: entrapment of dissolved toxic solvent in the culture growth medium with vegetable oils such as corn, olive, or soybean oils; or replacement of the toxic 2-octanol with nontoxic Witcohol 85 NF. The complete recovery of acids from the Alamine 304-1/Witcohol 85 NF was also realized with vacuum distillation. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 454-461, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 258-262 
    ISSN: 0006-3592
    Keywords: mass balance ; metabolic flux ; 13C tracer ; NMR spectroscopy ; mass spectroscopy ; hybridoma ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The estimation of intracellular fluxes of mammalian cells using only mass balances of the relevant metabolites is not possible because the set of linear equations defined by these mass balances is underdetermined. In order to quantify fluxes in cyclic pathways the mass balance equations can be complemented with several constraints: (1) the mass balances of co-metabolites, such as ATP or NAD(P)H, (2) linear objective functions, (3) flux data obtained by isotopic-tracer experiments. Here, these three methods are compared for the analysis of fluxes in the primary metabolism of continuously cultured hybridoma cells. The significance of different theoretical constraints and different objective functions is discussed after comparing their resulting flux distributions to the fluxes determined using 13CO2 and 13C-lactate measurements of 1 - 13C-glucose-fed hybridoma cells. Metabolic fluxes estimated using the objective functions “maximize ATP” and “maximize NADH” are relatively similar to the experimentally determined fluxes. This is consistent with the observation that cancer cells, such as hybridomas, are metabolically hyperactive, and produce ATP and NADH regardless of the need for these cofactors. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:258-262, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 263-266 
    ISSN: 0006-3592
    Keywords: Streptomyces lividans ; simple structured modeling ; cybernetic modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The growth of Streptomyces lividans in defined media was modeled using a simple structured growth model. Conventional unstructured models like Monod kinetics, substrate inhibition kinetics, and the logistic equation were also used in an attempt to fit the data, but the results were all unsatisfactory. The main reason for failure in applying simple unstructured models is that they cannot describe the long lag phases sometimes observed during growth of S. lividans. The simple structured growth model was derived along similar principles to cybernetic growth models. This model quite accurately describes the growth of S. lividans. It assumes that the rate of assimilation of a substrate depends on the concentration of a specific key enzyme. This key enzyme is only produced in the presence of the substrate, and it is broken down at a steady rate. An enzyme synthesis allocation variable, w, similar to the cybernetic variable, u, described in cybernetic growth models, is proposed to control enzyme synthesis. Until the key enzyme concentration approaches its maximum level, very little substrate is consumed. And consequently, the lag phase is sustained. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:263-266, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 267-271 
    ISSN: 0006-3592
    Keywords: metabolic engineering ; mathematical programming ; mixed integer nonlinear programming (MINLP) ; metabolic control analysis ; Dictyostelium discoideum ; tricarboxylic acid cycle ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The design of new generation bioprocessing plants is increasingly dependent on the design of process-compatible microorganisms. The latter, whether through genetic or physiological manipulations, can be greatly assisted by metabolic engineering. An emerging powerful tool in metabolic engineering research is computer-assisted cell design using mathematical programming. In this work, the problem of optimizing cellular metabolic networks has been formulated as a Mixed Integer Nonlinear Programming (MINLP) model. The model can assist genetic engineers to identify which cellular enzymes should be modified, and the new levels of activity required to produce an optimal network. Results are presented from the tricarboxylic acid cycle in Dictyostelium discoideum. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:267-271, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 0006-3592
    Keywords: metabolic flux analysis ; 13C tracer experiments ; fractional enrichment ; NADH ; NADPH ; pentose phosphate pathway ; Aspergillus oryzae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Conventional metabolic flux analysis uses the information gained from determination of measurable fluxes and a steady-state assumption for intracellular metabolites to calculate the metabolic fluxes in a given metabolic network. The determination of intracellular fluxes depends heavily on the correctness of the assumed stoichiometry including the presence of all reactions with a noticeable impact on the model metabolite balances. Determination of fluxes in complex metabolic networks often requires the inclusion of NADH and NADPH balances, which are subject to controversial debate. Transhydrogenation reactions that transfer reduction equivalents from NADH to NADPH or vice versa can usually not be included in the stoichiometric model, because they result in singularities in the stoichiometric matrix. However, it is the NADPH balance that, to a large extent, determines the calculated flux through the pentose phosphate pathway. Hence, wrong assumptions on the presence or activity of transhydrogenation reactions will result in wrong estimations of the intracellular flux distribution. Using 13C tracer experiments and NMR analysis, flux analysis can be performed on the basis of only well established stoichiometric equations and measurements of the labeling state of intracellular metabolites. Neither NADH/NADPH balancing nor assumptions on energy yields need to be included to determine the intracellular fluxes. Because metabolite balancing methods and the use of 13C labeling measurements are two different approaches to the determination of intracellular fluxes, both methods can be used to verify each other or to discuss the origin and significance of deviations in the results. Flux analysis based entirely on metabolite balancing and flux analysis, including labeling information, have been performed independently for a wild-type strain of Aspergillus oryzae producing α-amylase. Two different nitrogen sources, NH4+ and NO3-, have been used to investigate the influence of the NADPH requirements on the intracellular flux distribution. The two different approaches to the calculation of fluxes are compared and deviations in the results are discussed. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:254-257, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 272-281 
    ISSN: 0006-3592
    Keywords: gene transfer ; retrovirus ; cell cycle ; intracellular stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Recombinant retroviruses are currently used as gene delivery vehicles for the purpose of gene therapy. It is generally believed that the efficiency of retroviral transduction depends on the cell cycle status of the target cells. However, it has been reported that this is not the case for the transduction of human and murine fibroblasts, in contrast to other cell types such as lymphocytes. The predictions of a mathematical model that we constructed, offer an explanation of this contradiction, based on the dynamics of the underlying processes of target cell growth and the intracellular decay of retroviral vectors. The model suggests that the utility of synchronization experiments, that are usually employed to study cell cycle specificity, is severely limited when the time scales of the above kinetic events are comparable to each other. The predictions of the model also suggest the use of retroviral vectors as cell cycle markers, as an alternative way to detect cell cycle dependence of retroviral transduction. This method obviates the need for cell synchronization and therefore, it does not perturb the cell cycle or interfere with the life cycle of retroviral vectors. Moreover, it does not depend on the intracellular stability of retroviral vectors. Our results show that in contrast to previously reported results, transduction of murine fibroblasts is cell cycle dependent, and they are consistent with the current notion that mitosis is the phase that confers transduction susceptibility. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:272-281, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 282-291 
    ISSN: 0006-3592
    Keywords: cybernetic models ; metabolic engineering ; storage pathways ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A cybernetic model is proposed to examine generic features of storage pathways. This model is capable of describing synthesis of carbon and non-carbon storage polymers. The effect of environmental conditions is evaluated using storage polymer level as a fraction of total biomass as a gauge of pathway performance. The base wild-type pathway is then analyzed to determine the effect of genetic alterations upon system performance. Proposed modifications are tested using the cybernetic model as a diagnostic tool to ascertain the ramifications of potential genetic alterations. A methodology is developed within the cybernetic framework to describe alterations of enzyme activity and over-expression of pathway enzymes. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:282-291, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    ISSN: 0006-3592
    Keywords: metabolic engineering ; carbon metabolism ; Escherichia coli mutants ; microbial growth ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Escherichia coli strains devoid of one or both of the two pyruvate kinase isoenzymes (PKA and PKF), were grown on minimal media in batch fermentations. The strain lacking both PKs showed a 28% decrease on its specific growth rate when compared to the wild type. However, protein and CO2 yields did not change. Using radioactive 1-C14 glucose and collecting the CO2 produced by the cultures, it was found that the mutant lacking both pyruvate kinases, metabolized glucose mainly through the pentose pathway (PP). The increased participation of the PP in glucose metabolism in this strain, was also reflected on the levels of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases.© 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:292-295, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 296-298 
    ISSN: 0006-3592
    Keywords: lac promoter ; galactose ; galactokinase mutant ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In Escherichia coli, strong overexpression of a recombinant protein has been shown to be deleterious due to a heavy metabolic burden on the host cell, which may completely cease cell growth before maximum product accumulation has occurred.Aiming at a reduction of very high product formation rates, we engineered E. coli strains by mutating the Leloir pathway for galactose metabolization, so that galactose can be utilized to induce lac derived promoters. The induction with galactose was effective in every strain and expression construct tested, and it reduced the metabolic burden on a highly overproducing clone so that cell growth and product accumulation could be maintained for several generations. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:296-298, 1998.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 299-302 
    ISSN: 0006-3592
    Keywords: phosphoglucomutase ; site-directed mutagenesis ; kinetic constants ; Pm promoter ; metabolic engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Mutants of Escherichia coli deficient in phosphoglucomutase accumulate amylose when the cells are grown on maltose or galactose as carbon source. In the presence of physiological levels of phosphoglucomutase, most of the sugar is catabolized, leading to strongly reduced levels of amylose accumulation. By varying the expression level of heterologous phosphoglucomutase, we show that the minimum level needed to block amylose accumulation corresponds to a phosphoglucomutase activity of 150-600 nmole substrate transformed per min per mg of total soluble protein. Mutant phosphoglucomutases with strongly reduced Vmax values and increased Km values for the substrate glucose-1-phosphate or the co-substrate glucose-1,6-diphosphate, could also reduce amylose accumulation, but much higher enzyme expression levels were required. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:299-302, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 718-731 
    ISSN: 0006-3592
    Keywords: biofilm ; modeling ; reaction-diffusion-growth ; cellular automata ; immobilized cells ; structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The theoretical basis and quantitative evaluation of a new approach for modeling biofilm growth are presented here. Soluble components (e.g., substrates) are represented in a continuous field, whereas discrete mapping is used for solid components (e.g., biomass). The spatial distribution of substrate is calculated by applying relaxation methods to the reaction-diffusion mass balance. A biomass density map is determined from direct integration in each grid cell of a substrate-limited growth equation. Spreading and distribution of biomass is modeled by a discrete cellular automaton algorithm. The ability of this model to represent diffusion-reaction-microbial growth systems was tested for a well-characterized system: immobilized cells growing in spherical gel beads. Good quantitative agreement with data for global oxygen consumption rate was found. The calculated concentration profiles of substrate and biomass in gel beads corresponded to those measured. Moreover, it was possible, using the discrete spreading algorithm, to predict the spatial two- and three-dimensional distribution of microorganisms in relation to, for example, substrate flux and inoculation density. The new technique looks promising for modeling diffusion-reaction-microbial growth processes in heterogeneous systems as they occur in biofilms. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 718-731, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 561-571 
    ISSN: 0006-3592
    Keywords: metabolism analysis ; AB fermentation equations ; on-line physiological state diagnosis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fermentation equations for acetone-butanol (AB) were applied in a metabolic analysis of the reaction network under various conditions; that is, at different pHs and a high NADH2 turnover rate using methyl viologen, in a Clostridium acetobutylicum culture. The results disclosed variations in the pattern of rate changes that reflected changes in the physiological state. A linear relationship was found to exist between NADH2 generation and butanol production rate. By coupling an automated measurement system with the fermentation model, on-line estimation of the culture state was accomplished. Based on the AB fermentation model, new parameters were defined for on-line diagnosis of the physiological state and determination of the best timing for amplifying NADH2 generation by the addition of methyl viologen to obtain a high level of butanol productivity. A potential means of achieving optimal control for a high level of solvent production, involving the correlation of certain rates, is proposed. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 561-571, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 0006-3592
    Keywords: aqueous two-phase systems ; immobilized enzymes ; continuous extraction of product ; penicillin G acylase ; synthesis of antibiotics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Yields of kinetically controlled synthesis of antibiotics catalyzed by penicillin G acylase from Escherichia coli (PGA) have been greatly increased by continuous extraction of water soluble products (cephalexin) away from the surroundings of the enzyme. In this way its very rapid enzymatic hydrolysis has been avoided. Enzymes covalently immobilized inside porous supports acting in aqueous two-phase systems have been used to achieve such improvements of synthetic yields. Before the reaction is started, the porous structure of the biocatalyst can be washed and filled with one selected phase. In this way, when the pre-equilibrated biocatalyst is mixed with the second phase (where the reaction product will be extracted), the immobilized enzyme remains in the first selected phase in spite of its possibly different natural trend.Partition coefficients (K) of cephalexin in very different aqueous two-phase systems were firstly evaluated. High K values were obtained under drastic conditions. The best K value for cephalexin (23) was found in 100% PEG 600-3 M ammonium sulfate where cephalexin was extracted to the PEG phase. Pre-incubation of immobilized PGA derivatives in ammonium sulfate and further suspension with 100% PEG 600 allowed us to obtain a 90% synthetic yield of cephalexin from 150 mM phenylglycine methyl ester and 100 mM 7-amino desacetoxicephalosporanic acid (7-ADCA). In this reaction system, the immobilized enzyme remains in the ammonium sulfate phase and hydrolysis of the antibiotic becomes suppressed because of its continuous extraction to the PEG phase. On the contrary, synthetic yields of a similar process carried out in monophasic systems were much lower (55%) because of a rapid enzymatic hydrolysis of cephalexin. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:73-79, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 99-107 
    ISSN: 0006-3592
    Keywords: Monod kinetics ; mixed substrate growth ; continuous culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In natural environments, heterotrophic microorganisms encounter complex mixtures of carbon sources, each of which is present only at very low concentrations. Under such conditions no significant growth could be expected if cells utilized only one of the available carbon compounds as suggested by the principle of diauxic growth. Indeed, there is much evidence that microbial cells utilize many carbon sources simultaneously. In order to predict bacterial growth under such conditions we developed a model describing the specific growth rate as a function of the individual concentrations of several simultaneously utilized carbon substrates. Together with multisubstrate models previously published, this model was evaluated for its ability to describe growth of Escherichia coli during the simultaneous utilization of mixtures of sugars in carbon-limited continuous culture. Using the μmax and Ks constants determined for single substrate growth with six different sugars, the model was able for most experiments to adequately describe the specific growth rate of the culture, i.e., the experimentally set dilution rate, from the measured concentrations of the individual sugars. The model provides an explanation why bacteria can still grow relatively fast under environmental conditions where the concentrations of carbon substrates are usually extremely low. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:99-107, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 635-639 
    ISSN: 0006-3592
    Keywords: Spathoglottis plicata ; orchid ; encapsulation ; two-coat systems ; complex coacervation ; artificial seed ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Complex coacervation of alginate-chitosan and alginate-gelatin were used to develop two-coat systems for the encapsulation of Spathoglottis plicata seeds and protocorms (top-shaped structures formed after seed germination of orchids). Both the seeds and the protocorms could withstand the encapsulation treatments with high viability. About 54% of seeds and 40% of large protocorms (1.6-2.0 mm) were able to tolerate a 6-h desiccation treatment. However, viability of the small protocorms (0.7-0.9 mm) was greatly reduced if they were desiccated before encapsulation. Encapsulation after desiccation significantly increased the percentage viability of seeds and protocorms. Treatment with abscisic acid (ABA, 10-5 M) before desiccation and encapsulation resulted in high percentage viability in seeds and large protocorms whereas the small protocorms were found to be less tolerant to the treatments. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:635-639, 1998.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 0006-3592
    Keywords: Trichoderma reesei ; cellulase ; cellobiohydrolase ; endoglucanase ; microcrystalline cellulose ; cellulose hydrolysis ; adsorption isotherm ; synergism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Microcrystalline cellulose (10 g/L Avicel) was hydrolysed by two major cellulases, cellobiohydrolase I (CBH I) and endoglucanase II (EG II), of Trichoderma reesei. Two types of experiments were performed, and in both cases the enzymes were added alone and together, in equimolar mixtures. In time course studies the reaction time was varied between 3 min and 48 h at constant temperature (40°C) and enzyme loading (0.16 μmol/g Avicel). In isotherm studies the enzyme loading was varied in the range of 0.08-2.56 μmol/g at 4°C and 90 min. Adsorption of the enzymes and production of soluble sugars were followed by FPLC and HPLC, respectively. Adsorption started quickly (50% of maximum achieved after 3 min) but was not completed before 60-90 min. For CBH I a linear relationship was observed between the production of soluble sugars and adsorption, showing that the average activity of the bound CBH I molecules does not change with increasing saturation. For EG II the corresponding curve levelled off which is explained by initial hydrolysis of loose ends on Avicel. The enzymes competed for binding sites, binding of EG II was considerably affected by CBH I, especially at high concentration. CBH I produced more soluble sugars than EG II, except at conversions below 1%. At 40°C when the enzymes were added together they produced 27-45% more soluble sugars than the sum of what they produced alone, i.e. synergistic action was observed (the final conversion after 48 h of hydrolysis was 3, 6, and 13% for EG II, CBH I, and their mixture, respectively). At 4°C, on the other hand, when the conversion was below 2.5%, almost no synergism could be observed. Molar proportions of the produced sugars were rather stable for CBH I (11-15%, 82-89%, and 〈6% for glucose, cellobiose, and cellotriose, respectively), while it varied considerably with both time and enzyme concentration for EG II. The observed stable but high glucose to cellobiose ratio for CBH I indicates that the processivity for this enzyme is not perfect. EG II produced significant amounts of glucose, cellobiose, and cellotriose, which are not the expected products of a typical endoglucanase activity on a solid substrate. We explain this by hypothesizing that EG II may show processivity due to its extended substrate binding site and the presence of its cellulose binding domain. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:621-634, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 647-650 
    ISSN: 0006-3592
    Keywords: biomass separation ; flocculation ; biomass measurement ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We introduce the ratio of nonflocculent versus total biomass as a criterion for starting cell separation from the medium. This criterion can be applied for the automation of the process regardless of the process dynamics. Its minimum indicates the optimum period of time for the start of the separation process with regard not only to nonflocculent cell concentration, but also medium attributes. In contrast to the concentration of nonflocculent cells, which has two minima, first at the beginning of the process and another broader one in the period during which maximum flocculation is present, the ratio has a single minimum and can therefore be implemented as a criterion for cell separation. To calculate the ratio value, in addition to an on-line method for nonflocculent biomass measurement described elsewhere, an on-line method for the total biomass of flocculent yeast is proposed. It is based on the absorbency measurement of the cell biomass, previously deflocculated by EDTA. Therefore, it can be applied in bioprocesses with transparent media and yeast that can be deflocculated by EDTA. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:647-650, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 640-646 
    ISSN: 0006-3592
    Keywords: Vitreoscilla hemoglobin ; metabolic engineering ; fermentation ; acetoin ; 2,3-butanediol ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Serratia marcescens was transformed with plasmid vector pUC8 or pUC8 containing the bacterial (Vitreoscilla) hemoglobin gene (vgb) on either a 2.3-kb fragment (pUC8:15) or 1.4-kb fragment (pUC8:16) of Vitreoscilla DNA. The vgb-bearing strains were compared with the pUC8 transformant and untransformed S. marcescens with respect to growth in Luria-Bertani (LB) broth supplemented with glucose or casein acid hydrolysate. Growth (on a viable cell basis) was similar to that in unsupplemented LB. Total acid excretion (as estimated by medium pH) was similar for all strains in both LB plus 2% casein acid hydrolysate and LB without additions. Acid excretion in LB plus 2% glucose was somewhat greater at up to 10 h in culture for the two vgb-bearing strains; from 10 to 26 h in culture, the pHs of these cultures continued to decrease (to 4.1-4.2), whereas those of the non-vgb-bearing strains returned to near the starting pH (7.4-7.8). Concomitantly, after 26 h of culture in LB plus 2% glucose, the non-vgb-bearing strains had produced about 15 times as much acetoin and about three to four times as much 2,3-butanediol as the vgb-bearing strains. In general, for all strains, much more acetoin and 2,3-butanediol were produced in LB plus 2% glucose than in unsupplemented LB. The exception was acetoin production by the strain bearing vgb on plasmid pUC8:15; after 26 h of culture in LB without supplementation it was between three and four times that of the other strains, and about 50% higher than its level in LB plus 2% glucose. When grown with the 2% casein acid hydrolysate supplement, the strain bearing vgb on plasmid pUC8:15 produced much more acetoin and 2,3-butanediol than the other strains after 26 hours in culture. The results confirm that vgb can significantly alter carbon metabolism and suggest that the use of vgb technology for directed metabolic engineering may be a complicated process, depending in part on medium composition. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:640-646, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 0006-3592
    Keywords: cellulose ; gel ; fiber ; immobilization ; adsorption ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We prepared a new composite gel fiber by the gel formation of cellulose acetate and titanium iso-propoxide. The fiber is harder than alginate gel; it is also stable in common solvents, phosphate solution, and electrolyte solutions over a wide range of pH from 3 to 10. The fiber shows amphoretic adsorption properties depending on pH, namely, it acts anionic with decreasing pH and cationic with increasing pH. However, the fiber had no adsorption property for a pyrogen endotoxin. The β-galactosidase and α-chymotrypsin not retained in alginate gel were immobilized on the fibers by this method. The pH, temperature, and repeated run stabilities of the immobilized enzyme were compared to those of the native one. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:651-656, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 659-665 
    ISSN: 0006-3592
    Keywords: F plasmid ; low-copy plasmids ; plasmid stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A low-copy expression vector has been constructed from a 9 Kbp region of the Escherichia coli F plasmid containing the oriV and oriS origins of replication. This plasmid carries the β-lactamase gene (Apr) and the araBAD promoter/araC regulator for arabinose-inducible gene expression. A derivative which carries a lacZ reporter gene was found to be stably maintained for at least 150 generations. A related multi-copy plasmid was stably maintained in arabinose-free medium, but no plasmid-bearing segregants remained after 60 generations when lacZ expression was induced. Induced expression resulted in 27% (multi-copy) and 12% (low-copy) decreases in growth rate. The uninduced levels of β-galactosidase were 200 units (multi-copy) and 15 units (low-copy). © 1998 John-Wiley & Sons, Inc. Biotechnol Bioeng 59:659-665, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 666-672 
    ISSN: 0006-3592
    Keywords: mRNA stability ; plasmid copy number ; gene expression ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effects of mRNA stability and plasmid copy number on gene expression in Escherichia coli were evaluated by constructing multicopy (pMB1-based) and low-copy (F-based) plasmids containing an arabinose-inducible promoter system, the lacZ reporter gene, and mRNA-stabilizing 5′ hairpin structures. Product formation and cell growth were evaluated under a number of inducer concentrations. The introduction of a 5′ hairpin into the untranslated region of the mRNA resulted in significantly higher gene expression from the multicopy plasmids at low inducer concentrations and increased gene expression from the low-copy plasmids across all inducer concentrations investigated. With high inducer concentrations, expression from high-copy plasmids significantly slowed cell growth, whereas expression from the low-copy plasmids had little effect on growth rate. At inducer concentrations between 1 × 10-4 and 4 × 10-4%, the productivity of low-copy plasmids containing the 5′-hairpin was equal to or greater than that from multicopy plasmids. Together, these two gene expression strategies may find important use in metabolic engineering and heterologous gene expression. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:666-672, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 679-683 
    ISSN: 0006-3592
    Keywords: cultured epidermal autografts ; bioreactor ; keratinocyte cultures ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objective of this work was to engineer an automated system for the production of cultured epidermal autografts and sub-confluent cultured epidermal autografts. Human epidermal cells were grown directly on a transparent FEP film, which was held in place and surrounded by a polycarbonate growth chamber. The growth chambers were stacked to accommodate various surface area requirements. To monitor the development of the grafts, the upper-most growth chamber in the stack was periodically placed on a standard phase contrast microscope. The growth chambers were connected to a multi-channel peristaltic pump, which was controlled automatically to manage fluid-handling operations. Sub-confluent graft production involved removing the epidermal-film composite from the growth chambers and cutting desired graft geometries. Producing cultured epidermal autografts involved (1) removing the confluent epidermal-film composite from the growth chambers, (2) treating the composites with dispase, and (3) clipping the detached cultured epidermis to a synthetic support. Twelve to fifteen days were required to produce sub-confluent grafts (total surface area 3500-4500 cm2 50% confluent) and 18 to 24 d were required to produce standard cultured epidermal autografts (total surface area 3500-4500 cm2). The system reduces the tedious manual labor associated with producing cultured epidermal autografts. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:679-683, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 684-694 
    ISSN: 0006-3592
    Keywords: immobilized enzymes ; organic solvents ; mechanism ; kinetic studies ; microscopic rate constants ; rate-limiting step ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The kinetics of the immobilized lipase B from Candida antarctica have been studied in organic solvents. This enzyme has been shown to be slightly affected by the water content of the organic media, and it does not seem to be subject to mass transfer limitations. On the other hand, some evidence indicates that the catalytic mechanism of reactions catalyzed by this lipase proceeds through the acyl-enzyme intermediate. Moreover, despite the fact that the immobilization support dramatically enhances the catalytic power of the enzyme, it does not interfere with the intrinsic solvent effect. Consequently, this enzyme preparation becomes optimum for studying the role played by the organic solvent in catalysis. To this end, we have measured the acylation and deacylation individual rate constants, and the binding equilibrium constant for the ester, in several organic environments. Data obtained show that the major effect of the organic solvent is on substrate binding, and that the catalytic steps are almost unaffected by the solvent, indicating the desolvation of the transition state. However, the strong decrease in binding for hydrophilic solvents such as THF and dioxane, compared to the rest of solvents, cannot be easily explained by means of thermodynamic arguments (desolvation of the ester substrate). For this reason, data have been considered as an indication of the existence of an unknown step in the catalytic pathway occurring prior to formation of the acyl-enzyme intermediate. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:684-694, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 673-678 
    ISSN: 0006-3592
    Keywords: microaerobic growth ; oxygen limitation ; oxygen uptake ; recombinant Escherichia coli ; synthesis and excretion/secretion of α-amylase ; two-stage culture ; Vitreoscilla hemoglobin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Synthesis and excretion of α-amylase is investigated in batch cultures of Escherichia coli JM103[pMK57] (vgb-) and E. coli JM103[pMK79] (vgb+). While total production and excretion of α-amylase were promoted in Luria broth (LB) (excretion being as high as 87%), cell-mass-specific production of the enzyme was promoted in M9 in bioreactor cultures and in LB in shake flask cultures. Low aeration and agitation rates and presence of starch were conducive to α-amylase synthesis in E. coli JM103[pMK79]. Two-stage bioreactor operating strategies that will improve α-amylase production are proposed. The potential of these strategies is demonstrated via two-stage shake flask cultures. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:673-678, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 515-528 
    ISSN: 0006-3592
    Keywords: flow cytometry ; plant cell culture ; bromodeoxyuridine ; cell cycle ; hydrodynamic shear ; temperature effects ; Solanum aviculare ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Flow cytometry was used to measure cell cycle parameters in Solanum aviculare plant cell suspensions. Methods for bromodeoxyuridine (BrdU) labeling of plant nuclei were developed so that cell cycle times and the proportion of cells participating in growth could be determined as a function of culture time and conditions. The percentage of cells active in the cell cycle at 25°C decreased from 52% to 19% within 7.6 d of culture; presence of a relatively large proportion of non-active cells was reflected in the results for culture growth. While the maximum specific growth rate of the suspensions at 25°C was 0.34 d-1 (doubling time: 2.0 d), the specific growth rate of active cells was significantly greater at 0.67 d-1, corresponding to a cell cycle time of 1.0 d. A simple model of culture growth based on exponential and linear growth kinetics and the assumption of constant cell cycle time was found to predict with reasonable accuracy the proportion of active cells in the population as a function of time. Reducing the temperature to 17°C lowered the culture growth rate but prolonged the exponential growth phase compared with 25°C; the percentage of cells participating in the cell cycle was also higher. Exposure of plant cells to different agitation intensities in shake flasks had a pronounced effect on the distribution of cells within the cell cycle. The proportion of cells in S phase was 1.8 times higher at a shaker speed of 160 rpm than at 100 rpm, while the frequency of G0 + G1 cells decreased by up to 27%. Because of the significant levels of intraculture heterogeneity in suspended plant cell systems, flow cytometry is of particular value in characterizing culture properties and behavior. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 515-528, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 554-559 
    ISSN: 0006-3592
    Keywords: directed evolution ; esterase ; epothilon ; Pseudomonas fluorescens ; stereoselectivity ; mutator strain ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The directed evolution of an esterase from Pseudomonas fluorescens using the mutator strain Epicurian coli XL1-Red was investigated. Mutants were assayed for their ability to hydrolyze a sterically hindered 3-hydroxy ester, which can serve as a building block in the synthesis of epothilones. Screening was performed by plating esterase producing colonies derived from mutation cycles onto minimal media agar plates containing indicator substances (neutral red and crystal violet). Esterase-catalyzed hydrolysis of the 3-hydroxy ester (ethyl or glycerol ester) was detected by the formation of a red color due to a pH decrease caused by the released acid. Esterases isolated from positive clones were used in preparative biotransformations of the ethyl ester. One variant containing two mutations (A209D and L181V) stereoselectively hydrolyzed the ethyl ester resulting in 25% ee for the remaining ester. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 554-559, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 572-580 
    ISSN: 0006-3592
    Keywords: fluoroether surfactants ; liquid CO2 ; high pressure ; emulsion ; solubilization ; subtilisin Carlsberg ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Carbon dioxide is a naturally abundant, environmentally benign solvent whose use, like water, in a process is not regulated by either EPA or FDA. Unfortunately, polar compounds such as amino acids and proteins are essentially insoluble in carbon dioxide. Further, alkyl-functional surfactants, which have been shown to allow extraction of proteins into conventional organic solvents, exhibit very poor or negligible solubility in CO2 at pressures below 50 MPa. Consequently, highly CO2-soluble fluoroether-functional surfactants have been generated and used to solubilize subtilisin Carlsberg from aqueous buffer and cell culture medium into CO2, with recovery accomplished by depressurization. Both the amount of protein solubilized in the emulsion and the extent of activity retention by the protein following recovery are functions of the initial protein concentration in the buffer. This, plus the observation that the presence of protein affects the stability of the emulsion, suggests that some of the protein is sacrificed to act as a stabilizer in these systems. In addition to solubilization via an inverse emulsion, it has also been shown that one can strip protein-surfactant aggregates from a middle phase emulsion using pure CO2, suggesting an ion-pairing type mechanism. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 572-580, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 581-586 
    ISSN: 0006-3592
    Keywords: apolipoprotein B ; immunoadsorbent ; microencapsulation ; affinity chromatography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We have developed a solid-phase immunoadsorbent based on encapsulated goat anti-apolipoprotein B polyclonal antibodies previously crosslinked with a 0.25% glutaraldehyde solution, and designed to remove by immunoaffinity the excess of apolipoproteins B from the plasma of patients affected by familial hypercholesterolemia. Compared to a classical immunoadsorbent prepared by activation of Sepharose CL-4B with cyanogen bromide, the resulting immunoadsorbent exhibits both optimal adsorption capacity and stability over the entire range of chemical and biochemical conditions during its practical handling. This approach will serve as a model system to demonstrate the applicability of microparticles as immunoadsorbents, which can be achieved for other encapsulated crosslinked proteins. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 581-586, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 587-594 
    ISSN: 0006-3592
    Keywords: biotransformation ; membrane bioreactor ; silicone rubber ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The Membrane Bioreactor for Biotransformations (MBB) is based on the aqueous/organic two-phase system, and uses a tubular silicone rubber membrane to separate the two liquid phases. This avoids the key problem associated with direct contact two-phase processes, specifically, product emulsification. The baker's yeast mediated reduction of geraniol to citronellol was used as a model biotransformation to demonstrate MBB operation. Values for the overall mass transfer coefficient were determined for geraniol, (2.0 × 10-5 ms-1), and for citronellol, (2.1 × 10-5 ms-1) diffusion across the silicone rubber membrane. Using these values, and the specific activity of the biocatalyst (5 nmols-1g biomass-1), a suitable membrane surface area: biomass ratio was determined as 2.4 × 10-3 m2g biomass-1. The bioreactor was operated at this surface area: biomass ratio and achieved a product accumulation rate 90-95% that of a conventional direct contact two-phase system. The slight reduction in product accumulation rate was shown not to be due to mass transfer limitations with respect to reactant delivery or product extraction. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 587-594, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 595-604 
    ISSN: 0006-3592
    Keywords: turbulent jet ; plant cells ; Morinda citrifolia ; shear damage ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cell suspensions of Morinda citrifolia were subjected to turbulent flow conditions in a submerged jet apparatus, to investigate their hydrodynamic shear susceptibility. The suspensions were exposed to repeated, pressure-driven passages through a submerged jet. Two nozzles, of 1 mm and 2 mm diameter, were employed. Average energy dissipation rates were in the range 103-105 W/kg and cumulative energy dissipation in the range 105-107 J/m3. System response to the imposed conditions was evaluated in terms of suspension viability (determined using a dye exclusion technique) and variations in both chain length distribution and maximum chain length. Viability loss was well-described by a first-order model, and a linear relationship was identified between the specific death rate constant and the average energy dissipation rate. This relationship was consistent with results obtained using the same suspension cultures in a turbulent capillary flow device. Morphological measurements indicated that exposure to the hydrodynamic environment generated in the jet resulted in a significant reduction in both the average and maximum chain lengths, and the reduction in the maximum chain length was identified as an appropriate measure of sustained damage. Analysis of both viability and chain length in terms of cumulative energy dissipated revealed good agreement with results reported by other authors for morphologically different plant cell systems. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 595-604, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 0006-3592
    Keywords: solar irradiance ; tubular photobioreactor ; microalgal culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A macromodel is developed for estimating the year-long biomass productivity of outdoor cultures of microalga in tubular photobioreactors. The model evaluates the solar irradiance on the culture surface as a function of day of the year and the geographic location. In a second step, the geometry of the system is taken into account in estimating the average irradiance to which the cells are exposed. Finally, the growth rate is estimated as a function of irradiance, taking into account photoinhibition and photolimitation. The model interconnects solar irradiance (an environmental variable), tube diameter (a design variable), and dilution rate (an operating variable). Continuous cultures in two different tubular photobioreactors were analyzed using the macromodel. The biomass productivity ranged from 0.50 to 2.04 g L-1 d-1, and from 1.08 to 2.76 g L-1 d-1, for the larger and the smaller tube diameter photobioreactors, respectively. The quantum yield ranged from 1.1 to 2.2 g E-1; the higher the incident solar radiation, the lower the quantum yield. Simultaneous photolimitation and photoinhibition of outdoor cultures was observed. The model reproduced the experimental results with less than 20% error. If photoinhibition was neglected, and a growth model that considered only photolimitation was used to fit the data, the error increased to 45%, thus reflecting the inadequacy of previous outdoor growth models that disregard photoinhibition. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 605-616, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 617-624 
    ISSN: 0006-3592
    Keywords: thermoacidophile ; chemolithotroph ; heat shock ; chemical stress ; continuous culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The biooxidation capacity of an extremely thermoacidophilic archaeon Metallosphaera sedula (DSMZ 5348) was examined under bioenergetic challenges imparted by thermal or chemical stress in regard to its potential use in microbial bioleaching processes. Within the normal growth temperature range of M. sedula (70-79°C) at pH 2.0, upward temperature shifts resulted in bioleaching rates that followed an Arrhenius-like dependence. When the cells were subjected to supraoptimal temperatures through gradual thermal acclimation at 81°C (Han et al., 1997), cell densities were reduced but 3 to 5 times faster specific leaching rates (Fe3+ released from iron pyrite/cell/h) could be achieved by the stressed cells compared to cells at 79°C and 73°C, respectively. The respiration capacity of M. sedula growing at 74°C was challenged by poisoning the cells with uncouplers to generate chemical stress. When the protonophore 2,4-dinitrophenol (5-10 μM) was added to a growing culture of M. sedula on iron pyrite, there was little effect on specific leaching rates compared to a culture with no protonophore at 74°C; 25 μM levels proved to be toxic to M. sedula. However, a significant stimulation in specific rate was observed when the cells were subjected to 1 μM nigericin (+135%) and 2 μM (+63%); 5 μM levels of the ionophore completely arrested cell growth. The ionophore effect was further investigated in continuous culture growing on ferrous sulfate at 74°C. When 1 μM nigericin was added as a pulse to a continuous culture, a 30% increase in specific iron oxidation rate was observed for short intervals, indicating a potential positive impact on leaching when periodic chemical stress is applied. This study suggests that biooxidation rates can be increased by strategic exposure of extreme thermoacidophiles to chemical or thermal stress, and this approach should be considered for improving process performance. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 617-624, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 137-146 
    ISSN: 0006-3592
    Keywords: fluorescence confocal microscopy ; microfabrication ; aminosilane ; mercaptosilane ; antibody immobilization ; heterobifunctional crosslinker ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fluorescence confocal microscopy was used to characterize micron-sized microfabricated silicon particles and planar oxide surfaces after silanization and immobilization of IgG antibody. Surfaces treated with amino- and mercaptosilanes were tested for the presence of amine and sulfhydryl groups by labeling with specific fluorescein probes. In addition, human antibody (IgG) was immobilized to the thiol-coated microparticles using the heterobifunctional crosslinker succinimidyl 4-(N-maleimidolmethyl)-cyclohexane-1-carboxylate. Estimates of the surface density of IgG were consistent with 8.3% of a monolayer of covalently-bound antibody. Confocal images confirmed uniform layers of both silanes and antibodies on the microparticles. The sensitivity limit for the confocal measurements was determined to be as low as 1.5 × 10-5 fluors per nm2. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 137-146, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 786-791 
    ISSN: 0006-3592
    Keywords: seleno-subtilisin ; subtilisin ; semisynthetic enzyme ; peroxidase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A simplified and up-scaled synthesis of the semisynthetic peroxidase seleno-subtilisin was developed. Highly purified to technical grade subtilisin preparations from Bacillus licheniformis and Bacillus amyloliquefaciens were applied as starting materials. Activation of Ser 221 with phenylmethanesulfonyl fluoride, nucleophilic substitution by sodium hydrogen selenide, and oxidation to the seleninic acid with hydrogen peroxide completed the chemical active-site modification. The reactions were accomplished with a minimum of simple work-up procedures in 10 g scale. Kinetics and enantioselectivity of the preparations were tested using 1-phenylethyl hydroperoxide. For the first time, an up-scaled synthesis of a semisynthetic enzyme is available. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:786-791, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 1-9 
    ISSN: 0006-3592
    Keywords: β-lactamase ; dissolved oxygen control ; adaptive pole placement ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dissolved oxygen (DO) is an important variable in aerobic fermentations and affects the cell growth and product formation. Dissolved oxygen control is difficult in batch fermentations because of the time-varying conditions, time delays, and the probe dynamics. Modeling of the various patterns of biological activity in fermentations and their impact on the DO process dynamics is essential to both achieve a satisfactory control and to track the aforementioned patterns. An adaptive pole placement algorithm with time-delay compensation was used for controlling the DO, coupled with system identification using recursively estimated autoregressive models with exogeneous inputs (ARX). The flow rate of O2 in a constant flow rate gas inlet mixture is used as the manipulated variable. Supervision and coordination techniques are applied to improve the control performance. The control performance is affected by the accuracy of the model prediction and the selected time delay. The effect of DO level on the productivity of β-lactamase using Bacillus subtilis under oxygen-limited conditions is investigated. Beta-lactamase stability is improved under prolonged growth conditions with low DO levels. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 1-9, 1988.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 10-23 
    ISSN: 0006-3592
    Keywords: alkane ; mass transfer ; Pseudomonas oleovorans ; cell lysis ; two-liquid phase bioprocess ; carrier solvent ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The oxidation of medium chain length alkanes and alkenes (C6 to C12) by Pseudomonas oleovorans and related, biocatalytically active recombinant organisms, in two-liquid phase cultures can be used for the biochemical production of several interesting fine chemicals. The volumetric productivities that can be attained in two-liquid phase systems can be, in contrast to aqueous fermentations, limited by the transport of substrates from an apolar phase to the cells residing in the aqueous phase and by toxic effects of apolar solvents on microbial cells. We have assessed the impact of these possible limitations on attainable productivities in two-liquid phase fermentations operated with mcl-alkanes.Pseudomonas oleovorans grows well in two-liquid phase media containing a bulk n-octane phase as the sole carbon source. However, cells are also damaged, typically resulting in a cell lysis rate of about 0.08 to 0.10 h-1. These rates could be lowered by 50 to 70% to 0.03 h-1 and substrate yields increased from 0.55 to 0.85 g g-1 by diluting octane in non-metabolizable long-chain hydrocarbon solvents.Transfer rates of medium chain length (mcl) alkanes from the apolar phase to the cells were determined by following growth and the rate at which carbon-containing metabolites accumulated in the different phases of the cultures. mcl-Alkane solvent-cell transfer rates of at least 79, 64, and 18 mmol per liter of aqueous medium per hour were determined for n-heptane, n-octane, and n-decane, respectively. Rates of up to 30 mmol L-1 h-1 were observed under octane-limiting conditions in systems where the apolar substrate was dissolved to concentrations below 3% (v/v) in hexadecene. Based on low power input experiments, we estimated the maximum obtainable mass transfer rates in large scale processes to be in the range of 13 mmol L-1 h-1 for decane and higher than 45 mmol L-1 h-1 for octane and heptane.The results indicate that high solvent to cell mass transfer rates and minimized cell damage will enable high production rates in two-liquid phase bioprocesses, justifying ongoing efforts to attain high densities of catalytically, highly active cells in such systems. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 10-23 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 36-43 
    ISSN: 0006-3592
    Keywords: anaerobic fluidized bed ; hydrodynamics ; biogas production ; kinetics ; model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of mixing and phase hold-ups on gas-producing fluidized-bed reactors was investigated and compared with an ideal flow reactor performance (CSTR). The liquid flow in the anaerobic fluidized bed reactor could be described by the classical axially dispersed plug flow model according to measurements of residence time distribution. Gas effervescence in the fluidized bed was responsible for bed contraction and for important gas hold-up, which reduced the contact time between the liquid and the bioparticles. These results were used to support the modeling of large-scale fluidized-bed reactors. The biological kinetics were determined on a 180-L reactor treating wine distillery wastewater where the overall total organic carbon uptake velocity could be described by a Monod model. The outlet concentration and the concentration profile in the reactor appeared to be greatly influenced by hydrodynamic limitations. The biogas effervescence modifies the mixing characteristics and the phase hold-ups. Bed contraction and gas hold-up data are reported and correlated with liquid and gas velocities. It is shown that the reactor performance can be affected by 10% to 15%, depending on the mode of operation and recycle ratio used. At high organic loading rates, reactor performance is particularly sensitive to gas effervescence effects. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 36-43, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 44-52 
    ISSN: 0006-3592
    Keywords: β-glucuronidase ; recovery ; recombinant enzyme ; protein extraction ; transgenic corn ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The tools of plant biotechnology that have been developed to improve agronomic traits are now being applied to generate recombinant protein products for the food, feed, and pharmaceutical industry. This study addresses several processing and protein recovery issues that are relevant to utilizing transgenic corn as a protein production system. The gus gene coding for β-glucuronidase (rGUS) was stably integrated and expressed over four generations. The accumulation level of rGUS reached 0.4% of total extractable protein. Within the kernel, rGUS was preferentially accumulated in the germ even though a constitutive ubiquitin promoter was used to direct gus expression. Fourth-generation transgenic seed was used to investigate the effect of seed processing on the activity and the recovery of rGUS. Transgenic seed containing rGUS could be stored at an ambient temperature for up to two weeks and for at least three months at 10°C without a significant loss of enzyme activity. rGUS exposed to dry heat was more stable in ground than in whole kernels. The enzyme stability was correlated with the moisture loss of the samples during the heating. Transgenic seed was dry-milled, fractionated, and hexane extracted to produce full-fat and defatted germ fractions. The results of the aqueous extraction of rGUS from ground kernels, full-fat germ, and defatted-germ samples revealed that approximately 10 times more rGUS per gram of solids could be extracted from the ground full-fat germ and defatted-germ than from the kernel samples. The extraction of corn oil from ground germ with hot hexane (60°C) did not affect the extractable rGUS activity. rGUS was purified from ground kernels and full-fat germ extracts by ion exchange, hydrophobic interaction, and size exclusion chromatography. Similar purity and yield of rGUS were obtained from both extracts. Biochemical properties of rGUS purified from transgenic corn seed were similar to those of E. coli GUS. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 44-52, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 204-215 
    ISSN: 0006-3592
    Keywords: immobilization ; white-rot fungi ; Lentinula edodes ; manganese peroxidase ; Mn3+ ; azlactone ; chlorophenol ; EEDQ ; biocatalyst ; bioremediation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Manganese peroxidase (MnP) purified from commercial cultures of Lentinula edodes was covalently immobilized through its carboxyl groups using an azlactone-functional copolymer derivatized with ethylenediamine and 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) as a coupling reagent. The tethered enzyme was employed in a two-stage immobilized MnP bioreactor for catalytic generation of chelated MnIII and subsequent oxidation of chlorophenols. Manganese peroxidase immobilized in the enzyme reactor (reactor 1) produced MnIII-chelate, which was pumped into another chemical reaction vessel (reactor 2) containing the organopollutant. Reactor 1-generated MnIII-chelates oxidized 2,4-dichlorophenol and 2,4,6-trichlorophenol in reactor 2, demonstrating a two-stage enzyme and chemical system. H2O2 and oxalate chelator concentrations were varied to optimize the immobilized MnP's oxidation of MnII to MnIII. Oxidation of 1.0 mM MnII to MnIII was initially measured at 78% efficiency under optimized conditions. After 24 h of continuous operation under optimized reaction conditions, the reactor still oxidized 1.0 mM MnII to MnIII with ∼69% efficiency, corresponding to 88% of the initial MnP activity. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 204-215, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 77-87 
    ISSN: 0006-3592
    Keywords: membrane fouling ; microfiltration ; backpulsing ; cell recovery ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A promising method for reducing membrane fouling during crossflow microfiltration of biological suspensions is backpulsing. Very short backpulses (0.1-1.0 s) have been used to increase the net flux for washed bacterial suspensions and whole bacterial fermentation broths. The net fluxes under optimum backpulsing conditions for the washed bacteria are approximately 10-fold higher than those obtained during normal crossflow microfiltration operation, whereas only a 2-fold improvement in the net flux is achieved for the fermentation broths. A theory is presented that is based on external fouling during forward filtration and nonuniform cleaning of the membrane during reverse filtration. The model contains an adjustable parameter which is a measure of the cleaning efficiency during backpulsing; the cleaning efficiency found by fitting the model to the experiments increases with increasing frequency and duration of the backpulses. The theory predicts an optimum backpulsing frequency, as was observed experimentally. An economic analysis shows that crossflow microfiltration with backpulsing has lower costs than centrifugation, rotary vacuum filtration, and crossflow microfiltration without backpulsing. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 77-87, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 88-96 
    ISSN: 0006-3592
    Keywords: molybdenum ; uranium ; immobilized cells ; dissimilatory reduction ; Desulfovibrio ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Intact cells of Desulfovibrio desulfuricans were immobilized in polyacrylamide gel and used to remove soluble U and Mo from water by enzymatically mediated reduction reactions in column reactors. Formate or lactate served as the electron donor and oxidized U(VI) and Mo(VI) species served as electron acceptors. Greater than 99% removal efficiencies were achieved for both metals with initial concentrations of 5 mg/L U and 10 mg/L Mo. Hydraulic residence times in the columns were between 24 and 36 h. Sulfate concentrations as high as 2000 mg/L did not inhibit reduction of U or Mo in the columns. However, nitrate inhibited uranium reduction at concentrations near 50 mg/L and inhibited molybdenum reduction at concentrations near 150 mg/L. The results indicate that enzymatic reduction of U and Mo by immobilized cells of D. desulfuricans may be a practical method for removing these contaminants from solution in continuous-flow reactors. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 88-96, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 0006-3592
    Keywords: Monte Carlo simulation ; depolymerization ; endo-enzymes ; single-attack mechanism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A Monte Carlo simulation of the depolymerization of linear homopolymers by specific endo-enzymes exhibiting random-attack probability and a single-attack mechanism has been developed. The program simulates the “real” depolymerization versus time of a polydisperse sample of substrate by a specific endo-enzyme. Given the initial mass distribution and concentration of the substrate, the initial concentration of the enzyme, and its Michaelis-Menten constant, the program simulates the evolution of the mass distribution of the substrate with the depolymerization time. When tested against experimental data from the depolymerization of barley (1→3),(1→4)-β-D-glucan by malt endo-(1→3),(1→4)-β-D-glucanase, monitored using the Calcofluor-FIA method with fluorescent detection, excellent results were obtained. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 105-113, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 11-21 
    ISSN: 0006-3592
    Keywords: proteins ; salts ; intermolecular interactions ; potentials of mean force ; precipitation ; crystallization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Protein-protein and protein-salt interactions have been obtained for ovalbumin in solutions of ammonium sulfate and for lysozyme in solutions of ammonium sulfate, sodium chloride, potassium isothiocyanate, and potassium chloride. The two-body interactions between ovalbumin molecules in concentrated ammonium-sulfate solutions can be described by the DLVO potentials plus a potential that accounts for the decrease in free volume available to the protein due to the presence of the salt ions. The interaction between ovalbumin and ammonium sulfate is unfavorable, reflecting the kosmotropic nature of sulfate anions. Lysozyme-lysozyme interactions cannot be described by the above potentials because anion binding to lysozyme alters these interactions. Lysozyme-isothiocyanate complexes are strongly attractive due to electrostatic interactions resulting from bridging by the isothiocyanate ion. Lysozyme-lysozyme interactions in sulfate solutions are more repulsive than expected, possibly resulting from a larger excluded volume of a lysozyme-sulfate bound complex or perhaps, hydration forces between the lysozyme-sulfate complexes. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 11-21, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 0006-3592
    Keywords: coenzyme regeneration ; formate dehydrogenase ; fed-batch process ; xylitol production ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The NAD-dependent, formate dehydrogenase-catalyzed oxidation of formate anion into CO2 is known as the method for the regeneration of NADH in reductive enzymatic syntheses. Inhibition by formate and inactivation by alkaline pH-shift that occurs when oxidation of formate is carried out at pH ≈ 7.0 may, however, hamper the efficient application of this NADH recycling reaction. Here, we have devised a fed-batch process using pH-controlled feeding of formic acid that can overcome enzyme inhibition and inactivation. The reaction pH is thus kept constant by addition of acid, and formate dehydrogenase is supplied continuously with substrate as required, but the concentration of formate is maintained at a constant, non- or weakly inhibitory level throughout the enzymatic conversion, thus enabling a particular NADH-dependent dehydrogenase to operate stably and at high reaction rates. For xylitol production from xylose using yeast xylose reductase (Ki,Formate 182 mM), a fed-batch conversion of 0.5M xylose yielded productivities of 2.8 g (L h)-1 that are three-fold improved when contrasted to a conventional batch reaction that employed equal initial concentrations of xylose and formate. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 277-282, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 71-78 
    ISSN: 0006-3592
    Keywords: acetate ; E. coli ; metabolic flux ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The productivity of Escherichia coli as a producer of recombinant proteins is affected by its metabolic properties, especially by acetate production. Two commercially used E. coli strains, BL21 (λDE3) and JM109, differ significantly in their acetate production during batch fermentation at high initial glucose concentrations. E. coli BL21 grows to an optical density (OD, 600 nm) of 100 and produces no more than 2 g/L acetate, while E. coli JM109 grows to an OD (600 nm) of 80 and produces up to 14 g/L acetate. Even in fed-batch fermentation, when glucose concentration is maintained between 0.5 and 1.0 g/L, JM109 accumulates 4 times more acetate than BL21. To investigate the difference between the two strains, metabolites and enzymes involved in carbon utilization and acetate production were analyzed (isocitrate, ATP, phosphoenolpyruvate, pyruvate, isocitrate lyase, and isocitrate dehydrogenase). The results showed that during batch fermentation isocitrate lyase activity and isocitrate concentration were higher in BL21 than in JM109, while pyruvate concentration was higher in JM109. The activation of the glyoxylate shunt pathway at high glucose concentrations is suggested as a possible explanation for the lower acetate accumulation in E. coli BL21. Metabolic flux analysis of the batch cultures supports the activity of the glyoxylate shunt in E. coli BL21. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 71-78, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 79-86 
    ISSN: 0006-3592
    Keywords: Alcaligenes eutrophus ; hydrogenase ; NADH regeneration ; HLADH ; organic solvent ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A soluble NAD-dependent hydrogenase contained in Alcaligenes eutrophus was evaluated as a coenzyme regenerating catalyst in an organic-aqueous two-phase (predominantly organic) system. The horse-liver alcohol-dehydrogenase (HLADH) catalyzed reduction of cyclohexanone to cyclohexanol was used as a model reaction. The impact of different solvents (selected to span a large variety of principal properties) on the stability and activity of the HLADH, using substrate-driven regeneration, was studied. Solvents suitable for the HLADH were then selected for an evaluation of the hydrogenase-driven coenzyme regeneration. Hydrophobic solvents such as heptane, toluene, and 1,1,1-trichloroethane were found to be suitable for the coupled reactions catalyzed by HLADH and hydrogenase. Nonimmobilized cells, permeabilized with cetyl-trimethyl-ammonium bromide, were the most efficient preparation for the regeneration of NADH. The use of this preparation in heptane (10% water) was optimized with respect to the yield obtained in the HLADH-catalyzed reduction of cyclohexanone. Using the optimized conditions, yields of 99% cyclohexanol were obtained. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 79-86, 1988.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 121-125 
    ISSN: 0006-3592
    Keywords: sucrose monoester synthesis ; lipase-catalyzed acylation ; water activity (a w) ; regioselectivity ; salt hydrate pair ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Sucrose monoesters of a fatty acid were synthesized by using lipase in a solvent-free system. When lipase from Mucor miehei was used as a catalyst with capric acid as the donor and sugar as the acceptor, sucrose 6-monocaprate was predominantly produced in a yield of 25.3%. The yield of product was significantly increased by the direct addition of a suitable pair of solid salt hydrates to the reaction mixture to control the water activity (aw). Among the salt hydrate pairs investigated, the barium hydroxide, 8/1H2O pair resulted in the highest yield of the product. This salt addition method was also successfully employed for acylation of primary hydroxyl groups in various unprotected mono- and disaccharides such as glucose, galactose, fructose, trehalose, mannose, maltose, and lactose. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 121-125, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 136-144 
    ISSN: 0006-3592
    Keywords: down-flow fluidization ; bed expansion ; biofilm ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article describes the bed expansion characteristics of a down-flow anaerobic fluidized bed reactor treating a synthetic wastewater. Experiments were carried out in a 0.08 m diameter and 1 m length PVC column. The carrier used was ground perlite (an expanded volcanic rock). Particles characteristics were 0.968 mm in diameter, specific density of 213 kg · m-3 and Umf (minimal fluidization velocity): 2.3 m · h-1. Experimental data of terminal velocities and bed expansion parameters at several biofilm thicknesses were compared to different models predicting the bed expansion of up-flow and down-flow fluidized beds.Measured bed porosities at different liquid superficial velocities for the different biofilm thicknesses were in agreement with the Richardson-Zaki model, when Ut (particle terminal velocity) and n (expansion coefficient) were calculated by linear regression of the experimental data. Terminal velocities of particles at different biofilm thicknesses calculated from experimental bed expansion data, were found to be much smaller than those obtained when Cd (drag coefficient) is determined from the standard drag curve (Lapple and Sheperd, 1940) or with others' correlations (Karamanev and Nikolov, 1992a,b). This difference could be explained by the fact that free-rising particles do not obey Newton's law for free-settling, as proposed by Karamanev and Nikolov (1992a,b) and Karamanev et al. (1996). In the present study, the same free-rising behavior was observed for all particles (densities between 213 and 490 kg · m-3). © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 136-144, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 164-171 
    ISSN: 0006-3592
    Keywords: cell death ; apoptosis ; bcl -2 ; cell culture ; cell viability ; growth factors ; survival factors ; abortive proliferation ; hybridomas ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cultures of the CRL-1606 hybridoma (ATCC) have been reported to undergo continuous proliferation with simultaneous death during nutrient limited fed-batch fermentations. The bcl-2 proto-oncogene has been shown to prevent cell death under a variety of otherwise death inducing conditions. We were interested in elucidating the nature of the massive death observed in cultures of CRL-1606, specifically with respect to the possible environmental causes, and the ability of overexpressed human bcl-2 (hbcl-2) to mitigate cell death. Abortive proliferation, or continuous proliferation in the presence of continuous death, could be induced in serum free cultures of CRL-1606 through the withdrawal of insulin provided the culture was competent for cell proliferation. Culture competency for proliferation was found to be solely determined by the presence of cell culture nutrients. Abortive proliferation was defective in cultures transfected with hbcl-2 and the enhanced viability observed resulted from an increased viable cell population and at the expense of the nonviable cell population normally found in untransfected cultures. Abortive proliferation was also observed in serum containing cultures upon serum shiftdowns. Like the insulin-supplemented serum free culture system, hbcl-2 transfected cultures exhibited defects in the abortive proliferation process. These results suggest that the massive death observed during nutrient-limited fed-batch fermentation originate, in part, from growth or survival factor limitations. Hence, approaches to design cell culture media that account for the cell's proliferation requirements without accounting for the cell's survival requirements may represent a cell death sentence. Given the transformed nature of the hybridomas, we conclude that the abortive proliferation of CRL-1606 is a consequence of inappropriate cell cycle entry in a survival factor limited environment. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 164-171, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 187-197 
    ISSN: 0006-3592
    Keywords: algal cultures ; photosynthetic efficiency ; light saturation effect ; spatial dilution of light ; Arthrospira (Spirulina) platensis ; tubular and flat photobioreactors ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The light saturation effect imposes a serious limitation on the efficiency with which solar energy can be utilized in outdoor algal cultures. One solution proposed to reduce the intensity of incident solar radiation and overcome the light saturation effect is “spatial dilution of light” (i.e., distribution of the impinging photon flux on a greater photosynthetic surface area), but consistent experimental data supporting a significant positive influence of spatial light dilution on the productivity and the photosynthetic efficiency of outdoor algal cultures have never been reported. We used a coiled tubular reactor and compared a near-horizontal straight tubular reactor and a near-horizontal flat panel in outdoor cultivation of the cyanobacterium Arthrospira (Spirulina) platensis under defined operating conditions for optimum productivity. The photosynthetic efficiency achieved in the tubular systems was significantly higher because their curved surface “diluted” the impinging solar radiation and thus reduced the light saturation effect. This interpretation was supported by the results of experiments carried out in the laboratory under continuous artificial illumination using both a flat and a curved chamber reactor. The study also showed that, when the effect of light saturation is eliminated or reduced, productivity and solar irradiance are linearly correlated even at very high diurnal irradiance values, and supported findings that outdoor algal cultures are light-limited even during bright summer days. It was also observed that, besides improving the photosynthetic efficiency of the culture, spatial dilution of light also leads to higher growth rates and lowers the cellular content of accessory pigments; that is, it reduces mutual shading in the culture. The inadequacy of using volumetric productivity as the sole criterion for comparing reactors of different surface-to-volume ratio and of the areal productivity for evaluating the performance of elevated photobioreactors operated outdoors is stressed; it is furthermore suggested that the photosynthetic efficiency achieved by the culture also be calculated to provide a suitable parameter for comparison of different algal cultivation systems operated under similar climatic conditions. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 187-197, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 238-244 
    ISSN: 0006-3592
    Keywords: expression ; membrane protein ; glycophorin ; neomycin resistance ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The gene for the integral membrane protein glycophorin A (GPA) was cloned in frame to the 5′ end of the antibiotic resistance gene, neomycin phosphotransferase II (NPT). Protein expression was achieved in Escherichia coli as well as in mammalian cells. In case of Chinese hamster ovary cells (CHO) the resistant populations were analyzed 2 weeks after transfection; the amount of GPA-NPT fusion protein produced was constant from experiment to experiment. Neomycin resistance was directly correlated with GPA expression, thus allowing the direct selection for a stable GPA-expressing cell population without the need of a cloning step. The amount of GPA-NPT produced was further increased by weakening the specific NPT enzymatic activity via site-directed mutagenesis. Detection was simplified by the fact that all different fusion proteins could be detected by the same anti-NPT antibody. This approach may be also applicable to other membrane proteins. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 238-244, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 228-237 
    ISSN: 0006-3592
    Keywords: AlkB ; Pseudomonas oleovorans ; alkane hydroxylase ; iron ; Escherichia coli ; alk + recombinants ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The alk genes enable Pseudomonas oleovorans to utilize alkanes as sole carbon and energy source. Expression of the alk genes in P. oleovorans and in two Escherichia coli recombinants induced iron limitation in minimal medium cultures. Further investigation showed that the expression of the alkB gene, encoding the integral cytoplasmic membrane protein AlkB, was responsible for the increase of the iron requirement of E. coli W3110 (pGEc47).AlkB is the non-heme iron monooxygenase component of the alkane hydroxylase system, and can be synthesized to levels up to 10% (w/w) of total cell protein in E. coli W3110 (pGEc47). Its synthesis is, however, strictly dependent on the presence of sufficient iron in the medium. Our results show that a glucose-grown E. coli alk+ strain can reach alkane hydroxylase activities of about 25 U/g cdw, and are consistent with the recent finding that catalytically active AlkB contains two, rather than one iron atom per polypeptide chain. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 228-237, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 0006-3592
    Keywords: PAH degradation ; white rot fungus ; Bjerkandera sp. ; surfactant ; toxicity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of nonionic surfactants on the polycyclic aromatic hydrocarbon (PAH) oxidation rates by the extracellular ligninolytic enzyme system of the white-rot fungus Bjerkandera sp. strain BOS55 was investigated. Various surfactants increased the rate of anthracene, pyrene, and benzo[a]pyrene oxidation by two to fivefold. The stimulating effect of surfactants was found to be solely due to the increased bioavailability of PAH, indicating that the oxidation of PAH by the extracellular ligninolytic enzymes is limited by low compound bioavailability. The surfactants were shown to improve PAH dissolution rates by increasing their aqueous solubility and by decreasing the PAH precipitate particle size. The surfactant Tween 80 was mineralized by Bjerkandera sp. strain BOS55; as a result both the PAH solubilizing activity of Tween 80 and its stimulatory effect on anthracene and pyrene oxidation rates were lost within 24 h after addition to 6-day-old cultures. It was observed that the surfactant dispersed anthracene precipitates recrystallized into larger particles after Tween 80 was metabolized. However, benzo[a]pyrene precipitates remained dispersed, accounting for a prolonged enhancement of the benzo[a]pyrene oxidation rates. Because the endogenous production of H2O2 is also known to be rate limiting for PAH oxidation, the combined effect of adding surfactants and glucose oxidase was studied. The combined treatment resulted in anthracene and benzo[a]pyrene oxidation rates as high as 1450 and 450 mg L-1 d-1, respectively, by the extracellular fluid of 6-day-old fungal cultures. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 220-227, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 369-374 
    ISSN: 0006-3592
    Keywords: rotavirus ; virus-like particle ; insect cell lines ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: When the three major structural proteins, VP2, VP6, and VP7, of rotavirus are co-expressed in insect cells infected with recombinant baculoviruses, they self-assemble into triple-layered virus-like particles (VLPs) that are similar in morphology to native rotavirus. In order to establish the most favorable conditions for the synthesis of rotavirus VLPs, we have compared the kinetics of 2/6/7-VLP synthesis in two different insect cell lines: High Five cells propagated in Excell 405 medium and Spodoptera frugiperda 9 cells in Excell 400 medium. The majority of VLPs produced in both cell lines were released into the culture medium, and these released VLPs were predominantly triple-layered and were found to be stable for the period of six or seven days examined. The optimal synthesis of VLPs depended upon the cell line and the culture medium used as well as the time of harvesting infected cell cultures. The highest yield of VLPs was obtained from High Five cultures in the late phase of infection when the yield was at least 5-fold higher than that from S. frugiperda 9 cultures on a per cell basis. Our results demonstrate the usefulness of High Five cells for the production of VLPs as potential rotavirus subunit vaccines. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 369-374, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 251-261 
    ISSN: 0006-3592
    Keywords: continuous culture ; metabolic overflow ; multiplicity ; stability analysis ; dynamics ; growth inhibition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Metabolic overflow (enhanced uptake of substrate and secretion of intermediates) is a phenomenon often observed for cells grown under substrate excess. Growth inhibition by substrate and/or product is also normally found for this kind of culture. An effort is made in this work to analyze the dynamic behavior of a continuous culture subject to metabolic overflow and growth inhibition by substrate and/or product. Analysis of a model system shows that in a certain range of operating conditions three nonwashout steady state solutions are possible. Local stability analysis indicates that only two of them are stable thus leading to multiplicity and hysteresis. Further analysis of the intrinsic effects of different terms describing the metabolic overflow and growth inhibitions reveals that for the model system and the parameters considered, the combined effects of product inhibition and an enhanced formation rate of product under substrate excess cause the multiplicity and hysteresis. Growth inhibition by substrate and/or an enhanced substrate uptake appear not to be necessary conditions. The combined effects of enhanced product formation and product inhibition can also lead to unusual dynamic behavior such as a prolonged time period to reach a steady state, oscillatory transition from one steady state to another, and sustained oscillations. Using the occurrence of multiplicity and oscillation as criteria, the operating regime of a continuous culture can be divided into four domains: one with multiplicity and oscillation, one with unique steady state but possible oscillatory behavior, the other two with unique and stable steady state. The model predictions are in accordance with recent experimental results. The results presented in this work may be used as guidelines for choosing proper operating conditions of similar culture systems to avoid undesired instability and multiplicity. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 251-261, 1998.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 306-313 
    ISSN: 0006-3592
    Keywords: Halomonas elongata ; osmotic shock ; fed-batch ; compatible solutes ; ectoine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel biotechnological process called “bacterial milking” has been established for the production of compatible solutes using the Gram-negative bacterium Halomonas elongata. Following a high-cell-density fermentation which provided biomass up to 48 g cell dry weight per liter, we applied alternating osmotic shocks in combination with crossflow filtration techniques to harvest the compatible solutes ectoine and hydroxyectoine. H. elongata, like other halophilic or halotolerant microorganisms, produces compatible solutes in response to the salinity of the medium. When transferred to a low salinity medium (osmotic downshock), H. elongata cells rapidly released their solutes to achieve osmotic equilibrium. Subsequent reincubation in a medium of higher salt concentration resulted in resynthesis of these compatible solutes and - after a defined regeneration time - the procedure could be repeated. By repeatedly performing this “bacterial milking” process (at least nine times) we were able to produce large amounts of ectoines with a biomass productivity of 155 mg of ectoine per cycle per gram cell dry weight. Further purification of the products was achieved by a simple two-step procedure based on cation exchange chromatography and crystallization. The principles described in this article may also be useful for the production of other low-molecular-weight compounds. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 306-313, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 0006-3592
    Keywords: structured model ; morphology ; DiOC6 ; image analysis ; Aspergillus oryzae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A morphologically structured model is well suited for obtaining a good description of growth and product formation of filamentous fungi for use in a process model, for example. This article describes a new morphologically structured model and its application to an α-amylase producing strain of Aspergillus oryzae. The model is based on a division of the fungal hyphae into three different regions: an extension zone, representing the tips of the hyphae; an active region, which is responsible for growth and product formation; and an inactive hyphal region. Two metamorphosis reactions describing branching and inactivation are included in the model, and the kinetics of branching and tip extension are based on known experimentally verified models of fungal microscopic morphology. To verify the structure of the model a double-staining method, based on a combination of fluorescence microscopy and automated image analysis, has been developed for measuring the fraction of active cells. The method employs the fluorescent dye 3,3′-dihexyloxocarbocyanin to stain organelles inside the hyphae and Calcoflour White to stain the cell wall. The ratio between the projected areas of the organelles and of the entire hyphal element is then taken to be proportional to the fraction of active cells. When applied to chemostat and fed-batch experiments, the double-staining method seemed to confirm the basic morphological structure of the model. The model is able to produce accurate simulations of steady-state and transient conditions in chemostats, of batch cultivations, and even the formation of a single hyphal element from a spore, all with the same values of the model parameters. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 321-329, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 356-366 
    ISSN: 0006-3592
    Keywords: biodegradation kinetics ; naphthalene ; nonaqueous phase liquid ; mass transfer ; naphthoquinone ; coaltar ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A model is formulated to describe dissolution of naphthalene from an insoluble nonaqueous phase liquid (NAPL) and its subsequent biodegradation in the aqueous phase in completely mixed batch reactors. The physicochemical processes of equilibrium partitioning and mass transfer of naphthalene between the NAPL and aqueous phases were incorporated into the model. Biodegradation kinetics were described by Monod's microbial growth kinetic model, modified to account for the inhibitory effects of 1,2-naphthoquinone formed during naphthalene degradation under certain conditions. System parameters and biokinetic coefficients pertinent to the NAPL-water systems were determined either by direct measurement or from nonlinear regression of the naphthalene mineralization profiles obtained from batch reactor tests with two-component NAPLs comprised of naphthalene and heptamethylnonane. The NAPLs contained substantial mass of naphthalene, and naphthalene biodegradation kinetics were evaluated over the time required for near complete depletion of naphthalene from the NAPL. Model predictions of naphthalene mineralization time profiles compared favorably to the general trends observed in the data obtained from laboratory experiments with the two-component NAPL, as well as with two coal tars obtained from the subsurface at contaminated sites and composed of many different PAHs (polycyclic aromatic hydrocarbon compounds). The effects of varying the NAPL mass and the naphthalene mole fractions in the NAPL are discussed. It was observed that the time to achieve a given percent removal of naphthalene does not change significantly with the initial mass of naphthalene in a fixed volume of the NAPL. Significant changes in the mineralization profiles are observed when the volume (and mass) of NAPL in the system is changed. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 356-366, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 394-408 
    ISSN: 0006-3592
    Keywords: pH gradient ; pH control ; urease ; immobilized enzyme system ; sequential reactions ; acid-generating reaction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 394-408, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 420-429 
    ISSN: 0006-3592
    Keywords: pentachlorophenol ; dechlorinating bacteria ; methanogenic culture ; anaerobic mixed culture ; first-order kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method was developed to evaluate growth of a reductively dechlorinating bacterial population within a pentachlorophenol (PCP)- and acetate-fed, mixed, methanogenic culture. In 6- to 12-day experiments, a computer-monitored/feedback-controlled bioreactor was used to maintain constant pH, temperature, and acetate concentration, while transformation of multiple PCP additions was monitored. The potential at a platinum electrode, EPt, was not controlled externally, but was maintained constant at -0.25 ± 0.002 V (vs. SHE) by iron sulfides in the medium and the activity of the culture. PCP was reductively dechlorinated at the ortho position, yielding 3,4,5-trichlorophenol (3,4,5-TCP) via 2,3,4,5-tetrachlorophenol (2,3,4,5-TeCP). Below an initial PCP concentration of 0.5 μM, PCP was transformed to 3,4,5-TCP within 3 to 6 h. Biomass concentration changes were small during this period, and PCP and 2,3,4,5-TeCP transformations were modeled as pseudo-first-order reactions. Increases in pseudo-first-order rate constants for PCP and 2,3,4,5-TeCP were directly related to the amount of PCP transformed to 3,4,5-TCP, suggesting enrichment of a PCP-catabolizing population. Moreover, rate constant increases were independent of the amount of acetate consumed, changes in the overall volatile suspended solids (VSS) concentration, and the experimental duration. When PCP was added to the reactor at increasingly shorter time intervals in an exponential pattern, pseudo-first-order rate constants increased exponentially. An average rate constant doubling time of 1.7 days (1.4 to 2.3 d) was estimated. While the VSS concentration of the culture increased 60% in an 8-day period, pseudo-first-order rate constants increased by a factor of approximately 6. This large increase in transformation rate constants suggests growth of a bacterial population capable of using PCP and 2,3,4,5-TeCP as terminal electron acceptors. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 420-429, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 447-453 
    ISSN: 0006-3592
    Keywords: ammonia ; cell culture ; metabolic flux ; glutamate dehydrogenase ; mass balance ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of added ammonia on the intracellular fluxes in hybridoma cells was investigated by metabolic-flux balancing techniques. It was found that, in ammonia-stressed hybridoma cells, the glutamate-dehydrogenase flux is in the reverse direction compared to control cells. This demonstrates that hybridoma cells are able to prevent the accumulation of ammonia by converting ammonia and α-ketoglutarate into glutamate. The additional glutamate that is produced by this flux, as compared to the control culture, is converted by the reactions catalyzed by alanine aminotransferase (45% of the extra glutamate) and aspartate aminotransferase (37%), and a small amount is used for the biosynthesis of proline (6%). The remaining 12% of the extra glutamate is secreted into the culture medium. The data suggest that glutamate dehydrogenase is a potential target for metabolic engineering to prevent ammonia accumulation in high-cell-density culture. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 447-453, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 462-470 
    ISSN: 0006-3592
    Keywords: mercury detoxification ; Pseudomonas aeruginosa ; bioreactor design ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mercury-hyperresistant strain of Pseudomonas aeruginosa PU21 harboring plasmid Rip64 was utilized to develop bioprocesses able to detoxify and recover soluble mercuric ions in aquatic systems. The kinetics of mercury detoxification was investigated to determine the parameters needed for the design of the bioprocesses. Batch, fed-batch, and continuous bioreactors were utilized to evaluate the efficiency and feasibility of each mode of operation. The results showed that the specific mercury detoxification rate was dependent on cell growth phases, as well as the initial mercury concentrations. Cells at the lag growth phase exhibited the best specific detoxification rate of approximately 1.1 × 10-6 μg Hg/cell/h, and the rate was optimal at an initial mercury concentration of 8 mg/L. In batch operations with initial mercuric ions ranging from 2 to 10 mg/L, the mercuric ions added were rapidly volatilized from the media in less than 2-3 h. With periodic feeding of 3 or 5 mg Hg/L at fixed time intervals, the fed-batch processes had mercury removal efficiencies of 2.9 and 3.3 mg Hg/h/L, respectively. For continuous operations, the effluent cell concentration (Xe) was essentially invariant at 527 and 523 mg/L with the dilution rates (D) of 0.18 and 0.325 h-1, respectively. The increase in mercury feeding concentrations (Hgf) from 1.0 to 6.15 mg Hg2+/L did not affect the steady-state cell concentration (Xe) but forced the effluent mercury concentration (Hge) to increase. The decrease in the dilution rate, however, resulted in lower Hge values. It was also found that sequential mercury vapor absorption columns recovered over 80% of the Hg° released from the bioreactor while the residual mercury vapor was subsequently immobilized by an activated carbon trap in the down stream of the absorption column. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 462-470, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 497-503 
    ISSN: 0006-3592
    Keywords: waste gas treatment ; trickle-bed reactor ; toluene ; biomass removal ; biofilm ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 497-503, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 445-453 
    ISSN: 0006-3592
    Keywords: immobilized enzymes ; organic solvents ; esterification ; water ; continuous flow reactor ; adsorption modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 445-453, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 761-767 
    ISSN: 0006-3592
    Keywords: Penicillium chrysogenum ; phenoxyacetic acid ; steady-state continuous cultivation ; protonophoric uncoupling ; growth energetics ; mathematical modelling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Physiological effects of phenoxyacetic acid, the penicillin V side-chain precursor, on steady-state continuous cultures of Penicillium chrysogenum have been studied both theoretically and experimentally. Theoretical calculations show that at an extracellular pH of 6.50, phenoxyacetic acid has negligible influence on the growth energetics due to protonophoric uncoupling of membrane potentials by passive diffusive uptake. On the other hand, when the extracellular pH is lowered to 5.00, a severe maintenance-related uncoupling effect of phenoxyacetic acid is calculated. These findings were confirmed experimentally by steady-state continuous cultivations with a high-yielding penicillin strain of P. chrysogenum performed on a chemically defined and glucose-limited medium at pH 6.50 and pH 5.00, both with and without phenoxyacetic acid present. The yield and maintenance coefficients were determined from steady-state measurements of the specific uptake rates of glucose and oxygen and the specific production rate of carbon dioxide as functions of the specific growth rate. Combining these data with a simple stoichiometric model for the primary metabolism of P. chrysogenum allows quantitative information to be extracted on the growth energetics in terms of ATP spent in maintenance- and growth-related processes, i.e. mATP and YxATP. The increased maintenance-related ATP consumption when adding phenoxyacetic acid at pH 5.00 agrees with the theoretical calculations on the uncoupling effect of phenoxyacetic acid. When YxATP is compared with earlier reported values for the theoretical ATP requirement for biosynthesis of P. chrysogenum, i.e. YxATP,growth, it is found that YxATP,growth is only 40-50% of YxATP, which stresses that a large amount of ATP is wasted in turnover of macromolecules, leaks, and futile cycles. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 761-767, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 3-3 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 13-16 
    ISSN: 0006-3592
    Keywords: solid-phase synthesis ; 3,1-benzoxazine-4-ones ; serine protease inhibitor ; heterocyclic acylating agents ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An efficient solid-phase synthesis of 3,1-benzoxazine-4-ones is described. Immobilized amino acid based functionalized urea derivatives 2 undergo a high yielding heterocyclization under mild conditions in presence of coupling reagents (DIC, TsCl/Py, or Ac2O) to afford 3,1-benzoxazine-4-ones 6. The method offers broad scope for structural and chemical diversity, and is amenable for combinatorial synthesis of 3,1-benzoxazine-4-ones libraries with potential for discovery of novel serine protease inhibitors. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:13-16, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 7-12 
    ISSN: 0006-3592
    Keywords: tyrphostins ; directed sorting method ; solid-phase organic synthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Using solid-phase organic synthesis, we have prepared a 432-member (18 × 8 × 3) sample library based on the AG 490 “tyrphostin” template. By utilizing 432 reactors each equipped with a unique radiofrequency memory ID tag, the 432 products could be obtained as discrete entities (i.e., not as mixtures) via 18 + 8 + 3, or 29 reactions. Reading each ID tag after each reaction step permitted the “directed sorting” of reactors into appropriate reaction vessels containing multiple reactors. After synthesis, all products were cleaved from the solid-phase support and lyophilized to afford powders. Characterization of 5% of the library members by NMR and mass spectrometry provided verification of structure. In addition, TLC analysis of every library member provided evidence that most (or all) are composed of a single major organic compound. Some 88% of these samples were obtained in amounts of between 5 and 19 mg. Using this reaction sequence and the “directed sorting” approach, the synthesis of much larger AG 490-based libraries can be envisioned. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:7-12, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 5-6 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: No abstract.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 17-22 
    ISSN: 0006-3592
    Keywords: combinatorial library ; polymer supported quench ; 4-thiazolidinones ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A one-pot, three-component, solution-phase synthesis of 2,3-disubstituted and 2,3,5-trisubstituted 4-thiazolidinones is described. Poly(styrene-co-divinylbenzene)-supports functionalized with tris(2-aminoethyl)amine and 2-amino-ethanethiol are used to remove excess reagents from the desired product upon completion of the reaction. Simple filtration followed by concentration provides products of sufficient purity for biological evaluation. This approach has been used for a parallel combinatorial generation of a library of multi-substituted 4-thiazolidinones. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:17-22, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 0006-3592
    Keywords: β-amino ester ; quinoline derivatives ; Ln(OTf)3 ; three-component reactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A convenient method for library construction in liquid phase, which is based on lanthanide triflate (Ln(OTf)3)-catalyzed three-component reactions, has been developed. Equimolar amounts of each component, an aldehyde, an amine, and a silyl enol ether or an alkene, react smoothly in the presence of Ln(OTf)3, and the work-up and purification processes are performed by simply passing through a short column. The key is to use Ln(OTf)3 as a Lewis acid catalyst, which is not decomposed during the work-up and purification steps, and is easily separated from products by the simple procedure. According to this method, various high-quality β-amino ester and quinoline derivatives have been prepared in parallel in large quantities. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:23-31, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 55-60 
    ISSN: 0006-3592
    Keywords: FMOC deprotection ; solid-phase synthesis ; polymer resins ; automated synthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Base-catalyzed cleavage of the 9-fluorenylmethoxycarbonyl (FMOC) group and subsequent analysis by UV spectrophotometry is commonly employed to measure the “loading” of functional groups on solid support. Recent work suggests that 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) may be superior to piperidine (the most commonly used base for the cleavage) for quantitative analysis by UV. We have compared deprotection of FMOC-bearing compounds by both DBU and piperidine, and have observed by GC-MS the formation of a dibenzofulvene-piperidine adduct (piperidine deprotection), and the formation of unassociated dibenzofulvene (DBU deprotection). We have further been able to use GC analysis of dibenzofulvene produced in the DBU deprotection mixture in a quantitative analysis of resin loading, which gave results comparable to UV methods. Sample preparation for this method has been automated using the Nautilus 2400 organic synthesizer to reduce the amount of operator time and increase throughput of sample analysis. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:55-60, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 0006-3592
    Keywords: parallel array technology ; solid-phase organic synthesis ; hydroxamic acids ; automated synthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An automated, 96-well parallel array synthesizer for solid-phase organic synthesis has been designed and constructed. The instrument employs a unique reagent array delivery format, in which each reagent utilized has a dedicated plumbing system. An inert atmosphere is maintained during all phases of a synthesis, and temperature can be controlled via a thermal transfer plate which holds the injection molded reaction block. The reaction plate assembly slides in the X-axis direction, while eight nozzle blocks holding the reagent lines slide in the Y-axis direction, allowing for the extremely rapid delivery of any of 64 reagents to 96 wells. In addition, there are six banks of fixed nozzle blocks, which deliver the same reagent or solvent to eight wells at once, for a total of 72 possible reagents. The instrument is controlled by software which allows the straightforward programming of the synthesis of a larger number of compounds. This is accomplished by supplying a general synthetic procedure in the form of a command file, which calls upon certain reagents to be added to specific wells via lookup in a sequence file. The bottle position, flow rate, and concentration of each reagent is stored in a separate reagent table file. To demonstrate the utility of the parallel array synthesizer, a small combinatorial library of hydroxamic acids was prepared in high throughput mode for biological screening. Approximately 1300 compounds were prepared on a 10 μmole scale (3-5 mg) in a few weeks. The resulting crude compounds were generally 〈80% pure, and were utilized directly for high throughput screening in antibacterial assays. Several active wells were found, and the activity was verified by solution-phase synthesis of analytically pure material, indicating that the system described herein is an efficient means for the parallel synthesis of compounds for lead discovery. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:33-45, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 61-67 
    ISSN: 0006-3592
    Keywords: high-throughput screening ; compound collection ; data quality ; biological targets ; protein-protein interactions ; file clustering and diversity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: At Pfizer Central Research, high-throughput screening has been an important source of new leads for drug discovery for a decade. Our experience with over 150 high-throughput screens can address questions about necessary file size, how well particular biological targets fare (with particular reference to protein-protein interactions), and what file diversity means in practice. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:61-67, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 47-54 
    ISSN: 0006-3592
    Keywords: virtual combinatorial library ; genetic algorithm ; lead optimization ; similarity search ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Most agrochemical and pharmaceutical companies have set up high-throughput screening programs which require large numbers of compounds to screen. Combinatorial libraries provide an attractive way to deliver these compounds. A single combinatorial library with four variable positions can yield more than 1012 potential compounds, if one assumes that about 1000 reagents are available for each position. This is far more than any high-throughput screening facility can afford to screen. We have proposed a method for iterative compound selection from large databases, which identifies the most active compounds by examining only a small fraction of the database. In this article, we describe the extension of this method to the problem of selecting compounds from large combinatorial libraries. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:47-54, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 77-79 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: No abstract.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 61 (1998), S. 69-75 
    ISSN: 0006-3592
    Keywords: combinatorial chemistry ; library ; array ; patent ; utility ; description requirement ; piracy ; algorithm ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Patent protection of inventions relating to combinatorial chemistry is attended by special challenges. The “breakthrough” nature of the field together with the always complex and often arcane chemical manipulations, apparatus, and strategies which suffuse this field make it difficult to describe the inventions adequately. It can be a challenge to communicate effectively with official authorities charged with patent examination. Extraordinary effort is called for in clarifying such inventions such that their patentability can be appreciated. The utility of some types of inventions in this field may be open to question; clear statements of at least one acceptable utility - even if only a minor utility - is beneficial. Because a principal product of many aspects of combinatorial chemistry is information, e.g., the identification of a lead compound, offshore “piracy” is a risk. Domestic claim tie-ins may improve the ability to abate such piracy. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:69-75, 1998.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 0006-3592
    Keywords: gene delivery ; gene therapy ; generation of guanidines on solid support ; polyamines ; polyguanidines ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The development of new gene delivery technologies is a prerequisite towards gene therapy clinical trials. Because gene delivery mediated by viral vectors remains of limited scope due to immunological and propagation risks, the development of new non-viral gene delivery systems is of crucial importance. We have synthesized a secondary library of mono-functionalized poly-(guanidinium)amines generated from a library of mono-functionalized polyamines applying the concept of “libraries from libraries.” The method allows a quick and easy access to mono-functionalized geometrically varied poly-(guanidinium)amines. The new building blocks were introduced into cationic lipids to obtain novel poly-(guanidinium)amine lipids, which are potential DNA vectors for gene delivery. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:81-87, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 0006-3592
    Keywords: radio-frequency tag distributor ; Irori microkans ; 96-well format ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel parallel radio-frequency (RF) tag distributor has been developed which allows for distribution of RF tags into Irori microkans in 96-well format. The distributor has a holding capacity of ∼1000 RF tags and distributes RF tags in groups of 12. Using the distributor, a block of 96 microkans can be filled with RF tags in less than 30 sec resulting in significant time savings over one-at-a-time manual RF tag distribution. The distributor may also be of utility as a solid-phase synthesis tool for dispensing resin enclosed in capsules (which have the same shape as RF tags). © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:93-94, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...