ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 190-200 
    ISSN: 0006-3592
    Keywords: flocculation ; brewers' yeast ; floc size ; single cells ; light extinction ; sedimentation ; stirred tank ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Quantification of yeast flocculation under defined conditions will help to understand the physical mechanisms of the flocculation process used in beer fermentation. Flocculation was quantified by measuring the size of yeast flocs and the number of single cells. For this purpose, a method to measure floc size and number of single cells in situ was developed. In this way, it was possible to quantify the actual flocculation during fermentation, without influencing flocculation. The effects of three physical parameters, floc strength, fluid shear, and yeast cell concentration, on flocculation during beer fermentation, were examined. Increasing floc strength results in larger flocs and lower numbers of single cells. If the fluid shear is increased, the size of the flocs decreases, and the number of single cells remains constant at approximately 10% of the total cells present. The cell concentration also influences flocculation, a reduction of 50% in cell concentration leads to a decrease of about 25% in floc size. The number of single cells decreases in linear proportion to the cell concentration. This means that, during yeast settling at full scale, the number of single cells decreases. The results of this study are used in a model for yeast flocculation. With respect to full scale fermentation the effect of cell concentration will play an important role, for flocculation and sedimentation will occur simultaneously leading to a quasi steady state between these phenomena. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 190-200, 1997.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 330-341 
    ISSN: 0006-3592
    Keywords: brewers' yeast ; collision theory ; flocculation ; modeling ; surface erosion ; floc splitting ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs.The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 330-341, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...