ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 413 (1983), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 18 (1983), S. 279-286 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Calculation of a “theoretical yield” of microbial process is often a subject of controversy. Theoretical yield values of the solvents (butanol-acetone-ethanol) produced in the cultivation of Clostridium acetobutylicum on glucose have been calculated for 30 different culture conditions. Two different approaches were taken based on expressing the stoichiometric relationship between the substrate and the products of the process. The maximum theoretical yield under acceptable conditions was established ranging from 38.6% to 39.9%. It was considered for an ideal biosynthetic situation when no intermediate acids were left over in the system and no carbon was utilized in the production of biomass. The values of the solvent yield are dependent on the ratio between the solvent products. The coefficients of the process stoichiometric relationship and the ratios between hydrogen gas and butanol are presented for each set of process conditions. A three-dimensional plot of the yield versus the weight fractions of butanol and ethanol in the system has been developed reflecting the continuous variations of this parameter with the solvent ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 38 (1992), S. 39-45 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Small diameter alginate beads (microspheres) were formed via internal gelation of alginate solution emulsified within vegetable oil. Gelation was initiated by addition of an oil-soluble acid thereby reducing the pH of the alginate solution and releasing soluble Ca2+ from the citrate complex. Smooth, spherical, micron-sized beads were formed. The mean diameter ranged from 200 to 1000 μm, controlled by the reactor impeller design and rotational speed. The technique has potential for large-scale and continuous applications in immobilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Alginate microspheres were produced by emulsification/internal gelation of alginate sol dispersed within vegetable oil. Gelification was initiated within the alginate sol by a reduction in pH (7.5 to 6.5), releasing calcium from an insoluble complex. Smooth, spherical beads with the narrowest size dispersion were obtained when using low-guluronic-acid and low-viscosity alginate and a carbonate complex as the calcium vector. A more finely dispersed form of the complexed calcium within the alginate sol promotes a more homogeneous gelification. Microsphere mean diameters ranging from 50 μm to 1000 μm were obtained with standard deviations ranging from 35% to 45% of the mean.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 43 (1995), S. 644-650 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  Alginate microspheres were produced by emulsification/internal gelation of alginate sol dispersed within vegetable oil. Gelification was initiated within the alginate sol by a reduction in pH (7.5 to 6.5), releasing calcium from an insoluble complex. Smooth, spherical beads with the narrowest size dispersion were obtained when using low-guluronic-acid and low-viscosity alginate and a carbonate complex as the calcium vector. A more finely dispersed form of the complexed calcium within the alginate sol promotes a more homogeneous gelification. Microsphere mean diameters ranging from 50 μm to 1000 μm were obtained with standard deviations ranging from 35% to 45% of the mean.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 1157-1163 
    ISSN: 0006-3592
    Keywords: chitosan microcapsules ; lactic acid bacteria ; microencapsulation ; interfacial cross-linking ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lactic acid bacteria were microencapsulated within cross-linked chitosan membranes formed by emulsification/interfacial polymerization. The technique was modified and optimized to provide biocompatible conditions during encapsulation involving the use of mineral oils as the continuous phase and chitosan as the membrane material. Chitosan cross-linked with hexamethylene diisocyanate or glutaraldehyde resulted in strong membranes, with a narrow size distribution about a mean diameter of 150 μm. Cell viability and activity was demonstrated by the acidification of milk. Loss of acidification activity during microencapsulation was recovered in subsequent fermentations to levels similar to that of free cell fermentations. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 464-470 
    ISSN: 0006-3592
    Keywords: microencapsulation ; microcapsules ; microspheres ; alginate ; emulsification ; DNA ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Smooth and spherical alginate microspheres and nylon-membrane bound microcapsules were formed in an air-agitated, liquid-liquid mixer by emulsification/internal gelation and interfacial polymerization respectively. The mean diameter of the alginate microspheres ranged from 100 to 800 μm, and was controlled by process modifications. Increase in emulsifier concentration, gas flowrate, and emulsification time resulted in smaller microsphere size as did a decrease in liquid height. Increase in the dispersed phase viscosity resulted in a longer emulsification time required for approaching a minimum microsphere size. Microspheres could be formed with the proportion of dispersed phase approaching 30%. The yield of alginate microspheres was 70%, with losses attributed to incomplete recovery during washing and filtration operations. The yield of DNA encapsulation within the fraction of recovered microspheres, was 94%. The small loss was thought to occur by surface release during the washing of the microspheres. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 464-470, 1997.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 438-446 
    ISSN: 0006-3592
    Keywords: DNA ; alginate ; encapsulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Alginate gels produced by an external or internal gelation technique were studied so as to determine the optimal bead matrix within which DNA can be immobilized for in vivo application. Alginates were characterized for guluronic/mannuronic acid (G/M) content and average molecular weight using 1H-NMR and LALLS analysis, respectively. Nonhomogeneous calcium, alginate, and DNA distributions were found within gels made by the external gelation method because of the external calcium source used. In contrast, the internal gelation method produces more uniform gels. Sodium was determined to exchange for calcium ions at a ratio of 2:1 and the levels of calcium complexation with alginate appears related to bead strength and integrity. The encapsulation yield of double-stranded DNA was over 97% and 80%, respectively, for beads formed using external and internal calcium gelation methods, regardless of the composition of alginate. Homogeneous gels formed by internal gelation absorbed half as much DNAse as compared with heterogeneous gels formed by external gelation. Testing of bead weight changes during formation, storage, and simulated gastrointestinal (GI) conditions (pH 1.2 and 7.0) showed that high alginate concentration, high G content, and homogeneous gels (internal gelation) result in the lowest bead shrinkage and alginate leakage. These characteristics appear best suited for stabilizing DNA during GI transit. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 438-446, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 124-134 
    ISSN: 0006-3592
    Keywords: DNA ; encapsulation ; alginate ; nuclease ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: DNA was immobilized within alginate matrix using an external or an internal calcium source, and then membrane coated with chitosan or poly-L-lysine. Membrane thickness increased with decreasing polymer molecular weight and increasing degree of deacetylation (chitosan). Beads were exposed to a 31,000 molecular weight nuclease to determine the levels of DNA protection offered by different membrane and matrix combinations. Almost total hydrolysis of DNA was observed in alginate beads following nuclease exposure. Less than 1% of total double-stranded DNA remained unhydrolyzed within chitosan- or poly-L-lysine-coated beads, corresponding with an increase in DNA residuals (i.e. double- and single-stranded DNA, polynucleotides, bases). Chitosan membranes did not offer sufficient DNA protection from DNase diffusion since all of the double-stranded DNA was hydrolyzed after 40 min of exposure. Both chitosan and poly-L-lysine membranes reduced the permeability of alginate beads, shown by enhanced retention of DNA residuals after DNase exposure. The highest level of DNA protection within freshly prepared beads was obtained with high molecular weight (197,100) poly-L-lysine membranes coated on beads formed using an external calcium source, where over 80% of the double-stranded DNA remained after 40 min of DNase exposure. Lyophilization and rehydration of DNA beads also reduced permeability to nucleases, resulted in DS-DNA recoveries of 60% for chitosan-coated, 90% for poly-L-lysine-coated, and 95% for uncoated alginate beads. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 124-134, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 30 (1987), S. 882-886 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The presence of anions in solution was found to inhibit the uptake of La3+, Cd2+, Pb2+, UO2+2, and Ag+ by Rhizopus arrhizus biomass. The effects ranged from total inhibition of Cd2+ and Pb2+ uptake at equimolar concentrations of EDTA to no change in uptake of La3+ or UO2+2 at 12-fold molar excesses of Cl- or CO2-3. No anion was found to enhance metal uptake levels, and the degree of inhibition generally followed the series: \documentclass{article}\pagestyle{empty}\begin{document}$${\rm EDTA } \ge \ge {\rm SO}_{^{^{^{\rm 4} } } }^{{\rm 2} - } \ge {\rm Cl}^ - \ge {\rm PO}_{^{^{^{\rm 4} } } }^{{\rm 3} - } \ge {\rm glutamate} \ge {\rm CO}_{^{^{\rm 3} } }^{{\rm 2} - } $$\end{document} The chemical equilibrium model REDEQL2 was adapted to treat metal uptake by R. arrhizus biomass and used to predict the effects of anions in solution. Comparisons with the experimental results are made and discussed in light of the assumptions underlying the model.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...