ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER  (3,328)
  • GEOPHYSICS  (3,294)
  • 1990-1994  (6,598)
  • 1950-1954  (24)
Collection
Years
Year
  • 1
    Publication Date: 2004-12-03
    Description: The thinning and intensification of the cross tail current sheet during the substorm growth phase are analyzed during the CDAW 6 substorm (22 Mar. 1979) using two complementary methods. The magnetic field and current sheet development are determined using data from two spacecraft and a global magnetic field model with several free parameters. These results are compared with the local calculation of the current sheet location and structure previously done by McPherron et al. Both methods lead to the conclusion that an extremely thin current sheet existed prior to the substorm onset, and the thicknesses estimated by the two methods at substorm onset agree relatively well. The plasma data from the ISEE 1 spacecraft at 13 R(sub E) show an anisotropy in the low energy electrons during the growth phase which disappears just before the substorm onset. The global magnetic model results suggest that the field is sufficiently stretched to scatter such low energy electrons. The strong stretching may improve the conditions for the growth of the ion tearing instability in the near Earth tail at substorm onset.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 131-135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: An approach to the study of the solar wind-magnetosphere interaction by signal type, that is, by examining the effect in the magnetosphere of well defined interplanetary structures, is presented. Focus is on the response of the magnetosphere to interplanetary magnetic clouds. Among their properties are: the slow and smooth variation of the magnetic field vector, with fluctuation level well below common interplanetary values; the similarly well behaved bulk flow; the wide range of field and flow parameters; and the longevity of passage (1 to 2 days). If the magnetic cloud is oriented such that a long period of uninterruptedly northward pointing field is followed by a long interval of continuously southward pointing field, then the transition of the magnetosphere from a quiescent state (the 'ground state') to a very active state can be studied, the latter being sustained by continued forcing from the magnetic cloud. A synopsis of the main findings of a recent study in such an interaction is given, concentrating on the substorm activity attending the second part of cloud passage.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 371-376
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The stability of the geomagnetic tail is investigated on the basis of three dimensional resistive magnetohydrodynamic simulations, using different dynamic constraints and different initial equilibria. Different forms of the energy equation for isotropic pressure are found to have no significant effect on the dynamic growth of a resistive tearing instability, which is responsible for near Earth reconnection, plasmoid formation and ejection, and the generation of fast plasma flows. The constraints of a modified double adiabatic approach, however, can quench the tearing instability through the development of large, mirror type, anisotropies in the boundary regions of the plasma sheet, unless isotropization occurs on fast, nearly Alfvenic, time scales. The presence of a net cross tail magnetic field component B(sub yN) can reduce the growth of the instability without complete stabilization. An increase of B(sub z) from midnight toward the tail flanks, however, by more than a factor of about 3, apparently completely stabilizes the tearing mode. Stabilization and destabilization thus may depend on properties and constraints (and their release) in regions other than the neutral sheet where reconnection is initiated.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 225-230
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Basic algorithms for unstructured mesh generation and fluid flow calculation are discussed. In particular the following are addressed: preliminaries of graphs and meshes; duality and data structures; basic graph operations important in CFD (Computational Fluid Dynamics); triangulation methods, including Varonoi diagrams and Delaunay triangulation; maximum principle analysis; finite volume schemes for scalar conservation law equations; finite volume schemes for the Euler and Navier-Stokes equations; and convergence acceleration for steady state calculations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: VKI, Computational Fluid Dynamics, Volume 1; 141 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: Issues concerning the 'driven' versus 'unloading' nature of substorms are presented. The original concepts attendant to this debate are presented and substorms are concluded to inextricably combine aspects that are driven with aspects that represent a loading-unloading system. For isolated substorms, the magnetosphere-ionosphere system is shown to exhibit a bimodal response to solar wind changes. A 20 min response characteristic is associated with the driven aspect of substorms, while a 1 hr response time is associated with unloading. It is found that for strong solar wind input conditions, the magnetospheric response becomes more nearly unimodal. This is interpreted in terms of a nonlinear dynamical evolution of the system. Simple analog models are described which capture the essence of the nonlinear magnetospheric behavior. These models exhibit chaotic transitions for strong driving conditions: this may explain the observed behavior of the magnetosphere during strong geomagnetic activity.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 185-191
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: A pseudobreakup is a phenomenon similar to the substorm expansive phase onset, including an activation of an auroral arc, a burst of Pi2 micropulsations, and enhancement of the westward electrojet. However, these effects are weak and a pseudobreak is generally assumed to be very localized. The pseudobreakups are discussed based on simultaneous observations made in space and on the ground during the substorm growth phase. In the events studied the main features listed above are found, but the significance of the localization is unclear. The optical pseudobreakup, with associated magnetic perturbations, is highly localized, but simultaneously a wide local time sector of the auroral oval may be activated. The major differences between pseudobreakups and substorm expansive phase onsets are concluded to be the intensity and the development that follows. Careful study of pseudobreakups may help to determine phase initiation, and the role of the ionosphere-magnetosphere coupling in the substorm process.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 111-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-09
    Description: Transient solutions were obtained for a square region of heat conducting semitransparent material cooling by thermal radiation. The region is in a vacuum environment, so energy is dissipated only by radiation from within the medium leaving through its boundaries. The effect of heat conduction during the transient is to partially equalize the internal temperature distribution. As the optical thickness of the region is increased, the temperature gradients increase near the boundaries and corners, unless heat conduction is large. The solution procedure must provide accurate temperature distributions in these regions to prevent error in the calculated radiation losses. Two-dimensional numerical Gaussian integration is used to obtain the local radiative source term. A finite difference procedure with variable space and time increments is used to solve the transient energy equation. Variable spacing was used to concentrate grid points in regions with large temperature gradients.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 35; 10; p. 2579-2592.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5 deg N, 77 deg E, 0.5 deg N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (A(sub p) = 161). Simultaneous 100-n T-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6 deg N gm) and at Narsarsuaq, Greenland (70.6 deg N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV/m and it increases with height, while it is about 1.0 mV/m in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brofelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the assoicated ionospheric electric field penetrating from high latitudes to the magnetic equator.
    Keywords: GEOPHYSICS
    Type: Annales Geophysicae (ISSN 0992-7689); 12; 6; p. 565-573
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the interseismic strain that accumulates as rapid short-term uplift is not recovered by subduction earthquakes but rather contributes to rock uplift of the Coast Ranges. The conjecture that permanent rock uplift is related to interseismic uplift is consistent with the observation that those segments of the subduction zone subject to greater interseismic uplift rates are at approximately the same latitudes as those segments of the Coast Ranges that have higher magnitudes of rock uplift over the long term.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B6; p. 12,245-12,255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A comprehensive review is presented of the mathematical models used to represent magnetic fields in the Earth's magnetosphere, of the way existing data-based models use these methods and of the associated problems and concepts. The magnetic field has five main components: the internal field, the magnetopause, the ring current, the tail and Birkeland currents. Methods of representing separately each of these are discussed, as is the deformation of magnetic fields; Appendix B traces the connection between deformations and the Cauchy integral. A summary section lists the uses of data-based models and their likely future evolution, and Appendix A supplements the text with a set of problems.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,169-17,198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 4; p. 735-740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B10; p. 19,617-19,635
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: A search was conducted for the signatures of Birkeland currents in the Earth's magnetic tail, using observed values of B(sub x) and B(sub y) from large sets of spacecraft data. The data were binned by x and y for -10 greater than x(sub GSM) greater than -35 and absolute value of y(sub GSM) less than or equal to 20 R(sub E) (less than or equal to 30 R(sub E) for x(sub GSM) less than or equal to -25 R(sub E)) and in each bin their distribution in the (B(sub x), B(sub y)) plane was fitted by least squares to a piecewise linear function. That gave average x-y distributions of the flaring angle between B(sub xy) and the x direction, as well as that angle's variation across the thickness of the plasma sheet. Angles obtained in the central plasma sheet differed from those derived near the lobe boundary. That is the expected signature if earthward or tailward Birkeland current sheets are embedded in the plasma sheet, and from this dfiference we derived the dawn-dusk profiles of the tail Birkeland currents for several x(sub GSM) intervals. It was found that (1) the Birkeland currents have the sense of region 1 currents, when mapped to the ionosphere; (2) both the linear current density (kiloamperes/R(sub E)) and the net magnitude of the field-aligned currents decrease rapidly down the tail; (3) the total Birkeland current at x approximately equals -10 R(sub E) equals approximately equals 500-700 kA, which is approx. 30% of the net region 1 current observed at ionospheric altitudes, in agreement with model mapping results; and (4) the B(sub z) and B(sub y) components of the interplanetary magnetic field influence the distribution of Birkeland currents in the tail.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,455-19,464
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The multigrid method has been applied to an existing three-dimensional compressible Euler solver to accelerate the convergence of the implicit symmetric relaxation scheme. This lower-upper symmetric Gauss-Seidel implicit scheme is shown to be an effective multigrid driver in three dimensions. A grid refinement study is performed including the effects of large cell aspect ratio meshes. Performance figures of the present multigrid code on Cray computers including the new C90 are presented. A reduction of three orders of magnitude in the residual for a three-dimensional transonic inviscid flow using 920 k grid points is obtained in less than 4 min on a Cray C90.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 950-955
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: The present paper explores the use of large-eddy simulations as a tool for predicting noise from first principles. A high-order numerical scheme is used to perform large-eddy simulations of a supersonic jet flow with emphasis on capturing the time-dependent flow structure representating the sound source. The wavelike nature of this structure under random inflow disturbances is demonstrated. This wavelike structure is then enhanced by taking the inflow disturbances to be purely harmonic. Application of Lighthill's theory to calculate the far-field noise, with the sound source obtained from the calculated time-dependent near field, is demonstrated. Alternative approaches to coupling the near-field sound source to the far-field sound are discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 897-906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: New line parameters for two heavy odd nitrogen molecules HNO3 in the nu(sub 5)/2nu(sub 9) region, and ClONO2 in the nu(sub 4) region are incorporated in the analysis of high resolution i.r. atmospheric spectra. The line parameters are tested and renormalized vs laboratory spectra, and then applied to retrievals from balloon-borne and ground-based solar absorption spectra.
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 3-4; p. 367-377
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: The spectroscopic identification for the HNO3 3 nu(sub 9) - nu(sub 9) band Q branch at 830.4/cm is reported based on 0.01/cm resolution solar occultation spectra of the lower stratosphere recorded by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer and a recent analysis of this band. Least-squares fits to 0.0025/cm resolution laboratory spectra in the Q branch region indicate an integrated intensity of 0.529 x 10(exp -18)/cm/mol/sq cm at 296 K for this weak band. Stratospheric HNO3 retrievals derived from the ATMOS data are consistent with this value within its estimated uncertainty of about +/- 30%. A set of spectroscopic line parameters suitable for atmospheric studies has been generated.
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 3-4; p. 319-322
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: About 200 i.r. solar spectra recorded at 0.01/cm resolution on 71 days between November 1991 and July 1993 at the Network for the Detection of Stratospheric Change (NDSC) station at Mauna Loa, Hawaii (latitude 19.53 deg N, longitude 155.58 deg W, elevation 3.459 km) have been analyzed with a nonlinear least-squares spectral fitting technique to study temporal variations in the total column of atmospheric ethane (C2H6) above the site. The results were derived from the analysis of the unresolved nu(sub 7) band (P)Q(sub 3) subbranch at 2976.8/cm. A distinct seasonal cycle is observed with a factor of 2 variation, a maximum total column of 1.16 x 10(exp 16) mol/sq cm at the end of winter, and a minimum total column of 0.53 x 10(exp 16) mol/sq cm at the end of summer. Our measurements are compared with previous observations and model predictions.
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 3-4; p. 273-279
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: Quantitative measurements of the wavelength dependence of aerosol extinction in the 750-3400/cm spectral region have been derived from 0.01/cm resolution stratospheric solar occultation spectra recorded by the ATMOS (Atmospheric Trace Molecule Spectroscopy) Fourier transform spectrometer about 9 1/2 months after the Mt Pinatubo volcanic eruption. Strong, broad aerosol features have been identified near 900, 1060, 1190, 1720, and 2900/cm below a tangent height of approximately 30 km. Aerosol extinction measurements derived from approximately 0.05/cm wide microwindows nearly free of telluric line absorption in the ATMOS spectra are compared with transmission calculations derived from aerosol size distribution profiles retrieved from correlative SAGE (Stratospheric Aerosol and Gas Experiment) II visible and near i.r. extinction measurements, seasonal and zonally averaged H2SO4 aerosol weight percentage profiles, and published sulfuric acid optical constants derived from room temperature laboratory measurements. The calculated shapes and positions of the aerosol features are generally consistent with the observations, thereby confirming that the aerosols are predominantly concentrated H2SO4-H2O droplets, but there are significant differences between the measured and calculated wavelength dependences of the aerosol extinction. We attribute these differences as primarily the result of errors in the calculated low temperature H2SO4-H2O optical constants. Errors in both the published room temperature optical constants and the limitations of the Lorentz-Lorenz relation are likely to be important.
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 3-4; p. 241-252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: We present vertical column abundances of H2O, N2O, HNO3, NO2, O3, HF, HCl, and ClNO3, determined from solar absorption spectra measured by the JPL MkIV interferometer from the NASA DC-8 aircraft. These observations, taken in 1987 and 1992, covered latitudes ranging from 85 deg S to 85 deg N. Although most gases display latitude symmetry, large asymmetries in H2O, HNO3, and O3 are apparent, which can be ascribed to processes enhanced by the colder Antarctic winter temperatures.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 23; p. 2599-2602
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: Simultaneous in situ measurements of NO2, NO, O3, ClO, pressure and temperature have been made for the first time, presenting a unique opportunity to test our current understanding of the photochemistry of the lower stratospere. Data were collected from several flights of the ER-2 aircraft at mid-latitudes in May 1993 during NASA's Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE). The daytime ratio of NO2/NO remains fairly constant at 19 km with a typical value of 0.68 and standard deviation of +/- 17. The ratio observations are compared with simple steady-state calculations based on laboratory-measured reaction rates and modeled NO2 photolysis rates. At each measurement point the daytime NO2/NO with its measurements uncertainty overlap the results of steady-state caculations and associated uncertainty. Possible sources of error are examined in both model and measurements. It is shown that more accurate laboratory determinations of the NO + 03 reaction rate and of the NO2 cross-sections in the 200-220 K temperature range characteristic of the lower stratosphere would allow for a more robust test of our knowledge of NO(X) phtochemistry by reducing significant sources if uncertainties in the interpretation of statospheric measurements.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 23; p. 2555-2558
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal for Numerical Methods in Fluids (ISSN 0271-2091); 18; 10; p. 887-914
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: The ability to predict short-term variations in the Earth's rotation has gained importance in recent years owing to more precise spacecraft tracking requirements. Universal time (UT1), that component of the Earth's orientation corresponding to the rotation angle, can be measured by number of high-precision space geodetic techniques. A Kalman filter developed at the Jet Propulsion Laboratory (JPL) optimally combines these different data sets and generates a smoothed times series and a set of predictions for UT1, as well as for additional Earth orientation components. These UT1 predictions utilize an empirically derived random walk stochastic model for the length of the day (LOD) and require frequent and up-to-date measurements of either UT1 or LOD to keep errors from quickly accumulating. Recent studies have shown that LOD variations are correlated with changes in the Earth's axial atmospheric angular momentum (AAM) over timescales of several years down to as little as 8 days. AAM estimates and forecasts out to 10 days are routinely available from meteorological analysis centers; these data can supplement geodetic measurements to improve the short-term prediction of LOD and have therefore been incorporated as independent data types in the JPL Kalman filter. We find that AAM and, to a lesser extent, AAM forecast data are extremely helpful in generating accurate near-real-time estimates of UT1 and LOD and in improving short-term predictions of these quantities out to about 10 days.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B4; p. 6981-6996
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: Disk-shaped current distributions are useful tools in modeling the magnetospheres of Earth and other planets and have also been adapted for modeling the geotail. Such models usually start with an axisymmetric vector potential but may be modified to account for observed asymmetries, variable thickness, and warping in response to an inclined orientation of the planetary dipole axis. Models of this type until now either have lacked the ability to simulate a sharp inner edge of the current and to control accurately its falloff with distance or did not allow a simple analytical representation. Here existing methods will be reviewed, after which a new class of models which overcomes the above deficiencies and also allows the modeling of current disks of finite thickness flanked by current-free regions will be presented.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 199-205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until this condition for the error calibration is satisfied. In addition, gravity field tests were performed on strong satellite data sets withheld from the solution (thereby ensuring their independence). In these tests, the performance of the subset models on the withheld observations is compared to error projections based on their calibrated error covariances. These results demonstrate that orbit accuracy projections are reliable for new satellites which were not included in GEM-T3.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B2; p. 2815-2839
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the 'pulsating cusp' model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal 'quasi-steady reconnection' (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that 'quasi-steady' in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 8531-8553
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: Simultaneous profiles of aerosol backscatter ratio were measured over Lauder, New Zealand (45 deg S, 170 deg E) on the night of November 24, 1992. Instrumentation comprised two complementary lidar systems and a backscattersonde, to give measurements at wavelengths 351, 490, 532, and 940 nm. The data from the lidars and the backscattersonde were self-consistent, enabling the wavelength dependence of aerosol backscatter to be determined as a function of altitude. This wavelength-dependence is a useful parameter in radiative transfer calculations. In the stratosphere, the average wavelength exponent between 351 and 940 nm was -1.23 +/- 0.1, which was in good agreement with values derived from measured physical properties of aerosols.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 9; p. 789-792
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: In the present work, the high Reynolds number flow past an inclined plate with a splitter plate placed in its wake is considered numerically. A numerical conformal mapping technique is employed to transform the two-plate system into the same number of cylinders: the flow field is assumed to be two-dimensional. The vortex shedding from the inclined plate is modelled using the discrete vortex method. It is shown that the splitter plate has a profound effect on the development of the flow over a range of values of a suitably defined offset parameter and for a range of positions of the leading edge of the splitter plate. The acoustic field is also calculated and the spectrum reflects the flow results.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Sound and Vibration (ISSN 0022-460X); 166; 2; p. 209-235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 deg) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992 - July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt 'slot' region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L aprroximately 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 is approximately less than L is approximately less than 5. These increases occur on a time scale of order 1-2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with t(sub o) approximately equals 5-10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 6; p. 409-412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: Rocket data have been used to evaluate the characteristics of precipitating relativistic electrons and their effects on the electrodynamic structure of the middle atmosphere. These data were obtained at Poker Flat, Alaska, on May 13 and 14, 1990, during a midday, highly relativistic electron (HRE) precipitation event. Solid state detectors were used to measure the electron fluxes and their energy spectra. An X ray scintillator was included on each flight to measure bremsstrahlung X rays produced by energetic electrons impacting on the upper atmosphere. However, these were found the be of negligible importance for this particular event. The energy deposition by the electrons has been determined from the flux measurements and compared with in situ measurements of the atmospheric electrical response. The electrodynamic measurements were obtained by the same rockets and additionally on May 13, with an accompanying rocket. The impact flux was highly irregular, containing short-lived bursts of relativistic electrons, mainly with energies below 0.5 MeV and with fluxes most enhanced between pitch angles of 0 deg - 20 deg. Although the geostationary counterpart of this measured event was considered to be of relatively low intensity and hardness, energy deposition peaked near 75 km with fluxes approaching an ion pair production rate in excess of 100/cu cm s. This exceeds peak fluxes in relativistic electron precipitation (REP) events as observed by us in numerous rocket soundings since 1976. Conductivity measurements from a blunt probe showed that negative electrical conductivities exceeded positive conductivities down to 50 km or lower, consistent with steady ionization by precipitating electrons above 1 MeV. These findings imply that the electrons from the outer radiation zone can modulate the electrical properties of the middle atmosphere to altitudes below 50 km. During the decline and activity minimum of the current solar cycle, we anticipate the occurence of similar events but with fluxes 1-2 orders of magnitude above that reported here, based on studies of earlier solar cycles (e.g., Baker et al., 1993).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 21,071-21,081
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: Nitrous oxide (N2O) measured on board the ER-2 aircraft during the Airborne Arctic Stratospheric Expedition 2 (AASE 2) has been used to monitor descent of air inside the Arctic vortex between October 1991 and March 1992. Monthly mean N2O fields are calculated from the flight data and then compared with mean fields calculated from the high-resolution Geophysical Fluid Dynamics Laboratory general circulation model SKYHI in order to evaluate the model's simulation of the polar vortex. From late fall through winter the model vortex evolves in much the same way as the 1991-1992 vortex, with N2O gradients at the edge becoming progressively steeper. The October to March trends in N2O profiles inside the vortex are used to verify daily net heating rates in the vortex that were computed from clear sky radiative heating rates and National Meteorological Center temperature observations. The computed heating rates successfully estimate the descent of vortex air from December through February but suggest that before December, air at high latitudes may not be isolated from the midlatitudes. SKYHI heating rates are in good agreement with the computed rates but tend to be slightly higher (i.e., less cooling) due to meteorological differences between SKYHI and the 1991-1992 winter. Three ER-2 flights measured N2O just north of the subtropical jet. These low-midlatitude profiles show only slight differences from the high-midlatitude profiles (45 deg - 60 deg N), indicating strong meridional mixing in the midlatitude 'surf zone.' Mean midwinter N2O profiles inside and outside the vortex calculated from AASE 2 data are shown to be nearly identical to 1989 AASE profiles, pointing to the N2O/potential temperature relationship as an excellent marker for vortex air.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,713-20,723
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: The combined Nimbus 7 solar backscattered ultraviolet (SBUV) and NOAA 11 SBUV/2 ozone data, covering a period of more than a solar cycle (about 15 years), are used to study the UV response of ozone in the stratosphere. The study shows that about 2% change in total column ozone and about 5-7% change in ozone mixing ratio in the upper stratosphere (0.7 to 2 hPa) may be attributed to the change in the solar UV flux over a solar cycle. In the upper stratosphere, where photochemical processes are expected to play a major role, the measured solar cycle variation of ozone is significantly larger than inferred either from the photochemical models or from the ozone response to the 27-day solar UV modulation. For example, the observed solar cycle related change in ozone mixing ratio at 2 hPa is about 1% for 1% change in the solar UV flux near 200 nm. The inferred change in ozone from either the photochemical models or from the 27-day ozone-UV response is about a factor of 2-3 lower than this value.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,665-20,671
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: Vertical profiles of N2O and NO(y) taken by the ER-2 outside the vortex are used to construct average vertical profiles of F(NO(y)) = NO(y)/(A-N2O), where A is the tropospheric content of N2O three years prior to the measurements. The southern hemisphere had less nitrous oxide in the range 400 less than Theta less than 470 K, by up to 25% relative to the northern hemisphere. F(NO(y)) is the ratio of NOy produced to N2O lost in a stratospheric air mass since entry from the troposphere. The profiles of F(NO(y)) have the following characteristics: (1) Relative to 1991-1992, a year without denitrification inside or outside the vortex, the northern hemisphere in 1988-1989 showed denitrification outside the vortex ranging up to 25% and averaging 17% above Theta = 425 K. (2) Relative to the northern hemisphere in 1991-1992, the southern hemisphere in 1987 showed denitrification outside the vortex ranging up to 32% and averaging 20% above Theta = 400 K. (3) Below Theta = 400 K the southern hemisphere showed enhancements of F(NO(y)) relative to the northern hemisphere in 1991-1992 ranging up to 200% at Theta = 375 K, outside the vortex. Corresponding profiles of residual water, R(H2O) = H2O - 2(1.6 - CH4), are considered and shown to be consistent with those of F(NO(y)) in the sense that they show deficits outside the Antarctic vortex, which was both dehydrated and denitrified, but not outside the 1988-1989 Arctic vortex, which was denitrified but not dehydrated. R(H2O) is the water content of stratospheric air with the contribution from methane oxidation subtracted. Comparison of F(NO(y)) and R(H2O) below 400 K outside the Antarctic vortex leads to the suggetion that dehydration in the Antarctic vortex occurs by the sedimentation of ice crystals large enough to fall out of the stratosphere, whereas denitrification occurs mainly on mixed nitric acid-water crystals which evaporate below the base of the vortex at Theta = 400 K but above the tropopause.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,573-20,583
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: During January and August 1985, the scanning radiometers of the Earth Radiation Budget Experiment(ERBE) aboard the Earth Radiation Budget Satellite (ERBS) and the NOAA-9 satellite were operated in along-track scanning modes. Along-track scanning permits the study of many measurement problems. It provides the data for developing a limb-darkening model for a single site over a short period of time and also permits the indentification of the scene from data taken at smaller nadir angles. The earth-emitted radiation measured by the scanners has been analyzed to produce limb-darkening models for a variety of scene types. Limb-darkening models relate the radiance in any given direction to the radiant flux. The scene types were computed using measurements within 10 deg of zenith. The models have values near zenith of 1.02-1.09. The typical zenith values of the model are 1.06 for both day and night for ERBS, and for NOAA-9, 1.06 for day and 1.05 for night. Mean models are formed for the ERBS and NOAA-9 results and are found to differ less than 1%, the ERBS results being the higher. The models vary about 1% with latitude near zenith and agree with earlier models that were used to analyze ERBE data typically to 2%.
    Keywords: GEOPHYSICS
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 33; 1; p. 74-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.
    Keywords: GEOPHYSICS
    Type: EOS (ISSN 0096-3941); 75; 5; p. 49, 51-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B9; p. 18,081-18,087
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: A theoretical model is used to describe and investigate the effects of simultaneous crystallization, radiation loss, and entrainment of cooler material on the temperature of a well-mixed core of an active aa lava flow. Entrainment of crust, levee debris, and base material into the interior of active flows has been observed, but the degree of assimilation and the thermal consequences are difficult to quantify. The rate of entrainment can be constrained by supplementing the theoretical model with information on the crystallization along the path of the flow and estimation of the radiative loss from the flow interior. Application of the model is demonstrated with the 1984 Mauna Loa flow, which was erupted about 30 C undercooled. Without any entrainment of cooler material, the high crystallization rates would have driven temperatures in the core wall above temperatures measured by thermocouple and estimated from glass geothermometry. One plausible scenario for this flow, which agrees with available temperature and crystallinity measurements, has a high initial rate of entrainment during the first 8 hours of travel (a mass ratio of entrained material to fluid core of about 15% if the average temperature of the entrained material was 600 C), which counterbalances the latent heat from approximately 40% crystallization. In this scenario, the model suggests an additional 5% crystallization and a 5% entrainment mass ratio over the subsequent 16-hour period. Measurements of crystallization, radiative losses, and entrainment factors are necessary for understanding the detailed thermal histories of active lava flows.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B6; p. 11,819-11,831
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simuulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rarefaction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefaction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the after body sting are emphasizes in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1399-1406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: The data from the infrared telescope (IRT), which was flown on space shuttle Challenger Spacelab 2 mission (July 1985), were originally reported by Koch et al. (1987) as originating from near orbital emissions, primarily H2O. In this study, analysis of this data was extended to determine the collisional cross sections for the excitation of the low lying vibrational levels of H2O, present in the orbiter cloud, by atmospheric O(3P). The evaluation of the contribution to the measured signal from solar excitation and ram O excitation of outgassing H2O permits the determination of the H2O column density and the excitation cross section of the (101) level at an O(3P) velocity of approximately 7.75 km/s. Contributions to the radiation in the 1.7-3.0 micron band by transitions from the (100), (001), and multiquantum excited levels are discussed. The findings of the study are (1) the IRT data for the 4.5-9.5 micron and the nighttime data for the 1.7-3.0 micron sensors are consistent with being explained by collision excitation of H2O by O(3P), (2) diurnal variations of 4.5-9.5 micron intensities follow the model predicted O density for a full orbit, (3) daytime increases in the H2O cloud density were not evident, (4) the cross sections for the collisional excitation process are derived and compared to values computated by Johnson (1986) and Redmon et al. (1986), (5) theoretical investigation suggests greater than 60% of the radiation from H2O is a result of multiphoton emission resulting from collisional multiquanta excitation, and (6) the large daytime increase in the 1.7-3.0 micron intensity data suggests that O(+) may likely be instrumental in producing excited H2O(+) through charge exchange.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,559-17,575
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: Observations of stratospheric column amounts of nitrogen dioxide (NO2), nitric oxide (NO) and nitric acid (HNO3) have been made following major eruptions of the El Chichon and Mt. Pintatubo volcanoes. Midlatitude abundances of NO2 and NO were reduced by as much as 70% in the months following the appearance of the volcanic aerosols as compared to volcanically quite periods. There are heterogeneous reactions which could occur on the volcanic aerosols to convert NO2 into HNO3 but no commensurate increase in HNO3 column amounts was observed at the times of NO2 decrease.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 24; p. 2873-2876
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: The devolatilization of calcium sulfate, which is present in the target rock of the Chicxulub, Mexico impact structure, and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. We measured the amount of SO2 produced from two shock-induced devolatilization reactions of calcium sulfate up to 42 GPa in the laboratory. We found both to proceed to a much lower extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be approx. 10(exp -2) times those calculated for equilibrium. Upon modeling the quantity of sulfur oxides degassed into the atmosphere from shock devolatilization of CaSO4 in the Chicxulub lithographic section, the resulting 9 x 10(exp 16) to 6 x 10(exp 17) g (in sulfur mass) is lower by a factor of 10-100 than previous upper limit estimates, the related environmental stress arising from the resultant global cooling and fallout of acid rain is insufficient to explain the widespread K-T extinctions.
    Keywords: GEOPHYSICS
    Type: Earth and Planetary Science Letters (ISSN 0012-821X); 128; 3-4; p. 615-628
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: Energetic atomic (O(+1) and N(+1)) and molecular (O2(+1), NO(+1), and N2(+1)) ions of ionospheric origin were observed in Earth's magnetotail at X approximately -146 R(sub E) during two plasma sheet sunward/tailward flow-reversal events measured by instruments on the GEOTAIL spacecraft. These events were associated with concurrent ground-measured geomagnetic disturbance intensification at auroral-and mid-latitudes (Kp = 7(-)). Energetic ions in the sunward-component and tailward flows were from both the solar wind and ionosphere. Plasma and energetic ions participated in the flows. During tailward flow, ionospheric origin ion abundance ratios at approximately 200-900 km/s in the rest frame were N(+1)/O(+1) = approximately 25-30% and ((O2(+1), NO(+1), and N2(+1))/O(+1) = approximately 1-2%. We argue that tailward flow most likely initiated approximately 80-100 R(sub E) tailward of Earth and molecular ions were in the plasma sheet prior to geomagnetic intensification onset.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 25; p. 3023-3026
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: Wave forms of BEN (Broadband Electrostatic Noise) in the geomagnetic tail were first detected by the Wave Form Capture reciever on the GEOTAIL spacecraft. The results show that most of the BEN in the plasma sheet boundary layer (PSBL) are not continuous broadband noise but are composed of a series of solitary pulses having a special form which we term 'Electrostatic Solitary Waves (ESW)'. A nonlinear BGK potential model is proposed as the generation mechanism for the ESW based upon a simple particle simulation which considers the highly nonlinear evolution of the electron beam instability. The wave forms produced by this simulation are very similar to those observed by GEOTAIL and suggest that the nonlinear dynamics of the electron beam play an essential role in the generation of ESW.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 25; p. 2915-2918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: Radiometric (K-Ar and Ar-40/Ar-39) age determinations of volcanic and volcaniclastic rocks, combined with structural, gravity, and seismic reflection data, are used to constrain the age of sedimentary strata contained within the seismically and volcanically active northern Malawi (Nyasa) rift and to characterize changes in basin and flank morphologies with time. Faulting and volcanism within the Tukuyu-Karonga basin began at approximately 8.6 Ma, when sediments were deposited in abroad, initially asymmetric lake basin bounded on its northeastern side by a border fault system with minor topographic relief. Extensions, primarily by a slip along the border fault, and subsequent regional isostatic compensation led to the development of a 5-km-deep basin bounded by broad uplifted flanks. Along the low-relief basin margin opposite border fault, younger stratigraphic sequences commonly onlap older wedge-shaped sequences, although their internal geometry is often progradational. Intrabasinal faulting, flankuplift, and basaltic and felsic volcanism from centers at the northern end of the basin became more important at about 2.5 Ma when cross-rift transfer faults developed to link the Tukuyu-Karonga basin to the Rukwa basin. Local uplift and volcanic construction at the northern end of the basin led to a southeastward shift in the basin's depocenter. Sequence boundaries are commonly erosional along this low-relief (hanging wall) margin and conformable in the deep lake basin. The geometry of stratigraphic sequences and the distribution of the erosion indicate that horizontal and vertical crustal movements both across and along the length of the rift basin led to changes in levels of the lake, irrespective of paleoclimatic fluctuations.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; B10; p. 17,821-17,836
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A10; p. 19,475-19,483
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: A radiation model, together with National Meteorological Center temperature observations, was used to compute daily net heating rates in the northern hemisphere (NH) for the Arctic late fall and winter periods of both 1988-1989 and 1991-1992 and in the southern hemisphere (SH) for the Antarctic fall and winters of 1987 and 1992. The heating rates were interpolated to potential temperature (theta) surfaces between 400 K and 2000 K and averaged within the polar vortex, the boundary of which was determined by the maximum gradient in potential vorticity. The averaged heating rates were used in a one-dimensional vortex interior descent model to compute the change in potential temperature with time of air parcels initialized at various theta values, as well as to compute the descent in log pressure coodinates. In the NH vortex, air parcels which were initialized at 18 km on November 1, descended about 6 km by March 21, while air initially at 25 km descended 9 km in the same time period. this represents an average descent rate in the lower stratosphere of 1.3 to 2 km per month. Air initialized at 50 km descended 27 km between November 1 and March 21. In the SH vortex, parcels initialized at 18 km on March 1, descended 3 km, while air at 25 km descended 5-7 km by the end of October. This is equivalent to an average descent in the lower stratosphere of 0.4 to 0.9 km per month during this 8-month period. Air initialized at 52 km descended 26-29 km between March 1 and October 31. In both the NH and the SH, computed descent rates increased markedly with height. The descent for the NH winter of 1992-1993 and the SH winter of 1992 computed with a three-dimensional trajectory model using the same radiation code was within 1 to 2 km of that calculated by the one-dimensional model, thus validating the vortex averaging procedure. The computed descent rates generally agree well with observations of long-lived tracers, thus validating the radiative transfer model.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D8; p. 16,677-16,689
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: In this paper we report radiometric measurements of tropospheric brightness temperatures obtained during the AASE 2 experiment. These measurements represent the first attempt to characterize effective radiative temperatures as seen from above the troposphere during the Arctic winter. The reported measurements include brightness temperatures at 6.7 and 10.5 microns as seen from the NASA DC-8 aircraft flying at about 11 km altitude. We also present radiative transfer calculations to estimate the effect of tropospheric brightness temperature on the lower stratospheric heating rates. Because of the recent massive eruption of the Pinatubo volcano, we also discuss the effects of a volcanic aerosol layer. It is concluded that small particles like the volcanic aerosol or polar stratospheric clouds (PSCs) type 1 do not affect stratospheric heating rates by much; on the other hand, larger particles, PSCs types 2 and 3, may have significant effects on heating rates and consequently on dynamics of the lower stratosphere. The dynamical effects of local stratospheric temperature variations are briefly discussed.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 22; p. 2575-2578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: We report tropospheric (altitudes greater than 5 km) observations of CO2, CO, CH4, and light hydrocarbons (C2-C4) over the latitude range from 90 deg N to 23 deg S recorded onboard the NASA DC-8 aircraft during the winter 1992 Second Airborne Arctic Stratospheric Expedition (AASE-2). Mixing ratios for these species exhibited significant north-south gradients with maximum values in subpolar and arctic regions and minima over the southern tropics. At latitudes greater than 40 deg N, the mixing ratios of most species increased significantly over the course of the 3-month measurement period. Also at high northern latitudes, the variations of all relatively long-lived reactive carbon species were linearly correlated with fluctuations of CO2 with CO, CH4, C2H6, C2H2, C3H8, and n-C4H10 exhibiting average enhancement ratios in terms of ppbv(X)/ppmb(CO2) of 13.8, 8.4, 0.21, 0.075, 0.085, and 0.037, respectively.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 22; p. 2539-2542
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: Vertical column measurements of the gaseous composition of the tropical stratosphere were made from the NASA DC-8 aircraft early in 1992. As anticipated, the burdens of the stratospheric source gases (e.g., O3, HF, HCl, ClNO3, HNO3) were reduced from their mid-latitude values due to increased uplift and photolysis. The tracers revealed considerably more uplift near the equator than the sub-tropics. For example, the HF burdens at +/- 20 deg latitude were nearly double those at 5 deg N. This, together with results obtained from other long-lived gases (e.g. N2O, CH4, CF2Cl2) indicates that volume mixing ratios found at 22 km altitude at mid-latitudes occurred at 26 km in the sub-tropics and at 30 km in the equatorial zone. This zone of uplift was symmetrical about the equator even though the sun was overhead at 20 deg S.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 22; p. 2503-2506
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-24
    Description: We welcome this opportunity which Drs. Ricard, Sabadini and Spada (RSS) have offered us to elaborate on some points concerning the connection between convective circulations and rotational dynamics. The relationship of the linear viscoelastic normal-mode theory to other approaches, such as viscous and the non-linear viscoelastic treatments, can be found in Moser et al. (1993). We will address the issues raised by RSS by first going over the reference system. This will be followed by a discussion concerning long-term polar wander and relative angular momentum. We will also go over the issues concerning the off-diagonal terms in the total moment of inertia and polar wander.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 22; p. 2497-2498
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: In late July and early August of 1991, a major suborbital scientific campaign (NLC-91) involving scientists from eight countries was conducted as ESRANGE, Kiruna, Sweden and at Heiss Island, Russia. The purpose of the program was to investigate the chemical, dynamical, and electrodynamical properties of the polar summer mesosphere. Thirty one rocket flights were coordinated with two coherent radar facilities, EISCAT and CUPRI, and with other ground-based observatories and facilities. This permitted direct comparison between the in situ measurements and those obtained by remote sensing of the mesosphere via continuous ground-based monitoring. The primary objectives of the campaign were to study noctilucent clouds (NLCs) and polar mesospheric summer echoes (PMSEs), including their possible relationship to local aerosols and/or small scale turbulence. This overview describes the scientific program, discusses the geophysical conditions during launch activities, and reviews some of the preliminary results. More detailed results can be found in the papers which follow.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 22; p. 2443-2446
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: The International Sun-Earth Explorer 3 (ISEE-3) magnetic field and plasma electron data from Jan - March 1983 have been searched to study thin current sheets in the deep tail region. 33 events were selected where the spacecraft crossed through the current sheet from lobe to lobe within 15 minutes. The average thickness of the observed current sheets was 2.45 R(sub E), and in 24 cases the current sheet was thinner than 3.0 R(sub E); 6 very thin current sheets (thickness lambda less than 0.5 R(sub E) were found. The electron data show that the very thin current sheets are associated with considerable temperature anisotropy. On average, the electron gradient current was about 17% of the total current, whereas the current arising from the electron temperature anisotropy varied between 8-45% of the total current determined from the lobe field magnitude.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 22; p. 2427-2430
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: The map of the coseismic displacement field generated by interferometric processing of synthetic aperture radar (SAR) images taken before and after the June 28, 1992, Landers earthquake sequence brings new insights into the nature of deformation caused by these earthquakes. We use the interferometric map generated by Massonnet et al. (1993) to analyze the surface displacement field in the vicinity of the fault trace. Complexities in the fringe pattern near the fault reflect short-wavelength variations of the surface rupture and slip distribution, and attest to large displacement gradients. Along two sections of the fault, characteristic fringe patterns can be recognized, contrasting in density and direction with patterns observed away from the rupture. In order to understand the observed fringe patterns, we compute synthetic interferograms in three simple cases: (1) rigid-body rotations about a vertical axis, (2) about a horizontal axis (tilt), and (3) distributed, simple shear. The orientation and spatial separation of interferometric fringes predicted by these models help constrain near-field deformation and rupture parameters. Where the Kickapoo fault connects with the Homestead Valley fault, the interferogram shows a clear pattern of parallel N20 deg W fringes separated by about 160 m. This pattern and vertical offsets measured along the Kickapoo fault suggest that the block between this fault and the Johnson Valley fault may have been tilted, down to the west. A 5-km block lifted by 1 m on one side would be tilted by an angle of 0.01 deg (190 microrad), producing fringes separated by about 160 m, parallel to the tilt axis. Such a tilt, parallel to a N20 deg W direction, would account for the gradual, northward increase of the vertical slip component observed along the Kickapoo fault. This tilt may also explain the 1 m of reverse slip observed along the 'slip gap' section of the Homestead Valley break. Between the southern end of the Johnson Valley fault and the Eureka Peak fault, where no surface rupture has been mapped, the dense pattern of fringes implies distributed shear, probably resulting from fault slip at depth. The density and direction of the fringes in the gap are consistent with a right-lateral slip of 1.2-3.8 m on a blind fault locked above the depth of 1.5-2 km. Such observations of small wavelength features in the SAR interferogram bring new insights into the near-field displacement gradient and thus on response of the uppermost crust to seismic rupture.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B11; p. 21,971-21,981
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: Global distributions of surface and atmospheric cloud radiative forcing parameters have been derived using parameterized radiation models with satellite meteorological data from the International Satellite Cloud Climatology Project, and directly measured top-of-atmosphere radiative fluxes from the Earth Radiation Budget Experiment. Specifically, shortwave, longwave, and total cloud forcing at the surface, and column-averaged values of longwave cloud forcing of the atmosphere were derived for the midseasonal months of April, July, and October 1985 and January 1986, covering a complete annual cycle. Seasonal variability is illustrated by comparing the results for July 1985 and January 1986, which represent the seasonal extremes. Surface shortwave cloud forcing is always negative, representing a cooling of the surface, with strongest cooling (-120 to -180 W/sq m) occurring over midlatitude storm tracks of the summer hemisphere. Surface longwave cloud forcing is always positive, representing a warming of the surface, with strongest warming (60 to 75 W/sq m) occurring over storm tracks of the winter hemisphere. Zonal averages show the entire summer hemisphere dominated by shortwave cooling, the middle and high latitudes of the winter hemisphere dominated by longwave warming, and a broad zone of transition in between. The globally averaged total cloud forcing amounts to a cooling throughout the year, ranging from a low of about -12 W/sq m for July 1985 to a high of about -25 W/sq m for January 1986. The longwave cloud forcing of the atmosphere shows a strong warming over deep convective regions in the tropics and a moderate cooling outside the tropics, amounting to a weak cooling (-2 to -5 W/sq m) in the global average. Comparisons of the results with general circulation model simulations show broad qualitative agreement regarding the locations of prominent warming and cooling regions. Quantitative comparisons, on the other hand, show significant differences between the magnitudes of warming and cooling in these regions. Most of the larger differences can be attributed to known deficiences of the general circulation model simulations. Comparisons with satellite-derived results of other investigators show much better agreement.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D11; p.20,761-20,778
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-24
    Description: The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 109-119
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B2; p. 2791-2813
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-08-24
    Description: The presence of anisotropic plasma distributions, trapped at the Earth's magnetic equator, has consequences for the electric field structure which must exist in equilibrium along the magnetic field line. Data from SCATHA and Dynamics Explorer 1 indicate that the core ion distributions at the magnetic equator can be well described as bi-Maxwellian distributions, with a perpendicular temperature an order of magnitude larger than the parallel temperature. A collisionless model is developed for the variation in plasma parameters, following the forms developed by Whipple (1977). If the core electron anisotropy is low, the resulting electric field of approximately 0.1 microV/m is pointed away from the equator. Under these conditions the self-consistent electric field will not overcome the effects of magnetic trapping. The resulting potential distribution results in a local maximum in total plasma density at the equator. Only when the electron distribution is primarily field-aligned can there be a density minimum at the equator. Comparisons are made between this model and the observed variations in DE 1 plasma parameters with latitude.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A2; p. 2191-2203
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-24
    Description: The transformation validity question utilizing resulting data from direct numerical simulations (DNS) of supersonic, isothermal cold wall channel flow was investigated. The DNS results stood for a wide scope of parameter and were suitable for the purpose of examining the generality of Van Driest transformation. The Van Driest law of the wall can be obtained from the inner-layer similarity arguments. It was demonstrated that the Van Driest transformation cannot be incorporated to collapse the sublayer and log-layer velocity profiles simultaneously. Velocity and temperature predictions according to the preceding composite mixing-length model were presented. Despite satisfactory congruity with the DNS data, the model must be perceived as an engineering guide and not as a rigorous analysis.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 10; p. 2110-2113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-24
    Description: A Monte Carlo solution technique has been formulated to predict the radiative heat transfer in three-dimensional, inhomogeneous participating media which exhibit spectrally dependent emission and absorption and anisotropic scattering. Details of the technique and selected numerical sensitivities are discussed. The technique was applied to a problem involving a medium composed of a gas mixture of carbon dioxide and nitrogen and suspended carbon particles. A homogeneous medium was modeled to examine the effect of total pressure and carbon-particle concentration on radiative heat transfer. Variation in total pressure, over the range studied, had minimal effect on the amount of heat radiated to the enclosure walls and on the radiative-flux distribution within the medium. Increases in the carbon particle concentration produced significantly higher heat fluxes at the boundaries and altered the radiative flux distribution. The technique was then applied to an inhomogeneous medium to examine effects of specific temperature and carbon particle concentration distributions on radiative heat transfer. For the inhomogeneous conditions examined, the largest radiative flux divergence occurs near the center of the medium and the regions near some enclosure walls act as energy sinks.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 8; 1; p. 133-139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-24
    Description: A combined 3-dimensional circulation model and aerosol microphysical/transport model is used to simulate the dispersion of the Mt. Pinatubo volcanic cloud in the stratosphere for the first few months following the eruption. Radiative heating of the cloud due to upwelling infrared radiation from the troposphere is shown to be an important factor affecting the transport. Without cloud heating, cloud material stays mostly north of the equator, whereas with cloud heating, the cloud is transported southward across the equator within the first two weeks following the eruption. Generally the simulations agree with Total Ozone Mapping Spectrometer (TOMS), Advanced Very High Resolution Radiometer (AVHRR), and Stratospheric Aerosol and Gas Experiment (SAGE) satellite observations showing the latitude distribution of cloud material to be between about 20 deg S and 30 deg N within the first few months. Temperature perturbations in the stratosphere induced by the aerosol heating are generally 1-4 K, in the range of those observed.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 5; p. 369-372
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-24
    Description: We use geodetic data from Very Long Baseline Interferometry (VLBI) to determine the pre- and postseismic velocities of two sites. We then place limits on variations in interseismic strain buildup. The 1987 and 1988 Gulf of Alaska earthquakes (each Ms = 7.6) broke the Pacific plate interior. During the earthquakes the Cape Yakataga site moved 78 mm toward southwest. During the 1989 Loma Prieta earthquake (Ms = 7.1) the Fort Ord site moved 48 mm toward north. Baselines (a) from Fairbanks to Cape Yakataga and (b) from Mojave to Fort Ord change at nearly the same rate before and after the earthquakes. Postseismic transients, which we determine from differences between post- and preseismic rates, are minor: at Cape Yakataga the transient is 3 +/- 4 mm in a postseismic interval of 23 months, and at Fort Ord the transient is 6 +/- 5 mm in 21 months. The slip beneath the Loma Prieta rupture needed to generate the Fort Ord transient is 0.22 +/- 0.19 m, one-tenth the coseismic slip (2 m). We analyze elastic lithosphere-viscous asthenosphere models to determine that the characteristic time describing exponential decay in deep fault slip is longer than 6 years. The VLBI measurements are consistent with uniform interseismic strain buildup. They disagree with fast postseismic rates caused by an asthenosphere with very low viscosity.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 5; p. 333-336
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-08-24
    Description: The AEPI (Atmospheric Emissions Photometric Imager) experiment on the ATLAS-1 shuttle mission (launched March 24, 1992) imaged the earth night airglow emission in O2 Atmospheric (0,0) bands, at 762.0 nm. Earthward views of O2 A bands show structure from gravity waves which exhibit extended horizontal structure with horizontal wavelenghts on the order of 50-100 km. These observations of the O2 A (0,0) bands are particularly interesting since in this wavelength the lower atmosphere absorbs all the earth-reflected emissions and most of the spectrally diffuse backgrounds. Herein we present observations of gravity waves using a topside airglow imaging technique.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 21; p. 2283-2286
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-24
    Description: Fujii et al. (1994) obtained characteristics of the electrodynamic parameters, that is, field-aligned currents, electric fields, and electron precipitation, which are associted with auroral substorm events in the nighttime sector, through a unique analysis that places the ionospheric measurements of these parameters into the context of a generic substorm determined from global auroral images. In this paper we investigate in considerably more detail the characteristics of the field-aligned currents using data from the same set of passes as the previuos study. We show for the first time that the net upward field-aligned currents throughout the surge and surge horn are sufficient to account for most if not all of the converging currents of the auroral electrojets. Current densities are largest in the surge and surge horn. Current region continuity does not appear to exist across the substorm bulge region. Much of the auroral substorm field-aligned current is composed of filamentary currents and finite current segments at large angles to each other. The westward electrojet may contain large gradients in intensity both in local time and latitude due to sets of localized field-aligned currents. The net downward current for several hours to the west of the surge is insufficient to account for the eastward electrojet, consistent with the concept that this electrojet originates primarily on the dayside. Our pattern of field-aligned currents associated with the surge has common features and also differs significantly from the patterns previously derived from data from radars and ground-based magnetometer arrays. Our pattern is considerably more complex, probably due to the much higher resolution in latitude of the satellite data. It is also larger in area, since our average substorm is much larger than those pertaining to the previous patterns, giving a substorm wedge considerably wider than that obtained from the radar and array data.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A11; p. 21,303-21,325
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-08-24
    Description: Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rare faction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefunction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the afterbody sting are emphasized in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1399-1406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-24
    Description: An analytical model of the bidirectional reflectance for optically semi-infinite plant canopies has been extended to describe the reflectance of finite depth canopies contributions from the underlying soil. The model depends on 10 independent parameters describing vegetation and soil optical and structural properties. The model is inverted with a nonlinear minimization routine using directional reflectance data for lawn (leaf area index (LAI) is equal to 9.9), soybeans (LAI, 2.9) and simulated reflectance data (LAI, 1.0) from a numerical bidirectional reflectance distribution function (BRDF) model (Myneni et al., 1988). While the ten-parameter model results in relatively low rms differences for the BRDF, most of the retrieved parameters exhibit poor stability. The most stable parameter was the single-scattering albedo of the vegetation. Canopy albedo could be derived with an accuracy of less than 5% relative error in the visible and less than 1% in the near-infrared. Sensitivity were performed to determine which of the 10 parameters were most important and to assess the effects of Gaussian noise on the parameter retrievals. Out of the 10 parameters, three were identified which described most of the BRDF variability. At low LAI values the most influential parameters were the single-scattering albedos (both soil and vegetation) and LAI, while at higher LAI values (greater than 2.5) these shifted to the two scattering phase function parameters for vegetation and the single-scattering albedo of the vegetation. The three-parameter model, formed by fixing the seven least significant parameters, gave higher rms values but was less sensitive to noise in the BRDF than the full ten-parameter model. A full hemispherical reflectance data set for lawn was then interpolated to yield BRDF values corresponding to advanced very high resolution radiometer (AVHRR) scan geometries collected over a period of nine days. The resulting parameters and BRDFs are similar to those for the full sampling geometry, suggesting that the limited geometry of AVHRR measurements might be used to reliably retrieve BRDF and canopy albedo with this model.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D5; p. 10,577-10,600
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Simplified Shuttle Payload Thermal Analyzer program (SSPTA) was developed to aid in the evaluation of thermal design concepts of instruments to be flown in the Space Shuttle cargo bay. SSPTA consists of a collection of programs that are currently used in the thermal analysis of spacecraft and have been modified for quick, preliminary analysis of payloads. SSPTA includes a reduced math model of the Shuttle cargo bay to simplify use of the program for payload analysis. One of the prime objectives in developing SSPTA was to create a program which was easy to use. With SSPTA, the user required input is simple and the user is free from many of the concerns of computer usage such as disk space handling, tape usage, and complicated program control. Although SSPTA was designed primarily to analyze Shuttle payloads, it can easily be used to perform thermal analysis in other situations. SSPTA is comprised of a system of data files called 'bins', a master program, and a set of thermal subprograms. The bin system is a collection of disk files which contain data required by or computed by the thermal subprograms. SSPTA currently has the capability of handling 50 bins. The master program serves primarily as a manager for the bin system and its interaction with the thermal subprograms. Input to the master program consists of simple user commands which direct the data manipulation procedures, prepare the data for these procedures, and call the appropriate thermal subprograms. The subprograms of SSPTA are all based on programs which have been used extensively in the analysis of orbiting spacecraft and space hardware. Subprogram CONSHAD uses the user supplied geometric radiation model to compute black body view factors, shadow factors, and a description of the surface model. The subprogram WORKSHEET uses the surface model description, optical property data, and node assignment data to prepare input for SCRIPTF. Subprogram SCRIPTF computes the inverses of the infrared (IR) and ultraviolet (UV) radiation transfer equations; it also computes the radiation coupling between nodes in the thermal model. Subprogram ORBITAL uses the shadow tables to compute incident flux intensities on each surface in the geometric model. Subprogram ABSORB uses these flux intensities combined with the IR and UV inverses to compute the IR and UV fluxes absorbed by each surface. The radiation couplings from SCRIPTF and the absorbed fluxes from ABSORB are used by subprogram TTA to compute the temperature and power balance for each node in the thermal model. Output consists of tabulated data from each of the subprograms executed during a particular analysis. Due to the modular form of SSPTA, analyses may be run in whole or in part, and new subprograms may be added by the user. SSPTA is written in FORTRAN for use on a DEC VAX-11/780. SSPTA was originally developed in 1977 for use on IBM 370 series computers. This version is an update which was ported to the VAX in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: GSC-12698
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Remote Interactive Particle-tracing (RIP) is a distributed-graphics program which computes particle traces for computational fluid dynamics (CFD) solution data sets. A particle trace is a line which shows the path a massless particle in a fluid will take; it is a visual image of where the fluid is going. The program is able to compute and display particle traces at a speed of about one trace per second because it runs on two machines concurrently. The data used by the program is contained in two files. The solution file contains data on density, momentum and energy quantities of a flow field at discrete points in three-dimensional space, while the grid file contains the physical coordinates of each of the discrete points. RIP requires two computers. A local graphics workstation interfaces with the user for program control and graphics manipulation, and a remote machine interfaces with the solution data set and performs time-intensive computations. The program utilizes two machines in a distributed mode for two reasons. First, the data to be used by the program is usually generated on the supercomputer. RIP avoids having to convert and transfer the data, eliminating any memory limitations of the local machine. Second, as computing the particle traces can be computationally expensive, RIP utilizes the power of the supercomputer for this task. Although the remote site code was developed on a CRAY, it is possible to port this to any supercomputer class machine with a UNIX-like operating system. Integration of a velocity field from a starting physical location produces the particle trace. The remote machine computes the particle traces using the particle-tracing subroutines from PLOT3D/AMES, a CFD post-processing graphics program available from COSMIC (ARC-12779). These routines use a second-order predictor-corrector method to integrate the velocity field. Then the remote program sends graphics tokens to the local machine via a remote-graphics library. The local machine interprets the graphics tokens and draws the particle traces. The program is menu driven. RIP is implemented on the silicon graphics IRIS 3000 (local workstation) with an IRIX operating system and on the CRAY2 (remote station) with a UNICOS 1.0 or 2.0 operating system. The IRIS 4D can be used in place of the IRIS 3000. The program is written in C (67%) and FORTRAN 77 (43%) and has an IRIS memory requirement of 4 MB. The remote and local stations must use the same user ID. PLOT3D/AMES unformatted data sets are required for the remote machine. The program was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12430
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This software package includes two programs, the KPD12 and the KPD12P. Both programs utilizes the vortex-blob method to simulate flow around solid bodies, in an unbounded domain using the KPD12, with periodicity in one direction using the KPD12P. The main advantage of the vortex-blob method is the ability to handle situations involving arbitrary shapes including multiple bodies. The user just supplies points on the solid boundaries; there is no grid. The KPD12 program has worked successfully on bluff bodies, stalled wings, and multiple-element airfoils. The KPD12P program has been used successfully on high-solidity separated cascades and on cases of rotating stall in cascades of thin airfoils. However, they do not capture subtle viscous effects such as incipient separation and friction drag. The KPD12 and the KPD12P programs apply the vortex-blob method to time-dependent, high-Reynolds-number flows around solid bodies. Both programs solve the two-dimensional incompressible Navier-Stokes equations, neglecting the viscous effects away from the walls. By creating new vortices along the wall at every time step, they treat the no-penetration and no-slip boundary conditions while using an influence matrix. The code automatically controls the number of vortices. Furthermore, the code has the option of treating the boundary layers by simple integral methods to determine the separation points. The KPD12 outputs forces, moments, and pressure distributions on the bodies. The KPD12P also outputs the turning angle and loss of total pressure. The source code is in Cray FORTRAN and contains a few calls to Cray vector functions which are vectorized with the Cray compiler. However, substitutes for these vector functions are provided. The code is set up to plot the bodies, vortex positions, and streamlines using the DISSPLA graphics software. The software requires a mainframe computer with at least 589k of memory available running under COS 1.16. KPD12 was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12119
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-08-24
    Description: The Steady State Thermal Analysis Program (STEADY) provides the thermal designer with a quick and convenient method for calculating heat loads and temperatures. STEADY can be used on small nodal networks for conceptual or preliminary thermal design and analysis. STEADY will accept up to 20 nodes of fixed or variable temperature, with constant or temperature-dependent thermal conductivities, and any set of consistent units. In a steady state thermal network, the heat balance on each variable temperature node must sum to zero. The general heat transfer equations are solved with a Newton-Raphson technique and refined by a fourth order quartic solution. Input data includes the number of nodes, number of boundary nodes, the fixed temperatures at all boundary nodes, initial temperature guesses for variable nodes, impressed heat loads, conduction and radiation coefficients, and control parameters such as convergence criteria, maximum iterations, and damping factors. The output is stored in a print file and tabulates final temperatures and heat flows for all nodes. STEADY is menu driven and allows the user to save files for future modification. STEADY is written in FORTRAN 77 (Ryan McFarland's RMFORTRAN) for interactive execution and has been implemented on the IBM PC computer series under DOS with a central memory requirement of approximately 92K of 8 bit bytes using a math coprocessor, and 103K bytes without the coprocessor. This program was developed in 1987.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NPO-17179
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: MSC-21030
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: MFS-28848
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component. On the first pass, the user finds that the calculated outlet conditions of the last component do not match the estimated inlet conditions of the first. The user then modifies the estimated inlet conditions of the first component in an attempt to match the calculated values. The user estimated values are called State Variables. The differences between the user estimated values and calculated values are called the Error Variables. The procedure systematically changes the State Variables until all of the Error Variables are less than the user-specified iteration limits. The solution procedure is referred to as SCX. It consists of two phases, the Systems phase and the Controller phase. The X is to imply experimental. SCX computes each next set of State Variables in two phases. In the first phase, SCX fixes the controller positions and modifies the other State Variables by the Newton-Raphson method. This first phase is the Systems phase. Once the Newton-Raphson method has solved the problem for the fixed controller positions, SCX next calculates new controller positions based on Newton's method while treating each sensor-controller pair independently but allowing all to change in one iteration. This phase is the Controller phase. SINFAC is available by license for a period of ten (10) years to approved licensees. The licenced program product includes the source code for the additional routines to SINDA, the SINDA object code, command procedures, sample data and supporting documentation. Additional documentation may be purchased at the price below. SINFAC was created for use on a DEC VAX under VMS. Source code is written in FORTRAN 77, requires 180k of memory, and should be fully transportable. The program was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: GSC-13231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-08-24
    Description: MSIS is an empirical model of the thermosphere based on Mass Spectrometer and Incoherent Scatter data. It provides a description of atmospheric temperature, density, and composition for altitudes higher than 85 kilometers. There are coefficients in MSIS to account for yearly and daily variations, geodetic latitude and longitude, altitude, and solar activity. Variations due to magnetic storms are represented by three-hour magnetic ap indices. The MSIS model enables a more timely prediction of aeronomic densities for specific events, such as rocket flights. The database for this model is a comprehensive summary of rocket flight, satellite, incoherent scatter radar, grenade, and falling sphere measurements. Subsets of data were formed by random selection after sorting on altitude, latitude, time of day, etc. Curve fitting was done with four to five thousand data points at a time. The resulting coefficients are presented in subroutines which calculate thermospheric composition and temperature for a user-supplied position and time. MSIS is written in FORTRAN 77 for use with batch or interactive programs and has been implemented on a DEC VAX series computer operating under VMS 4.3 with a central memory requirement of approximately 25K of 8 bit bytes. MSIS is based on a 1977 thermosphere model and was last updated in 1987 to reflect the CIRA 1986 Neutral Thermosphere Model.
    Keywords: GEOPHYSICS
    Type: GSC-12989
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10026
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10019
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is acceptable since it makes possible an overall and local error reduction through grid redistribution. SAGE includes the ability to modify the adaption techniques in boundary regions, which substantially improves the flexibility of the adaptive scheme. The vectorial approach used in the analysis also provides flexibility. The user has complete choice of adaption direction and order of sequential adaptions without concern for the computational data structure. Multiple passes are available with no restraint on stepping directions; for each adaptive pass the user can choose a completely new set of adaptive parameters. This facility, combined with the capability of edge boundary control, enables the code to individually adapt multi-dimensional multiple grids. Zonal grids can be adapted while maintaining continuity along the common boundaries. For patched grids, the multiple-pass capability enables complete adaption. SAGE is written in FORTRAN 77 and is intended to be machine independent; however, it requires a FORTRAN compiler which supports NAMELIST input. It has been successfully implemented on Sun series computers, SGI IRIS's, DEC MicroVAX computers, HP series computers, the Cray YMP, and IBM PC compatibles. Source code is provided, but no sample input and output files are provided. The code reads three datafiles: one that contains the initial grid coordinates (x,y,z), one that contains corresponding flow-field variables, and one that contains the user control parameters. It is assumed that the first two datasets are formatted as defined in the plotting software package PLOT3D. Several machine versions of PLOT3D are available from COSMIC. The amount of main memory is dependent on the size of the matrix. The standard distribution medium for SAGE is a 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. SAGE was developed in 1989, first released as a 2D version in 1991 and updated to 3D in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-13359
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10030
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-08-24
    Description: The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids, including those about airfoils. In a grid used for computing aerodynamic flow over an airfoil, or any other body shape, the surface of the body is usually treated as an inner boundary and often cannot be easily represented as an analytic function. The GRAPE computer program was developed to incorporate a method for generating two-dimensional finite-difference grids about airfoils and other shapes by the use of the Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including a limited number of sharp corners. The GRAPE program has been developed to be numerically stable and computationally fast. GRAPE can provide the aerodynamic analyst with an efficient and consistent means of grid generation. The GRAPE procedure generates a grid between an inner and an outer boundary by utilizing an iterative procedure to solve the Poisson differential equation subject to geometrical restraints. In this method, the inhomogeneous terms of the equation are automatically chosen such that two important effects are imposed on the grid. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. Along with the iterative solution to Poisson's equation, a technique of coarse-fine sequencing is employed to accelerate numerical convergence. GRAPE program control cards and input data are entered via the NAMELIST feature. Each variable has a default value such that user supplied data is kept to a minimum. Basic input data consists of the boundary specification, mesh point spacings on the boundaries, and mesh line angles at the boundaries. Output consists of a dataset containing the grid data and, if requested, a plot of the generated mesh. The GRAPE program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 135K (octal) of 60 bit words. For plotted output the commercially available DISSPLA graphics software package is required. The GRAPE program was developed in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-11379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10040
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-11794
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-08-24
    Description: The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids. 3DGRAPE is designed to make computational grids in or about almost any shape. These grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. 3DGRAPE uses zones to solve the problem of warping one cube into the physical domain in real-world computational fluid dynamics problems. In a zonal approach, a physical domain is divided into regions, each of which maps into its own computational cube. It is believed that even the most complicated physical region can be divided into zones, and since it is possible to warp a cube into each zone, a grid generator which is oriented to zones and allows communication across zonal boundaries (where appropriate) solves the problem of topological complexity. 3DGRAPE expects to read in already-distributed x,y,z coordinates on the bodies of interest, coordinates which will remain fixed during the entire grid-generation process. The 3DGRAPE code makes no attempt to fit given body shapes and redistribute points thereon. Body-fitting is a formidable problem in itself. The user must either be working with some simple analytical body shape, upon which a simple analytical distribution can be easily effected, or must have available some sophisticated stand-alone body-fitting software. 3DGRAPE does not require the user to supply the block-to-block boundaries nor the shapes of the distribution of points. 3DGRAPE will typically supply those block-to-block boundaries simply as surfaces in the elliptic grid. Thus at block-to-block boundaries the following conditions are obtained: (1) grids lines will match up as they approach the block-to-block boundary from either side, (2) grid lines will cross the boundary with no slope discontinuity, (3) the spacing of points along the line piercing the boundary will be continuous, (4) the shape of the boundary will be consistent with the surrounding grid, and (5) the distribution of points on the boundary will be reasonable in view of the surrounding grid. 3DGRAPE offers a powerful building-block approach to complex 3-D grid generation, but is a low-level tool. Users may build each face of each block as they wish, from a wide variety of resources. 3DGRAPE uses point-successive-over-relaxation (point-SOR) to solve the Poisson equations. This method is slow, although it does vectorize nicely. Any number of sophisticated graphics programs may be used on the stored output file of 3DGRAPE though it lacks interactive graphics. Versatility was a prominent consideration in developing the code. The block structure allows a great latitude in the problems it can treat. As the acronym implies, this program should be able to handle just about any physical region into which a computational cube or cubes can be warped. 3DGRAPE was written in FORTRAN 77 and should be machine independent. It was originally developed on a Cray under COS and tested on a MicroVAX 3200 under VMS 5.1.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12620
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-24
    Description: On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.
    Keywords: GEOPHYSICS
    Type: Planetary and Space Science (ISSN 0032-0633); 40; 10; p. 1399-1408.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-08-24
    Description: In the present paper, direct numerical methods by which to simulate the spatially developing free shear flows in the transitional region are described and the numerical results of a spatially developing plane wake are presented. The incompressible time-dependent Navier-Stokes equations were solved using Pade finite difference approximations in the streamwise direction, a mapped pseudospectral Fourier method in the cross-stream direction, and a third-order compact Runge-Kutta scheme for time advancement. The unstable modes of the Orr-Sommerfeld equations were used to perturb the inlet of the wake. Statistical analyses were performed and some numerical results were compared with experimental measurements. When only the fundamental mode is forced, the energy spectra show amplification of the fundamental and its higher harmonics. In this case, unperturbed alternate vortices develop in the saturation region of the wake. The phase jitter around the fundamental frequency plays a critical role in generating vortices of random shape and spacing. Large- and small-scale distortions of the fundamental structure are observed. Pairing of vortices of the same sign is observed, as well as vortex coupling of vortices of the opposite sign.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: JSME International Journal, Series II (ISSN 0914-8817); 35; 4; p. 543-548.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-08-24
    Description: This paper discusses in situ measurements of O3, aerosol number density, and aerosol size obtained during NASA Arctic Boundary Layer Expedition aircraft flights over the Alaskan Arctic region. The major source of summer O3 for the troposphere in the intrusion of stratospheric air and subsequent transport to lower altitudes. Photochemistry of mixed layer emissions and O3 transported from high northern latitude urban/industrialized areas do not appear to play major roles as sources of O3 for the Alaska region. O3 gradients reflect the loss at the surface and supply from the stratosphere. Free tropospheric O3 averaged 74 ppbv compared to 32 ppbv for the mixed layer. O3 loss mechanisms are a combination of the destruction via photochemistry, chemical reaction with surface emissions, and direct loss through deposition to the surface. The boreal forest in the most efficient of the O3 sinks and has the largest increase in aerosol number density relative to the free troposphere.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,451-16,471.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-08-24
    Description: This book first reviews the overall aspects and background information related to thermal radiation heat transfer and incorporates new general information, advances in analytical and computational techniques, and new reference material. Coverage focuses on radiation from opaque surfaces, radiation interchange between various types of surfaces enclosing a vacuum or transparent medium, and radiation including the effects of partially transmitting media, such as combustion gases, soot, or windows. Boundary conditions and multiple layers are discussed with information on radiation in materials with nonunity refractive indices.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ; 1090 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-08-24
    Description: The most important investigations leading to the International Reference Ionosphere 1990 (IRI-90) are overviewed, and the latest version of the model is described. The shortcomings and limitations of the IRI-90 are pointed out, together with the ways of overcoming them. The list of studies that the IRI group has yet to carry out includes the investigations of magnetic storm effects as the highest priority. This paper discusses determinations of and the available data on the electron density, plasma temperatures, ion composition, and ion drift in the ionosphere, together with future improvements needed on these parameters.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 13; 3; p. 3-13, 15-23.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-08-24
    Description: The present approach to the prediction of instability generation that is due to the interaction of freestream disturbances with regions of subscale variations in surface boundary conditions can account for the finite Reynolds number effects, while furnishing a framework for the study of receptivity in compressible flow and in 3D boundary layers. The approach is illustrated for the case of Tollmien-Schlichting wave generation in a Blasius boundary layer, due to the interaction of a freestream acoustic wave with a localized wall inhomogeneity. Results are presented for the generation of viscous and inviscid instabilities in adverse pressure-gradient boundary layers, supersonic boundary layer instabilities, and cross-flow vortex instabilities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: In: Boundary layer transition and control; Proceedings of the Conference, Univ. of Cambridge, United Kingdom, Apr. 8-12, 1991 (A93-17251 04-34); p. 45.1-45.20.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-08-24
    Description: In the aftermath of the eruption of Mt. Pinatubo, multiwavelength stratospheric aerosol extinction measurements by the satellite-borne Stratospheric Aerosol and Gas Experiment (SAGE II) revealed the presence of a previously unobserved mode of aerosol that exhibited high extinction but a small inferred particle size. This mode may represent a transitional phase between the very small aerosol created by gas-to-particle conversion and a quasi-steady state, post-volcanic aerosol that exhibits both large extinction and large particle size. The presence of a transitional small aerosol mode may have a significant impact on chemical and radiative processes in the stratosphere.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 19; 21; p. 2179-2182.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-08-24
    Description: CO2 exchange rates were measured at selected tundra sites near Bethel, Alaska using portable, climate-controlled, instrumented enclosures. The empirically modeled exchange rate for a representative area of vegetated tundra was 1.2 +/- 1.2 g/sq m/d, compared to a tower-measured exchange over the same time period of 1.1 +.0- 1.2 g/sq m/d. Net exchange in response to varying light levels was compared to wet meadow and dry upland tundra, and to the net exchange measured by the micrometeoroidal tower technique. The multispectral reflectance properties of the sites were measured and related to exchange rates in order to provide a quantitative foundation for the use of satellite remote sensing to monitor biosphere/atmosphere CO2 exchange in the tundra biome.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,671-16,680.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-08-24
    Description: Enhanced concentrations of CH4 in the unpolluted atmospheric mixed layer over both Arctic and subarctic tundra landscapes are documented here using data from the NASA Arctic Boundary Layer Expedition (ABLE 3A). The CH4 concentration gradients were determined mainly by interactions of biogenic emission from wet tundra and turbulent mixing proceses. The gradient were most frequently associated with intrusion of upper tropospheric or stratospheric air into the midtroposphere, emissions from forest and tundra fires, and long-range transport of enhanced concentration of these gases from unidentified sources. Summertime haze layers exhibited midtropospheric enhancements of CH4 similar to those measured in winter Arctic events. The observations confirm the importance of Arctic and Subarctic wetland environments as a regional source of global atmospheric CH4.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,589-16,599.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-08-24
    Description: The oxidation of the earth's crust and the increase in atmospheric oxygen early in earth history have been linked to the accumulation of reduced carbon in sedimentary rocks. Trends in the carbon isotope composition of sedimentary organic carbon and carbonate show that during the Proterozoic aeon (2.5-0.54 Gyr ago) the organic carbon reservoir grew in size, relative to the carbonate reservoir. This increase, and the concomitant release of oxidizing power in the environment, occurred mostly during episodes of global rifting and orogeny.
    Keywords: GEOPHYSICS
    Type: Nature (ISSN 0028-0836); 359; 6396; p. 605-609.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-08-24
    Description: Recently available spectral O3 line parameters are summarized and progress in remote sensing based on these parameters is discussed. Particular attention is given to covering line positions, line intensities and linewidths for both the main isotopic species (O-16)3 and the isotopic variants (O-16)(O-18)(O-16) and (O-16)(O-16)(O-18).
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy and Radiative Transfer (ISSN 0022-4073); 48; 5-6; p. 611-615.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The growth and development of a horseshoe vortex system in an incompressible, three-dimensional turbulent junction flow were investigated experimentally. A streamlined cylinder mounted with its axis normal to a flat surface was used to generate the junction vortex flow. The flow environment was characterized by a body Reynolds number of 183,000, based on the leading edge diameter of the streamlined cylinder. The study included surface flow visualizations, surface pressure measurements, and mean flow measurements of total pressure, static pressure, and velocity distributions in three planes around the base of the streamlined cylinder, and in two planes in the wake flow. Some characterizations of vortex properties based on the measured mean cross-flow velocity components are presented. The results show the presence of a single large, dominant vortex, with strong evidence of a very small corner vortex in the junction between the cylinder and the flat surface. The center of the dominant vortex drifts away from both the body and the flat surface as the flow develops along and downstream of the body. The growth and development of the core of the large, dominant vortex are documented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ASME, Transactions, Journal of Fluids Engineering (ISSN 0098-2202); 114; 4; p. 559-565.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-08-24
    Description: The nonlinear resonant-triad interaction, proposed by Raetz (1959), Craik (1971), and others for a Blasius boundary layer, is analyzed here for an adverse-pressure-gradient boundary layer. We assume that the adverse pressure gradient is in some sense weak and, therefore, that the instability growth rate is small. This ensures that there is a well-defined critical layer located somewhere within the flow and that the nonlinear interaction is effectively confined to that layer. The initial interaction is of the parametric resonance type, even when the modal amplitudes are all of the same order. This means that the oblique instability waves exhibit faster than exponential growth and that the growth rate of the two-dimensional mode remains linear. However, the interaction and the resulting growth rates become fully coupled, once oblique-mode amplitudes become sufficiently large, but the coupling terms are now quartic, rather than quadratic as in the Craik (1971) analysis. More importantly, however, new nonlinear interactions, which were not present in the Craik-type analyses, now come into play. These interactions eventually have a dominant effect on the instability wave development.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); p. 523-551.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-08-24
    Description: The paper presents Alouette 2/ISIS 1 data which furnish evidence for the stimulation of high-order D(n) resonances (n greater than 4) by topside sounders, confirming the prediction of Osherovich (1990) based on an analogy with naturally occurring narrowband magnetospheric emissions. The results indicate that observations of stimulated ionospheric emissions and naturally occurring magnetospheric emissions can be used as complementary data sets to address such fundamental questions as the nature of the excitation mechanism for these emissions and the nature of the waves (i.e., whether the waves predominantly electrostatic or with a significant magnetic component present), and the question of the dominance among the Dn, Dn(+), and Dn(-) resonances and the conditions required for all three to be present at the same time.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; A12; p. 19,413-19,419.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-08-24
    Description: Ground magnetic field perturbations recorded by the CANOPUS magnetometer network in the 7 to 13 MLT sector are used to examine how reconfigurations of the dayside polar ionospheric flow take place in response to north-south changes of the IMF. During the 6-h interval in question, IMF Bz oscillates between +/- 7 nT with about a 1-h period. Corresponding variations in the ground magnetic disturbance are observed which we infer are due to changes in ionospheric flow. Cross correlation of the data obtained from two ground stations at 73.5 deg magnetic latitude, but separated by about 2 hours in MLT, shows that changes in the flow are initiated in the prenoon sector (about 10 MLT) and then spread outward toward dawn and dusk with a phase speed of about 5 km/s over the longitude range about 8 to 12 MLT, slowing to about 2 km/s outside this range. Cross correlating the data from these ground stations with IMP 8 IMF Bz records produces a MLT variation in the ground response delay relative to the IMF which is compatible with these deduced phase speeds.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; A12; p. 19,373-19,380.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-08-24
    Description: The particle scattering and current sheet stability features in the geomagnetic tail during the phase of substorm growth were investigated using Tsyganenko's (1989) magnetic field model. In a study of four substorm events which were observed both in the high-altitude nightside tail and in the auroral ionosphere, the model magnetic field was adjusted to each case so as to represent the global field development during the growth phase of the substorms. The model results suggest that the auroral brightenings are connected with processes taking place in the near-earth region inside about 15 earth radii. The results also suggest that there is a connection between the chaotization of the electrons and the auroral brightenings at substorm onset.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; A12; p. 19,283-19,297.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-24
    Description: Alternative geometries for the present-day configuration of plate boundaries in northeast Asia and Japan are tested using NUVEL-1 and 256 horizontal earthquake slip vectors from the Japan and northern Kuril trenches. Statistical analysis of the slip vectors is used to determine whether the North American, Eurasian, or Okhotsk plate overlies the trench. Along the northern Kuril trench, slip vectors are well-fit by the NUVEL-1 Pacific-North America Euler pole, but are poorly fit by the Pacific-Eurasia Euler pole. Results for the Japan trench are less conclusive, but suggest that much of Honshu and Hokkaido are also part of the North American plate. The simplest geometry consistent with the trench slip vectors is a geometry in which the North American plate extends south to 41 deg N, and possibly includes northern Honshu and southern Hokkaido. Although these results imply that the diffuse seismicity that connects the Lena River delta to Sakhalin Island and the eastern Sea of Japan records motion between Eurasia and North America, onshore geologic and seismic data define an additional belt of seismicity in Siberia that cannot be explained with this geometry. Assuming that these two seismic belts constitute evidence for an Okhotsk block, two published kinematic models for motion of the Okhotsk block are tested. The first model, which predicts motion of up to 15 mm/yr relative to North America, is rejected because Kuril and Japan trench slip vectors are fit more poorly than for the simpler geometry described above. The second model gives a good fit to the trench slip vectors, but only if Okhotsk-North America motion is slower than 5 mm/yr.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; B12; p. 17,627-17,635.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-24
    Description: This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-13999
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-08-24
    Description: A fast algorithm has been developed for accurately generating boundary-conforming, three-dimensional consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. This algorithm has been incorporated into the GRID3O computer program. The method employed in GRID3O is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing-edge to end at downstream infinity, use of the generated grid simplifies the numerical treatment of three-dimensional trailing vortex sheets. The GRID3O program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 450K of 8 bit bytes. The GRID3O program was developed in 1981.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-13818
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...