ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronics and Electrical Engineering  (863)
  • Fisheries
  • Cell & Developmental Biology
  • 2000-2004  (890)
Collection
Years
Year
  • 1
    Publication Date: 2004-11-13
    Description: The multibillion-dollar trade in bushmeat is among the most immediate threats to the persistence of tropical vertebrates, but our understanding of its underlying drivers and effects on human welfare is limited by a lack of empirical data. We used 30 years of data from Ghana to link mammal declines to the bushmeat trade and to spatial and temporal changes in the availability of fish. We show that years of poor fish supply coincided with increased hunting in nature reserves and sharp declines in biomass of 41 wildlife species. Local market data provide evidence of a direct link between fish supply and subsequent bushmeat demand in villages and show bushmeat's role as a dietary staple in the region. Our results emphasize the urgent need to develop cheap protein alternatives to bushmeat and to improve fisheries management by foreign and domestic fleets to avert extinctions of tropical wildlife.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brashares, Justin S -- Arcese, Peter -- Sam, Moses K -- Coppolillo, Peter B -- Sinclair, A R E -- Balmford, Andrew -- New York, N.Y. -- Science. 2004 Nov 12;306(5699):1180-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Conservation Biology Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. brashares@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15539602" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; *Animals, Wild ; Biodiversity ; Biomass ; Commerce ; Conservation of Natural Resources ; Fisheries ; *Fishes ; *Food Supply ; Ghana ; Humans ; *Mammals ; *Meat ; Population Density ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-08-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grimm, David -- New York, N.Y. -- Science. 2004 Aug 27;305(5688):1235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15333821" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Ecosystem ; Fisheries ; *Fishes ; Humans ; Population Density ; *Recreation ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-09-14
    Description: It is now widely accepted that global warming is occurring, yet its effects on the world's largest ecosystem, the marine pelagic realm, are largely unknown. We show that sea surface warming in the Northeast Atlantic is accompanied by increasing phytoplankton abundance in cooler regions and decreasing phytoplankton abundance in warmer regions. This impact propagates up the food web (bottom-up control) through copepod herbivores to zooplankton carnivores because of tight trophic coupling. Future warming is therefore likely to alter the spatial distribution of primary and secondary pelagic production, affecting ecosystem services and placing additional stress on already-depleted fish and mammal populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richardson, Anthony J -- Schoeman, David S -- New York, N.Y. -- Science. 2004 Sep 10;305(5690):1609-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. anr@sahfos.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15361622" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; *Climate ; Copepoda/*growth & development ; *Ecosystem ; Fisheries ; Fishes ; *Food Chain ; Greenhouse Effect ; Meta-Analysis as Topic ; Phytoplankton/*growth & development ; Population Dynamics ; Seawater ; Temperature ; Zooplankton/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Proffitt, Fiona -- New York, N.Y. -- Science. 2004 Aug 20;305(5687):1090.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15326320" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/*physiology ; *Ecosystem ; *Eels ; Fisheries ; Food Chain ; North Sea ; Plankton ; Population Density ; *Reproduction ; Scotland ; Seawater ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wright, Bruce A -- Okey, Thomas A -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1903.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218125" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; *Environment ; Fisheries ; Humans ; Information Dissemination ; Population Growth ; Public Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allison, Edward H -- Seeley, Janet A -- New York, N.Y. -- Science. 2004 Aug 20;305(5687):1104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15326332" target="_blank"〉PubMed〈/a〉
    Keywords: Asia/epidemiology ; Female ; Fisheries ; HIV Infections/*epidemiology/transmission ; Humans ; Male ; Occupations ; Prevalence ; Sexual Partners ; *Transients and Migrants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-07-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rembold, Christopher M -- New York, N.Y. -- Science. 2004 Jul 23;305(5683):475; author reply 475.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15273376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Coronary Artery Disease/mortality/*prevention & control ; *Diet ; Environmental Pollutants/toxicity ; Fatty Acids, Omega-3/*administration & dosage ; Fisheries ; *Food Contamination ; Humans ; Neoplasms/chemically induced/epidemiology ; Randomized Controlled Trials as Topic ; Risk Assessment ; *Salmon ; Toxicity Tests
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-09-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2004 Sep 10;305(5690):1548-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15361593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; *Climate ; *Ecosystem ; Fisheries ; *Food Chain ; Phytoplankton/*growth & development ; Population Dynamics ; Seawater ; Temperature ; Zooplankton/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-07-13
    Description: This summer I have been working with the Non-destructive evaluation (NDE) group and NASA Glenn Research Center. As this is my second summer with the group, I was able to begin working as soon as I arrived. My first task was to develop a system to acquire an impedance analyzer. The basic setup of the system is as follows: a piezo- electric patch is attached to a sample, and a lead is attached to that patch. Another lead is attached directly to the sample, and the leads are connected to the impedance analyzer. The system then puts a voltage through the material over a range of frequencies, and the corresponding impedances are measured for each frequency. After data is collected, it can be compared to another data set, and through a series of calculations a damage parameter is produced. For the time being, we are using a correlation calculation to find the damage parameter. The hope for this project is that a baseline measurement can be taken, and then sometime later another measurement could be taken, and the damage parameter would determine how much damage had been done to the sample. To test this hypothesis, we took baseline data from a sample, and then sent it out to have a notch cut into it. When it was returned, we again took measurements on the sample, and the damage parameter was significantly lower. Another project that I have been working on pertains to the group's newly acquired acoustography system. This system creates a full field ultrasonic signal on one side of a sample, and an acousto-optic sensor is placed on the other side of the sample.
    Keywords: Electronics and Electrical Engineering
    Type: Interm Summary Reports
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-07-13
    Description: This summer I am continuing my project from the previous two summers. My work involves ohmic contacts to N-type silicon carbide (Sic) devices. My mentor, Dr. Robert Okojie, is developing the technology behind high performance sensors and actuators for harsh environments. Sic is useful because it is able to operate at temperatures up to 600 C and it is resistant to radiation damage. This allows sensors and electronics to be placed in new locations, such as inside a jet engine or in space application without using heavy shielding. Ultimately this results in more efficient, smarter engine technology, reduced launch weights for spacecraft, and high power and high temperature electronics. A fundamental part of Sic devices is the ohmic contact. The contact is the interface between the semiconductor (Sic) and external circuitry. The current flowing in and out the devices is through the contact. Ensuring that these contacts remain ohmic (linear I-V behavior) allows us to fabricate devices that do not waste power at the metallurgical junction. Another key part is maintaining a low contact resistance. It is desired to maintain minimum energy loss by avoiding a rectifying electrical characteristic. My project is to develop and implement a testing procedure for measuring the contact resistance while the device is operating at high temperature. It is important to measure the contacts while simulating the true operating environment as closely as possible. For this reason, measurements are taken while the device is heated at intervals up to 600 C in air. To test the long tern reliability of the devices, the high temperature measurements are repeated after heating the sample for long intervals in air. A new set of data is gathered after heating for a total of 100, 200 and then 400 hours. The current as a function of voltage and the contact resistance was measured using the four point probe technique. The four point probe method is chosen because it measures contact resistance while eliminating error due to wire resistance and calibration issues.
    Keywords: Electronics and Electrical Engineering
    Type: Interm Summary Reports
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Switched reluctance motors typically consist of pairs of poles protruding outward from a central rotor, surrounded by pairs of coils protruding inward from a stator. The pairs of coils, positioned a short distance from opposing sides of the rotor, are connected in series. A current runs through the coils, generating a magnetic flux between the coils. This attracts the protruding poles on the rotor, and just as the poles on the rotor approach the coils, the current to the coils is inverted, repelling the rotor s poles as they pass the coils. This current switching, back and forth, provides a continuous rotational torque to the rotor. reliability, durability, low cost, and operation in adverse environments such as high temperatures, extreme temperature variations, and high rotational speeds. However, because rotors are often manufactured with minute flaws due to imperfections in the machining process, traditional switched reluctance motors often suffer from substantial amounts of vibration. In addition, the current in the coils imparts a strong radial magnetic force on the rotor; the continuous alternating of the direction of this force also causes vibration. As a result, switched reluctance motors require bearings that, run at high speeds, can require lubrication apparatus and are subject to problems with heat and wear. My mentor s recent invention, the "Bearingless" Switched Reluctance Motor, actually uses magnetic bearings instead of traditional physical bearings. Sensors are used to continuously determine the position of the rotor. A computer reads the position sensor input, performs calculations, and outputs a current to a set of extra coils (in addition to the coils rotating the rotor). This current provides a magnetic force that counters and damps the vibration. The sense-calculate-update loop iterates more than thirty thousand times per second. For now, our goal is to have the rotor rotate at about 6000 rprn, and at that speed, the magnetic bearing is adjusting the rotor s position more than 300 times per rotation. and vibration-suppression capacity for the switched reluctance motor. Traditional switched reluctance motors possess many positive traits, including It is hoped that this new invention will increase load-carrying capacity, stiffness, and vibration-suppression capacity for the switched reluctance motor.
    Keywords: Electronics and Electrical Engineering
    Type: Interm Summary Reports
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-29
    Description: Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE Transactions On Nuclear Science (ISSN 0018-9499); Volume 51; No. 6; 3572-3578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-12
    Description: The electrical characteristics of electro optic polymer waveguide modulators are often described by the bulk reactance of the individual layers. However, the resistance and capacitance between the layers can significantly alter the electrical performance of a waveguide modulator. These interface characteristics are related to the boundary charge density and are strongly affected by the adhesion of the layers in the waveguide stack. An electrical reactance model has been derived to investigate this phenomenon at low frequencies. The model shows the waveguide stack frequency response has no limiting effects below the microwave range and that a true DC response requires a stable voltage for over 1000 hours. Thus, reactance of the layers is the key characteristic of optimizing the voltage across the core layer, even at very low frequencies (〉 10(exp -6) Hz). The results of the model are compared with experimental data for two polymer systems and show quite good correlation.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-05
    Description: All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-05
    Description: The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-02
    Description: Venus having an average surface temperature of 460 degrees Celsius (about 860 degrees Fahrenheit) and an atmosphere 150 times denser than the Earth's atmosphere, designing a robot to merely survive on the surface to do planetary exploration is an extremely difficult task. This temperature is hundreds of degrees higher than the maximum operating temperature of currently existing microcontrollers, electronic devices, and circuit boards. To meet the challenge of Venus exploration, researchers at the NASA Glenn Research Center studied methods to keep a pressurized electronics package cooled, so that the operating temperature within the electronics enclosure would be cool enough for electronics to run, to allow a mission to operate on the surface of Venus for extended periods.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-02
    Description: Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-02
    Description: In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-02
    Description: The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: It is common practice within NASA to test electronic parts at the manufacturing lot level to demonstrate, statistically, that parts from the lot tested will not fail in service using generic application conditions. The test methods and the generic application conditions used have been developed over the years through cooperation between NASA, DoD, and industry in order to establish a common set of standard practices. These common practices, found in MIL-STD-883, MIL-STD-750, military part specifications, EEE-INST-002, and other guidelines are preferred because they are considered to be effective and repeatable and their results are usually straightforward to interpret. These practices can sometimes be unavailable to some NASA projects due to special application conditions that must be addressed, such as schedule constraints, cost constraints, logistical constraints, or advances in the technology that make the historical standards an inappropriate choice for establishing part performance and reliability. Alternate methods have begun to emerge and to be used by NASA programs to test parts individually or as part of a system, especially when standard lot tests cannot be applied. Four alternate screening methods will be discussed in this paper: Highly accelerated life test (HALT), forward voltage drop tests for evaluating wire-bond integrity, burn-in options during or after highly accelerated stress test (HAST), and board-level qualification.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2015-05-11
    Description: Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter (ARC), which uses a heat-wait-search mode until an exothermic reaction is detected. After an exotherm is found the calorimeter maintains an adiabatic environment around a bomb which holds the test sample. The ARC will help identify important reactions and what temperature these exothermic reactions take place at. In order fully understand the battery, we are first going to take apart the battery and test the individual components of the battery using the ARC. I will first conduct a test on the electrolyte solution by itself. We will then test the electrolyte solution with the anode. We would like to see how the electrolyte solution reacts with the anode and its binder material. The next would be the same test using the cathode instead of the anode. By comparing the results of the electrolyte, electrolyte with anode, and the electrolyte with the cathode we can determine the reactions that are taking place due to each component. Using the heat capacity of the each individual sample and the temperature by which the sample increases, kinetic and thermo-dynamical information can then be found. A Gas chromatograph could be used to help with the task of identifying the by-products at the end of each test. One way of increasing the cycle life is to increase the stability of the materials inside the
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-05-11
    Description: The Vision Research Lab at NASA John Glenn Research Center is headed by Dr. Rafat Ansari. Dr. Ansari and other researchers have developed technologies that primarily use laser and fiber optics to non-invasively detect different ailments and diseases of the eye. One of my goals as a LERCIP intern and ACCESS scholar for the 2004 summer is to inform other NASA employees, researchers and the general public about these technologies through the development of a website. The website incorporates the theme that the eye is a window to the body. Thus by investigating the processes of the eye, we can better understand and diagnosis different ailments and diseases. These ailments occur in not only earth bound humans, but astronauts as well as a result of exposure to elevated levels of radiation and microgravity conditions. Thus the technologies being developed at the Vision Research Lab are invaluable to humans on Earth in addition to those astronauts in space. One of my first goals was to research the technologies being developed at the lab. The first several days were spent immersing myself in the various articles, journals and reports about the theories behind Dynamic Light Scattering, Laser Doppler Flowmetry, Autofluoresence, Raman Spectroscopy, Polarimetry and Oximetry. Interviews with the other researchers proved invaluable to help understand these theories as well gain hands on experience with the devices being developed using these technologies. The rest of the Vision Research Team and I sat down and discussed how the overall website should be presented. Combining this information with the knowledge of the theories and applications of the hardware being developed, I worked out different ideas to present this information. I quickly learned Paint Shop Pro 8 and FrontPage 2002, as well as using online tutorials and other resources to help design an effective website. The Vision Research Lab website incorporates the anatomy and physiology of the eye, different diseases that affect the eye and the technologies being develop at the lab to help diagnosis these diseases. It also includes background information on Dr. Ansari as well as other researchers involved in the lab and it includes segments on patents, awards and achievements. There are links to help viewers navigate to internal and external websites to further investigate different ideas and hrther understand the implications of these technologies at being developed.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and several bubble filter designs are being evaluated.
    Keywords: Electronics and Electrical Engineering
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 307-308; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: The coupling between the desired CPW mode and the unwanted coupled slotline mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Finite-Difference Time-Domain analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. It is shown that the ratio of the slotline mode to the CPW mode can be as high as 18 dB. The use of airbridges is shown to reduce the slotline mode by 15 dB, but that the slotline mode fully reestablishes itself after 2000 microns. Furthermore, these results are independent of frequency.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-05
    Description: The International Space Station's (ISS) electric power system (EPS) employs nickel-hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged, providing station power, during eclipse. The batteries are designed to operate at a maximum 35-percent depth of discharge during normal operation. Thirty-eight individual pressure vessel Ni-H2 battery cells are series-connected and packaged in an orbital replacement unit (ORU), and two ORUs are series-connected, using a total of 76 cells, to form one battery. When the ISS is in its assembly-complete form, the electrical power system will have a total of 24 batteries (48 ORUs) on-orbit. The ISS is the first application for low-Earth-orbit cycling of this quantity of series-connected cells.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-05
    Description: Novel transistors and logic devices based on nanotechnology concepts are under intense development. The potential for ultra-low-power circuitry makes nanotechnology attractive for applications such as digital electronics and sensors. For NASA applications, nanotechnology offers tremendous opportunities for increased onboard data processing, and thus autonomous decisionmaking ability, and novel sensors that detect and respond to environmental stimuli with little oversight requirements. Polyaniline/polyethylene oxide (PANi/PEO) nanofibers are of interest because they have electrical conductivities that can be changed from insulating to metallic by varying the doping levels and conformations of the polymer chain. At the NASA Glenn Research Center, we have observed field effect transistor (FET) behavior in electrospun PANi/PEO nanofibers doped with camphorsulfonic acid. The nanofibers were deposited onto Au electrodes, which had been prepatterned onto oxidized silicon substrates. The preceding scanning electron image shows the device used in the transistor measurements. Saturation channel currents are observed at surprisingly low source/drain voltages (see the following graph). The hole mobility in the depletion regime is 1.4x10(exp -4)sq cm/V sec, whereas the one-dimensional charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (approx.10(exp -3) S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating one-dimensional polymer FET's.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-05
    Description: Improvements in individual piezoelectric transformer (PT) performance and the combination of these PTs in a unique modular topology under a Phase I contract with the NASA Glenn Research Center have enabled for the first time the simultaneous achievement of both high voltage and high power at much higher levels than previously obtained with any PT. Feasibility was demonstrated by a prototype transformer (called a Tap-Soner), which is shown in the preceding photograph as part of a direct-current to direct-current (dc-dc) converter having two outputs rated at 1.5 kV/5 W and 4.5 kV/20 W. The power density of 3.5 W/cm3 is significantly lower than for magnetic transformers with the same voltage and power output. This development, which is being done under a Small Business Innovation Research (SBIR) contract by Face Electronics, LC (Norfolk, VA), is based on improvements in the materials and design of Face's basic patented Transoner-T3 PT, shown in the left in the following figure. The T3 PT is most simply described as a resonant multilayer transducer where electrical energy at the input section is efficiently mechanically coupled to the output section, which then vibrates in a fundamental longitudinal mode to generate a high gain in voltage. The piezoelectric material used is a modified lead-zirconium-titanate-based ceramic. One of the significant improvements in PT design was the incorporation of a symmetrical double input layer, shown on the right in the following figure, which eliminated the lossy bending vibration modes characteristic of a single input layer. The performance of the improved PT was optimized to 1.5 kV/5 W. The next step was devising a way to combine the individual PTs in a modular circuit topology needed to achieve the desired high voltage and power output. Since the optimum performance of the individual PT occurs at resonance, the most efficient operation of the modular transformer was achieved by using a separate drive circuit for each PT. The output section consists of a separate output rectifier for each PT connected in series.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-05
    Description: This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.
    Keywords: Electronics and Electrical Engineering
    Type: International Conference on Advances in the Internet, Processing, Systems and Interdisciplinary Research (IPSI-2004)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-05
    Description: Two-micron detectors are critical for atmospheric carbon dioxide profiling using the lidar technique. The characterization results of a novel infrared AlGaAsSb/ InGaAsSb phototransistor are reported. Emitter dark current variation with the collector-emitter voltage at different temperatures is acquired to examine the gain mechanism. Spectral response measurements resulted in responsivity as high as 2650 A/W at 2.05 microns wavelength. Bias voltage and temperature effects on the device responsivity are presented. The detectivity of this device is compared to InGaAs and HgCdTe devices.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-08
    Description: In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.
    Keywords: Electronics and Electrical Engineering
    Type: GOMACTech-2003: Countering Asymmetric Threats; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-12
    Description: A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-27
    Description: This paper discusses the construction of solid-state frequency multiplier chains utilized far teraherz receiver applications such as the Herschel Space Observatory . Emphasis will he placed on the specific requirements to be met and challenges that were encountered. The availability of high power amplifiers at 100 GHz makes it possible to cascade frequency doublers and triplers with sufficient RF power to pump heterodyne receivers at THz frequencies. The environmental and mechanical constraints will be addressed as well as reliability issues.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-18
    Description: LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.
    Keywords: Electronics and Electrical Engineering
    Type: Aerospace Corporation Space Power Workshop 2004; Apr 19, 2004 - Apr 22, 2004; Manhattan Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-18
    Description: With the increase in demand for wireless communication services, most of the operating frequency bands have become very congested. The increase of wireless costumers is only fractional contribution to this phenomenon. The demand for more services such as video streams and internet explorer which require a lot of band width has been a more significant contributor to the congestion in a communication system. One way to increase the amount of information or data per unit of time transmitted with in a wireless communication system is to use a higher radio frequency. However in spite the advantage available in the using higher frequency bands such as, the Ka-band, higher frequencies also implies short wavelengths. And shorter wavelengths are more susceptible to rain attenuation. Until the Advanced Communication Technology Satellite (ACTS) was launched, the Ka- band frequency was virtually unused - the majority of communication satellites operated in lower frequency bands called the C- and Ku- bands. Ka-band is desirable because its higher frequency allows wide bandwidth applications, smaller spacecraft and ground terminal components, and stronger signal strength. Since the Ka-band is a high frequency band, the millimeter wavelengths of the signals are easily degraded by rain. This problem known as rain fade or rain attenuation The Advanced Communication Technology Satellite (ACTS) propagation experiment has collected 5 years of Radio Frequency (RF) attenuation data from December 1993 to November 1997. The objective of my summer work is to help develop the statistics and prediction techniques that will help to better characterize the Ka Frequency band. The statistical analysis consists of seasonal and cumulative five-year attenuation statistics for the 20.2 and 27.5 GHz. The cumulative five-year results give the link outage that occurs for a given link margin. The experiment has seven ground station terminals that can be attributed to a unique rain zone climate. The locations are White Sands, NM, Tampa, Fly Clarksburg, MD, Norman, OK, Ft. Collins, COY Vancouver, BC, and Fairbanks, AK. The analysis will help us to develop and define specific parameters that will help system engineers develop the appropriated instrumentation and structure for a Ka-band wireless communication systems and networks.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Aviation Environmental Technical Branch produces many various types of aeronautical research that benefits the NASA mission for space exploration and in turn, produces new technology for our nation. One of the present goals of the Aviation Environmental Technical Branch is to create better engines for airplanes by testing supersonic jet propulsion and safe fuel combustion. During the summer of 2004, I was hired by Vincent Sattenvhite Chief executive of the Aviation Environmental Technical Branch to Assist Yves Lamothe with a fuel igniter circuit. Yves Lamothe is an electrical engineer who is currently working on safe fuel combustion testing. This testing is planned to determine the minimum ignition energy for fuel and air vapors of current and alternative fuels under simulated flight conditions. An air temperature bath will provide simulated flight profile temperatures and the heat fluxes to the test chamber. I was assigned with Yves to help complete the igniter circuit which consists of a 36k voltage supply an oscilloscope, and a high voltage transistor switch. During my tenure in the L.E.C.I.R.P. program I studied the basics of electricity and circuitry along with two other projects that I completed. In the beginning of my internship, I devote all of my time to research the aspects of circuitry so that I would be prepared for the projects that I was assigned to do. I read about lessons on; the basic physical concepts of electronics, Electrical units, Basic dc circuits, direct current circuit analysis, resistance and cell batteries, various types of magnetism , Alternating current basics, inductance, and power supplies. I received work sheets and math equations from my Mentor so that I could be able to apply these concepts into my work. After I complete my studies, I went on to construct a LED chaser circuit which displays a series of light patterns using a 555 timer. I incorporated a switch and motion detector into the circuit to create basic alarm system. This project challenged my ability to interpret a schematic and expand it. While I was still completing the LED chaser circuit I Also was given A Basic Stamp Toddler Robot to build and program. The Toddler robot can walk in 36 various styles using advanced robotics. I used many different programs to create movement and direction of the robot. Also the Toddler can use infrared vision to sense objects. This enables the robot to maneuver indefinitely without running into objects. During my tenure at the NASA Glen Research Center I definite utilized the NASA mission to educate. I learned valuable information to help in my up coming year as a freshman in college.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for participation on a variety of other projects, including aero-gels and carbon graphite mat en als. The goals of the polymer electrolyte research are to improve the physical properties of the polymers. This includes improving conductivity, durability, and expanding the temperature range over which it is effective. Currently, good conductivity is only present at high temperatures. My goals are to experiment with different arrangements of rods and coils to achieve these desirable properties. Some of my experiments include changing the number of repeat units in the polymer, the size of the diamines, and the types of coil. Analysis of these new polymers indicates improvement in some properties, such as lower glass transition temperature; however, they are not as flexible as desired. With further research we hope to produce polymers that encompass all of these properties to a high degree.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-18
    Description: In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.
    Keywords: Electronics and Electrical Engineering
    Type: 2004 Conference on Advances in Internet Technologies and Applications (CAITA); Jul 08, 2004 - Jul 11, 2004; West Lafayette, IN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: In this talk we will address the two primary issues of ring current (RC) electrodynamic coupling: 1. RC self-consistent coupling with electromagnetic ion cyclotron (EMIC) waves (small scale electrodynamic coupling); and 2. RC self-consistent magnetosphere-ionosphere coupling that includes calculation of the magnetospheric electric field (large scale electrodynamic coupling). Our study will be based on two RC models that we have recently developed in our group. The first model by Khazanov et al. [2002, 20031 couples the system of two kinetic equations: one equation which describes the RC ion dynamics and another equation which describes the energy density evolution of EMIC waves. The second model by Khazanov et al. [2003] deals with large scale electrodynamic coupling processes and provides a self-consistent simulation of RC ions, electrons and the magnetospheric electric field. There is presently no model that addresses both of these issues simultaneously in a self-consistent calculation. However, the need exists for such a model, because these two processes directly influence each other, with the mesoscale coupling changing the drift paths of the thermal and energetic particle populations in the inner magnetosphere, thereby changing the wave interactions, and the microscale coupling altering the pitch angle distributions and ionospheric conductivities (through increased precipitation), thus changing the field-aligned currents and electric potential structure. The initial thrust of the work will be the development of a combined kinetic model of micro- and meso-scale RC electrodynamic coupling processes and to examine their interactions with each other on a global scale. We also discuss the nonlinear coupling of EMIC and lower hybrid waves in the RC region during the May 2-7, 1998 storm period.
    Keywords: Electronics and Electrical Engineering
    Type: 35th COSPAR; Jul 18, 2004 - Jul 24, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-18
    Description: Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still. internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-18
    Description: The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE MTT-S International Microwave Symposium; Jun 06, 2004 - Jun 11, 2004; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: Wireless communication in jet engines and high temperature industrial applications requires FD integrated circuits (RFICs) on wide bandgap semiconductors such as Silicon Carbide (SiC). In this paper, thin-film NiCr resistors, MIM capacitors, and spiral inductors are fabricated on a high purity semi-insulating 4H-SiC substrate. The devices are experimentally characterized through 50 GHz at temperatures of up to 500 C and the equivalent circuits are deembedded from the measured data. It is shown that the NiCr resistors are stable within 10% to 300 C while the capacitors have a value stable within 10% through 500 C.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE International Microwave Symposium; Jun 06, 2004 - Jun 11, 2004; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: Si/Ge/Si n-type modulation doped field effect structures and transistors (n-MODFET's) have been fabricated on r-plane sapphire substrates. Mobilities as high as 1380 cm(exp 2)/Vs were measured at room temperature. Excellent carrier confinement was shown by Shubnikov-de Haas measurements. Atomic force microscopy indicated smooth surfaces, with rm's roughness less than 4 nm, similar to the quality of SiGe/Si n-MODFET structures made on Si substrates. Transistors with 2 micron gate lengths and 200 micron gate widths were fabricated and tested.
    Keywords: Electronics and Electrical Engineering
    Type: Materials Research Society Spring 2004 Conference; Apr 10, 2004 - Apr 14, 2004; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: A novel micromachined resonator at 45 GHz based on a defect in a periodic electromagnetic bandgap structure (EBG) and a two-pole Tchebysbev filter with 1.4% 0.15 dB equiripple bandwidth and 2.3 dB loss employing this resonator are presented in this letter. The periodic bandgap structure is realized on a 400 micron thick high-resistivity silicon wafer using deep reactive ion etching techniques. The resonator and filter can be accessed via coplanar waveguide feeds.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. A plasmoid is a plasma with an imbedded closed magnetic field structure. The shape and magnetic field structure of the translating plasmoids have been measured with of an array of magnetic field probes. Six sets of two B-dot probes were constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes are wound on a square G10 form, and have an average (calibrated) NA of 9.37 x l0(exp -5) square meters, where N is the number of turns and A is the cross-sectional area. The probes were calibrated with a Helmholtz coil, driven by a high-voltage pulser to measure NA, and by a signal generator to determine the probe's frequency response. The plasmoid electron number density n(sub e) electron temperature T(sub e), and velocity ratio v/c(sub m), (where v is the bulk plasma flow velocity and c(sub m), is the ion thermal speed) have also been measured with a quadruple Langmuir probe. The Langmuir probe tips are 10 mm long, 20-mil diameter stainless steel wire, housed in a 6-inch long 4-bore aluminum rod. Measurements on PTX with argon and hydrogen from the magnetic field probes and quadruple Langmuir probe will be presented in this paper.
    Keywords: Electronics and Electrical Engineering
    Type: Joint Propulsion Conference; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: The objective of this study is to understand the causes of the nickel hydrogen (NiH2) cell degradetion: storage, cycling, and reversal.
    Keywords: Electronics and Electrical Engineering
    Type: Space Power Workshop; Apr 19, 2004 - Apr 22, 2004; Manhattan Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Type: KSC-2004-060 , 41st Space Congress; Apr 28, 2004; Cape Canaveral, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
    Keywords: Electronics and Electrical Engineering
    Type: KSC-2004-002 , ISA/IEEE SIcon Conference; Jan 27, 2004 - Jan 29, 2004; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: A novel catastrophic breakdown mode in reversed biased Silicon carbide diodes has been seen for low LET particles. These particles are too low in LET to induce SEB, however SEB was seen from particles of higher LET. The low LET mechanism correlates with second breakdown in diodes due to increase leakage and assisted charge injection from incident particles. Percolation theory was used to predict some basic responses of the devices, but the inherent reliability issue with silicon carbide have proven challenging.
    Keywords: Electronics and Electrical Engineering
    Type: 2004 IEEE Nuclear and Space Radiation Effects Conference; Jul 19, 2004 - Jul 23, 2004; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Type: KSC-2004-113 , National Nanotechnology JnitiativeGrand-Challenge Workshop; Aug 24, 2004 - Aug 26, 2004; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-12
    Description: Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.
    Keywords: Electronics and Electrical Engineering
    Type: GSC-14648-1 , NASA Tech Briefs, June 2004; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-20
    Description: This is the final technical report for NASA grant NAG5-9493. entitled "Development of Submillimeter SIS Mixers and Broadband HEMT Amplifiers". The goal of this project was to develop and demonstrate a new generation of superconducting tunnel junction (SIS) receivers with extremely wide instantaneous (intermediate-frequency, or IF) bandwidths. of order 12 GHz. along with the wideband low-noise microwave HEMT (high electron mobility transistor) amplifiers which follow the SIS mixer. These wideband SIS/HEMT receivers would allow rapid submillimeter wavelength spectral line surveys to be carried out, for instance with the NASA airborne observatory SOFIA. and could potentially be useful for future submillimeter space missions such as SAFIR. In addition, there are potential NASA earth science applications. such as the monitoring of the distribution of chemical species in the stratosphere and troposphere using the limb-sounding technique. The overall goals of this project have been achieved: a broadband 200-300 SIS receiver was designed and constructed, and was demonstrated in the field through a test run at the Caltech Submillimeter Observatory on Mauna Kea. HI. The technical details are described in the appendices. which are primarily conference publications. but Appendix A also includes an unpublished summary of the latest results. The work on the SIS mixer design are described in the conference publications (appendices B and C). The "Supermix" software package that was developed at Caltech and used for the SIS design is also described in two conference papers, but has been substantially revised, debugged. and extended as part of the work completed for this grant. The Supermix package is made available to the community at no charge. The electromagnetic design of a radial waveguide probe similar to the one used in this work is described in a journal publication. Details of the novel fabrication procedure used for producing the SIS devices at JPL are also given in an upcoming journal article. Finally, details on the wideband HEMT amplifier design and noise characterization techniques are described in two publications.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-18
    Description: A model of an n-channel ferroelectric field effect transistor has been developed based on both theoretical and empirical data. The model is based on an existing model that incorporates partitioning of the ferroelectric layer to calculate the polarization within the ferroelectric material. The model incorporates several new aspects that are useful to the user. It takes into account the effect of a non-saturating gate voltage only partially polarizing the ferroelectric material based on the existing remnant polarization. The model also incorporates the decay of the remnant polarization based on the time history of the FFET. A gate pulse of a specific voltage; will not put the ferroelectric material into a single amount of polarization for that voltage, but instead vary with previous state of the material and the time since the last change to the gate voltage. The model also utilizes data from FFETs made from different types of ferroelectric materials to allow the user just to input the material being used and not recreate the entire model. The model also allows the user to input the quality of the ferroelectric material being used. The ferroelectric material quality can go from a theoretical perfect material with little loss and no decay to a less than perfect material with remnant losses and decay. This model is designed to be used by people who need to predict the external characteristics of a FFET before the time and expense of design and fabrication. It also allows the parametric evaluation of quality of the ferroelectric film on the overall performance of the transistor.
    Keywords: Electronics and Electrical Engineering
    Type: 16th International Symposium on Integrated Ferroelectrics; Apr 08, 2004; Gyeonglu; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.
    Keywords: Electronics and Electrical Engineering
    Type: Symposium for Space Applications of Wireless and RFID; May 08, 2007 - May 09, 2007; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-18
    Description: High temperature wireless sensors that operate at 500 C are required for aircraft engine monitoring and performance improvement These sensors would replace currently used hard-wired sensors and lead to a substantial reduction in mass. However, even if the sensor output data is transmitted wirelessly to a receiver in the cooler part of the engine, and the associated cables are eliminated, DC power cables are still required to operate the sensors and power the wireless circuits. To solve this problem, NASA is developing a rectenna, a circuit that receives RF power and converts it to DC power. The rectenna would be integrated with the wireless sensor, and the RF transmitter that powers the rectenna would be located in the cooler part of the engine. In this way, no cables to or from the sensors are required. Rectennas haw been demonstrated at ambient room temperature, but to date, no high temperature rectennas haw been reported. In this paper, we report the first rectenna designed for 2.45 GHz operation at 500 C. The circuit consists of a microstrip dipole antenna, a stripline impedance matching circuit, and a stripline low pass filter to prevent transmission of higher harmonics created by the rectifying diode fabricated on an Alumina substrate. The rectifying diode is the gate to source junction of a 6H Sic MESFET and the capacitor and load resistor are chip elements that are each bonded to the Alumina substrate. Each element and the hybrid, rectenna circuit haw been characterized through 500 C.
    Keywords: Electronics and Electrical Engineering
    Type: International Microelectronics and Packaging Society (IMAPS) International High Temperature Electronics Conference (HiTEC 2004); May 18, 2004 - May 20, 2004; Santa Fe, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The tasks of the Electrochemistry Branch of NASA Glenn Research Center are to improve and develop high energy density and rechargeable, life-long batteries. It is with these batteries that people across the globe are able to power their cell phones, laptop computers, and cameras. Here, at NASA Glenn Research Center, the engineers and scientists of the Electrochemistry branch are leading the way in the development of more powerful, long life batteries that can be used to power space shuttles and satellites. As of now, the cutting edge research and development is being done on nickel-hydrogen batteries and lithium ion batteries. Presently, nickel-hydrogen batteries are common types of batteries that are used to power satellites, space stations, and space shuttles, while lithium batteries are mainly used to power smaller appliances such as portable computers and phones. However, the Electrochemistry Branch at NASA Glenn Research Center is focusing more on the development of lithium ion batteries for deep space use. Because of the limitless possibilities, lithium ion batteries can revolutionize the space industry for the better. When compared to nickel-hydrogen batteries, lithium ion batteries possess more advantages than its counterpart. Lithium ion batteries are much smaller than nickel-hydrogen batteries and also put out more power. They are more energy efficient and operate with much more power at a reduced weight than its counterpart. Lithium ion cells are also cheaper to make, possess flexibility that allow for different design modifications. With those statistics in hand, the Electrochemistry Branch of NASA Glenn has decided to shut down its Nickel-Hydrogen testing for lithium ion battery development. Also, the blackout in the summer of 2003 eliminated vital test data, which played a part in shutting down the program. from the nickel-hydrogen batteries and compare it to past data. My other responsibilities include superheating the electrolyte that is used in the nickel-hydrogen cell in a calorimeter to test its performance under various conditions. 1 used a program called Arbin to study my data. The Arbin allows me to look at different parameters such as pressure and time and how they affect the changing temperature of the electrolyte that is being tested. In addition, I had the responsibility of taking apart and modifying battery coolers that would be used. My mentors told me that the batteries kept shutting down, so it was my responsibility to remove excess fan grilles, rotate the fans, and then switch the aluminum standoffs with nylon ones so that the coolers could operate without problems. My last task is to collect all the battery test data and organize them into charts using Microsoft Excel, before the Branch is able to conduct its research on lithium ion batteries. Therefore, during my tenure, it is my responsibility to take down final test data
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-18
    Description: Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the components may interfere with one another. By working with the electrical engineer who is designing the circuit, the specific design requirements for the MPDU were determined and used as guidelines. Space is limited due to the size of the mounting plate therefore each component must be strategically placed. Since the MPDU is being designed to fit into a simulated model of the spacecraft systems on the JIMO, components must be positioned where they are easily accessible to be wired to the other onboard systems. Mechanical and electrical requirements provided equally important limits which are combined to produce the best possible design of the MPDU.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-27
    Description: Here we developed a model for determining the effects of narrowband RFI on low resolution digital correlators. Low resolution correlators rely on a theoretical inversion to obtain the input correlation coefficient from the digital output. This inversion is based on the Gaussian statistics of the input signals. In the presence of narrow-band interference, the statistics are not Gaussian and the theoretical inversion is no longer valid. The result is an error in the correlator output. We studied this phenomena for four correlator resolutions: 1, 1.5, 2, and 4 bits. The errors are significant for 1, 1.5, and 2-bit systems. We found in the presence of relatively strong interference (INR approximately greater than 0 dB) the errors can be ten's of percent. The error reduces to less than 0.03% for INR less than -16 dB. For the four-bit correlators, the errors are less than 0.03% for all cases studied. The error is also nonlinearly dependent upon input correlation coefficient.
    Keywords: Electronics and Electrical Engineering
    Type: International Geoscience and Remote Sensing Symposium (IGARSS) 2004; 2004 Sep. 2004; Anchorage, AK; Afghanistan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Branch That I work in is in the Aero Electronic Test Branch, which is part of the Research and Testing Division. The Aero Electronic Test Branch deals with electronic control and instrumentation systems. This branch supports the research and test study of wind tunnels such as the l0x10,9x15, and 8x6. Wind tunnels are used in research to test certain parts of a jet, plane, shuttle or any other flying object in certain test conditions. My assignment is to design a programmable trigger circuit on a 19 standard rack mount that will allow the circuit to latch and hold for a predefined amount of time entered by the user when receiving a signal. It should then re-arm itself within 0.25 seconds after the time is finished. The time should be able to be seen on a display showing the time entered. The time range has to be from 0-600 seconds in 0.01 second increments (600.00). From the information given, counters will be needed to design and build this circuit. A counter, in it s simplest form, is a group of flip flops that can temporarily store bits of information put into the circuit. They can be constructed in many different ways, such as in 4 flip flops (4-bit counter) or 8 flip flops and even higher. Counters are usually cascaded with other counters to reach higher bits, such as 16 or 24 bit counters. The application in which I will use the counters will be to count down from any programmable number that I input either by a keyboard or a thumbwheel. Also, I will use counters that will be used specifically as a frequency divider to divide the pulses that enter the circuit through an input signal from a crystal clock. The pulses will need to be divided so that it will function as a 100Hz clock putting out 100 pulses per second. A switch will be used to load my inputs in and more than likely a button also so that I can stop and hold the count at any point of time. I will use 5 BCD up/down programmable counters, and a certain amount (depending on what kind of "divide by N" counter I use) of frequency dividing counters for the assignment. After the design is carefully made, a task order will be written and then given to the manufacturer to create a rack mount circuit board that will match my specifications given. The applications in which this design will be used for is in the use of the six-component balance signal conditioner for measurement and electronic system control. It can be used as a timer system for the balance signal conditioner in which it does numerous tests for the Wind tunnel research, in which a preset time can be set for how long it performs its tests. Specifically, my design should be applied to the balance signal conditioner used for the 8x6 wind tunnel research. Hopefully this design should aid in more efficient research for the 8x6 wind tunnel.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower the voltage signal down low enough so that it is harmless to a computer. Along with my involvement in the Space Power and Propulsion Test Engineering Branch, I am obligated to assist all other members of the branch in their work. This will help me to strengthen and extend my knowledge of Electrical Engineering.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-18
    Description: The Electro-Physics Branch of the NASA Glenn Research Center investigates the effect of atomic oxygen, environmental durability of high performance power materials and surfaces, and low earth orbit. One of its current projects involves the analysis of ion thrusters. Ion thrusters are devices that initiate a beam of ions to a target area. The type of ion thruster that I have been working with this Summer of 2004 emits positively charged Xenon (Xe(+)) atoms through two grids, the screen grid and the accelerator grid, after it enters an ionization chamber. Insulators are used to mechanically hold and separate these two grids. A propellant isolator, an instrument that closely resembles insulators, is placed in front of the ionization chamber. Both the insulator and isolator are made with a ceramic compound and filled with insulating beads. The main difference between the two devices is that the propellant isolator allows gas to flow through, in this case, the gas is Xe(+) and the insulators do not. In order to avoid carbon deposits and other contaminating chemicals to settle on the insulators and propellant isolator, a metal shadow shield is placed around them. These shadow shields function as a protectant and can be shaped in numerous configurations. Part of my job responsibility this summer is to investigate the effectiveness of different shadow shields that are utilized on three different ion engines: the NSTAR (NASA Solar Electric Propulsion Technology Application Readiness), JIMO (Jupiter Icy Moons Orbiter), and NEXIS (Nuclear Electric Xenon Ion System). Using calculus and other mathematical tactics, I was asked to find the total flux of carbon contamination that was able to pass the protectant shadow shield. I familiarized myself with the software program, MathCad2004, to help perform some mathematical computations such as complex integration. Another method of studying the probability of contamination is by experimental simulation. After attaining the precise parameters of the actual shadow shields, I created replicas of three types of shadow shielding to be used to undergo testing. It will be placed in a machine that produces carbon atoms at a high temperature of 200 C. or beam is aimed at a targeted material. As a result of this collision, atoms and other particles are ejected out of the target surface. Another part of my internship consisted of research on sputter ejection, or the angle distribution of sputtered material. This research entailed finding the past results of sputter ejection investigation as well as creating another type of mock simulation. Other minor projects include calculating the path of Xe(+) gas through the insulating beads of the isolators and assisting my mentor in collecting data for his paper for the Joint Propulsion Conference & Exhibit to be held July 11-14,2004 in Fort Lauderdale, Florida.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: For the past few years, the Advanced Electrical Systems Branch here at NASA Glenn has been pursuing research in the area of flywheels. The purpose of these pursuits has been t o explore the potential for flywheels to replace current battery-powered systems in space. So far it has been learned that flywheels offer large momentum storage capacity, comparatively small volume, high durability, and near- complete discharge capabilities, all of which are advancements over the existing nickel hydrogen and nickel cadmium batteries. Another significant advantage of flywheels is the potential they offer for combining the function of attitude control with energy storage. During the summer of 2004, I worked with Dr. Barbara Kenny in the Advanced Electrical Systems Branch, supporting the work she is doing by analyzing and testing some new components for the new Generation-2 flywheel. To monitor the speed and angular position of the flywheel rotor, a once-around (OAR) signal along with a sensorless algorithm is used. The OAR signal is used for the magnetic bearings that keep the flywheel suspended for frictionless operation. The sensorless algorithm is used for the flywheel motor/generator control. The OAR is generated from position sensors that monitor a circular plate. The plate has a cut down the middle such that one half of the circle is on a slightly lower level than the other. Every half-turn, or 180, the sensors detect the "cut" on the plate, and trigger the OAR, telling the computer that the rotor has made half a revolution. This, however, doesn't provide needed detailed information about the angular position of the rotor, since it only provides a signal alert every half- revolution. This is enough information for the magnetic bearing control but is insufficient for the motor/generator control. A new resolver was designed such that it would give continuous angle information rather than the 180 degree information of the OAR. The new resolver has two separate observable pieces: a flat middle section to monitor vertical motion, and an angled section around the circumference, which, when observed from above, produces a sine-wave displacement through the entire 360" revolution. My first job when I arrived this summer was to calibrate the sensors that would be mounted on the inside of the flywheel casing to monitor the position (angular and vertical) of the shaft. After calibration, I used the sensors to evaluate voltage outputs created by position differences between two pairs of sensors on the angled portion of the resolver for eight different angular positions, moving the resolver vertically and laterally through its entire potential range of motion. The results of these tests will be used to determine the rotor angular (and axial) position from the sensor readings once the new flywheel unit is assembled. The sensorless algorighm mentioned above consists of two operations: the signal injection method and the back electro-motive force (EMF). The signal injection is meant to work at low speeds, while the back EMF algorithm is meant to work at higher speeds. Both work together to determine the correct estimate of rotor position and speed based on the measured motor/generator current. It was determined that we wanted to know exactly how accurate our estimation methods were, and so a resolver (a commercially available mechanical sensor mounted to the motor/generator shaft to measure rotor position and speed) and a "Resolver to Digital" (R2D) circuit board was purchased to make the comparison to the existing estimation. My work related to the R2D board has included the following: creating two connector cables (one to power the circuit and one to get readable output off the board), writing Simulink code to process the board's output, and building a dSpace panel to control and monitor the circuit. The next step in the process will be to perform tests to compare the estimated rotor position and speed from the sensorless algorithm to the actual rotor and speed from the resolver signal.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-17
    Description: A DC motor is commutated by rotating a magnetic rotor to induce a magnetic field in at least one magnetostatic relay in the motor. Each relay is activated in response to the magnetic field to deliver power to at least one corresponding winding connected to the relay. In some cases, each relay delivers power first through a corresponding primary winding and then through a corresponding secondary winding to a common node. Specific examples include a four-pole, three-phase motor in which each relay is activated four times during one rotation of the magnetic rotor.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-16
    Description: We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-12
    Description: Modules of additional drive circuitry have been developed to enhance the functionality of a family of commercially available positioning motors (Picomotor . or equivalent) that provide linear motion controllable, in principle, to within increments .30 nm. A motor of this type includes a piezoelectric actuator that turns a screw. Unlike traditional piezoelectrically actuated mechanisms, a motor of this type does not rely on the piezoelectric transducer to hold position: the screw does not turn except when the drive signal is applied to the actuator.
    Keywords: Electronics and Electrical Engineering
    Type: NPO-30359 , NASA Tech Briefs, October 2004; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-12
    Description: A modular wireless data-acquisition and control system, now in operation at Kennedy Space Center, offers high performance at relatively low cost. The system includes a central station and a finite number of remote stations that communicate with each other through low-power radio frequency (RF) links. Designed to satisfy stringent requirements for reliability, integrity of data, and low power consumption, this system could be reproduced and adapted to use in a broad range of settings.
    Keywords: Electronics and Electrical Engineering
    Type: KSC-12386 , NASA Tech Briefs, February 2004; 9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-10
    Description: Emerging industrial base and the consequent sustained manned Lunar presence will require consistent high power capacities. This paper proposes a first iteration design of a flyable electric power platform which could serve as an enabler of Lunar Development and Exploration. It is intended to support a small facility solo or an emerging industrial base as part of a grid. Lunar Missions, Habitats and Facilities stand to benefit from an expected decade of non-stop operation, the economics of scale, Commercial Off-The-Shelf (COTS) availability, standardization of design, and logistical support for Lunar encampments provided by this architecture. The unattended and unmanned vehicle design is to be man- and robotics-serviceable after delivery by current and proposed heavy-lift boosters. Design continuity within a family of systems will improve reliability through "lessons learned'' in the field. Further, various configurations of the proposed scalable architecture will provide reference platforms for the indigenous construction of similar power plant facilities from in-situ Lunar resources (ISRU). The baseline design should be directed towards those materials available on the Moon and expected to be manufacturable on-site within the first decade of operation.
    Keywords: Electronics and Electrical Engineering
    Type: Space Resources Roundtable VI; 24; LPI-Contrib-1224
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-10
    Description: The use of electric fields in the growth of protein crystals was investigated, both theoretically and experimentally. We used dc, ac and optical fields to change the spatial distribution of proteins. Dc fields had only local effects, due to the conductivity of the growth solution. We found that for low frequency fields, movement of the buffer and salt ions dominated, and that for high frequency ac fields, &electrophoretic effects could be useful for relocating growing protein crystals. The most promising result was that for optical fields, a large gradient in the field could be used to capture a crystal, and observe growth in-situ. This concept could be developed into an experimental setup compatible with automated x-ray diffraction measurements in microgravity.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-10
    Description: Supporting analog RF signal transmission over optical fibers, this project demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment. We characterize the simultaneous transmission of four RF signals (channels) over a single optical fiber. At different points along a fiber optic backbone, these four analog channels are sequentially multiplexed and demultiplexed to more closely emulate the conditions in existing onboard aircraft. We present data from measurements of optical power, transmission response (loss and gain), reflection response, group delay that defines phase distortion, signal-to-noise ratio (SNR), and dynamic range that defines nonlinear distortion. The data indicate that WDM is very suitable for avionics applications.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: A sandwich core comprises two faceplates separated by a plurality of cells. The cells are comprised of walls positioned at oblique angles relative to a perpendicular axis extending through the faceplates. The walls preferably form open cells and are constructed from open cells and are constructed from rows of ribbons. The walls may be obliquely angled relative to more than one plane extending through the perpendicular axis.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-10
    Description: A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-10
    Description: The invention involves tunneling tips to their conducting surface, and specifically the deposition of a monolayer of fullerene C60 onto the conducting plate surface to protect the tunneling tip from contact. The Fullerene C60 molecule is approximately spherical, and a monolayer of fullerene has a thickness of one nanometer, such that a monolayer thereby establishing the theoretical distance desired between the MEMS tunneling tip and the conducting plate. Exploiting the electrical conductivity of C60 the tip can be accurately positioned by simply monitoring conductivity between the fullerene and the tunneling tip. By monitoring the Conductivity between the tip and the fullerene layer as the tip is brought in proximity, the surfaces can be brought together without risk of contacting the underlying conducting surface. Once the tunneling tip is positioned at the one nanometer spacing, with only the monolayer of fullerene between the tunneling tip and the conducting plate, the monolayer of C60, can be broken down thermally and removed chemically leaving only the tunneling tip and the conducting plate at the ideal tunneling spacing. Alternatively, the properties of fullerene allow the tunneling process to occur directly across the fullerene monolayer.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-10
    Description: A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.
    Keywords: Electronics and Electrical Engineering
    Type: NASA/CR-2004-212669
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-13
    Description: A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.
    Keywords: Electronics and Electrical Engineering
    Type: NASA/CR-2004-212620 , AIAA Paper 2003-6068 , E-14178 , First International Energy Conversion Engineering Conference; Aug 17, 2003 - Aug 21, 2003; Portsmouth, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-13
    Description: Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.
    Keywords: Electronics and Electrical Engineering
    Type: NASA Earth Science Technology Conference; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-17
    Description: According to the invention, a digital circuit design embodied in at least one of a structural netlist, a behavioral netlist, a hardware description language netlist, a full-custom ASIC, a semi-custom ASIC, an IP core, an integrated circuit, a hybrid of chips, one or more masks, a FPGA, and a circuit card assembly is disclosed. The digital circuit design includes first and second sub-circuits. The first sub-circuits comprise a first percentage of the digital circuit design and the second sub-circuits comprise a second percentage of the digital circuit design. Each of the second sub-circuits is substantially comprised of one or more kernel circuits. The kernel circuits are comprised of selection circuits. The second percentage is at least 5%. In various embodiments, the second percentage could be at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-17
    Description: According to the invention, a digital design method for manipulating a digital circuit netlist is disclosed. In one step, a first netlist is loaded. The first netlist is comprised of first basic cells that are comprised of first kernel cells. The first netlist is manipulated to create a second netlist. The second netlist is comprised of second basic cells that are comprised of second kernel cells. A percentage of the first and second kernel cells are selection circuits. There is less chip area consumed in the second basic cells than in the first basic cells. The second netlist is stored. In various embodiments, the percentage could be 2% or more, 5% or more, 10% or more, 20% or more, 30% or more, or 40% or more.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-17
    Description: The present invention discloses a new family of switching amplifier classes called class E/F amplifiers. These amplifiers are generally characterized by their use of the zero-voltage-switching (ZVS) phase correction technique to eliminate of the loss normally associated with the inherent capacitance of the switching device as utilized in class-E amplifiers, together with a load network for improved voltage and current wave-shaping by presenting class-F.sup.-1 impedances at selected overtones and class-E impedances at the remaining overtones. The present invention discloses a several topologies and specific circuit implementations for achieving such performance.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-24
    Description: Life-limiting processes in hollow cathodes are determined largely by the temperature of the emitter. To support development of cathode life models we have developed a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used determine the axial temperature profile. Thermocouples on the orifice plate provide measurements ofthe external temperature during cathode operation and are used to calibrate the pyrometer system in situ with a small oven enclosing the externally heated cathode. Initial measurements of the temperature distribution in a hollow cathode with the same geometry as a cathode that failed after operating at 12 A emission current for 27800 hours are discussed.
    Keywords: Electronics and Electrical Engineering
    Type: AAIA Paper-2004-4116 , 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-17
    Description: Radar electronics developed for past JPL space missions historically had been custom designed and as such, given budgetary, time, and risk constraints, had not been optimized for maximum flexibility or miniaturization. To help reduce cost and risk of future radar missions, a generic radar module was conceived. The module includes a 1.25-GHz (L-band) transceiver and incorporates miniature high-density packaging of integrated circuits in die/chip form. The technology challenges include overcoming the effect of miniaturization and high packaging density to achieve the performance, reliability, and environmental ruggedness required for space missions. The module was chosen to have representative (generic) functionality most likely required from an L-band radar. For very large aperture phased-array spaceborne radar missions, the large dimensions of the array suggest the benefit of distributing the radar electronics into the antenna array. For such applications, this technology is essential in order to bring down the cost, mass, and power of the radar electronics module replicated in each panel of the array. For smaller sized arrays, a single module can be combined with the central radar controller and still provide the bene.ts of configuration .exibility, low power, and low mass. We present the design approach for the radar electronics module and the test results for its radio frequency (RF) portion: a miniature, low-power, radiation-hard L-band transceiver.
    Keywords: Electronics and Electrical Engineering
    Type: Interplanetary Network Progress Report; 42-158; 1-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: The WEstinghouse Lighting Corporation's Eye Saver[TM] Easy Reading Light Bulb is the result of collaboration between Westinghouse, Marshall Research LLC, and NASA's Space Optics Manufacturing Technology Center at Marshall Space Flight Center. The light bulb contains a chrome top that directs light to areas where it is needed most. The bulb, which lasts 2,000 hours, provides 40 percent more surface illumination on work and reading surfaces, compared to a standard incandescent bulb. The lightly frosted finish reduces glare, which helps to reduce eyestrain. The bulb is particularly helpful for people with low vision and eye diseases such as macular degeneration.
    Keywords: Electronics and Electrical Engineering
    Type: Spinoff; 9-10; NASA/NP-2004-10-374-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-13
    Description: The invention is a synchronized electronic shutter system (SESS) and method for same side and through transmission thermal analysis and inspection of a material for finding defects, corrosion, disbond defects, integrity of a weld and determination of paint thickness. The system comprises an infrared detector that acquires background images of the sample. A shutter then covers the detector and lamps rapidly heat the sample above ambient temperature. Shutters cover all lamps at the same time the shutter over the infrared detector is opened. The infrared detector acquires a series of temperature images over time radiated from the sample a s the sample cools down. After collecting a series of temperature images taken by the SESS, a processed image is developed using one of the group comprising time derivative calculation, temperature normalization data reduction routine, thermal diffusivity curve fitting and averaging the series of temperature images.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-11
    Description: An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.
    Keywords: Electronics and Electrical Engineering
    Type: NASA/CR-2004-213513
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-10
    Description: A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiS wafer may be also etched.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-28
    Description: An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-28
    Description: A method for forming ferroelectric wafers is provided. A prestress layer is placed on the desired mold. A ferroelectric wafer is placed on top of the prestress layer. The layers are heated and then cooled, causing the ferroelectric wafer to become prestressed. The prestress layer may include reinforcing material and the ferroelectric wafer may include electrodes or electrode layers may be placed on either side of the ferroelectric layer. Wafers produced using this method have greatly improved output motion.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Type: KSC-2004-112 , National Nanotechnology InitiativeGrand-Challenge Workshop; Aug 24, 2004 - Aug 26, 2004; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.
    Keywords: Electronics and Electrical Engineering
    Type: Journal of Geophysical Research (ISSN 0148-0227); 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.
    Keywords: Electronics and Electrical Engineering
    Type: 16th International Symposium on Integrated Ferroelectrics; Apr 05, 2004 - Apr 08, 2004; Gyeongyu; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.
    Keywords: Electronics and Electrical Engineering
    Type: NASA/TM-2004-213217 , T3A-5 , E-14501 , IEEE Transactions Microwave Theory and Techniques or Antennas and Propagation; Sep 19, 2004 - Sep 22, 2004; Atlanta, GA; United States|Radio and Wireless Conference (RAWCON 2004); Sep 19, 2004 - Sep 22, 2004; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: A variety of Asymmetrical Capacitor Thrusters has been built and tested at the Institute for Scientific Research (ISR). The thrust produced for various voltages has been measured, along with the current flowing, both between the plates and to ground through the air (or other gas). VHF radiation due to Trichel pulses has been measured and correlated over short time scales to the current flowing through the capacitor. A series of designs were tested, which were increasingly efficient. Sharp features on the leading capacitor surface (e.g., a disk) were found to increase the thrust. Surprisingly, combining that with sharp wires on the trailing edge of the device produced the largest thrust. Tests were performed for both polarizations of the applied voltage, and for grounding one or the other capacitor plate. In general (but not always) it was found that the direction of the thrust depended on the asymmetry of the capacitor rather than on the polarization of the voltage. While no force was measured in a vacuum, some suggested design changes are given for operation in reduced pressures.
    Keywords: Electronics and Electrical Engineering
    Type: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: There is a strong need for faster, cheaper, and simpler methods for nucleic acid analysis in today s clinical tests. Nanotechnologies can potentially provide solutions to these requirements by integrating nanomaterials with biofunctionalities. Dramatic improvement in the sensitivity and multiplexing can be achieved through the high-degree miniaturization. Here, we present our study in the development of an ultrasensitive label-free electronic chip for DNA/RNA analysis based on carbon nanotube nanoelectrode arrays. A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in a SiO2 matrix is fabricated using a bottom-up approach. Characteristic nanoelectrode behavior is observed with a low-density MWNT nanoelectrode array in measuring both the bulk and surface immobilized redox species. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes, with a wide potential window, flexible chemical functionalities, and good biocompatibility. A BRCA1 related oligonucleotide probe with 18 bases is covalently functionalized at the open ends of the MWNTs and specifically hybridized with an oligonucleotide target as well as a PCR amplicon. The guanine bases in the target molecules are employed as the signal moieties for the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. This technique has been employed for direct electrochemical detection of label-free PCR amplicon through specific hybridization with the BRCAl probe. The detection limit is estimated to be less than approximately 1000 DNA molecules, approaching the limit of the sensitivity by laser-based fluorescence techniques in DNA microarray. This system provides a general electronic platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, simple sample preparation, and low- cost operation.
    Keywords: Electronics and Electrical Engineering
    Type: Oak Ridge Conference of AACC; Apr 29, 2004 - Apr 30, 2004; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Commercial-Off-The-Shelf (COTS) multilayer ceramic chip capacitors (MLCCs) are continually evolving to reduce physical size and increase volumetric efficiency. Designers of high reliability aerospace and military systems are attracted to these attributes of COTS MLCCs and would like to take advantage of them while maintaining the high standards for long-term reliable operation they are accustomed io when selecting military qualified established reliability (MIL-ER) MLCCs. However, MIL-ER MLCCs are not available in the full range of small chip sizes with high capacitance as found in today's COTS MLCCs. The objectives for this evaluation were to assess the long-term performance of small case size COTS MLCCs and to identify effective, lower-cost product assurance methodologies. Fifteen (15) lots of COTS X7R dielectric MLCCs from four (4) different manufacturers and two (2) MIL-ER BX dielectric MLCCs from two (2) of the same manufacturers were evaluated. Both 0805 and 0402 chip sizes were included. Several voltage ratings were tested ranging from a high of 50 volts to a low of 6.3 volts. The evaluation consisted of a comprehensive screening and qualification test program based upon MIL-PRF-55681 (i.e., voltage conditioning, thermal shock, moisture resistance, 2000-hour life test, etc.). In addition, several lot characterization tests were performed including Destructive Physical Analysis (DPA), Highly Accelerated Life Test (HALT) and Dielectric Voltage Breakdown Strength. The data analysis included a comparison of the 2000-hour life test results (used as a metric for long-term performance) relative to the screening and characterization test results. Results of this analysis indicate that the long-term life performance of COTS MLCCs is variable -- some lots perform well, some lots perform poorly. DPA and HALT were found to be promising lot characterization tests to identify substandard COTS MLCC lots prior to conducting more expensive screening and qualification tests. The results indicate that lot- specific screening and qualification are still recommended for high reliability applications. One significant and concerning observation is that MIL- type voltage conditioning (100 hours at twice rated voltage, 125 C) was not an effective screen in removing infant mortality parts for the particular lots of COTS MLCCs evaluated.
    Keywords: Electronics and Electrical Engineering
    Type: 2004 Capacitator and Resistor Technology Symposium; Jan 01, 2004; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Two-dimensional MEMS microshutter arrays (MSA) have been fabricated at the NASA Goddard Space Flight Center (GSFC) for the James Webb Space Telescope (JWST) to enable cryogenic (approximately 35 K) spectrographic astronomy measurements in the near-infrared region. Functioning as a focal plane object selection device, the MSA is a 2-D programmable aperture mask with fine resolution, high efficiency and high contrast. The MSA are close- packed silicon nitride shutters (cell size of 100 x 200 microns) patterned with a torsion flexure to allow opening to 90 degrees. A layer of magnetic material is deposited onto each shutter to permit magnetic actuation. Two electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing. New techniques were developed to test MSA under mission-similar conditions (8 K less than or equal to T less than 300K). The magnetic rotisserie has proven to be an excellent tool for rapid characterization of MSA. Tests conducted with the magnetic rotisserie method include accelerated cryogenic lifetesting of unpackaged 128 x 64 MSA and parallel measurement of the magneto-mechanical stiffness of shutters in pathfinder test samples containing multiple MSA designs. Lifetest results indicate a logarithmic failure rate out to approximately 10(exp 6) shutter actuations. These results have increased our understanding of failure mechanisms and provide a means to predict the overall reliability of MSA devices.
    Keywords: Electronics and Electrical Engineering
    Type: Solid-State Sensors, Actuators and Microsystems Workshop; Jun 06, 2004 - Jun 10, 2004; Hilton Head, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
    Keywords: Electronics and Electrical Engineering
    Type: AIAA Paper 2004-1889 , 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 19, 2004 - Apr 22, 2004; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...