ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (1,434)
  • Computer Programming and Software  (1,145)
  • General Chemistry
  • Cell & Developmental Biology
  • 2000-2004  (2,957)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: Program generation and transformation systems work on two language levels, the object-level (i e., the language of the manipulated programs), and the meta-level (i.e., the implementation language of the system itself). The meta-level representations of object-level program fragments are usually built in an essentially syntax-free fashion using the operations provided by the meta-language. However, syntax matters and a large conceptual distance between the two languages makes it difficult to maintain and extend such systems. Here we describe how an existing Prolog-based system can gradually be retrofitted with concrete object-level syntax, thus shrinking this distance.
    Keywords: Computer Programming and Software
    Type: Logic-Based Program Synthesis and Transformation: LOPSTER 2003, Revised
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-10-05
    Description: We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV 〈 E 〈 4 keV neutrals from icy moon surfaces and atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and directional distributions of the resultant neutrals, allow indirect global mapping of magnetic field structures around the moons. Temporal variation of the magnetic structures can be linked to induced magnetic fields associated with subsurface oceans.
    Keywords: Earth Resources and Remote Sensing
    Type: Workshop on Europa's Icy Shell: Past, Present, and Future; 17; LPI-Contrib-1195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Phase II will focus on the development of the on-board aircraft networking portion of the testbed which includes the subnet and router configuration and investigation of QoS issues. This implementation of the testbed will consist of a workstation, which functions as the end system, connected to a router. The router will service two subnets that provide data to the cockpit and the passenger cabin. During the testing, data will be transferred between the end systems and those on both subnets. QoS issues will be identified and a preliminary scheme will be developed. The router will be configured for the testbed network and initial security studies will be initiated. In addition, architecture studies of both the SITA and Immarsat networks will be conducted.
    Keywords: Computer Programming and Software
    Type: Interm Summary Reports
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: As NASA develops plans for more and more ambitious missions into space, it is the job of NASA's researchers to develop the technologies that will make those planed missions feasible. One such technology is energy conversion. Energy is all around us; it is in the light that we see in the chemical bonds that hold compounds together, and in mass itself.Energy is the fundamental building block of our universe, yet it has always been straggle for humans to convert this energy into useable forms, like electricity. For space-based applications, NASA requires efficient energy conversion method that require little or no fuel.
    Keywords: Computer Programming and Software
    Type: Interm Summary Reports
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: This paper describes the proposed agent-based architecture of the Aviation Data Integration System (ADIS). ADIS is a software system that provides integrated heterogeneous data to support aviation problem-solving activities. Examples of aviation problem-solving activities include engineering troubleshooting, incident and accident investigation, routine flight operations monitoring, safety assessment, maintenance procedure debugging, and training assessment. A wide variety of information is typically referenced when engaging in these activities. Some of this information includes flight recorder data, Automatic Terminal Information Service (ATIS) reports, Jeppesen charts, weather data, air traffic control information, safety reports, and runway visual range data. Such wide-ranging information cannot be found in any single unified information source. Therefore, this information must be actively collected, assembled, and presented in a manner that supports the users problem-solving activities. This information integration task is non-trivial and presents a variety of technical challenges. ADIS has been developed to do this task and it permits integration of weather, RVR, radar data, and Jeppesen charts with flight data. ADIS has been implemented and used by several airlines FOQA teams. The initial feedback from airlines is that such a system is very useful in FOQA analysis. Based on the feedback from the initial deployment, we are developing a new version of the system that would make further progress in achieving following goals of our project.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: This paper discusses business practices that organizations should follow to improve their chances of initiating and sustaining successful software process improvement efforts.
    Keywords: Computer Programming and Software
    Type: 5th International Conference on Product Focused Software Process Improvement; Kansai; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: Traditionally, security is viewed as an organizational and Information Technology (IT) systems function comprising of firewalls, intrusion detection systems (IDS), system security settings and patches to the operating system (OS) and applications running on it. Until recently, little thought has been given to the importance of security as a formal approach in the software life cycle. The Jet Propulsion Laboratory has approached the problem through the development of an integrated formal Software Security Assessment Instrument (SSAI) with six foci for the software life cycle.
    Keywords: Computer Programming and Software
    Type: 28th NASA/IEEE Software Engineering Workshop; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: Absorbing the electromagnetic radiation in several regions of the solar spectrum, C02 plays an important role in the Earth radiation budget since it produces the greenhouse effect. Many natural processes in the Earth's system add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at different sites around the world show an increased carbon dioxide concentration in the atmosphere.
    Keywords: Earth Resources and Remote Sensing
    Type: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Earth Science and Applications Workshop; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: The design of reactive systems must comply with logical correctness (the system does what it is supposed to do) and timeliness (the system has to satisfy a set of temporal constraints) criteria. In this paper, we propose a global approach for the design of adaptive reactive systems, i.e., systems that dynamically adapt their architecture depending on the context. We use the timed automata formalism for the design of the agents' behavior. This allows evaluating beforehand the properties of the system (regarding logical correctness and timeliness), thanks to model-checking and simulation techniques. This model is enhanced with tools that we developed for the automatic generation of code, allowing to produce very quickly a running multi-agent prototype satisfying the properties of the model.
    Keywords: Computer Programming and Software
    Type: Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III); 164-176
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Softc has been used operationally for spacecraft navigation at JPL for over 2 years and will be JPL's Mark 5 correlator next year. Softc was written to be as close to an ideal correlator as possible, making approximations only below 10(exp -13) seconds. The program can correlate real USB, real LSB, or complex I/Q data sampled with 1, 2, 4. or 8-bit resolution, and was developed with strong debugging tools that made final debugging relatively quick. Softc's algorithms and program structure are fully documented. Timing tests on a recent Intel CPU show Softc processes 8 lags of 1-bit sampled data at 10 MSamples/sec, independent of sample rate.
    Keywords: Computer Programming and Software
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 191-194; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: Modern space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations". for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 38-46; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying sea surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive aerosol optical thicknesses (AOT) and aerosol properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the red and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and aerosol scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of aerosol retrieval from MODIS over land will include polarization.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: The Arctic is currently considered an area in transformation. Glaciers have been retreating, permafrost has been diminishing, snow covered areas have been decreasing, and sea ice and ice sheets have been thinning. This paper provides an overview of the unique role that satellite sensors have contributed in the detection of changes in the Arctic and demonstrates that many of the changes are not just local but a pan-Arctic phenomenon. Changes from the upper atmosphere to the surface are discussed and it is apparent that the magnitude of the trends tends to vary from region to region and from season to season. Previous reports of a warming Arctic and a retreating perennial ice cover have also been updated, and results show that changes are ongoing. Feedback effects that can lead to amplification of the signals and the role of satellite data in enhancing global circulation models are also discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: Physics Today
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: This report summarizes activities during the year 2003 and future plans of the Crustal Dynamics Data Information System (CDDIS) with respect to the International VLBI Service for Geodesy and Astrometry (IVS). Included in this report are background information about the CDDIS, the computer architecture, staffing supporting the system, archive contents, and future plans for the CDDIS within the IVS.
    Keywords: Computer Programming and Software
    Type: International VLBI Service for Geodesy and Astronomy; 151-153; NASA/TP-2004-212254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-05
    Description: Through earth and space modeling and the ongoing launches of satellites to gather data, NASA has become one of the largest producers of data in the world. These large data sets necessitated the creation of a Data Management System (DMS) to assist both the users and the administrators of the data. Halcyon Systems Inc. was contracted by the NASA Center for Computational Sciences (NCCS) to produce a Data Management System. The prototype of the DMS was produced by Halcyon Systems Inc. (Halcyon) for the Global Modeling and Assimilation Office (GMAO). The system, which was implemented and deployed within a relatively short period of time, has proven to be highly reliable and deployable. Following the prototype deployment, Halcyon was contacted by the NCCS to produce a production DMS version for their user community. The system is composed of several existing open source or government-sponsored components such as the San Diego Supercomputer Center s (SDSC) Storage Resource Broker (SRB), the Distributed Oceanographic Data System (DODS), and other components. Since Data Management is one of the foremost problems in cluster computing, the final package not only extends its capabilities as a Data Management System, but also to a cluster management system. This Cluster/Data Management System (CDMS) can be envisioned as the integration of existing packages.
    Keywords: Computer Programming and Software
    Type: NASA/IEEE MSST 2004 Twelfth NASA Goddard Conference on Mass Storage Systems and Technologies in cooperation with the Twenty-First IEEE Conference on Mass Storage Systems and Technologies; 93-103; NASA/CP-2004-212750
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-12
    Description: The recently released Nascap-2k, version 2.0, three-dimensional computer code models interactions between spacecraft surfaces and low-earth-orbit, geosynchronous, auroral, and interplanetary plasma environments. It replaces the earlier three-dimensional spacecraft interactions codes NASCAP/GEO, NASCAP/LEO, POLAR, and DynaPAC. Nascap-2k has improved numeric techniques, a modern user interface, and a simple, interactive satellite surface definition module (Object ToolKit). We establish the accuracy of Nascap-2k both by comparing computed currents and potentials with analytic results and by comparing Nascap-2k results with published calculations using the earlier codes. Nascap-2k predicts Langmuir-Blodgett or Parker-Murphy current collection for a nearly spherical (100 surfaces) satellite in a short Debye length plasma depending on the absence or presence of a magnetic field. A low fidelity (in geometry and time) Nascap-2k geosynchronous charging calculation gives the same results as the corresponding low fidelity NASCAP/GEO calculation. A high fidelity calculation (using the Nascap-2k improved geometry and time stepping capabilities) gives higher potentials, which are more consistent with typical observations. Nascap-2k predicts the same current as a function of applied potential as was observed and calculated by NASCAP/LEO for the SPEAR I rocket with a bipolar sheath. A Nascap-2k DMSP charging calculation gives results similar to those obtained using POLAR and consistent with observation.
    Keywords: Computer Programming and Software
    Type: 8th Spacecraft Charging Technology Conference; NASA/CP-2004-213091
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: This paper addresses a high level spatio-temporal problem, namely "absolute orientation", which arises in visual-odometry (using stereo), or registering two models created by different Structure from Motion (SFM) reconstructions. We compare the very popular method due to Horn using quaternions and our own independently derive method using the orthonormal rotation matrix R. We also introduce a novel approach for outlier rejection using spectral clustering.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: OVERGRID and OVERFLOW-2 feature easy to use multiple-body dynamics. The new features of OVERGRID include a preliminary chemistry interface, standard atmosphere and mass properties calculators, a simple unsteady solution viewer, and a debris tracking interface. Script library development in Chimera Grid Tools has applications in turbopump grid generation. This viewgraph presentation profiles multiple component dynamics, validation test cases for a sphere, cylinder, and oscillating airfoil, and debris analysis.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-02
    Description: Trajectory, mission, and vehicle engineers concern themselves with finding the best way for an object to get from one place to another. These engineers rely upon special software to assist them in this. For a number of years, many engineers have used the OTIS program for this assistance. With OTIS, an engineer can fully optimize trajectories for airplanes, launch vehicles like the space shuttle, interplanetary spacecraft, and orbital transfer vehicles. OTIS provides four modes of operation, with each mode providing successively stronger optimization capability. The most powerful mode uses a mathematical method called implicit integration to solve what engineers and mathematicians call the optimal control problem. OTIS 3.2, which was developed at the NASA Glenn Research Center, is the latest release of this industry workhorse and features new capabilities for parameter optimization and mission design. OTIS stands for Optimal Control by Implicit Simulation, and it is implicit integration that makes OTIS so powerful at solving trajectory optimization problems. Why is this so important? The optimization process not only determines how to get from point A to point B, but it can also determine how to do this with the least amount of propellant, with the lightest starting weight, or in the fastest time possible while avoiding certain obstacles along the way. There are numerous conditions that engineers can use to define optimal, or best. OTIS provides a framework for defining the starting and ending points of the trajectory (point A and point B), the constraints on the trajectory (requirements like "avoid these regions where obstacles occur"), and what is being optimized (e.g., minimize propellant). The implicit integration method can find solutions to very complicated problems when there is not a lot of information available about what the optimal trajectory might be. The method was first developed for solving two-point boundary value problems and was adapted for use in OTIS. Implicit integration usually allows OTIS to find solutions to problems much faster than programs that use explicit integration and parametric methods. Consequently, OTIS is best suited to solving very complicated and highly constrained problems.
    Keywords: Computer Programming and Software
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 42; No. 10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-02
    Description: Accurate computation of sensitivity derivatives is becoming an important item in Computational Fluid Dynamics (CFD) because of recent emphasis on using nonlinear CFD methods in aerodynamic design, optimization, stability and control related problems. Several techniques are available to compute gradients or sensitivity derivatives of desired flow quantities or cost functions with respect to selected independent (design) variables. Perhaps the most common and oldest method is to use straightforward finite-differences for the evaluation of sensitivity derivatives. Although very simple, this method is prone to errors associated with choice of step sizes and can be cumbersome for geometric variables. The cost per design variable for computing sensitivity derivatives with central differencing is at least equal to the cost of three full analyses, but is usually much larger in practice due to difficulty in choosing step sizes. Another approach gaining popularity is the use of Automatic Differentiation software (such as ADIFOR) to process the source code, which in turn can be used to evaluate the sensitivity derivatives of preselected functions with respect to chosen design variables. In principle, this approach is also very straightforward and quite promising. The main drawback is the large memory requirement because memory use increases linearly with the number of design variables. ADIFOR software can also be cumber-some for large CFD codes and has not yet reached a full maturity level for production codes, especially in parallel computing environments.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-08
    Keywords: Computer Programming and Software
    Type: SpaceOps 2004 Conference; Montreal, Quebec; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-08
    Description: A magnitude 6.5 earthquake devastated the town of Bam in southeast Iran on 26 December 2003. Surface displacements and decorrelation effects, mapped using Envisat radar data, reveal that over 2 m of slip occurred at depth on a fault that had not previously been identified. It is common for earthquakes to occur on blind faults which, despite their name, usually produce long-term surface effects by which their existence may be recognised. However, in this case there is a complete absence of morphological features associated with the seismogenic fault that destroyed Bam.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 31; L11611
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-08
    Description: Silicic lava domes exhibit distinct morphologic characteristics at scales of centimeters to kilometers. Multiparameter radar observations capture the unique geometric signatures of silicic domes in a set of radar scattering properties that are unlike any other natural geologic surfaces.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 109; e03001-e03012
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-08
    Keywords: Computer Programming and Software
    Type: SpaceOps 2002; Montreal, Quebec; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: InvestigationOrganizer (IO) is a collaborative web-based system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, and allows investigators to make explicit, shared, and meaningful links between evidence, causal models, findings and recommendations. It integrates the functionality of a database, a common document repository, a semantic knowledge network, a rule-based inference engine, and causal modeling and visualization. Thus far, IO has been used to support four mishap investigations within NASA, ranging from a small property damage case to the loss of the Space Shuttle Columbia. This paper describes how the functionality of IO supports mishap investigations and the lessons learned from the experience of supporting two of the NASA mishap investigations: the Columbia Accident Investigation and the CONTOUR Loss Investigation.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-05
    Description: A team at the NASA Glenn Research Center is developing a Space Communications Architecture Laboratory (SpaceCAL) for protocol development activities for coordinated satellite missions. SpaceCAL will provide a multiuser, distributed system to emulate space-based Internet architectures, backbone networks, formation clusters, and constellations. As part of a new effort in 2003, building blocks are being defined for an open distributed system to make the satellite emulation test bed accessible through an Internet connection. The first step in creating a Web-based service to control the emulation remotely is providing a user-friendly interface for encoding the data into a well-formed and complete Extensible Markup Language (XML) document. XML provides coding that allows data to be transferred between dissimilar systems. Scenario specifications include control parameters, network routes, interface bandwidths, delay, and bit error rate. Specifications for all satellite, instruments, and ground stations in a given scenario are also included in the XML document. For the SpaceCAL emulation, the XML document can be created using XForms, a Webbased forms language for data collection. Contrary to older forms technology, the interactive user interface makes the science prevalent, not the data representation. Required versus optional input fields, default values, automatic calculations, data validation, and reuse will help researchers quickly and accurately define missions. XForms can apply any XML schema defined for the test mission to validate data before forwarding it to the emulation facility. New instrument definitions, facilities, and mission types can be added to the existing schema. The first prototype user interface incorporates components for interactive input and form processing. Internet address, data rate, and the location of the facility are implemented with basic form controls with default values provided for convenience and efficiency using basic XForms operations. Because different emulation scenarios will vary widely in their component structure, more complex operations are used to add and delete facilities.
    Keywords: Computer Programming and Software
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center through a contract with Spectrum Astro, Inc., has been developing space network hardware as an enabling technology using open systems interconnect (OSI) standards for space-based communications applications. The OSI standard is a well-recognized layered reference model that specifies how data should be sent node to node in a communications network. Because of this research and technology development, a space-qualifiable Ethernet-based network interface card (similar to the type found in a networked personal computer) and the associated four-port hub were designed and developed to flight specifications. During this research and development, there also have been many lessons learned for determining approaches for migrating existing spacecraft architectures to an OSI-network-based platform. Industry has recognized the benefits of targeting hardware developed around OSI standards such as Transmission Control Protocol/Internet Protocol (TCP/IP) or similar protocols for use in future generations of space communication systems. Some of these tangible benefits include overall reductions in mission schedule and cost and in system complexity. This development also brings us a step closer to the realization of a principal investigator on a terrestrial Internet site being able to interact with space platform assets in near real time. To develop this hardware, Spectrum Astro first conducted a technology analysis of alternatives study. For this analysis, they looked at the features of three protocol specifications: Ethernet (IEEE 802.3), Firewire (IEEE 1394), and Spacewire (IEEE 1355). A thorough analysis was performed on the basis of criteria such as current protocol performance and suitability for future space applications. Spectrum Astro also projected future influences such as cost, hardware and software availability, throughput performance, and integration procedures for current and transitive space architectures. After a thorough analysis, Ethernet was chosen because it was seen as the best longer term fit because of the prevalent commercial market; the current and projected availability of hardware, software, and development tools; and the ease of architecture integration.
    Keywords: Computer Programming and Software
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-05
    Description: The development of an advanced robust timing synchronization scheme is crucial for the support of two NASA programs--Advanced Air Transportation Technologies and Aviation Safety. A mobile aeronautical channel is a dynamic channel where various adverse effects--such as Doppler shift, multipath fading, and shadowing due to precipitation, landscape, foliage, and buildings--cause the loss of symbol timing synchronization.
    Keywords: Computer Programming and Software
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: The Collective Intelligence (COIN) framework concerns the design of collectives of reinforcement-learning agents such that their interaction causes a provided "world" utility function concerning the entire collective to be maximized. Previously, we applied that framework to scenarios involving Markovian dynamics where no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. This approach sets the individual utility function of each agent to be both aligned with the world utility, and at the same time, easy for the associated agents to optimize. Here we extend that approach to systems involving non-Markovian dynamics. In computer simulations, we compare our techniques with each other and with conventional "team games". We show whereas in team games performance often degrades badly with time, it steadily improves when our techniques are used. We also investigate situations where the system's dimensionality is effectively reduced. We show that this leads to difficulties in the agents ability to learn. The implication is that learning is a property only of high-enough dimensional systems.
    Keywords: Computer Programming and Software
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-06
    Description: With the increasing computational power of Computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design programs is the representation with which they encode designs. If the representation cannot encode a certain design, then the design program cannot produce it. Similarly, a poor representation makes some types of designs extremely unlikely to be created. Here we define generative representations as those representations which can create and reuse organizational units within a design and argue that reuse is necessary for design systems to scale to more complex and interesting designs. To support our argument we describe GENRE, an evolutionary design program that uses both a generative and a non-generative representation, and compare the results of evolving designs with both types of representations.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAB from The MathWorks. This paper will describe the design and development of the new data acquisition and analysis system.
    Keywords: Computer Programming and Software
    Type: 23rd Space Simulation Conference Proceedings; NASA/CP-2005-212775
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: Passive microwave remote sensing is sensitive to the quantity and distribution of water in soil and vegetation. During summer 2000, the Microwave Geophysics Group a t the University of Michigan conducted the seventh Radiobrighness Energy Balance Experiment (REBEX-7) over a corn canopy in Michigan. Long time series of brightness temperatures, soil moisture and micrometeorology on the plot were taken. This paper addresses the calibration of the NASA GSFC polarimetric airborne C band microwave radiometer (ACMR) that participated in REBEX-7. These passive polarimeters are typically calibrated using an end-to-end approach based upon a standard artificial target or a well-known geophysical target. Analyzing the major internal functional subsystems offers a different perspective. The primary goal of this approach is to provide a transfer function that not only describes the system in its entire5 but also accounts for the contributions of each subsystem toward the final modified Stokes parameters. This approach does not assume that the radiometric system is linear as it does not take polarization isolation for granted, and it also serves as a realistic instrument simulator, a useful tool for future designs. The ACMR architecture can be partitioned into functional subsystems. The characteristics of each subsystem was extensively measured and the estimated parameters were imported into the overall dosed form system model. Inversion of the model yields a calibration for the modeled Stokes parameters with uncertainties of 0.2 K for the V and H polarizations and 2.4 K for the 3rd and 4th parameters. Application to the full Stokes parameters over a senescent cornfield is presented.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: Precipitation is a key link in the global water cycle and a proxy for changing climate; therefore proper assessment of the urban environment s impact on precipitation (land use, aerosols, thermal properties) will be increasingly important in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, urban planning-design and land-atmosphere-ocean interface processes. These facts are particularly critical if current projections for global urban growth are accurate. The goal of this paper is to provide a concise review of recent (1990-present) studies related to how the urban environment affects precipitation. In addition to providing a synopsis of current work, recent findings are placed in context with historical investigations such as METROMEX studies. Both observational and modeling studies of urban-induced rainfall are discussed. Additionally, a discussion of the relative roles of urban dynamic and microphysical (e.g. aerosol) processes is presented. The paper closes with a set of recommendations for what observations and capabilities are needed in the future to advance our understanding of the processes.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.
    Keywords: Computer Programming and Software
    Type: Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III); 285-290
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Emergent agents, those agents whose local interactions can cause unexpected global results, require a method of modeling that is both dynamic and structured Petri Nets, a modeling tool developed for dynamic discrete event system of mainly functional agents, provide this, and have the benefit of being an established tool. We present here the details of the modeling method here and discuss how to implement its use for modeling agent-based systems. Petri Nets have been used extensively in the modeling of functional agents, those agents who have defined purposes and whose actions should result in a know outcome. However, emergent agents, those agents who have a defined structure but whose interaction causes outcomes that are unpredictable, have not yet found a modeling style that suits them. A problem with formally modeling emergent agents that any formal modeling style usually expects to show the results of a problem and the results of problems studied using emergent agents are not apparent from the initial construction. However, the study of emergent agents still requires a method to analyze the agents themselves, and have sensible conversation about the differences and similarities between types of emergent agents. We attempt to correct this problem by applying Petri Nets to the characterization of emergent agents. In doing so, the emergent properties of these agents can be highlighted, and conversation about the nature and compatibility of the differing methods of agent creation can begin.
    Keywords: Computer Programming and Software
    Type: Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III); 281-284
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-06
    Description: Features of the JPL VLBI modeling and estimation software "MODEST" are reviewed. Its main advantages include thoroughly documented model physics, portability, and detailed error modeling. Two unique models are included: modeling of source structure and modeling of both spatial and temporal correlations in tropospheric delay noise. History of the code parallels the development of the astrometric and geodetic VLBI technique and the software retains many of the models implemented during its advancement. The code has been traceably maintained since the early 1980s, and will continue to be updated with recent IERS standards. Scripts are being developed to facilitate user-friendly data processing in the era of e-VLBI.
    Keywords: Computer Programming and Software
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 272-276; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-06
    Description: The first polar orbiting satellite lidar instrument, the Geoscience Laser Altimeter System (GLAS), was launched in 2003 and is approaching six months of data operations. As part of the NASA Earth Observing System (EOS) project, the GLAS instrument is intended as a laser sensor fulfilling complementary requirements for several earth science disciplines including atmospheric and surface applications on the Ice, Cloud and Land Elevation Satellite. In this paper we present examples of atmospheric measurement results and explain access to data for the international science community.
    Keywords: Earth Resources and Remote Sensing
    Type: International Laser Radar Conference; Matera; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-11
    Description: Time accurate CFD may offer a faster approach to S&C aerodynamic database population than the conventional point by point steady state CFD. We would directly simulate -, -sweeps or other configuration movements typically of measurement sequence in wind tunnels. A second objective is to demonstrate potential applications to assessment of S&C dynamic derivatives by simulating vehicle motions such as free to roll, and nonlinearity such as the trends of aerodynamic forces near CL-max or flow hysteresis.
    Keywords: Computer Programming and Software
    Type: COMSAC: Computational Methods for Stability and Control, Part 2; 417-432; NASA/CP-2004-213028/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-11
    Description: TetrUSS is a suite of loosely coupled computational fluid dynamics software that is packaged into a complete flow analysis system. The system components consist of tools for geometry setup, grid generation, flow solution, visualization, and various utilities tools. Development began in 1990 and it has evolved into a proven and stable system for Euler and Navier-Stokes analysis and design of unconventional configurations. It is 1) well developed and validated, 2) has a broad base of support, and 3) is presently is a workhorse code because of the level of confidence that has been established through wide use. The entire system can now run on linux or mac architectures. In the following slides, I will highlight more of the features of the VGRID and USM3D codes.
    Keywords: Computer Programming and Software
    Type: COMSAC: Computational Methods for Stability and Control, Part 2; 378-395; NASA/CP-2004-213028/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-11
    Description: GRIDVIEW is being developed by the GEODYNAMICS Branch at NASA's Goddard Space Flight Center and can be downloaded on the web at http://geodynamics.gsfc.nasa.gov/gridview/. The program is very mature and has been successfully used for more than four years, but is still under development as we add new features for data analysis and visualization. The software can run on any computer supported by the IDL virtual machine application supplied by RSI. The virtual machine application is currently available for recent versions of MS Windows, MacOS X, Red Hat Linux and UNIX. Minimum system memory requirement is 32 MB, however loading large data sets may require larger amounts of RAM to function adequately.
    Keywords: Computer Programming and Software
    Type: Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-05
    Description: The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in September 2001. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the 48-hour flight over the Northwest US, the instrument will measure surface reflections that can be detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and results of the science data analyses for the 48-hour mission.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-11
    Description: The presentation will show some of our recent work in using the NASA-built Navier-Stokes solvers for various applications including airplane control surface effectiveness study, Reynolds number scaling, and high lift configuration analysis.
    Keywords: Computer Programming and Software
    Type: COMSAC: Computational Methods for Stability and Control, Part 2; 396-416; NASA/CP-2004-213028/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-18
    Description: The Atlas San Juan Mission was conducted in February 2004 with the main objectives of observing the Urban Heat Island of San Juan, providing high resolution data of the land use for El Yunque Rain Forest and for calibrating remote sensors. The mission was coordinated with NASA staff members at Marshall, Stennis, Goddard, and Glenn. The Airborne Thermal and Land Applications Sensor (ATLAS) from NASA/Stennis, that operates in the visual and IR bands, was used as the main sensor and was flown over Puerto Rico in a Lear 23 jet plane. To support the data gathering effort by the ATLAS sensor, remote sensing observations and upper air soundings were conducted along with the deployment of a number of ground based weather stations and temperature sensors. This presentation focuses in the analysis of this complementary data for the Atlas San Juan Mission. Upper air data show that during the days of the mission the Caribbean mid and high atmospheres were relatively dry and highly stable reflecting positive surface lifted index, a necessary condition to conduct this suborbital campaign. Surface wind patterns at levels below 850mb were dominated by the easterly trades, while the jet stream at the edge of the troposphere dominated the westerly wind at levels above 500mb. The jet stream remained at high latitudes reducing the possibility of fronts. In consequence, only 8.4 mm of precipitation were reported during the entire mission. Observation of soundings located about 150 km apart reflected minimum variations of the boundary layer across the island for levels below 850 meters and a uniform atmosphere for higher levels. The weather stations and the temperature sensors were placed at strategic locations to observe variations across the urban and rural landscapes. Time series plot of the stations' data show that heavily urbanized commercial areas have higher air temperatures than urban and suburban residential areas, and much higher temperatures than rural areas. Temperature differences [dT(U-R)] were obtained by subtracting the values of several stations from a reference urban station, located in the commercial area of San Juan. These time series show that the UHI peaks during the morning between 10:00am and noon to an average of 4.5 C, a temporal pattern not previously observed in similar studies for continental cities. It is also observed a high variability of the UHI with the precipitation patterns even for short events. These results may be a reflection of a large land use density by low level buildings with an apparent absence of significant heat storage effects in the urban areas, and the importance of the surrounding soil and vegetation moisture in controlling the urban tropical climate. The ATLAS data was used to determine albedo and surface temperature patterns on a 10m scale for the study area. These data were used to calibrate the spatial distribution of the surface temperature when using remote sensing images from MODIS (Moderate Resolution Imaging Spectroradiometer). Surface temperatures were estimated using the land surface temperature product MOD11_L2 distributed by the Land Process Distributed Active Archive Center (LP DAAC). These results show the maximum, minimum and average temperatures in San Juan and in the entire Island at a resolution of 1 km. The information retrieved from MODIS for land surface temperatures reflected similar temporal and spatial variations as the weather stations and ATLAS measurements with a highest absolute offset of about 5 C due to the differences between surface and air temperatures.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Facilities Engineering and Architectural Branch is responsible for the design and maintenance of buildings, laboratories, and civil structures. In order to improve efficiency and quality, the FEAB has dedicated itself to establishing a data infrastructure based on Geographic Information Systems, GIs. The value of GIS was explained in an article dating back to 1980 entitled "Need for a Multipurpose Cadastre which stated, "There is a critical need for a better land-information system in the United States to improve land-conveyance procedures, furnish a basis for equitable taxation, and provide much-needed information for resource management and environmental planning." Scientists and engineers both point to GIS as the solution. What is GIS? According to most text books, Geographic Information Systems is a class of software that stores, manages, and analyzes mapable features on, above, or below the surface of the earth. GIS software is basically database management software to the management of spatial data and information. Simply put, Geographic Information Systems manage, analyze, chart, graph, and map spatial information. At the outset, I was given goals and expectations from my branch and from my mentor with regards to the further implementation of GIs. Those goals are as follows: (1) Continue the development of GIS for the underground structures. (2) Extract and export annotated data from AutoCAD drawing files and construct a database (to serve as a prototype for future work). (3) Examine existing underground record drawings to determine existing and non-existing underground tanks. Once this data was collected and analyzed, I set out on the task of creating a user-friendly database that could be assessed by all members of the branch. It was important that the database be built using programs that most employees already possess, ruling out most AutoCAD-based viewers. Therefore, I set out to create an Access database that translated onto the web using Internet Explorer as the foundation. After some programming, it was possible to view AutoCAD files and other GIS-related applications on Internet Explorer, while providing the user with a variety of editing commands and setting options. I was also given the task of launching a divisional website using Macromedia Flash and other web- development programs.
    Keywords: Earth Resources and Remote Sensing
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Many people use compound equilibrium programs for very different reasons, varying from refrigerators to light bulbs to rockets. A commonly used equilibrium program is CEA. CEA can take various inputs such as pressure, temperature, and volume along with numerous reactants and run them through equilibrium equations to obtain valuable output information, including products formed and their relative amounts. A little over a year ago, Bonnie McBride created the program subeq with the goal to simplify the calling of CEA. Subeq was also designed to be called by other programs, including Excel, through the use of Visual Basic for Applications (VBA). The largest advantage of using Excel is that it allows the user to input the information in a colorful and user-friendly environment while allowing VBA to run subeq, which is in the form of a FORTRAN DLL (Dynamic Link Library). Calling subeq in this form makes it much faster than if it were converted to VBA. Since subeq requires such large lists of reactant and product names, all of which can't be passed in as an array, subeq had to be changed to accept very long strings of reactants and products. To pass this string and adjust the transfer of input and output parameters, the subeq DLL had to be changed. One program that does this is Compaq Visual FORTRAN, which allows DLLs to be edited, debugged, and compiled. Compaq Visual FORTRAN uses FORTRAN 90/95, which has additional features to that of FORTRAN 77. My goals this summer include finishing up the excel spreadsheet of subeq, which I started last summer, and putting it on the Internet so that others can use it without having to download my spreadsheet. To finish up the spreadsheet I will need to work on debugging current options and problems. I will also work on making it as robust as possible, so that all errors that may arise will be clearly communicated to the user. New features will be added old ones will be changed as I receive comments from people using the spreadsheet. To implement this onto the Internet, I will need to develop an XML input/output format and learn how to write HTML.
    Keywords: Computer Programming and Software
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: I work in the Flight Software Engineering Branch, where we provide design and development of embedded real-time software applications for flight and supporting ground systems to support the NASA Aeronautics and Space Programs. In addition, this branch evaluates, develops and implements new technologies for embedded real-time systems, and maintains a laboratory for applications of embedded technology. The majority of microchips that are used in modern society have been programmed using embedded technology. These small chips can be found in microwaves, calculators, home security systems, cell phones and more. My assignment this summer entails working with an iPAQ HP 5500 Pocket PC. This top-of-the-line hand-held device is one of the first mobile PC's to introduce biometric security capabilities. Biometric security, in this case a fingerprint authentication system, is on the edge of technology as far as securing information. The benefits of fingerprint authentication are enormous. The most significant of them are that it is extremely difficult to reproduce someone else's fingerprint, and it is equally difficult to lose or forget your own fingerprint as opposed to a password or pin number. One of my goals for this summer is to integrate this technology with another Pocket PC application. The second task for the summer is to develop a simple application that provides an Astronaut EVA (Extravehicular Activity) Log Book capability. The Astronaut EVA Log Book is what an astronaut would use to report the status of field missions, crew physical health, successes, future plans, etc. My goal is to develop a user interface into which these data fields can be entered and stored. The applications that I am developing are created using eMbedded Visual C++ 4.0 with the Pocket PC 2003 Software Development Kit provided by Microsoft.
    Keywords: Computer Programming and Software
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-18
    Description: Many of the troubles associated with problem solving are alleviated when there is a model that can be used to represent the problem. Through the Advanced Graphics and Visualization (G-VIS) Laboratory and other facilities located within the Research Analysis Center, the Computer Services Division (CSD) is able to develop and maintain programs and software that allow for the modeling of various situations. For example, the Icing Research Branch is devoted to investigating the effect of ice that forms on the wings and other airfoils of airplanes while in flight. While running tests that physically generate ice and wind on airfoils within the laboratories and wind tunnels on site are done, it would be beneficial if most of the preliminary work could be done outside of the lab. Therefore, individuals from within CSD have collaborated with Icing Research in order to create SmaggIce. This software allows users to create ice patterns on clean airfoils or open files containing a variety of icing situations, manipulate and measure these forms, generate, divide, and merge grids around these elements for more explicit analysis, and specify and rediscretize subcurves. With the projected completion date of Summer 2005, the majority of the focus of the Smagglce team is user-functionality and error handling. My primary responsibility is to test the Graphical User Interface (GUI) in SmaggIce in order to ensure the usability and verify the expected results of the events (buttons, menus, etc.) within the program. However, there is no standardized, systematic way in which to test all the possible combinations or permutations of events, not to mention unsolicited events such as errors. Moreover, scripting tests, if not done properly and with a view towards inevitable revision, can result in more apparent errors within the software and in effect become useless whenever the developers of the program make a slight change in the way a specific process is executed. My task therefore requires a brief yet intense study into GUI coverage criteria and creating algorithms for GUI implementation. Nevertheless, there are still heavily graphical features of SmaggIceSmaggIce that must be either corrected or redesigned before its release. A particular feature of SmaggIce is the ability to smooth out curves created by control points that form an arbitrary shape into something more acquiescent to gridding (while maintaining the integrity of the data). This is done by a mathematical model known as Non-Uniform Rational B-Spline (NURBS) curves. Existing NURBS code is written in FORTRAN-77 with static arrays for holding information. My new assignment is to allow for dynamic memory allocation within the code and to make it possible for the developers to call out functions from the NURBS code using C.
    Keywords: Computer Programming and Software
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Coming into the Combustion Branch of the Turbomachinery and Propulsion Systems Division, there was not any set project planned out for me to work on. This was understandable, considering I am only at my sophmore year in college. Also, my mentor was a division chief and it was expected that I would be passed down the line. It took about a week for me to be placed with somebody who could use me. My first project was to write a macro for TecPlot. Commonly, a person would have a 3D contour volume modeling something such as a combustion engine. This 3D volume needed to have slices extracted from it and made into 2D scientific plots with all of the appropriate axis and titles. This was very tedious to do by hand. My macro needed to automate the process. There was some education I needed before I could start, however. First, TecPlot ran on Unix and Linux, like a growing majority of scientific applications. I knew a little about Linux, but I would need to know more to use the software at hand. I took two classes at the Learning Center on Unix and am now comfortable with Linux and Unix. I already had taken Computer Science I and II, and had undergone the transformation from Computer Programmer to Procedural Epistemologist. I knew how to design efficient algorithms, I just needed to learn the macro language. After a little less than a week, I had learned the basics of the language. Like most languages, the best way to learn more of it was by using it. It was decided that it was best that I do the macro in layers, starting simple and adding features as I went. The macro started out slicing with respect to only one axis, and did not make 2D plots out of the slices. Instead, it lined them up inside the solid. Next, I allowed for more than one axis and placed each slice in a separate frame. After this, I added code that transformed each individual slice-frame into a scientific plot. I also made frames for composite volumes, which showed all of the slices in the same XYZ space. I then designed an addition companion macro that exported each frame into its own image file. I then distributed the macros to a test group, and am awaiting feedback. In the meantime, a am researching the possible applications of distributed computing on the National Combustor Code. Many of our Linux boxes were idle for most of the day. The department thinks that it would be wonderful if we could get all of these idle processors to work on a problem under the NCC code. The client software would have to be easily distributed, such as in screensaver format or as a program that only ran when the computer was not in use. This project proves to be an interesting challenge.
    Keywords: Computer Programming and Software
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Continuous Risk Management (CM) is a software engineering practice with processes, methods, and tools for managing risk in a project. It provides a controlled environment for practical decision making, in order to assess continually what could go wrong, determine which risk are important to deal with, implement strategies to deal with those risk and assure the measure effectiveness of the implemented strategies. Continuous Risk Management provides many training workshops and courses to teach the staff how to implement risk management to their various experiments and projects. The steps of the CRM process are identification, analysis, planning, tracking, and control. These steps and the various methods and tools that go along with them, identification, and dealing with risk is clear-cut. The office that I worked in was the Risk Management Office (RMO). The RMO at NASA works hard to uphold NASA s mission of exploration and advancement of scientific knowledge and technology by defining and reducing program risk. The RMO is one of the divisions that fall under the Safety and Assurance Directorate (SAAD). I worked under Cynthia Calhoun, Flight Software Systems Engineer. My task was to develop a help screen for the Continuous Risk Management Implementation Tool (RMIT). The Risk Management Implementation Tool will be used by many NASA managers to identify, analyze, track, control, and communicate risks in their programs and projects. The RMIT will provide a means for NASA to continuously assess risks. The goals and purposes for this tool is to provide a simple means to manage risks, be used by program and project managers throughout NASA for managing risk, and to take an aggressive approach to advertise and advocate the use of RMIT at each NASA center.
    Keywords: Computer Programming and Software
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of replacing this somewhat costly implementation is the focus of one of the SA group s current research projects. The explosion of open source software in the last ten years has led to the development of a multitude of software solutions which were once only produced by major corporations. The benefits of these open projects include faster release and bug patching cycles as well as inexpensive if not free software solutions. The main packages for hard real time solutions under Linux are Real Time Application Interface (RTAI) and two varieties of Real Time Linux (RTL), RTLFree and RTLPro. During my time here at NASA I have been testing various hard real time solutions operating as layers on the Linux Operating System. All testing is being run on an Intel SBC 2590 which is a common embedded hardware platform. The test plan was provided to me by the Software Assurance group at the start of my internship and my job has been to test the systems by developing and executing the test cases on the hardware. These tests are constructed so that the Software Assurance group can get hard test data for a comparison between the open source and proprietary implementations of hard real time solutions.
    Keywords: Computer Programming and Software
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Lewice (LEWis ICE accretion program) is software used by literally hundreds of users in the aeronautics community for predicting ice shapes, collections efficiencies, and anti-icing heat requirements for aircraft. LEWICE performs its analysis in minutes on a desktop PC, allowing the user to run several parameter studies for design purposes. The ice shape predictions have been used to assess performance degradation both as an input to a CFD program or experimentally in flight or in a wind tunnel. This information is important to ensure an airplane s safe passage through an icing cloud. Currently, Lewice runs as a DOS program that accepts many different inputs such as cloud conditions, wing shapes, and thermal deicing inputs. Usually, such experimental data is stored in spreadsheets. However, Lewice inputs are text files; therefore, they must be generated by the user. Lewice s outputs (collection efficiency, ice shapes and thicknesses) are also text files; to plot the data, users must generate a spreadsheet with this output. Because all Lewice J/O is in the form of text files, using Lewice can be tricky and time-consuming. Our goal was to improve Lewice s usability by creating a user interface that would automatically generate Lewice input from a spreadsheet and automatically put Lewice output into spreadsheets with charts. Additionally, this user interface would automatically convert units (as Lewice only accepts input in certain units) and offer several output options. I call this program the Lewice Console. The Lewice Console is an easy to use interface for Lewice written in Visual Basic. It allows users to run Lewice given a spreadsheet listing experimental conditions. It automatically generates the input to Lewice, does necessary unit conversions, runs Lewice, and produces a spreadsheet with charts plotting the data. It allows users to import data from previously generated Lewice inputs into a spreadsheet. It also allows users to batch run Lewice on several different inputs to automatically generate multiple output spreadsheets. You can also generate plots of actual data vs. experimental data. These capabilities are just the beginning for the Lewice Console. Lewice is capable of running a full deicing experiment given a geometry and heating apparatus information. However, users find it difficult to run such experiments due to the number of inputs and the difficult input file format. The Lewice Console would simplify experiment generation by allowing the user to interactively draw a geometry, place heating apparatus, and specify information about each part. The input to Lewice would be automatically generated from the experiment the user draws on the screen. The Lewice Console would simplify the experiment building process. Currently, Lewice runs as a DOS program that accepts many different inputs such as
    Keywords: Computer Programming and Software
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: This summer I am working in the Educational Programs Office. My task is to convert the Aeronautics Interactive Workstation from a Macintosh (Mac) platform to a Personal Computer (PC) platform. The Aeronautics Interactive Workstation is a workstation in the Aerospace Educational Laboratory (AEL), which is one of the three components of the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA). The AEL is a state-of-the-art, electronically enhanced, computerized classroom that puts cutting-edge technology at the fingertips of participating students. It provides a unique learning experience regarding aerospace technology that features activities equipped with aerospace hardware and software that model real-world challenges. The Aeronautics Interactive Workstation, in particular, offers a variety of activities pertaining to the history of aeronautics. When the Aeronautics Interactive Workstation was first implemented into the AEL it was designed with Macromedia Director 4 for a Mac. Today it is being converted to Macromedia DirectorMX2004 for a PC. Macromedia Director is the proven multimedia tool for building rich content and applications for CDs, DVDs, kiosks, and the Internet. It handles the widest variety of media and offers powerful features for building rich content that delivers red results, integrating interactive audio, video, bitmaps, vectors, text, fonts, and more. Macromedia Director currently offers two programmingkripting languages: Lingo, which is Director's own programmingkripting language and JavaScript. In the workstation, Lingo is used in the programming/scripting since it was the only language in use when the workstation was created. Since the workstation was created with an older version of Macromedia Director it hosted significantly different programming/scripting protocols. In order to successfully accomplish my task, the final product required correction of Xtra and programming/scripting errors. I also had to convert the Mac platform file extensions into compatible file extensions for a PC.
    Keywords: Computer Programming and Software
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-18
    Description: With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.
    Keywords: Earth Resources and Remote Sensing
    Type: Seventh International Geostatistics Congress; Sep 26, 2004 - Oct 01, 2004; Banff, Alberta; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-18
    Description: The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality assurance/quality control analyses were performed on each dataset. Cross sections extracted form the high density and then the decimated datasets were individually input into an H&H model to determine the model's sensitivity to topographic variation and the effect of that variation on the resulting water profiles. Additional analysis was performed on the Brownsville, Texas, LIDAR data to determine the percentage of returns that "penetrated" various types of canopy or vegetative cover. It is hoped that the results of these studies will benefit state and local communities as they consider the post spacing at which to acquire LIDAR data (which affects cost) and will benefit FEMA as the Agency assesses the use of different technologies for updating National Flood Insurance Program and related products.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0003-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-18
    Description: GeoSpec will support future satellite mission concepts in the Atmospheric Sciences and in Land and Ocean Sciences by providing time-resolved measurements of both chemically linked atmospheric trace gas concentrations of important molecules such as O3, NO2, CH2O and SO2 and at the same time coastal and ocean pollution events, tidal effects, and the origin and evolution of aerosol plumes. The instrument design concept in development is a dual spectrograph covering the WMS wavelength region of 310-500 nm and the VIS/NIR wavelength region of 480-900 nm coupled to all reflective telescope and high sensitivity PIN/CMOS area detector. The goal of the project is to demonstrate a system capable of making moderate spatial resolution (750 meters at nadir) hyperspectral measurements (0.6 to 1.2 nm resolution) from a geostationary orbit. This would enable studies of time-varying pollution and coastal change processes with a temporal resolution of 5 minutes on a regional scale to 1 hour on a continental scale. Other spatial resolutions can be supported by varying the focal length of the input telescope. Scientific rationale and instrument design and status will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: 35th COSPAR Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-18
    Description: On-orbit calibration of Earth-observing sensors in the VIS and NIR spectral regions is usually performed using the sensors on-board devices such as internal lamp(s) or solar diffuser plate(s) to provide calibration parameters. For sensors with no (or with less reliable) on-board calibrators, lunar calibration or ground validation approaches are often used. Each of these has its own set of problems that need to be fully addressed in order to support high quality on-orbit calibration and characterization. Some science products, such as Ocean color, may impose more stringent requirements that demand greater calibration precision. This paper uses MODIS as an example to illustrate challenging issues involved in VIS and NIR on-orbit calibration. It focuses on the solar diffuser (SD) calibration approach, including the effects due to SD BRF, SD attenuation screen(s), and earthshine. The impact of optics (solar diffuser and scan mirror) on-orbit degradation, including changes in the sensor s response versus scan angle (RVS), on the calibration and subsequent data quality is also discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: CALCON (Conference on Characterization and Radiometric Calibration for Remote Sensing); Aug 23, 2004 - Aug 26, 2004; Logan, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Three lightweight, portable hyperspectral sensor systems have been built that capture energy from 200 to 1700 nanometers (ultravio1et to shortwave infrared). The sensors incorporate a line scanning technique that requires no relative movement between the target and the sensor. This unique capability, combined with portability, opens up new uses of hyperspectral imaging for laboratory and field environments. Each system has a GUI-based software package that allows the user to communicate with the imaging device for setting spatial resolution, spectral bands and other parameters. NASA's Space Partnership Development has sponsored these innovative developments and their application to human problems on Earth and in space. Hyperspectral datasets have been captured and analyzed in numerous areas including precision agriculture, food safety, biomedical imaging, and forensics. Discussion on research results will include realtime detection of food contaminants, molds and toxin research on corn, identifying counterfeit documents, non-invasive wound monitoring and aircraft applications. Future research will include development of a thermal infrared hyperspectral sensor that will support natural resource applications on Earth and thermal analyses during long duration space flight. This paper incorporates a variety of disciplines and imaging technologies that have been linked together to allow the expansion of remote sensing across both traditional and non-traditional boundaries.
    Keywords: Earth Resources and Remote Sensing
    Type: Monitoring Science and Technology Symposium; Oct 21, 2004 - Oct 24, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-18
    Description: An optimal de-convolution (ODC) technique has been developed to estimate microwave brightness temperatures of agricultural fields using microwave radiometer observations. The technique is applied to airborne measurements taken by the Passive and Active L and S band (PALS) sensor in Iowa during Soil Moisture Experiments in 2002 (SMEX02). Agricultural fields in the study area were predominantly soybeans and corn. The brightness temperatures of corn and soybeans were observed to be significantly different because of large differences in vegetation biomass. PALS observations have significant over-sampling; observations were made about 100 m apart and the sensor footprint extends to about 400 m. Conventionally, observations of this type are averaged to produce smooth spatial data fields of brightness temperatures. However, the conventional approach is in contrast to reality in which the brightness temperatures are in fact strongly dependent on landcover, which is characterized by sharp boundaries. In this study, we mathematically de-convolve the observations into brightness temperature at the field scale (500-800m) using the sensor antenna response function. The result is more accurate spatial representation of field-scale brightness temperatures, which may in turn lead to more accurate soil moisture retrieval.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-18
    Description: We present and discuss observed variations in thermal transients and radiation fields prior to the earthquakes of September 18 near Bodie (M5.5) and September 28,2004 near Parkfield(M6.0) in California. Previous analysis of earthquake events have indicated the presence of a thermal anomaly, where temperatures increased or did not return to its usual nighttime value. The procedures used in our work is to analyze weather satellite data taken at night and to record the general condition where the ground cools after sunset. Two days before the Bodie earthquake lower temperature radiation was observed by the NOAA/AVHRR satellite. This occurred when the entire region was relatively cloud-free. IR land surface nighttime temperature from the MODIS instrument rose to +4 C in a 100 km radius around the Bodie epicenter. The thermal transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +l C and it is significantly smaller than the Parkfield epicenter, however, for that period showed a steady increase 4 days prior to the earthquake and a significant drop of the night before the quake. Geosynchronous weather satellite thermal IR measurements taken every half hour from sunset to dawn, were also recorded for 10 days prior to the Parkfield event and 5 days after as well as the day of the quake. To establish a baseline we also obtained GOES data for the same Julian sets were then used to systematically observe and record any thermal anomaly prior to the events that deviated from the baseline. Our recent results support the hypothesis of a possible relationship between an thermodynamic processes produced by increasing tectonic stress in the Earth's crust and a subsequent electro-chemical interaction between this crust and the atmosphere/ionosphere.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 Fall AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-18
    Description: Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.
    Keywords: Earth Resources and Remote Sensing
    Type: AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-18
    Description: The cometary meteoroid ejection models of Jones (1996) and Crifo (1997) were used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the 1862, 1737, and 161 0 apparitions of 1 OSP/Swift-Tuttle. Using cometary ephemerides generated by the JPL HORIZONS Solar System Data and Ephemeris Computation Service, ejection was simulated in 1 hour time steps while the comet was within 2.5 AU of the Sun. Also simulated was ejection occurring at the hour of perihelion passage. An RK4 variable step integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting-Robertson drag, and the gravitational forces of the planets, which were computed using JPL's DE406 planetary ephemerides. An impact parameter is computed for each particle approaching the Earth, and the results are compared to observations of the 1998-2002 Leonid showers, and the 1993-1 994 Perseids. A prediction for Earth's encounter with the Perseid stream in 2004 is also presented.
    Keywords: Computer Programming and Software
    Type: Meteoroids 2004; Aug 16, 2004 - Aug 20, 2004; London, Ontario; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-18
    Description: A detailed optical radiometric model has been created of the MODIS instruments solar calibration process. This model takes into account the orientation and distance of the spacecraft with respect to the sun, the correlated motions of the scan mirror and the sun, all of the optical elements, the detector locations on the visible and near IR focal planes, the solar diffuser and the attenuation screen with all of its hundreds of pinholes. An efficient computational scheme, takes into account all of these factors and has produced results which reproduce the observed time dependent intensity variations on the two focal planes with considerable fidelity. This agreement between predictions and observations, has given insight to the causes of some small time dependent variations and how to incorporate them into the overall calibration scheme. The radiometric model is described and modeled and actual measurements are presented and compared.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Conference; Nov 08, 2004 - Nov 12, 2004; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-18
    Description: Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. T us includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being evaluated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems (LDAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification and validation.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-18
    Description: I shall review current efforts on measurement based assessment of the aerosol radiative effects at the top of the atmosphere using MODIS, CERES and VIRS instruments, and radiative effects at the surface using AERONET. I shall also discuss use of the MODIS derived fine aerosol fraction for assess the anthropogenic component.
    Keywords: Earth Resources and Remote Sensing
    Type: AeroCom Workshop; Mar 10, 2004 - Mar 12, 2004; Ispra; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-18
    Description: During March 2003, an extensive field campaign was conducted near Barrow, Alaska to validate AQUA Advanced Microwave Scanning Radiometer (AMSR) sea ice products. Field, airborne and satellite data were collected over three different types of sea ice: 1) first year ice with little deformation, 2) first year ice with various amounts of deformation and 3) mixed first year ice and multi-year ice with various degrees of deformation. The validation plan relies primarily on comparisons between satellite, aircraft flights and ground-based measurements. Although these efforts are important, key aspects such as the effects of atmospheric conditions, snow properties, surface roughness, melt processes, etc on the sea ice algorithms are not sufficiently well understood or documented. To improve our understanding of these effects, we combined the detailed, in-situ data collection from the 2003 field campaign with radiance modeling using a radiative transfer model to simulate the top of the atmosphere AMSR brightness temperatures. This study reports on the results of the simulations for a variety of snow and ice types and compares the results with the National Oceanographic and Atmospheric Administration Environmental Technology Laboratory Polarimetric Scanning Radiometer (NOAA) (ETL) (PSR) microwave radiometer that was flown on the NASA P-3.
    Keywords: Earth Resources and Remote Sensing
    Type: IGARSS 04; Sep 20, 2004 - Sep 24, 2004; Anchorage, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-18
    Description: As scientists and policy-makers from both indigenous and non-indigenous communities begin to build closer partnerships to address common sustainability issues such as the health impacts of climate change and anthropogenic activities, it becomes increasingly important to create shared information management systems which integrate all relevant factors for optimal information sharing and decision-making. This paper describes a new GIs-based system being designed to bring local and indigenous traditional knowledge together with scientific data and information, remote sensing, and information technologies to address health-related environment, weather, climate, pollution and land use change issues for improved decision/policy-making for reindeer husbandry. The system is building an easily-accessible archive of relevant current and historical, traditional, local and remotely-sensed and other data and observations for shared analysis, measuring, and monitoring parameters of interest. Protection of indigenous culturally sensitive information will be respected through appropriate data protocols. A mechanism which enables easy information sharing among all participants, which is real time and geo-referenced and which allows interconnectivity with remote sites is also being designed into the system for maximum communication among partners. A preliminary version of our system will be described for a Russian reindeer test site, which will include a combination of indigenous knowledge about local conditions and issues, remote sensing and ground-based data on such parameters as the vegetation state and distribution, snow cover, temperature, ice condition, and infrastructure.
    Keywords: Earth Resources and Remote Sensing
    Type: 5th International Congress of Arctic social Sciences (ICASS V); 19*23 May 2004; Fairbanks, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-18
    Description: With rapid technology changes and new and improved development techniques, it becomes extremely difficult to try to add capabilities to existing ground systems without wanting to replace the entire system. Replacing entire systems is not usually cost effective so there is a need to be able to slowly improve systems without long development times that introduce risk due to large amounts of change. The Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) ground system provides command, telemetry, and payload planning systems in support of the International Space Station. Our systems have continuously evolved with technology changes due to hardware end of life issues, and also due to user requirement changes. As changes have been implemented, we have tried to take advantage of some of the latest technologies while at the same time maintaining certain legacy capabilities that are not cost affective to replace. One of our biggest challenges is to integrate all of these implementations into a single system that is usable, maintainable, and scalable. Another challenge is to provide access to our tools in such a way that users are not aware of all the various implementation methods and tools being used. This approach not only makes our system much more usable, it allows us to continue to migrate capabilities and to add capabilities without impacting system usability. This paper will give an overview of the tools used for MSFC ISS payload operations and show an approach for integrating various technologies into a single environment that is maintainable, flexible, usable, cost effective, and that meets user needs.
    Keywords: Computer Programming and Software
    Type: Space Ops 2004; May 17, 2004 - May 21, 2004; Montreal, Quebec; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-18
    Description: The Telescience Resource Kit (TReK) is a suite of PC-based software applications that can be used to monitor and control a payload on board the International Space Station (ISS). This software provides a way for payload users to operate their payloads from their home sites. It can be used by an individual or a team of people. TReK provides both local ground support system services and an interface to utilize remote services provided by the Payload Operations Integration Center (POIC). by the POIC and to perform local data functions such as processing the data, storing it in local files, and forwarding it to other computer systems. TReK can also be used to build, send, and track payload commands. In addition to these features, work is in progress to add a new command management capability. This capability will provide a way to manage a multi- platform command environment that can include geographically distributed computers. This is intended to help those teams that need to manage a shared on-board resource such as a facility class payload. The environment can be configured such that one individual can manage all the command activities associated with that payload. This paper will provide a summary of existing TReK capabilities and a description of the new command management capability. For example, 7'ReK can be used to receive payload data distributed
    Keywords: Computer Programming and Software
    Type: SpaceOps 2004; May 17, 2004 - May 21, 2004; Montreal, Quebec; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-18
    Description: One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended abstract.
    Keywords: Earth Resources and Remote Sensing
    Type: IGWCO/GEWEX/UNESCO Workshop on Trends in Global Water Cycle Variables; Nov 03, 2004 - Nov 05, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-18
    Description: There is a significant interest in the Earth Science research and user remote sensing community to substantially increase the number of useful observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal, spectral, and spatial coverage of the area(s) under investigation. However, there is little analysis available in terms of the benefits, costs and the optimal set of sensors needed to make the necessary observations. Classic observing system solutions may no longer be applicable because of their point design philosophy. Instead, a new intelligent data collection system paradigm employing both reactive and proactive measurement strategies with adaptability to the dynamics of the phenomena should be developed. This is a complex problem that should be carefully studied and balanced across various boundaries including: science, modeling, applications, and technology. Modeling plays a crucial role in making useful predictions about naturally occurring or human-induced phenomena In particular, modeling can serve to mitigate the potentially deleterious impacts a phenomenon may have on human life, property, and the economy. This is especially significant when one is interested in learning about the dynamics of, for example, the spread of forest fires, regional to large-scale air quality issues, the spread of the harmful invasive species, or the atmospheric transport of volcanic plumes and ash. This paper identifies and examines these challenging issues and presents architectural alternatives for an integrated sensor web to provide observing scenarios driving the requisite dynamic spatial, spectral, and temporal characteristics to address these key application areas. A special emphasis is placed on the observing systems and its operational aspects in serving the multiple users and stakeholders in providing societal benefits. We also address how such systems will take advantage of technological advancement in small spacecraft and emerging information technologies, and how sensor web options may be realized and made affordable. Specialized detector subsystems and precision flying techniques may still require substantial innovation, development time and cost: we have presented the considerations for these issues. Finally, data and information gathering and compression techniques are also briefly described.
    Keywords: Earth Resources and Remote Sensing
    Type: International Society for Photogrammetry and Remote Sensing Congress; Jul 14, 2004 - Jul 23, 2004; Istanbul; Turkey
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-18
    Description: Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.
    Keywords: Earth Resources and Remote Sensing
    Type: International Radiation Symposium; Aug 23, 2004 - Aug 28, 2004; Busan; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-18
    Description: The first copy of the SSMIS (Special Sensor Microwave/Imager/Sounder) was launched on board the DMSP (Defense Meteorological Satellite Project) F-16 satellite in October 2003. During March-April 2004, six 5-hour SSMIS under-flights were conducted with the CoSMIR on board the NASA ER-2 aircraft over the coastal region of California. CoSMIR has nine channels at the frequencies of 50.3, 52.8, 53.6, 91.665 (V and H polarization), 150, 183.3+/-1, 183.3+/-3, and 183.3+/-6.6 GHz. All except the two 91.665 GHz channels are horizontally polarized. The instrument was carefully calibrated with LN2 target in the laboratory before the flights. Three of the aircraft flights passed over Lakes Pyramid and Tahoe that could be used to validate the in-flight sensor calibration. Immediately after these flights, an inter-comparison of the calibrated SSMIS and CoSMIR brightness temperatures (T(sub b)) followed. The results showed that, for channels at frequencies 〉 or equal to 91.665 GHz, the SSMIS and CoSMIR T(sub b) values tracked each other very well; for some channels there were some bias with magnitude generally less than 3-4 K (SSMIS values were higher). For the three 50-54 GHz channels, the SSMIS T(sub b) values were higher and frequency-dependent. For the least opaque channel at 50.3 GHz, the SSMIS T(sub b)'s over the ocean surface were higher than those of CoSMIR by more than 20 K under the clear-sky conditions. The most plausible explanation for this to happen is to assume that the 50-54 GHx channels of the SSMIS are vertically polarized. This assumption appears to be consistent with independent radiative transfer calculations. Attempts to estimate vertically polarized radiometric responses for 50-54 GHz channels of the SSMIS based on the CoSMIR observations are not plausible and results not reliable because of the highly variable ocean surface conditions (e.g., wind-induced emissivity changes). A conversion of the CoSMIR 50-54 GHz channels from horizontal to vertical polarization, and a subsequent repetition of the SSMIS under-flights are the right approach for the calibration/validation of the 50-54 GHz channels of the SSMIS. Details of the SSMIS-CoSMIR inter-comparison will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Specail Sensor Microwave/Imager/Sounder (SSMIS) Calibration/Validation Meeting; Jun 28, 2004 - Jun 30, 2004; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for the NASA s Earth Observing System (EOS). It is currently operating on both EOS Terra and Aqua satellites. The MODIS is a major advance over its heritage sensors in terms of its spectral, spatial, and temporal resolutions with frequent global observations and a broad range of science applications. There are 20 reflective solar bands (RSB) with center wavelengths ranging from 0.41 to 2.l microns and 16 thermal emissive bands (TEB) from 3.7 to 14.4 microns. The absolute radiometric accuracy requirements (lsigma) at the typical spectral radiance levels are plus or minus 2% for the RSB reflectance factors and plus or minus 5% for the RSB radiance products. With few exceptions, the TEB requirements are plus or minus 1%. To verify that the instruments met their specified design requirements both Terra and Aqua MODIS underwent extensive pre-launch calibration and characterization at various levels, including system-level thermal vacuum testing. On-orbit calibration and characterization are performed by the on-board calibrators: a solar diffuser (SD) and a solar diffuser stability monitor (SDSM), a V-groove flat panel blackbody (BB), and a spectro-radiometric calibration assembly (SRCA). In this paper, we present an overview of MODIS calibration and characterization activities, methodologies, and lessons learned from pre-launch testing and on-orbit operations. Key issues to be discussed include our on-orbit efforts of monitoring detectors noise characterization, tracking solar diffuser and optics degradation, and updating sensor s response versus scan-angle. The MODIS experience has provided invaluable lessons that are being used in designing and testing the Visible Infrared Imaging Radiometer Suite (VIIRS), a direct follow-on to the MODIS that will be flown on the National Polar-Orbit Operational Environmental Satellite System (NPOESS) missions.
    Keywords: Earth Resources and Remote Sensing
    Type: Third International Ocean-Atmosphere Conference; Jun 27, 2004 - Jun 30, 2004; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-18
    Description: NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.
    Keywords: Earth Resources and Remote Sensing
    Type: Presentation at Scientific COmmittee on Antarctic Research (SCAR) Conference; Jul 24, 2004 - Jul 31, 2004; Bremen; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-18
    Description: The EOS-Aura Mission is designed to answer three basic questions concerning the Earth's atmosphere: 1) Is stratospheric ozone recovering as predicted, 2) what are the processes that control air quality, and 3) how is changes in atmospheric chemistry effecting climate? Aura's four instruments work synergistically and are dedicated to answering these questions. Aura's instruments observe from the ultraviolet to the microwave region and view in the nadir and limb. This capability allows measurements of all the critical source, radical, and reservoir gases in the stratosphere to be observed globally on a daily basis. Aura will also continue the TOMS global ozone trend record. Observations in the troposphere will be conducted with the best spatial resolution and coverage ever achieved from space. Key pollutants, including aerosols, gases, and their precursors are the primary targets for Aura. High vertical resolution measurements will be made in the vicinity of the tropopause to better define the interactions of the UT/LS and particularly determine the amount downward transport of ozone and upward transport.of water vapor where both contribute to climate forcing. Aura will also measure aerosols in the stratosphere and troposphere where they play a role in ozone chemistry, air quality and climate. Aura data will be used by several environmental agencies for their decision support systems. Aura post launch validation program includes an augmented ground based measurement program which include the operational networks which measure atmospheric composition. Validation will be conducted under a range of geophysical conditions and throughout most of Aura s observing range. Balloon campaigns will conducted from a variety of latitudes and numerous aircraft missions are planned to cover an altitude range from the middle troposphere to the lower stratosphere and include in-situ and remote sensors. Long duration Un-inhabited aircraft are also being considered as part of the validation program. Substantial collaboration is planned with other chemistry satellite missions such as Envisat, SciSat, and Odin in order to make efficient use of resources and to provide continuity among these missions.
    Keywords: Earth Resources and Remote Sensing
    Type: 35th COSPAR Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-18
    Description: Sunlight reflected from the earth is, to a certain extent, polarized. Radiometers, such as the MODIS instrument on board the TERRA and AQUA spacecraft, are to a certain extent polarizers. Accurate radiometric measurements must take into account both the polarization state of the scene and the polarization sensitivity of the measuring instrument. The measured polarization characteristics of the MODIS instruments are contained in various radiometric models. Continued use of these radiometric math models, over a number of years, have shown where these models can be improved. Currently a MODIS polarization ray trace model has been created which models the thin film structure on the optical elements. This approach is described and modeled and measured instrument polarization sensitivity results presented.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 Conference on Characterization and Radiometry Calibration for Remote Sensing; Aug 01, 2004; UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-18
    Description: MODIS, one of the key instruments for the NASA's Earth Observing System (EOS), is currently operating on both the Terra and Aqua spacecraft making continuous observations in 36 spectral bands from 0.4 to 14.4 micrometers. A complete suite of on-board calibrators (OBC) have been designed for the instruments' on-orbit calibration and characterization, including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the radiometric calibration of the 20 reflective solar bands (RSB), a blackbody (BB) for the radiometric calibration of the 16 thermal emissive bands (TEZB), and a spectro-radiometric calibration assembly (SRCA) for the sensors' spatial and spectral characterization. The task of continuously performing high quality on-orbit calibration and characterization of all 36 spectral bands with a total of 490 detectors located on four focal plane assemblies is extremely challenging. The use of a large two-sided paddle wheel scan mirror with a +/- 55 deg scan angle range and a retractable pinhole attenuation screen in front of the SD panel for calibrating the high gain bands have resulted in additional unanticipated complexity. In this paper, we describe some of the key issues in the Terra and Aqua MODIS on-orbit calibration and characterization, and discuss the methods developed to solve these problems or to reduce their impact on the Level 1B calibration algorithms. Instrument performance and current issues are also presented.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Meeting; Aug 02, 2004 - Aug 06, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-18
    Description: A TRMM-based 3-hr analyses that uses TRMM observations to calibrate polar-orbit microwave observations from SSM/I (and other satellites, including AMSR on AQUA and ADEOS II) and geosynchronous IR observations is described. The various calibrated observations are combined into a final, 3-hr resolution map. This TRMM standard product will be available for the entire TRMM period (January 1998-present) in 2003 as product 3B-42 of the TRMM Version 6. A real-time version of this merged product is being produced and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25 degrees latitude-longitude resolution over the latitude range from 50 degrees N-50 degrees S. Examples will be shown, including its use in monitoring flood conditions and in relating weather-scale patterns to climate-scale patterns. Incorporation of this approach into the Global Precipitation Climatology Project (GPCP) will also be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: The New Rain Rate Retrieval Algorithms; Mar 10, 2003 - Mar 11, 2003; Osaka; Japan|AMSR Workshops and Symposium; Mar 12, 2003 - Mar 14, 2003; Awajishima; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-18
    Description: The high volume of Earth Observing System data has proven to be challenging to manage for data centers and users alike. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), about 1 TB of new data are archived each day. Distribution to users is also about 1 TB/day. A substantial portion of this distribution is MODIS calibrated radiance data, which has a wide variety of uses. However, much of the data is not useful for a particular user's needs: for example, ocean color users typically need oceanic pixels that are free of cloud and sun-glint. The GES DAAC is using a simple Bayesian classification scheme to rapidly classify each pixel in the scene in order to support several experimental content-based data services for near-real-time MODIS calibrated radiance products (from Direct Readout stations). Content-based subsetting would allow distribution of, say, only clear pixels to the user if desired. Content-based subscriptions would distribute data to users only when they fit the user's usability criteria in their area of interest within the scene. Content-based cache management would retain more useful data on disk for easy online access. The classification may even be exploited in an automated quality assessment of the geolocation product. Though initially to be demonstrated at the GES DAAC, these techniques have applicability in other resource-limited environments, such as spaceborne data systems.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA''s Earth Science Technology Conference; Jun 22, 2004 - Jun 24, 2004; Palo Alto, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-18
    Description: In this paper we explore the application of combined millimeter-wave radar and radiometry to remotely measure snowfall. During January-February of 2003, a field campaign was conducted with the NASA P-3 aircraft in Wakasa Bay, Japan for the validation of the AMSRE microwave radiometer on board the Aqua satellite. Among the suite of instruments-on board the P-3 aircraft were the Millimeter-wave Imaging Radiometer (MIR) from the NASA Goddard Space Flight Center and the 94 GHz Airborne Cloud Radar (ACR) which is co-owned and operated by NASA Jet Propulsion Laboratory/University of Massachusetts. MIR is a total power, across-track scanning radiometer that measures radiation at the frequencies of 89, 150, 183.3 +/- 1, 183.3 +/- 3, 183.3 +/-7, 220, and 340 GHz. The MIR has flown many successful missions since its completion in May 1992. ACR is a newer instrument and flew only a few times prior to the Wakasa Bay deployment. These two instruments which are particularly well suited for the detection of snowfall functioned normally during flights over snowfall and excellent data sets were acquired. On January 14, 28, and 29 flights were conducted over snowfall events. The MIR and ACR detected strong signals during periods of snowfall over ocean and land. Results from the analysis of these concurrent data sets show that (1) the scattering of millimeter-wave radiation as detected by the MIR is strongly correlated with ACR radar reflectivity profiles, and (2) the scattering is highly frequency-dependent, the higher the frequency the stronger the scattering. Additionally, the more transparent channels of the MIR (e.g., 89, 150, and 220 GHz) are found to display ambiguous signatures of snowfall because of their exposure to surface features. Thus, the snowfall detection and retrievals of snowfall parameters, such as the ice water path (IWP) and median mass diameter (D(me)) are best conducted at the more opaque channels near 183.3 GHz and 340 GHz. Retrievals of IWP and D(me) using the MIR measurements at 183.3 and 340 GHZ are currently in progress, and the results will be compared with those derived from the ACR reflectivity profiles. Implication from this comparison will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: IGARSS 2004; Sep 20, 2004 - Sep 24, 2004; Anchorage, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to the Far East and down to Beijing and Bangkok. Zooms through the Cosmos to the site of the 2004 Summer Olympic games in Athens using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of typhoons/hurricanes and fires in California and around the planet. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual greening of the northern hemisphere land masses and Oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & Oceans are shown. See the currents and vortexes in the Oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the ocean blooms in response to El Nino/La Nina climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, showing population concentrations in the US, Africa, and Asia observed by the "night-vision" DMSP satellite.
    Keywords: Earth Resources and Remote Sensing
    Type: Electronic Theater Presentation; Oct 27, 2004 - Nov 14, 2004; Bangkok; Thailand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-18
    Description: Validation of SCIAMACHY data products are is key element for the detecting a stratospheric ozone recovery, which is a high priority for environmental research and environmental policy. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be an effective means for correcting long term drifts of backscatter type satellite measurements such as SCIAMACHY and can be used to cross calibrate all BUV instruments in orbit (TOMS, SBUV/2, GOME, OMI, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. In addition to comparing radiances, validation of SCIAMACHY ozone products will conducted by comparing total and profile ozone with TOMS and SBUV/2.
    Keywords: Earth Resources and Remote Sensing
    Type: 2nd Workshop on Atmospheric Chemistry Validation; May 03, 2004 - May 07, 2004; Frascati; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-18
    Description: Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODIS) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Each MODIS has 20 reflective solar bands (RSB) with center wavelengths ranging from 0.41 to 2.1 micrometers and 16 thermal emissive bands (TEB) from 3.7 to 14.4 micrometers. The absolute radiometric accuracy requirements (1 sigma) at the typical spectral radiance levels are plus or minus 2% for the RSB for the RSB reflectance factors and plus or minus 5% for the RSB radiance products. With few exceptions, the TEB requirements are plus or minus 1%. The sensor's on-orbit radiometric calibration is performed by the on-board calibrators, including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) system for the RSB and a V-groove flat panel blackbody (BB) for the TEB. In addition, the Moon has been extensively used by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. This paper presents MODIS lunar calibration methodology and inter-comparison of Terra and Aqua MODIS in the VIS/NIR spectral regions. Current results from lunar observations show that the calibration difference between the two sensors is less than plus or minus 1%. Also discussed in this paper are the approaches and results of inter-comparison of Terra and Aqua MODIS in the TEB using closely matched thermal infrared (TIR) channels on the Advanced Very High Resolution Radiometer (AVHRR) at 11 and 12 micrometers.
    Keywords: Earth Resources and Remote Sensing
    Type: CEOS-IVOS Workshop on the Intercomparison of Large Scale Optical Sensors; Oct 12, 2004 - Oct 14, 2004; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-18
    Description: The EOS science team has developed an elaborate global MODIS cloud detection procedure, and the resulting MODIS product (MOD35) is used in the retrieval process of several geophysical parameters to mask out clouds. While the global application of the cloud detection approach appears quite robust, the product has some shortcomings on the regional scale, often over determining clouds in a variety of settings, particularly at night. This over-determination of clouds can cause a reduction in the spatial coverage of MODIS derived clear-sky products. To minimize this problem, a new regional cloud detection method for use with MODIS data has been developed at NASA's Global Hydrology and Climate Center (GHCC). The approach is similar to that used by the GHCC for GOES data over the continental United States. Several spatially varying thresholds are applied to MODIS spectral data to produce a set of tests for detecting clouds. The thresholds are valid for each MODIS orbital pass, and are derived from 20-day composites of GOES channels with similar wavelengths to MODIS. This paper and accompanying poster will introduce the GHCC MODIS cloud mask, provide some examples, and present some preliminary validation.
    Keywords: Earth Resources and Remote Sensing
    Type: 13th Conference on Satellite Meteorology and Oceanography; Sep 20, 2004 - Sep 24, 2004; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-18
    Description: Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can place confidence in the imagery they use and can fully understand its properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Stennis Space Center (SSC) Earth Science Applications (ESA) directorate,through the Joint Agency for Commercial Imagery Evaluation (JACIE) framework, established a commercial imaging satellite radiometric calibration team consisting of two groups: 1) NASA SSC ESA, supported by South Dakota State University, and 2) the University of Arizona Remote Sensing Group. The two groups determined the absolute radiometric calibration coefficients of the Digital Globe 4-band, 2.4-m QuickBird multispectral product covering the visible through near-infrared spectral region. For a 2-year period beginning in 2002, both groups employed some variant of a reflectance-based vicarious calibration approach, which required ground-based measurements coincident with QuickBird image acquisitions and radiative transfer calculations. The groups chose several study sites throughout the United States that covered nearly the entire dynamic range of the QuickBird sensor. QuickBird at-sensor radiance values were compared with those estimated by the two independent groups to determine the QuickBird sensor's radiometric accuracy. Approximately 20 at-sensor radiance estimates were vicariously determined each year. The estimates were combined to provide a high-precision radiometric gain calibration coefficient. The results of this evaluation provide the user community with an independent assessment of the QuickBird sensor's absolute calibration and stability over the 2-year period. While the techniques and method described reflect those developed at the NASA SSC, the results of both JACIE team groups are included in this paper.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0011-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-18
    Description: The National Aeronautics and Space Administration established the framework for the Science Investigator-led Processing Systems (SIPS) to enable the Earth science data products to be produced by personnel directly associated with the instrument science team and knowledgeable of the science algorithms. One of the first instantiations implemented for NASA was the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) SIPS. The AMSR-E SIPS is a decentralized, geographically distributed ground data processing system composed of two primary components located in California and Alabama. Initial science data processing is conducted at Remote Sensing Systems (RSS) in Santa Rosa, California. RSS ingests antenna temperature orbit data sets from JAXA and converts them to calibrated, resampled, geolocated brightness temperatures. The brightness temperatures are sent to the Global Hydrology and Climate Center in Huntsville, Alabama, which generates the geophysical science data products (e.g., water vapor, sea surface temperature, sea ice extent, etc.) suitable for climate research and applications usage. These science products are subsequently sent to the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado for archival and dissemination to the at-large science community. This paper describes the organization, coordination, and production techniques employed by the AMSR-E SIPS in implementing, automating and operating the distributed data processing system.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Optical Science and Technology 49th Annual Meeting; Aug 02, 2004 - Aug 06, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-18
    Description: Sunlight reflected from the earth is, to a certain extent, polarized. Radiometers, such as the MODIS instrument on board the TERRA and AQUA spacecraft, are to a certain extent polarizers. Accurate radiometric measurements must take into account both the polarization state of the scene and the polarization sensitivity of the measuring instrument. The measured polarization characteristics of the MODIS instruments are contained in various radiometric models. Continued use of these radiometric math models, over a number of years, have shown where these models can be improved. The current MODIS polarization modeling effort is discussed in the context and limitations of past modeling efforts.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE-Optical Science and Technology Annual Meeting; Aug 02, 2004 - Aug 06, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-18
    Description: Land observations by the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), particularly of soil and vegetation moisture changes, have numerous applications in hydrology, ecology and climate. Quantitative retrieval of soil and vegetation parameters relies on accurate calibration of the brightness temperature measurements. Analyses of the spectral and polarization characteristics of early versions of the AMSR-E data revealed significant calibration biases over land at 6.9 GHz. The biases were estimated and removed in the current archived version of the data Radiofrequency interference (RFI) observed at 6.9 GHz is more difficult to quanti@ however. A calibration analysis of AMSR-E data over land is presented in this paper for a complete annual cycle from June 2002 through September 2003. The analysis indicates the general high quality of the data for land applications (except for RFI), and illustrates seasonal trends of the data for different land surface types and regions.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-18
    Description: The ability to use data stored in the current Earth Observing System (EOS) archives for studying regional or global phenomena is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. Gaining this understanding and applying it to data reduction is a time- consuming task that must be undertaken before the core investigation can begin. This is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets that are usually of different formats, structures, and resolutions, for example, when preparing data for input into modeling systems. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has taken a major step towards meeting this challenge by developing an infrastructure with a Web interface that allows users to perform interactive analysis online without downloading any data, the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni." Giovanni provides interactive, online, analysis tools for data users to facilitate their research. There have been several instances of this interface created to serve TRMM users, Aerosol scientists, Ocean Color and Agriculture applications users. The first generation of these tools support gridded data only. The user selects geophysical parameters, area of interest, time period; and the system generates an output on screen in a matter of seconds. The currently available output options are: Area plot averaged or accumulated over any available data period for any rectangular area; Time plot time series averaged over any rectangular area; Time plots image view of any longitude-time and latitude-time cross sections; ASCII output for all plot types; Image animation for area plot. In the future, we will add correlation plots, GIS-compatible outputs, etc. This allow user to focus on data content (i.e. science parameters) and eliminate the need for expensive learning, development and processing tasks that are redundantly incurred by an archive's user community. The current implementation utilizes the GrADS-DODS Server (GDS), a stable, secure data server that provides subsetting and analysis services across the Internet for any GrADS-readable dataset. The subsetting capability allows users to retrieve a specified temporal and/or spatial subdomain from a large dataset, eliminating the need to download everything simply to access a small relevant portion of a dataset. The analysis capability allows users to retrieve the results of an operation applied to one or more datasets on the server. In our case, we use this approach to read pre-processed binary files and/or to read and extract the needed parts from HDF or HDF-EOS files. These subsets then serve as inputs into GrADS processing and analysis scripts. It can be used in a wide variety of Earth science applications: climate and weather events study and monitoring; modeling. It can be easily configured for new applications.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 AGU Fall Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-18
    Description: Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all B W instruments in orbit (TOMS, SBW/2, GOME, SCIAMACHY, OM, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. Radiance comparisons employ forward models and are inherently more accurate than inverse (retrieval) algorithms. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. TOMS and SCIAMACHY calibrations are checked to demonstrate this method and to demonstrate applicability for long term trends.
    Keywords: Earth Resources and Remote Sensing
    Type: International Quadrennial Ozone Symposium (QOS 2004); Jun 01, 2004 - Jun 08, 2004; Kos; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-18
    Description: The research described in this chapter demonstrates a method for using Landsat Thematic Mapper data to estimate instantaneous regional-scale energy fluxes over an arid valley in eastern Nevada, U.S.A. Here point-based models of surface energy and water balance fluxes were applied to individual pixels of a Landsat Thematic Mapper scene over the study area. Although the method used to estimate these instantaneous fluxes requires certain assumptions be made about the spatial distribution of several physical parameters, the results from this analysis and modeling suggest that it is possible to scale from point measurements of environmental state variables (i.e., net radiation flux, surface heat flux, sensible heat flux, and latent heat flux) to regional estimates of energy exchange to obtain an understanding of the spatial relationship between these fluxes and landscape variables.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...