ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,931)
  • MDPI Publishing  (988)
  • MDPI  (943)
  • Minerals  (1,931)
  • 180701
Collection
  • Articles  (1,931)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2019
    Description: In order to provide a good theoretical guidance for the development and utilization of weathered phosphorite resources, we investigated the geochemical and mineralogical characteristics of primary and weathered phosphorites. The analysis of trace elements showed that the primary ore has hydrothermal sedimentation effect in the later stage, the weathered ore has obvious residual enrichment and the phosphate ore belongs to clastic lithologic phosphate rock. In addition, through leaching test method, it was shown that rare earth elements are present in fluorapatite in the form of isomorphic substitution, and the proportion of rare earth elements adsorbed on clay and other minerals was likely to be between 2% and 3%. The light rare earth elements are relatively enriched in both primary and weathered phosphorite, and Ce and Eu have obvious negative anomalies. The primary phosphorite is a dolomitic phosphorite containing rare earth elements, which are naturally enriched by weathering, and its weathered ore has obvious residual enrichment, while the deposit was characterized by normal marine sedimentation and hydrothermal action.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Microbes can mediate the precipitation of primary dolomite under surface conditions. Meanwhile, primary dolomite mediated by microbes often contains more Fe2+ than standard dolomite in modern microbial culture experiments. Ferroan dolomite and ankerite have been regarded as secondary products. This paper reviews the process and possible mechanisms of microbial mediated precipitation of primary ferroan dolomite and/or ankerite. In the microbial geochemical Fe cycle, many dissimilatory iron-reducing bacteria (DIRB), sulfate-reducing bacteria (SRB), and methanogens can reduce Fe3+ to Fe2+, while SRB and methanogens can also promote the precipitation of primary dolomite. There are an oxygen respiration zone (ORZ), an iron reduction zone (IRZ), a sulfate reduction zone (SRZ), and a methanogenesis zone (MZ) from top to bottom in the muddy sediment diagenesis zone. DIRB in IRZ provide the lower section with Fe2+, which composes many enzymes and proteins to participate in metabolic processes of SRB and methanogens. Lastly, heterogeneous nucleation of ferroan dolomite on extracellular polymeric substances (EPS) and cell surfaces is mediated by SRB and methanogens. Exploring the origin of microbial ferroan dolomite may help to solve the “dolomite problem”.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Pyrometallurgical processing of ore from the Zeehan mineral field was performed intermittently between 1896 and 1948, primarily recovering Pb, Ag and Cu. While Zn recovery was attempted at the time, it was unsuccessful using the available technology. Consequently, Zn reported to the slag during the smelting process. Today, the former smelter site consists of two large slag piles (North and South). Using a range of techniques (including X-ray diffractometry, scanning electron microscopy, laser ablation inductively coupled plasma mass spectrometry, and static testing) the geometallurgical and geo-environmental properties of these slag materials (n = 280) were determined. The South and North piles contain on average 15% and 11% Zn, respectively. A range of complex mineral phases were identified, and are dominated by glass, silicates (i.e., monticellite–kirschsteinite and hardystonite), oxides (gahnite and hercynite) and minor sulfides (sphalerite and wurtzite). Microtextural examinations defined nine mineral phases (Glass A, Silicates A to D, Oxides A and B, Sulfides A and B). Zn was concentrated in Sulfide A (26%), Glass A (24%) and the Silicates (43%), while Pb was concentrated in Oxide B (76%), with Sulfide B host to the highest Ag (45%) and Cu (65%). Considering this, recovery of Zn using conventional hydrometallurgical processes (i.e., sulfuric acid leaching) is suitable, however the application of unconventional biohydrometallurgical techniques could be explored, as well re-smelting. These slag materials are classified geo-environmentally as potentially acid forming, with leachate concentrations of Zn, Pb consistently above ANZECC (2000) aquatic ecosystem 80% protection guideline values, and, for the majority of samples, exceedances of Cu, Ni and Cd were also measured. Considering these findings, reprocessing of these historic slags for Zn extraction may provide an economically feasible management option for rehabilitating this historical site.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: New findings of silicate-melt inclusions in two alluvial diamonds (from the Kholomolokh placer, northeastern Siberian Platform) are reported. Both diamonds exhibit a high degree of N aggregation state (60–70% B) suggesting their long residence in the mantle. Raman spectral analysis revealed that the composite inclusions consist of clinopyroxene and silicate glass. Hopper crystals of clinopyroxene were observed using scanning electron microscopy and energy-dispersive spectroscopic analyses; these are different in composition from the omphacite inclusions that co-exist in the same diamonds. The glasses in these inclusions contain relatively high SiO2, Al2O3, Na2O and, K2O. These composite inclusions are primary melt that partially crystallised at the cooling stage. Hopper crystals of clinopyroxene imply rapid cooling rates, likely related to the uplift of crystals in the kimberlite melt. The reconstructed composition of such primary melts suggests that they were formed as the product of metasomatised mantle. One of the most likely source of melts/fluids metasomatising the mantle could be a subducted slab.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The nature of upper mantle is important to understand the evolution of the South China Sea (SCS); thus, we need better constrains on its mantle heterogeneity. Magma water concentration is a good indicator, but few data have been reported. However, the rarity of glass and melt inclusions and the special genesis for phenocrysts in SCS basalts present challenges to analyzing magmatic water content. Therefore, it is possible to estimate the water variations through the characteristics of partial melting and magma crystallization. We evaluated variations in Fe depletion, degree of melt fractions, and mantle source composition along the fossil spreading ridge (FSR) using SCS basalt data from published papers. We found that lava from the FSR 116.2° E, FSR 117.7° E, and non-FSR regions can be considered normal lava with normal water content; in contrast, lava from the FSR 117° E-carbonatite and 114.9–115.0° E basalts have higher water content and show evidence of strong Fe depletion during the fractional crystallization after elimination of the effects of plagioclase oversaturation. The enriched water in the 117° E-carbonatite basalts is contained in carbonated silicate melts, and that in the 114.9–115.0° E basalts results from mantle contamination with the lower continental crust. The lava from the 117° E-normal basalt has much lower water content because of the lesser influence of the Hainan plume. Therefore, there must be a mantle source compositional transition area between the southwestern and eastern sub-basins of the SCS, which have different mantle evolution histories. The mantle in the west is more affected by contamination with continental materials, while that in the east is more affected by the Hainan mantle plume.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: The large-scale Maoping W–Sn deposit in the Gannan metallogenic belt of the eastern Nanling Range, South China, spatially associated with the Maoping granite pluton, hosts total ore reserves of 103,000 t WO3 and 50,000 t Sn. Two different types of mineralization developed in this deposit: Upper quartz vein-type mineralization, mostly within the Cambrian metamorphosed sandstone and slate, and underneath greisen-type mineralization within the Maoping granite. Cassiterites from both types of mineralization coexist with wolframite. Here we report for the first time in situ U–Pb data on cassiterite and zircon of the Maoping deposit obtained by LA-ICP-MS. Cassiterite from quartz vein and greisen yielded weighted average 206Pb/238U ages of 156.8 ± 1.5 Ma and 156.9 ± 1.4 Ma, respectively, which indicates that the two types of mineralization formed roughly at the same time. In addition, the two mineralization ages are consistent with the emplacement age of the Maoping granite (159.0 ± 1.5 Ma) within error, suggesting a close temporal and genetic link between W–Sn mineralization and granitic magmatism. The two types of mineralization formed at the same magmatic-hydrothermal event. Cassiterite from both types of mineralization shows high Fe, Ta, and Zr contents with a low Zr/Hf ratio, suggesting that the ore-forming fluid should be derived from the highly differentiated Maoping granite pluton. Cassiterite in greisen has higher contents of Nb and Ta but a lower concentration of Ti compared with that in quartz vein, indicating that the formation temperature of greisen-type mineralization is little higher than that of quartz-vein-type mineralization.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: The Postmasburg Manganese Field (PMF), Northern Cape Province, South Africa, once represented one of the largest sources of manganese ore worldwide. Two belts of manganese ore deposits have been distinguished in the PMF, namely the Western Belt of ferruginous manganese ores and the Eastern Belt of siliceous manganese ores. Prevailing models of ore formation in these two belts invoke karstification of manganese-rich dolomites and residual accumulation of manganese wad which later underwent diagenetic and low-grade metamorphic processes. For the most part, the role of hydrothermal processes and metasomatic alteration towards ore formation has not been adequately discussed. Here we report an abundance of common and some rare Al-, Na-, K- and Ba-bearing minerals, particularly aegirine, albite, microcline, banalsite, sérandite-pectolite, paragonite and natrolite in Mn ores of the PMF, indicative of hydrothermal influence. Enrichments in Na, K and/or Ba in the ores are generally on a percentage level for most samples analysed through bulk-rock techniques. The presence of As-rich tokyoite also suggests the presence of As and V in the hydrothermal fluid. The fluid was likely oxidized and alkaline in nature, akin to a mature basinal brine. Various replacement textures, particularly of Na- and K- rich minerals by Ba-bearing phases, suggest sequential deposition of gangue as well as ore-minerals from the hydrothermal fluid, with Ba phases being deposited at a later stage. The stratigraphic variability of the studied ores and their deviation from the strict classification of ferruginous and siliceous ores in the literature, suggests that a re-evaluation of genetic models is warranted. New Ar-Ar ages for K-feldspars suggest a late Neoproterozoic timing for hydrothermal activity. This corroborates previous geochronological evidence for regional hydrothermal activity that affected Mn ores at the PMF but also, possibly, the high-grade Mn ores of the Kalahari Manganese Field to the north. A revised, all-encompassing model for the development of the manganese deposits of the PMF is then proposed, whereby the source of metals is attributed to underlying carbonate rocks beyond the Reivilo Formation of the Campbellrand Subgroup. The main process by which metals are primarily accumulated is attributed to karstification of the dolomitic substrate. The overlying Asbestos Hills Subgroup banded iron formation (BIF) is suggested as a potential source of alkali metals, which also provides a mechanism for leaching of these BIFs to form high-grade residual iron ore deposits.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Mixed cyanobacteria-dominated biofilms, enriched from a tributary of the Mérantaise (France) were used to conduct laboratory experiments in order to understand the relationship between the morphology of carbonate precipitates and the biological activity (e.g., cyanobacterial exopolymeric substances (EPS) production, photosynthetic pH increases). DNA sequencing data showed that the enriched biofilm was composed predominantly of two types of filamentous cyanobacteria that belonged to the Oscillatoriaceae and Phormidiaceae families, respectively. Microscopic analysis also indicated the presence of some coccoid cyanobacteria resembling Gloeocapsa. Analysis of carbonate precipitates in experimental biofilms showed three main morphologies: micro-peloids with different shapes of mesocrystals associated with Oscillatoriaceae filaments and theirs EPS, lamellae of carbonate formed directly on Phormidiaceae filaments, and rhombic sparite crystals wrapped in EPS. All crystals were identified by FT-IR spectroscopy as calcite. Similar structures as those that formed in laboratory conditions were observed in the microbial-tufa deposits collected in the stream. Microscopic and spectroscopic analysis of laboratory and natural samples indicated a close proximity of the cyanobacterial EPS and precipitated carbonates in both. Based on the laboratory experiments, we conclude that the microbial tufa in the stream is in an early stage of formation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: We present a joint 2D inversion approach for magnetotelluric (MT) and gravity data with elastic-net regularization and cross-gradient constraints. We describe the main features of the approach and verify the inversion results against a synthetic model. The results indicate that the best fit solution using the L2 is overly smooth, while the best fit solution for the L1 norm is too sparse. However, the elastic-net regularization method, a convex combination term of L2 norm and L1 norm, can not only enforce the stability to preserve local smoothness, but can also enforce the sparsity to preserve sharp boundaries. Cross-gradient constraints lead to models with close structural resemblance and improve the estimates of the resistivity and density of the synthetic dataset. We apply the novel approach to field datasets from a copper mining area in the northeast of China. Our results show that the method can generate much more detail and a sharper boundary as well as better depth resolution. Relative to the existing solution, the large area divergence phenomenon under the anomalous bodies is eliminated, and the fine anomalous bodies boundary appeared in the smooth region. This method can provide important technical support for detecting deep concealed deposits.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Removal of calcium and magnesium ions through biomineralization induced by bacteria has been proven to be an effective and environmentally friendly method to improve water quality, but the process and mechanism are far from fully understood. In this study, a newly isolated probiotic Bacillus licheniformis SRB2 (GenBank: KM884945.1) was used to induce the bio-precipitation of calcium and magnesium at various Mg/Ca molar ratios (0, 6, 8, 10, and 12) in medium with 30 g L−1 sodium chloride. Due to the increasing pH and HCO3− and CO32− concentrations caused by NH3 and carbonic anhydrase, about 98% Ca2+ and 50% Mg2+ were precipitated in 12 days. The pathways of bio-precipitation include extracellular and intracellular processes. Biominerals with more negative δ13C values (−16‰ to −18‰) were formed including calcite, vaterite, monohydrocalcite, and nesquehonite with preferred orientation. The nucleation on extracellular polymeric substances was controlled by the negatively charged amino acids and organic functional groups. The intracellular amorphous inclusions containing calcium and magnesium also contributed to the bio-precipitation. This study reveals the process and mechanism of microbial desalination for the removal of calcium and magnesium, and provides some references to explain the formation of the nesquehonite and other carbonate minerals in a natural and ancient earth surface environment.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019
    Description: Coffee grounds are the most significant production waste in the coffee industry and contain about 15% coffee oil. Coffee oil is rich in fatty acids and polyphenols, which have great application potential in the flotation of oxidized minerals. In this study, coffee oil as a green flotation collector for ilmenite was investigated by micro-flotation, zeta potential measurement, and foam stability analysis. The results of zeta potential reveal that both coffee oil and MOH can be adsorbed on the ilmenite surface at pH 6.7, and the chemical adsorption mode is dominant. However, when the pH is 2.8, the adsorption capacity of coffee oil on the ilmenite surface is much larger than that of MOH. The pH value of the pulp has little effect on the foam properties in the coffee oil solution and has a great influence on the foaming performance and foam stability of the MOH solution. When coffee oil is used as a collector, the grade of TiO2 in ilmenite concentrate is increased from 21.68% to 46.83%, and the recovery is 90.22%, indicating that the potential of coffee oil in the application of ilmenite flotation is large.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019
    Description: The controlled crystallisation of struvite (MgNH4PO4∙6H2O) is a viable means for the recovery and recycling of phosphorus (P) from municipal and industrial wastewaters. However, an efficient implementation of this recovery method in water treatment systems requires a fundamental understanding of struvite crystallisation mechanisms, including the behavior and effect of metal contaminants during struvite precipitation. Here, we studied the crystallisation pathways of struvite from aqueous solutions using a combination of ex situ and in situ time-resolved synthesis and characterization techniques, including synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) and cryogenic transmission electron microscopy (cryo-TEM). Struvite syntheses were performed both in the pure Mg-NH4-PO4 system as well as in the presence of cobalt (Co), which, among other metals, is typically present in waste streams targeted for P-recovery. Our results show that in the pure system and at Co concentrations 〈 0.5 mM, struvite crystals nucleate and grow directly from solution, much in accordance with the classical notion of crystal formation. In contrast, at Co concentrations ≥ 1 mM, crystallisation was preceded by the transient formation of an amorphous nanoparticulate phosphate phase. Depending on the aqueous Co/P ratio, this amorphous precursor was found to transform into either (i) Co-bearing struvite (at Co/P 〈 0.3) or (ii) cobalt phosphate octahydrate (at Co/P 〉 0.3). These amorphous-to-crystalline transformations were accompanied by a marked colour change from blue to pink, indicating a change in Co2+ coordination in the formed solid from tetrahedral to octahedral. Our findings have implications for the recovery of nutrients and metals during struvite crystallisation and contribute to the ongoing general discussion about the mechanisms of crystal formation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019
    Description: Bauxites in southern France (Provence and Languedoc) have been exploited since the beginning of the last century. Though most of the deposits are now subeconomic or mined-out, these bauxites represent model analogs for other economic bauxites of the world. These Cretaceous karst-type deposits lie directly on Jurassic carbonates, and have been formed through a combination of different processes: in-situ alteration of siliciclastic sediments deposited on carbonate platforms, and reworking of early bauxites in the karst network. In this study, we present preliminary bulk rock geochemical and in-situ laser ablation (LA) -ICP-MS analyses on Al- and Fe-oxy-hydroxides of Provence (Les Baux-de-Provence) and Languedoc (Villeveyrac, Loupian) bauxites, with the aim of evaluating the concentrations of rare earth elements (REEs) and their deportment in these minerals. REEs have total average concentrations of 700 mg/kg in the analyzed samples, which are mostly composed of boehmite, γ-AlO(OH), and Fe-oxy-hydroxides (hematite and goethite). Maximum REEs concentrations are commonly associated with positive Ce anomalies in chondrite-normalized patterns. In contrast with other examples from the literature, it has been observed that high REE concentrations also occur in samples apparently devoid or poor of REE-minerals. In these samples, the total amount of REEs is positively correlated with that of Ga (commonly contained in boehmite). LA-ICP-MS trace element analyses on boehmite and Fe-oxy-hydroxides have shown that while the Al-hydroxide contains the suite of REEs, goethite and hematite are preferentially enriched only in Ce. Considering that Al-hydroxides are digested during the Bayer process, an interesting issue to develop in the future is whether (and how) REEs released during Al-hydroxide digestion could be recovered together with Al from the pregnant leach liquor, as routinely done for Ga.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019
    Description: The Qarhan Salt Lake has attracted increasing attention due to its significant national economic status and increased human activity, especially mining. Therefore, a sediment core collected from the confluence of the Golmud River to the Qarhan Salt Lake was chosen to investigate the concentrations, pollution levels, and ecological assessment of nine targeted elements (Al, As, Cd, Cr, Cu, Ni, P, Pb, and Zn). The excess 210Pb activities were calculated and a sedimentation rate of approximately 0.041 cm/y was estimated. Elements sources were identified, and the results show that Al, As, Cu, Ni, Pb, and Zn were mainly from natural sources, Cd and P were mainly from human input, and Cr appeared to have both sources. For Cd and P there was an increasing trend from 1987 and 1975, respectively, coinciding with the Chinese economic reform, Qarhan Salt Lake development and utilization, and also with the gross domestic product of Haixi State, Qinghai Province. Though the pollution and ecological assessment showed that there was nil to very low contamination and ecological risk, which is different from previous assumptions, the obviously increasing trend of Cd and P in the surface is still a concern. More attention should be paid to Cd and P in the further development of the Qarhan Salt Lake and the Golmud City.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019
    Description: Dritsite, ideally Li2Al4(OH)12Cl2·3H2O, is a new hydrotalcite supergroup mineral formed as a result of diagenesis in the halite−carnallite rock of the Verkhnekamskoe salt deposit, Perm Krai, Russia. Dritsite forms single lamellar or tabular hexagonal crystals up to 0.25 mm across. The mineral is transparent and colourless, with perfect cleavage on {001}. The chemical composition of dritsite (wt. %; by combination of electron microprobe and ICP−MS; H2O calculated by structure refinement) is: Li2O 6.6, Al2O3 45.42, SiO2 0.11, Cl 14.33, SO3 0.21, H2Ocalc. 34.86, O = Cl − 3.24, total 98.29. The empirical formula based on Li + Al + Si = 6 apfu (atom per formula unit) is Li1.99Al4.00Si0.01[(OH)12.19Cl1.82(SO4)0.01]Σ14.02·2.60(H2O). The Raman spectroscopic data indicate the presence of O–H bonding in the mineral, whereas CO32– groups are absent. The crystal structure has been refined in the space group P63/mcm, a = 5.0960(3), c = 15.3578(13) Å, and V = 345.4(5) Å3, to R1 = 0.088 using single-crystal data. The strongest lines of the powder X-ray diffraction pattern (d, Å (I, %) (hkl)) are: 7.68 (100) (002), 4.422 (61) (010), 3.832 (99) (004, 012), 2.561 (30) (006), 2.283 (25) (113), and 1.445 (26) (032). Dritsite was found as 2H polytype, which is isotypic with synthetic material and shows strong similarity to chlormagalumite-2H. The mineral is named in honour of the Russian crystallographer and mineralogist Prof. Victor Anatol`evich Drits.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019
    Description: Amphiboles are an important family of rock forming minerals, whose identification is crucial in provenance studies as well as in many other fields of geology, archaeology and environmental sciences. This study is aimed to find a quick way to characterize Ca-amphiboles in the tremolite (Ca2Mg5Si8O22(OH)2)–ferro–actinolite (Ca2Fe5Si8O22(OH)2) series. Raman spectroscopy is established as technique to perform non-destructive and quick analysis, with micrometric resolution, able to give the composition in terms of Mg/(Mg + Fe2+) ratio. To exploit the method, a preliminary characterization is performed by Scanning Electron Microscopy coupled with Energy-dispersed X-ray Spectroscopy (SEM-EDS). Two independent methods to evaluate the composition from the Raman data (aiming to an accuracy of about 5%), using the low-wavenumbers part of the spectrum and the OH stretching bands, are developed. The application of the proposed method to micro-Raman mappings and the possible use of handheld Raman spectroscopy to have compositional information on Ca-amphiboles are discussed.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: Pyrochlore group minerals are the main raw phases in granitic rocks of the Katugin complex-ore deposit that stores Nb, Ta, Y, REE, U, Th, Zr, and cryolite. There are three main types: Primary magmatic, early postmagmatic (secondary-I), and late hydrothermal (secondary-II) pyrochlores. The primary magmatic phase is fluornatropyrochlore, which has high concentrations of Na2O (to 10.5 wt.%), F (to 5.4 wt.%), and REE2O3 (to 17.3 wt.%) but also low CaO (0.6–4.3 wt.%), UO2 (to 2.6 wt.%), ThO2 (to 1.8 wt.%), and PbO (to 1.4 wt.%). Pyrochlore of this type is very rare in nature and is limited to a few occurrences: Rare-metal deposits of Nechalacho in syenite and nepheline syenite (Canada) and Mariupol in nepheline syenite (Ukraine). It may have crystallized synchronously with or slightly later than melanocratic minerals (aegirine, biotite, and arfvedsonite) at the late magmatic stage when Fe from the melt became bound, which hindered the crystallization of columbite. Secondary-I pyrochlore follows cracks or replaces primary pyrochlore in grain rims and is compositionally similar to the early phase, except for lower Na2O concentrations (2.8 wt.%), relatively low F (4 wt.%), and less complete A- and Y-sites occupancy. Secondary-II pyrochlore is a product of late hydrothermal alteration, which postdated the formation of the Katugin deposit. It differs in large ranges of elements and contains minor K, Ba, Pb, Fe, and significant Si concentrations but also low Na and F. Its composition mostly falls within the field of hydro- and keno-pyrochlore.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: Simultaneous leaching of seafloor massive sulfides (SMS) from Loki’s Castle on the Arctic Mid-Ocean Ridge (AMOR) and polymetallic nodules (PN) from Clarion Clipperton Zone (CCZ) of the Central Pacific Ocean was studied. Leaching tests were conducted using sulfuric acid and sodium chloride, at a temperature of 80 °C for 48 h under reflux. The effect of PN-to-SMS ratio was examined. It was shown that simultaneous leaching of two different types of marine resources was possible resulting in high dissolution rates of metals. The proposed process has many advantages as it does not require pyrometallurgical pretreatment, and yields solid products (i.e., silica, barite, elemental sulfur, albite, microcline, muscovite), which might be utilized for various industrial applications.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: The circular economy seeks to minimize the use of raw materials and waste generation. In this context, here we addressed the use of dunite mining tailings and subproducts to stabilize metal(oid)s in polluted soils. We first characterized the dunite mining tailings and subproducts, and a paradigmatic polluted soil in depth to determine their chemical and mineralogical properties. Experimental trials using Brassica juncea L. were performed to evaluate the impact of the two materials on vegetation growth, edaphic properties and pollutant stabilization yields. To this end, the plants were grown over 75 days in 1 kg pots containing the polluted soil amended with the dunite materials. Notably, both amendments caused a dramatic decrease in the available Zn and a moderate reduction in available Cu, Cd and Pb. In contrast, the concentration of available As was not modified. The cation exchange capacity (CEC) was improved by treatment with the amendments, allowing an increase in the biomass harvested. The immobilization mechanism achieved was probably due to an increase in pH and CEC. In conclusion, the dunite tailings and subproducts could be effective amendments for stabilizing polluted soil. This work paves the way for additional studies with distinct types of soils and conditions.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: The Gangdese metallogenic belt in Tibet is an important copper and iron polymetallic, metallogenic belt in western China. The Luobuzhen epithermal Au-Ag and Hongshan porphyry Cu deposits, as two new discovery deposits in the last few years, are located in the western Gangdese metallogenic belt. In this paper, we present quartz vein Rb-Sr isochron, zircon U-Pb and molybdenite Re-Os ages for a better understanding of the minerallogenetic epoch of the deposits. Geochronological data show that the Rb-Sr isochron age of a quartz vein in a Luobuzhen Au-Ag deposit is 21.1 ± 1.8 Ma (MSWD (mean standard weighted deviation) = 0.19), zircon U-Pb ages from diorite and granodiorite porphyry in Hongshan Cu deposit are 50.0 ± 0.4 Ma (MSWD = 0.94) and 23.7 ± 0.1 Ma (MSWD = 0.73), respectively, and a Re-Os isochron age of molybdenite in Hongshan Cu deposit is 23.0 ± 2.0 Ma (MSWD = 0.014). These data suggest that the Luobuzhen epithermal Au-Ag and Hongshan porphyry Cu deposits formed at ca. 23–21 Ma, which were controlled by the same magmatic hydrothermal events. Formation of both the Luobuzhen and Hongshan deposits were obviously earlier than the Miocene porphyry metallogenetic events in the Gangdese porphyry copper belt.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019
    Description: An experimental study, implicated in the revealing of the conditions for the origin for Fe3+-bearing magnesiowüstite in the lithospheric mantle, was performed using Mössbauer spectroscopy of pre-synthesized samples. Experiments were carried out using a multi-anvil high-pressure split-sphere apparatus at 6.3–7.5 GPa, in the range of 1100–1650 °C in carbonate-metal, carbonate–oxide-metal, carbonate-oxide, carbide-oxide and carbonate–metal- sulphur systems. In three experimental series, oxygen fugacity gradient in the samples was created, which enabled the study of the processes of magnesiowüstite formation under oxidizing and reducing conditions (ΔlogfO2 (FMQ) values from −1 to −5). It was established that Fe3+-bearing magnesiowüstite can form both in assemblage with oxidized phases, such as carbonate or with reduced ones—metal, carbides, sulphides, graphite and diamond. According to the Mössbauer spectroscopy, the composition of synthesized magnesiowüstite varied within a range of Fe3+/ΣFe values from 0 to 0.3, with IV and VI coordination of Fe3+ depending on P, T, fO2, x-parameters. It was established that Fe3+-bearing magnesiowüstite formation processes under upper mantle P,T-conditions include redox reactions, with magnesiowüstite being (1) reductant or (2) product of interaction, (3) crystallization processes of magnesiowüstite from an oxidized melt, where magnesiowüstite acts as a sink for ferric iron and (4) iron disproportionation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019
    Description: A new method, staged flotation for effectively increasing the recovery of ultra-fine copper oxide ore with a new type of collector (ZH-1, C3-5 carbon chain xanthate) is proposed for the first time. The flotation process and mechanism were examined by flotation tests, entrainment rate analysis, laser particle size experiments and microscopic imagery as well as economic feasibility analysis. It was demonstrated that the collector isoamyl sodium xanthate (ISX) shows a good collection ability (recovery exceeded 95%) for azurite, but the recovery was relatively much lower for malachite (only near 80%) due to the different particle size distribution. The new type of xanthate ZH-1 has shown a high-efficiency collection performance for fine-grained malachite. The recovery achieved for −10 μm malachite was more than 95% when the ZH-1 dosage was 150 mg/L, while the average particle size of −10 μm malachite sharply increased from 4.641 μm to 9.631 μm. The batch flotation results indicated that the copper oxide flotation recovery increased from 79.67% to 83.38%, and the grade also raised from 18.08% to 18.14% after using the staged flotation technology with ZH-1 as collector during the flotation of −25 μm ore. It was confirmed that this technology was quite effective for the recovery of copper oxide at the Dishui Copper Processing Plant, which successfully increased its gross profit by 1.6 million US$ per year.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019
    Description: Understanding the mineralogical and chemical characteristics of stone coal is imperative for exploring the thermal storage characteristics of stone coal. Two types stone coal (SCwt and SChc) were sampled from the pond of a stone coal mine in Henan province (China), and the chemical composition, phase composition, and thermal behavior of the stone coal were investigated. Furthermore, the petrography of the stone coal was studied in detail. The mineral phases of the stone coal were quartz, kaolinite, roscoelite, and goethite, as distinguished by reflected light microscopy and further proven by scanning electron microscope-energy dispersive spectrometer (SEM-EDS). The thermal conductivity of SCwt was 0.19 W m−1 K−1, while that of SChc was 0.24 W m−1 K−1. Stearic acid (SA) was blended with SCwt and SChc to prepare SA/SCwt and SA/SChc composites via an impregnation method, respectively. The thermogravimetric (TG) curves show that the loading capacity of SChc, at 17.40%, is higher than that of SCwt (16.63%). The thermal energy storage capacities of SA/SCwt and SA/SChc composites were 29.21 J g−1 and 33.02 J g−1 according to a differential scanning calorimetry (DSC) analysis. Therefore, SChc is a potential candidate for thermal storage applications due to more obvious thermal storage characteristics, including higher thermal conductivity and loading capacity.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019
    Description: The spectral response to arsenic (As) stress of pine needles (Pinus densiflora Siebold and Zucc.) from an abandoned lead (Pb)–zinc (Zn) mine was investigated based on chemical and spectroscopic analyses. The correlation analysis between the content of As in needle samples and that of soils and spectral parameters of the needle samples were conducted. The results showed very high correlation between As content in pine needles and soils. The major spectral response of pine needles to the As stress were characterized by the increase in the green and red color reflectance, the decrease in the first derivatives at 1648 nm, and the shrink in the red absorption feature. These changes were caused by the pigment content loss and the structural changes of phenolic compounds in the pine needles due to the As content. The linear regression analysis with the stepwise method showed the first derivatives at 668 nm and 1648 nm were the most useful variables in the regression model for As content prediction in pine needles. The As index of pine needles could be used to detect As content in soils associated with As and heavy metals contamination and/or mineralization in coniferous forests.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: Ultramafic soils are characterized by severe edaphic conditions induced by a low content of essential nutrients, an adverse Ca/Mg ratio, a low water-holding capacity, and high contents of geogenic potentially toxic elements (PTEs), in particular Cr, Ni, and Co. These metals commonly exceed the content limits set by environmental agencies and governments, representing serious environmental risks for ecosystems and human health. In alpine environments, ultramafic soils are characterized by modest thickness and poor horizon differentiation. Several studies on ultramafic soils have shown that their properties may be directly related to the characteristics of the parent rocks, but most of these studies deal with soil chemistry, metal availability, isotopic composition, and pedological characterization. The aim of this research is to investigate how much the geotectonic characteristics of ultramafic bedrocks, such as the degree of serpentinization, metamorphic imprint, and deformation, may affect the mineralogical and chemical variations of ultramafic soils, including the occurrence and potential mobility of the PTEs. Using a multiscale and multi-analytical approach, we fully characterize the properties and mineralogical composition of soil profiles with different ultramafic parent rocks, i.e., partially serpentinized peridotite, massive serpentinites, and foliated serpentinites, sampled within the Voltri Massif High Pressure–Low Temperature (HP–LT) metaophiolite (Western Alps, Italy). Our results, related to soils located at comparable latitude, altitude, landscape position, and pedological environment, outline that the degree of serpentinization, the metamorphic imprint, and the deformation history of the ultramafic parent rocks are key factors influencing soil evolution, mineralogy, and chemistry, as well as PTEs distribution and mobility. Moreover, this study shows that the high content of Cr, Ni, and Co in the studied ultramafic soils has to be considered of geogenic origin and highlights the need for new approaches and methods to obtain indications on the potential contamination of natural or anthropogenic soils.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: Calcium atoms are often replaced by rare earth elements (REEs) in the lattice of fluorapatite (Ca10F2(PO4)6), making the phosphate ore an important potential rare earth resource. In this paper, the electronic properties of REEs (La, Ce, Nd and Y) bearing fluorapatite crystals have been investigated by density functional theory. Results of calculation indicated that the existence of REEs increased the cell parameters of fluorapatite in varying degrees. The REEs substitution made the Fermi level of fluorapatite to move to higher energy levels, making it easier to accept electrons. Except for Y, all the other REEs (La, Ce and Nd) showed that the electronic state mainly exists in the valence band. The Fermi level of REEs were mainly contributed by La5d, Ce4f, Nd4f and Y4d, respectively. The Mulliken values of REE–F and REE–O bonds in REEs-bearing fluorapatites were larger than those of Ca–F and Ca–O bonds in the perfect crystal, and the values of Y–F and Y–O bonds were the largest. The results of interaction between fluorapatite and oleic acid by frontier molecular orbital analysis suggested that the substitution of REEs can improve the reactivity of fluorapatite with oleic acid.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: In waste management, recycled and industrial aggregates (e.g., electric arc furnace (EAF) slags) for construction applications have to fulfil the limit values with respect to the total and/or leachable contents of potentially environmentally problematic chemical elements (PEPE, e.g., Cr, Ni, Cu, Mo, V). Natural aggregates, i.e., quarried hard rocks, are neither tested nor regulated for these parameters in most EU member states, e.g., Austria, prior to using them as a construction material. The purpose of this study was to relate the mineralogy to the leachability of natural aggregates with a special emphasis on PEPE and to interpret these findings in comparison with EAF slags. Five samples of Austrian rocks were investigated by polarization microscopy, electron probe microanalyses (EPMA), X-ray diffraction (XRD), and leaching tests as well as by hydrogeochemical modelling using LeachXSTM. Two samples showed elevated total contents of Cr, Ni, and Mo which were present as Cr-spinel, (Fe,Mg)(Al,Cr)2O4, Ni-olivine, (Fe,Mg,Ni)2SiO4, and molybdenite, MoS2. Whereas the former two phases also controlled the leaching of Cr and Ni, the observed leaching of Mo was higher than expected in the case of solubility control by molybdenite. In summary, the leachability of PEPE in natural and industrial aggregates was controlled by similar mineralogical mechanisms.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: The increasing demand for green technology and battery metals necessitates a review of geological exploration techniques for Li–Cs–Ta (LCT) pegmatites, which is applicable to the work of mining companies. This paper reviews the main controls of LCT pegmatite genesis relevant to mineral exploration programs and presents a workflow of grassroots exploration techniques, supported by examples from central Europe and Africa. Geological exploration commonly begins with information gathering, desktop studies and Geographic Information System (GIS) data reviews. Following the identification of prospective regional areas, initial targets are verified in the field by geological mapping and geochemical sampling. Detailed mineralogical analysis and geochemical sampling of rock, soil and stream sediments represent the most important tools for providing vectors to LCT pegmatites, since the interpretation of mineralogical phases, deportment and liberation characteristics along with geochemical K/Rb, Nb/Ta and Zr/Hf metallogenic markers can detect highly evolved rocks enriched in incompatible elements of economic interest. The importance of JORC (Joint Ore Reserves Committee) 2012 guidelines with regards to obtaining geological, mineralogical and drilling data is discussed and contextualised, with the requirement of treating LCT pegmatites as industrial mineral deposits.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: The organic-enriched thick shale at the bottom of Longmaxi Formation is laterally continuous distributed and has been proven to be of good production capability in Fuling of Upper Yangtze. Uplifts that developed during the sedimentation influenced the reservoir characteristics by taking control of the sedimentary environment and provenance. The sedimentary environments are mainly deep-water shelf, shallow-water shelf, and tidal flat. By analyzing reservoir characteristic of these three environments, the deep-water shelf, which dominated the early stage of sedimentation, formed a high-quality reservoir with high TOC (Total Organic Carbon) content, porosity, and brittleness, while the environment was maintained around the basin centre until the Early Silurian. The shales deposited under the shallow-water environment were of low porosity because of the increasing calcareous and argillaceous contents. Sediments which formed on the tidal flat were arenaceous and of the lowest TOC content as the organic preservation conditions deteriorated. The good correlation of graptolite abundance and TOC content, and high porosity within graptolite fossils emphasize the importance of palaeontological development. The argillaceous cap over the Longmaxi shale is of good sealing capability, and the continuous sedimentation zone along southern Sichuan–eastern Chongqing is the best optimized hydrocarbon-bearing system. However, a weak interface on the discontinuity is the potential lateral pathway for gas diffusion at Northern Guizhou and Western Hunan, but on the southeast margin where the dark shale and the tidal sandstone contact, it promises to form a tight gas reservoir.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: Plagioclase ultraphyric basalts (PUBs) with up to 40% millimeter-sized plagioclase crystals, were sampled from the Mount Jourdanne volcanic massif (~64° E) in the Southwest Indian Ridge. The geochemistry of the host glass, the glassy melt inclusions and their host plagioclase macrocrysts (An60-69) are used to reveal the mantle heterogeneity and to discuss the origin of Mount Jourdanne PUBs. The melt inclusions trapped in plagioclase display low MgO and high SiO2 contents and show rare earth element (REE) patterns resembling enriched mid-ocean ridge basalts (E-MORB). Together with their positive Sr and Eu anomalies, these features indicate that they were derived from an enriched mantle source, likely a refertilized peridotite or a pyroxenite. In contrast to some 61–67° E basalts, there is a lack of negative Eu anomalies in the PUB host glasses, precluding large amounts of plagioclase crystallization from their parental magma. Petrographic observations and the general chemical similarity between melt inclusions and melts equilibrated with the clinopyroxene cores in regional gabbros and/or troctolites suggest that these plagioclase macrocrysts originate from gabbroic mush within the lower crust. The density contrasts allow the effective segregation of plagioclase prior to their incorporation into the host magma. We propose that these plagioclase macrocrysts were entrained when a new batch of magma passed through the crustal mush zone, and resulted in the formation of the PUB. Eruption of Mount Jourdanne PUBs requires a minimum ascending velocity of 5 m d−1 for the host magma, which is not as high as the eruption rate for typical MORB samples. It is likely that the PUB host magma erupts during a period with reduced magma supply, whereas eruption of aphyric lavas correspond to the fast volcanic formation of the Mount Jourdanne massif.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: The eclogite-bearing Alag Khadny metamorphic complex in the Lake Zone, SW Mongolia occupies the central region of the Central Asian Orogenic Belt, the largest Phanerozoic orogenic belt in the world. The complex consists mainly of orthogneisses intercalated with eclogites and micaschists in a mélange zone. Most of eclogites are strongly amphibolitized. In this study, we examined petrography and mineral chemistry of eclogites and amphibolitized eclogites, respectively. The result of our research shows that Chandman eclogites experienced multiple events of metamorphism in throughout their subduction and subsequent collision history. We revealed that eclogites were subjected to blueschist facies metamorphism before the peak eclogite facies stage. In addition, we have studied amphibolitized eclogite, and revealed that another distinct progressive medium pressure (MP) epidote-amphibolite facies metamorphic event took place in the eclogite, consistent with collision process. The multiple events of metamorphism in eclogites have been revealed by zonation textures of HP amphiboles zoned with glaucophane→barroisite→Mg-hornblende and MP amphiboles zoned with actinolite/winchite→barroisite→Mg-hornblende/tschermakite/Fe-pargasite. These amphiboles with different zonation textures reflect their metamorphic history of subduction to collision events.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: The Xialiugou polymetallic deposit is located in the North Qilian Orogenic Belt, Northwest China, of which the main ore-bearing strata are the Middle Cambrian Heicigou Group. The mineralization is zoned with “black” orebodies (galena–sphalerite), which are stratigraphically above the “yellow” orebodies (pyrite–chalcopyrite–tennantite) at the lower zone, corresponding to the alteration assemblages of quartz–sericite in the ore-proximal zone and chlorite in the ore-distal zone. The Xialiugou mineralization can be divided into three stages: (1) Stage I (pyrite); (2) Stage II (chalcopyrite–tennantite–sphalerite); and (3) Stage III (galena–sphalerite). Fluid inclusions data indicate that the physicochemical conditions that lead to ore formation were the medium–low temperature (157–350 °C) and low salinity (0.17–6.87 wt % NaCleqv), and that the ore-forming temperature tended to decrease with the successive mineralization processes. Taking the H–O isotopic compositions (δDV-SMOW = −51.0‰ to −40.5‰, δ18OH2O = −0.4‰ to 8.6‰) into consideration, the ore-forming fluids were most likely derived from seawater with a small amount of magmatic- and meteoric-fluids input. In addition, the combined S (−3.70‰ to 0.10‰) and Pb isotopic (206Pb/204Pb = 18.357 to 18.422, 207Pb/204Pb = 15.615 to 15.687, 208Pb/204Pb = 38.056 to 38.248) data of pyrite indicate that the ore-bearing volcanic rocks may be an important source of ore-forming materials. Finally, we inferred that the Xialiugou deposit shares similarities with the most important volcanogenic massive sulfide (VMS) deposits (Baiyinchang ore field) in China and typical “black ore” type VMS deposits worldwide.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: To meet the growing global demand for rare earth elements (REEs), nontraditional mining sources of these metals are being investigated. Phosphate ore and phosphate mining wastes have been identified as possible alternative sources to REEs. In this study, REEs were extracted from Florida phosphate mining materials using mineral and organic acids. The REEs were then recovered at high efficiencies using a chelating polymer, 1-octadecene, polymer with 2,5-furandione, sodium salt. At pH 1.5, the chelation polymer effectively bound nearly 100% of the rare earth elements extracted from the solids. Overall extraction and recovery yields were between 80% for gadolinium and 8% for praseodymium from amine tailings, between 70% for terbium and 7% for praseodymium from phosphogypsum, between 56% for scandium and 15% for praseodymium from phosphate rock, and between 77% for samarium and 31% for praseodymium from waste clay. These results suggest that this chelating polymer efficiently recovers rare earth elements from acidic extracts of phosphate mining waste products.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: Twenty years before the discovery of the mineral eudialyte, a red garnet-like mineral from Greenland was distributed among mineralogists and chemists in Europe. Furthermore, the first chemical analyses of the Greenlandic mineral reported 10 percent by weight of zirconium oxide. It was given the name greenlandite, and after the discovery of eudialyte many have wondered whether greenlandite could actually be eudialyte. Two-hundred years after the original definition of eudialyte I have tried to find out.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019
    Description: The mineralogical and geochemical characteristics of feed coals and coal combustion products (CCPs) from the Shenhuo and Yihua Power Plants in Xinjiang Autonomous Region, were studied by means of proximate analysis, Power X-ray diffraction (XRD), scanning electron microscopy with Energy Dispersive X-ray analyzer (SEM-EDX), inductively coupled plasma atomic emission spectrometry (ICP-MS) and inductively coupled plasma mass spectrometry (ICP-AES). The environmental geochemistry of CCPs was evaluated by Al-normalized enrichment factor as well as European Standard EN-12457 leaching test. Two feed coals have the characteristics of low sulfur content, medium to high volatiles matter yields, medium moisture content, super low to medium ash yield, medium to high calorific value and low mineral content. The main crystalline facies in fly ash and slag are quartz and mullite, with a small amount of calcite, and some unburned carbon. Hematite, SrSO4 and barite also can be observed in fly ashes by SEM. Typical plerophere occurs in fine fly ash rather than the coarse fly ash. The concentration of most trace elements in CCPs falls within the lower concentration range of European fly ashes. With respect to the partitioning behavior of trace elements during coal combustion, S is highly volatile, and Mg, Na, Zn, B, Co, As, Nb, Zr, Cu and K also show certain volatility, which may to some extent emit to the atmosphere. Furthermore, leaching experiments show that leachable concentrations of most of the potentially toxic elements in CCPs are low, and the CCPs fall in the range between inert and nonhazardous landfill material regulated by the 2003/33/EC Decision.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: The technogenic mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin have been investigated by single-crystal X-ray diffraction, scanning electron microscopy and high-temperature powder X-ray diffraction. The NH4MgCl3·6H2O phase is monoclinic, space group C2/c, unit cell parameters a = 9.3091(9), b = 9.5353(7), c = 13.2941(12) Å, β = 90.089(8)° and V = 1180.05(18) Å3. The crystal structure of NH4MgCl3·6H2O was refined to R1 = 0.078 (wR2 = 0.185) on the basis of 1678 unique reflections. The (NH4)2Fe3+Cl5·H2O phase is orthorhombic, space group Pnma, unit cell parameters a = 13.725(2), b = 9.9365(16), c = 7.0370(11) Å and V = 959.7(3) Å3. The crystal structure of (NH4)2Fe3+Cl5·H2O was refined to R1 = 0.023 (wR2 = 0.066) on the basis of 2256 unique reflections. NH4MgCl3·6H2O is stable up to 90 °C and then transforms to the less hydrated phase isotypic to β-Rb(MnCl3)(H2O)2 (i.e., NH4MgCl3·2H2O), the latter phase being stable up to 150 °C. (NH4)2Fe3+Cl5·H2O is stable up to 120 °C and then transforms to an X-ray amorphous phase. Hydrogen bonds provide an important linkage between the main structural units and play the key role in determining structural stability and physical properties of the studied phases. The mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O are isostructural with natural minerals novograblenovite and kremersite, respectively.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: Among the various technologies tested for removing the anionic species resulting from arsenic contamination, sorption methods have received unflagging interest. Being potential sorbent materials, clay minerals modified by cationic surfactants are often examined for this purpose. Among the clay minerals tested, information regarding sorption properties of expanded vermiculite modified with surfactants is scarce. Therefore, the present study aims to prepare organo-vermiculites modified with hexadecyltrimethylammonium (HDTMA) and benzyldimethylhexadecylammonium (HDBA) at surfactant concentrations of 0.5, 1.0, and 2.0 cation exchange capacity. Modified sorbents were identified and characterized using the analytical methods that can determine phase composition and textural properties of the samples. The sorption of As(III) and As(V) as a function of initial pH value, initial concentration of As(III, V), and initial dosage of sorbent was investigated. The results show that HDTMA and HDBA affect the properties of raw vermiculite. For instance, increase in the concentration of surfactants is often accompanied by a change in interlayer space or textural properties of vermiculite. It was observed that tested organo-minerals adsorbed As(V) to a greater extent compared to As(III). Various analytical studies were carried out and the results revealed the successful synthesis of organo-vermiculite. Moreover, the study also showed that the structure of organo-vermiculite has a significant impact on the uptake of As(III) and As(V) anions.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: Barite precipitation in fractures and nanopores within a shale sample is analysed in situ, in 3D, and over time. Diffusion of barium and sulphate from opposite sides of the sample creates a supersaturated zone where barium sulphate crystals precipitate. Time-lapse synchrotron-based computed tomography was used to track the growth of precipitates over time, even within the shale’s matrix where the nanopores are much smaller than the resolution of the technique. We observed that the kinetics of precipitation is limited by the type and size of the confinement where crystals are growing, i.e., nanopores and fractures. This has a major impact on the ion transport at the growth front, which determines the extent of precipitation within wider fractures (fast and localised precipitation), thinner fractures (non-localised and slowing precipitation) and nanopores (precipitation spread as a front moving at an approximately constant velocity of 10 ± 3 µm/h). A general sequence of events during precipitation in rocks containing pores and fractures of different sizes is proposed and its possible implications to earth sciences and subsurface engineering, e.g., fracking and mineral sequestration, are discussed.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019
    Description: Re sulfides were discovered in Cu–Ni–platinum-group elements (PGE) ores of the Zhelos and Tokty-Oi intrusions. These intrusions can be considered as products of the mantle superplume responsible for Rodinia’s break-up. The mineral compositions were determined in situ in polished samples. Electron microprobe analyses were mostly consistent with a general formula of (Cu,Fe,Mo,Os,Re)5S8, (Cu,Fe,Mo,Os,Re)4S7, and (Cu,Fe,Mo,Re)S2. One of the major features of Re sulfide from the Zhelos intrusion is its high osmium content. The ΣMe/S ratio for a part of our data is consistent with that of the tarkianite. Re sulfides from the Tokty-Oi have a ΣMe/S ratio similar to those in rheniite or dzeskazganite, but differ from them by the presence of Fe and Cu and the metal-to-metal ratio. The localization of the Re sulfide within the chalcopyrite suggests its crystallization from the residual Cu-rich liquid.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019
    Description: Pore connectivity of lacustrine shales was inadequately documented in previous papers. In this work, lacustrine shales from the lower Cretaceous Shahezi Formation in the Changling Fault Depression (CFD) were investigated using field emission scanning electron microscopy (FE-SEM), mercury intrusion capillary pressure (MICP), low pressure gas (CO2 and N2) sorption (LPGA) and spontaneous fluid imbibition (SFI) experiments. The results show that pores observed from FE-SEM images are primarily interparticle (interP) pores in clay minerals and organic matter (OM) pores. The dominant pore width obtained from LPGA and MICP data is in the range of 0.3–0.7 nm and 3–20 nm. The slopes of n-decane and deionized (DI) water SFI are in the range of 0.34–0.55 and 0.22–0.38, respectively, suggesting a mixed wetting nature and better-connected hydrophobic pores than hydrophilic pores in the Shahezi shales. Low pore connectivity is identified by the dominant nano-size pore widths (0.3–20 nm), low DI water SFI slopes (around 0.25), high geometric tortuosity (4.75–8.89) and effective tortuosity (1212–6122). Pore connectivity follows the order of calcareous shale 〉 argillaceous shale 〉 siliceous shale. The connected pores of Shahezi shales is mainly affected by the high abundance and coexistence of OM pores and clay, carbonate minerals host pores.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: In this work, the active sites and species involved in xanthate adsorption on sphalerite/marmatite surfaces were studied using adsorption capacity measurements, single mineral flotation, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis. The effects of Fe concentration on the xanthate adsorption capacity, Cu activation, and the flotation response of sphalerite/marmatite were determined. A discovery was that xanthate can interact with Fe atoms in the crystal of sphalerite/marmatite, as well as with Zn and Cu on the surface. We detected C2S2− fragment ions from dixanthogen, and dixanthogen may have been adsorbed on the surface of marmatite. The amounts of Cu and copper xanthate adsorbed on the marmatite surface were lower than those on the sphalerite surface, because Fe occupies Cu and Zn exchange sites. These results help to address the long-standing controversy regarding the products and mechanisms of xanthate adsorption on Fe-bearing sphalerite surfaces.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: In this work, a sulfidization mechanism of malachite was confirmed based on the depth profile product, principal component, and depth profile curve analyses of time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results showed that Cu/S species, including fragment ion peaks of Cu2S+, Cu3S+, S−, HS−, S2−, CuS2−, and CuS3−, were present in the inner layers of sulfidized malachite in the positive and negative spectral ranges 75–400 and 30–470 m/z. Na2S reacted with the surface and inner atoms, causing simultaneous sulfidization of malachite on the surface and in the inner layers. The inner layer mainly contained positive fragment ions with large Cu/S ratios. In summary, the interlayer sulfidization phenomenon was confirmed and the differences in sulfidization products between the surface and inner layers were determined.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: Understanding cement hydration is of crucial importance for the application of cementitious materials, including cemented paste backfill. In this work, the adsorption of a single water molecule on an M3-C3S (111) surface is investigated using density functional theory (DFT) calculations. The adsorption energies for 14 starting geometries are calculated and the electronic properties of the reaction are analysed. Two adsorption mechanisms, molecular adsorption and dissociative adsorption, are observed and six adsorption configurations are found. The results indicate that spontaneous dissociative adsorption is energetically favored over molecular adsorption. Electrons are transferred from the surface to the water molecule during adsorption. The density of states (DOS) reveals the bonding mechanisms between water and the surface. This study provides an insight into the adsorption mechanism at an atomic level, and can significantly promote the understanding of cement hydration within such systems.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019
    Description: The Koka gold deposit is located in the Elababu shear zone between the Nakfa terrane and the Adobha Abiy terrane, NW Eritrea. Based on a paragenetic study, two main stages of gold mineralization were identified in the Koka gold deposit: (1) an early stage of pyrite–chalcopyrite–sphalerite–galena–gold–quartz vein; and (2) a second stage of pyrite–quartz veins. NaCl-aqueous inclusions, CO2-rich inclusions, and three-phase CO2–H2O inclusions occur in the quartz veins at Koka. The ore-bearing quartz veins formed at 268 °C from NaCl–CO2–H2O(–CH4) fluids averaging 5 wt% NaCl eq. The ore-forming mechanisms include fluid immiscibility during stage I, and mixing with meteoric water during stage II. Oxygen, hydrogen, and carbon isotopes suggest that the ore-forming fluids originated as mixtures of metamorphic water and magmatic water, whereas the sulfur isotope suggests an igneous origin. The features of geology and ore-forming fluid at the Koka deposit are similar to those of orogenic gold deposits, suggesting that the Koka deposit might be an orogenic gold deposit related to granite.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: Jarosites are widely used in the hydrometallurgical industry of zinc to eliminate iron and other impurities contained in the concentrates. However, these compounds can also incorporate elements of significant environmental concern such as Tl+, Hg2+, Pb2+, Cd2+, Cr(VI), and As(V). In this work, the characterization of a synthetic mercury jarosite and its thermal decomposition kinetics are reported. XRD and FTIR analyses confirm that a mercury jarosite—Hg0.40(H3O)0.2]Fe2.71(SO4)2.17(OH)4.79(H2O)0.44—was successfully synthesized. Four mass loss events were observed by thermogravimetric analysis at 290 °C, 365 °C, 543 °C, and 665 °C. The third event corresponds to mercury decomposition into mercury oxide, whilst the forth is related to the jarosite to hematite transformation determined by X-ray diffraction starting at around 600 °C. According to the kinetic parameters (activation energy and frequency factor) of the thermal decomposition process, the fourth stage required the highest energy (Ea = 234.7 kJ∙mol−1), which corresponds to elimination of sulfur and oxygen from the jarosite lattice. Results show that jarosite-type compounds have the capability to incorporate heavy metals into their structure, retaining them even at high temperatures. Therefore, they can be used as a remediation strategy for heavy metals, such as mercury and others elements of environmental concern.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: The Qingshanbao complex, part of the uranium metallogenic belt of the Longshou-Qilian mountains, is located in the center of the Longshou Mountain next to the Jiling complex that hosts a number of U deposits. However, little research has been conducted in this area. In order to investigate the origin and formation of mafic enclaves observed in the Qingshanbao body and the implications for magmatic-tectonic dynamics, we systematically studied the mineralogy, petrography, and geochemistry of these enclaves. Our results showed that the enclaves contain plagioclase enwrapped by early dark minerals. These enclaves also showed round quartz crystals and acicular apatite in association with the plagioclase. Electron probe analyses showed that the plagioclase in the host rocks (such as K-feldspar granite, adamellite, granodiorite, etc.) show normal zoning, while the plagioclase in the mafic enclaves has a discontinuous rim composition and shows instances of reverse zoning. Major elemental geochemistry revealed that the mafic enclaves belong to the calc-alkaline rocks that are rich in titanium, iron, aluminum, and depleted in silica, while the host rocks are calc-alkaline to alkaline rocks with enrichment in silica. On Harker diagrams, SiO2 contents are negatively correlated with all major oxides but K2O. Both the mafic enclaves and host rock are rich in large ion lithophile elements such as Rb and K, as well as elements such as La, Nd, and Sm, and relatively poor in high field strength elements such as Nb, Ta, P, Ti, and U. Element ratios of Nb/La, Rb/Sr, and Nb/Ta indicate that the mafic enclaves were formed by the mixing of mafic and felsic magma. In terms of rare earth elements, both the mafic enclaves and the host rock show right-inclined trends with similar weak to medium degrees of negative Eu anomaly and with no obvious Ce anomaly. Zircon LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) U-Pb concordant ages of the mafic enclaves and host rock were determined to be 431.8 ± 5.2 Ma (MSWD (mean standard weighted deviation) = 1.5, n = 14) and 432.8 ± 4.2 Ma (MSWD = 1.7, n = 16), respectively, consistent with that for the zircon U-Pb ages of the granite and medium-coarse grained K-feldspar granites of the Qingshanbao complex. The estimated ages coincide with the timing of the late Caledonian collision of the Alashan Block. This comprehensive analysis allowed us to conclude that the mafic enclaves in the Qingshanbao complex were formed by the mixing of crust-mantle magma with mantle-derived magma due to underplating, which caused partial melting of the ancient basement crust during the collisional orogenesis between the Alashan Block and Qilian rock mass in the early Silurian Period.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: The “entrainment of coarse particles in overflow” and the “entrainment of fine particlesin underflow” are two inevitable phenomena in the hydrocyclone separation process, which canresult in a wide product size distribution that does not meet the requirement of a preciseclassification. Hence, this study proposed a two-stage (TS) hydrocyclone, and the effects of the inletvelocity on the TS hydrocyclone were investigated using computational fluid dynamics (CFD).More specifically, the influences of the first-stage inlet velocity on the second-stage swirling flowfield and the separation performance were studied. In addition, the particle size distribution of theproduct was analyzed. It was found that the first-stage overflow contained few coarse particlesabove 40 μm and that the second-stage underflow contained few fine particles. The second-stageunderflow was free of particles smaller than 10 μm and almost free of particles smaller than 20 μm.The underflow product contained few fine particles. Moreover, the median particle size of thesecond-stage overflow product was similar to that of the feed. Inspired by this observation, wepropose to recycle the second-stage overflow to the feed for re-classification and to use only thefirst-stage overflow and the second-stage underflow as products. In this way, fine particle productsfree of coarse particle entrainment, and coarse particle products free of fine particle entrainmentcan be obtained, achieving the goal of precise classification.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: Rare earth elements (REE) are essential raw materials used in modern technology. Current production of REE is dominated by hard-rock mining, particularly in China, which typically requires high energy input. In order to expand the resource base of the REE, it is important to determine what alternative sources exist. REE placers have been known for many years, and require less energy than mining of hard rock, but the REE ore minerals are typically derived from eroded granitic rocks and are commonly radioactive. Other types of REE placers, such as those derived from volcanic activity, are rare. The Aksu Diamas heavy mineral placer in Turkey has been assessed for potential REE extraction as a by-product of magnetite production, but its genesis was not previously well understood. REE at Aksu Diamas are hosted in an array of mineral phases, including apatite, chevkinite group minerals (CGM), monazite, allanite and britholite, which are concentrated in lenses and channels in unconsolidated Quaternary sands. Fingerprinting of pyroxene, CGM, magnetite and zircon have identified the source of the placer as the nearby Gölcük alkaline volcanic complex, which has a history of eruption throughout the Plio-Quaternary. Heavy minerals were eroded from tephra and reworked into basinal sediments. This type of deposit may represent a potential resource of REE in other areas of alkaline volcanism.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: This paper investigates an alternative use of sterile aggregate materials which may arise from various construction applications in conjunction with other low-cost mineral raw materials to remediate the acid mine drainage phenomenon. This study is based on the combination of unprocessed mineral raw materials, as well as on the basic concept of the cyclic economy where the conversion of a waste into a raw material for another application can be achieved. In this study, in order to examine the remediation, in lab scale, of the drainage waste water of Agios Philippos mine, an experimental electrically continuous flow-driven forced device was constructed, enriching the research gap relative to this type of remediation approach. Through this experimental device, the use of certain mixes of mineral raw materials (serpentinite, andesite, magnesite, peat, and biochar) was studied. Our results focus on the impact of the studied mineral raw materials and especially on their synergy on the water purification potential under continuous water flow operation. Using the new 7-day experimental electrically continuous flow-driven forced device with certain mixes of mineral raw materials, the increase of pH values from 3.00 to 6.82 was achieved. Moreover, with use of the experimental device, the removal of toxic load was achieved, and more specifically the concentration of Fe was decreased from 6149 to 1300 ppb, Cu from 8847 to 35 ppb, and Zn from 285,458 to 50,000 ppb.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: Fly ash from the combustion of eastern Kentucky Fire Clay coal in a southeastern United States pulverized-coal power plant was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). TEM combined with elemental analysis via energy dispersive X-ray spectroscopy (EDS) showed that rare earth elements (REE; specifically, La, Ce, Nd, Pr, and Sm) were distributed within glassy particles. In certain cases, the REE were accompanied by phosphorous, suggesting a monazite or similar mineral form. However, the electron diffraction patterns of apparent phosphate minerals were not definitive, and P-lean regions of the glass consisted of amorphous phases. Therefore, the distribution of the REE in the fly ash seemed to be in the form of TEM-visible nano-scale crystalline minerals, with additional distributions corresponding to overlapping ultra-fine minerals and even true atomic dispersion within the fly ash glass.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: In this article, we present a high-resolution shallow seismic surveying method for imaging the inner structure of the Miocene evaporitic formation, where sulfur ore occurs. The survey was completed in the northern part of the Carpathian Foredeep (SE Poland) where sulfur deposits occur up to a depth of ca. 260 m. In this region, the sulfur ore is strata-bound and exists within a carbonate interval of a thickness of approximately 28 m. The average sulfur content reaches up to 30%. Five seismic profiles were acquired with a total length of 2450 m. The acquisition was designed to obtain high-resolution, long offsets and a satisfactory signal-to-noise ratio. In the field, we used 48 channels and variable end-on roll-along spread that allowed us to record offsets of up to 375 m. Data processing was aimed at preserving relative amplitudes (known as RAP, relative amplitude preservation processing), an approach that is necessary for seismic inversion application. With the utilization of well log data and results of simultaneous inversion, we were able to calculate the elastic properties of the deposit to evaluate sulfur ore content and changes in lithology. The sulfur content is strongly dependent on the carbonate reservoir’s porosity. To evaluate porosity changes and associated sulfur content, a simultaneous inversion procedure was used. This is a pioneering approach in which we applied pre-stack inversion methods to shallow carbonate sediments.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: The presence of fine and ultra-fine gangue minerals in flotation plants can contribute to sub-optimal valuable ore recovery and incomplete water recycling from thickeners, with the performance of the latter equipment relying on adequate flocculation. In order to study the dependence of the flocculation process on the suspension-flocculant mixing conditions, a series of experiments—chosen using chemometric analysis—were carried out by varying mixing conditions, solid concentration, water salinity and flocculant dosage. To this purpose, two different tailings (both featuring coarse and fine content) were considered and a response surface methodology based on a Doehlert experimental design was used. The results suggest that the operational conditions to optimise the flocculated tailings settling rate and the suspended solids that report to a thickener overflow are not necessarily the same. This is a reasonable outcome, given that the settling rate depends on the coarse aggregates generated in the slurry, while the overflow solids content is governed both by either fine particle content (and its characteristics) or small aggregates. It is inferred that to maximise dewatering performance two stages should be involved—a separate treatment of the thickener overflow to remove fine content and thickening at optimal flocculant dosage to enhance this process.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: The oxygen (O) and neodymium (Nd) isotopic composition of monazite provides an ideal tracer of metamorphism and hydrothermal activity. Calibration of the matrix effect and monitoring of the external precision of monazite O–Nd isotopes with microbeam techniques, such as secondary ion mass spectrometry (SIMS) and laser ablation-multicollector-inductively coupled plasma-mass spectrometry (LA-MC-ICPMS), require well-characterized natural monazite standards for precise microbeam measurements. However, the limited number of standards available is impeding the application of monazite O–Nd isotopes. Here, we report on the RW-1 monazite as a potential new working reference material for microbeam analysis of O–Nd isotopes. Microbeam measurements by electron probe microanalysis (EPMA), SIMS, and LA-MC-ICPMS at 10–24 µm scales have confirmed that it is homogeneous in both elemental and O–Nd isotopic compositions. SIMS measurements yield δ18O values consistent, within errors, with those obtained by laser fluorination techniques. Precise analyses of Nd isotope by thermal ionization mass spectrometry (TIMS) are consistent with mean results of LA-MC-ICPMS analyses. We recommend δ18O = 6.30‰ ± 0.16‰ (2SD) and 143Nd/144Nd = 0.512282 ± 0.000011 (2SD) as being the reference values for the RW-1 monazite.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: In this paper, the adsorption process of methylene blue has been investigated on microcline particles as a function of particle size and temperature. The characterization of microcline in the particle size ranges of 1−71 μm and 71−315 μm gained by sieving was proved using X-ray diffraction (XRD) and scanning electron microscopy combined with energy-dispersive detector (SEM-EDS) in powder form, over laser diffraction measurements in aqueous suspension. The optimum dosage of adsorbent was 13.5 g/L in dye adsorption and the adsorption isotherms on both microcline size fractions were determined at this adsorbent concentration. The maximum adsorption capacities were in the range of 1.5–3.1 mg g−1 on microcline particles with supplementing evaluation of isotherms using the Langmuir model. Considering the problems of linearization of equations, the non-linear least-squares estimation can be strongly recommended for modeling adsorption-equilibrium. The adsorption isotherm determined at elevated temperature of 60−65 °C represents a breakpoint at around 20 mg L−1 of equilibrated dye concentration due to performing of a potential process of dye self-association. According to our experiments, the increase in temperature has an adverse effect on adsorption.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: This paper explores the alkali activation potential of brick wastes and metallurgical slags. Inorganic polymers (IPs) were produced using an alkaline medium consisting of sodium hydroxide and sodium silicate solutions and the optimum synthesis conditions were determined. In this context, the variable parameters, such as solid to liquid (S/L) ratio, curing temperature (60, 80 and 90 °C) and ageing time (7 and 28 days) on the compressive strength and the morphology of the produced IPs were investigated. Specimens produced under the optimum synthesis conditions were subjected to high temperature firing and immersed in distilled water and acidic solutions for various periods of time, in order to assess their durability and structural integrity. The results showed that the IPs produced using a mix ratio of 50 wt % metallurgical slag and 50 wt % brick wastes, cured at 90 °C and aged for 7 days obtained the highest compressive strength (48.9 MPa). X-ray fluorescence analysis (XRF), particle size analysis, Fourier transform infrared spectroscopy (FTIR), mineralogical analysis (XRD), mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM) and thermogravimetric (TG) analysis also confirmed the optimum microstructural characteristics and the chemical reactions that took place during synthesis. The overall results of this study indicate that the co-valorization of different waste streams, which are produced in large quantities and cause environmental problems if not properly managed, is a viable alternative for the production of binders or secondary construction materials with higher added value.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: The biotite pegmatites in the Shangdan domain of the North Qinling orogenic belt contain economic concentrations of U, constituting a low-grade, large-tonnage pegmatite-hosted uraniferous province. Uraninite is predominant and ubiquitous ore mineral and coffinite is common alteration mineral after initial deposit formation. A comprehensive survey of the uraninite and coffinite assemblage of the Chenjiazhuang, Xiaohuacha, and Guangshigou biotite pegmatites in this uraniferous province reveal the primary magmatic U mineralization and its response during subsequent hydrothermal events. Integrating the ID-TIMS (Isotope Dilution Thermal Ionization Mass Spectrometry) 206Pb/238U ages and U-Th-Pb chemical ages for the uraninites with those reported from previous studies suggests that the timing of U mineralization in the uraniferous province was constrained at 407–415 Ma, confirming an Early Devonian magmatic ore-forming event. Based on microtextural relationships and compositional variation, three generations of uranium minerals can be identified: uaninite-A (high Th-low U-variable Y group), uranite-B (low Th-high U, Y group), and coffinite (high Si, Ca-low U, Pb group). Petrographic and microanalytical observations support a three-stage evolution model of uranium minerals from primary to subsequent generations as follows: (1) during the Early Devonian (stage 1), U derived from the hydrous silicate melt was mainly concentrated in primary magmatic uaninite-A by high-T (450–607 °C) precipitation; (2) during the Late Devonian (stage 2), U was mobilized and dissolved from pre-existing uraninite-A by U-bearing fluids and in situ reprecipitated as uraninite-B under reduced conditions. The in situ transformation of primary uraninite-A to second uraninite-B represent a local medium-T (250–450 °C) hydrothermal U-event; and (3) during the later low-T (100–140 °C) hydrothermal alteration (stage 3), U was remobilized and derived from the dissolution of pre-existing uraninite by CO2- and SiO2-rich fluids and interacted with reducing agent (e.g., pyrite) leading to reprecipitation of coffinite. This process represents a regional and extensive low-T hydrothermal U-event. In view of this, U minerals evolved from magmatic uraninite-A though fluid-induced recrystallized uraninite-B to coffinite, revealing three episodes of U circulation in the magmatic-hydrothermal system.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: Pyrite is a major gangue mineral associated with galena and other valuable minerals, and it is necessary to selectively remove pyrite to upgrade the lead concentrate by froth flotation. In this study, the flotation experiments of a single mineral and mixed minerals were performed using chitosan with different molecular weights (MW = 2−3, 3−6, 10 and 100 kDa) as a depressant, ethyl xanthate as a collector, and terpineol as a frother, in a bid to testify the separation of pyrite from galena. Flotation results showed that the selective flotation of pyrite from galena can be achieved under the preferred reagent scheme, i.e., 400 g/t chitosan (10 kDa), 1600 g/t ethyl xanthate, and 100 g/t terpineol, while chitosan with other molecular weights cannot. Furthermore, the results of the zeta potential and contact angle measurements revealed that chitosan (10 kDa) has a strong adsorption on galena yet a very weak adsorption on pyrite at the dosage of 400 g/t. This study showed that chitosan (10 kDa) has great potential in the industrial flotation separation of pyrite from lead concentrates.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: We have determined the Hf isotopic compositions of 12 samples associated with the giant El Teniente Cu-Mo megabreccia deposit, central Chile. The samples range in age from ≥8.9 to 2.3 Ma and provide information about the temporal evolution of their magmatic sources from the Late Miocene to Pliocene. Together with previously published data, the new analysis indicates a temporal decrease of 10 εHf(t) units, from +11.6 down to +1.6, in the 12.7 m.y. from 15 to 2.3 Ma. These variations imply increasing incorporation of continental crust through time in the magmas that formed these rocks. The fact that the samples include mantle-derived olivine basalts and olivine lamprophyres suggests that these continental components were incorporated into their mantle source, and not by intra-crustal contamination (MASH). We attribute the increase, between the Middle Miocene and Pliocene, of crustal components in the subarc mantle source below El Teniente to be due to increased rates of subduction erosion and transport of crust into the mantle. The deposit formed above a large, long-lived, vertically zoned magma chamber that developed due to compressive deformation and persisted between ~7 to 4.6 Ma. Progressively more hydrous mantle-derived mafic magmas feed this chamber from below, providing heat, H2O, S and metals, but no unique “fertile” Cu-rich magma was involved in the formation of the deposit. As the volume of these mantle-derived magmas decreased from the Late Miocene into the Pliocene, the chamber crystallized and solidified, producing felsic plutons and large metal-rich magmatic-hydrothermal breccias that emplaced Cu and S into the older (≥8.9 Ma) mafic host rocks of this megabreccia deposit.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: In recent years, the shale gas in the southern Sichuan Basin has achieved great commercial development, and the Silurian Longmaxi Formation is the main development stratum. In order to solve the problems of great difference production and inaccurate gas content of the Longmaxi Formation shale gas field in the southern Sichuan Basin, based on thin section identification, argon ion polishing-field emission scanning electron microscopy, high pressure mercury injection, low temperature nitrogen adsorption and the fractal method, the micropore structural heterogeneity of the siliceous shale reservoir of the Longmaxi Formation has been studied. The results show the following: The pores of siliceous shale are mainly intergranular pores and organic pores. Image analysis shows that there are obvious differences in size and distribution of shale pores among different types. The micropore structural heterogeneity is as follows: intragranular pore 〉 intergranular pore 〉 organic pore. In the paper, the combination of low temperature nitrogen adsorption method and high-pressure mercury injection method is proposed to characterize the micropore size distribution and fractal dimension, which ensures the credibility of pore heterogeneity. The shale pores are mainly composed of mesopores (2–20 nm), followed by macropores (100–300 nm). For different pore sizes, the fractal dimension from large to small is mesopore, micropore and macropore. Shale pore structure and fractal dimension are correlated with mineral composition and total organic carbon (TOC) content, but the correlation is significantly different in different areas, being mainly controlled by the sedimentary environment and diagenesis.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: The equations of state measured under ambient temperature in the Mbar range are reviewed, focusing on experiments using diamond anvils cells with a quasi-hydrostatic pressure transmitting medium (helium or neon) and coupled with X-ray diffraction. Equations of state (EoS) parameters are listed with an unified pressure metrology for all data. This metrology is based on the efforts made in the 2000s to update the ruby luminescence pressure scale, after the collection of original data. To complete this database, unpublished P-V data for lead (Pb), sodium chloride (NaCl) and lithium fluoride (LiF) are also provided with the same metrology. Systematic effects of the pressure metrology on the EoS parameters are discussed.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: Agate bandwidths are analyzed and shown to consist of spatial chirps. It is shown that (a) bands are created by following an equal volume mode and (b) the spatial chirps are approximately spherical and concentrated at different “disturbance” locations in the individual agate sectors. Results indicate that the sequence of formation started with banding under a nonlinear process in a gel matrix and were secondarily deformed by external forces.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: Microscopic, non-gem quality, grains of blue sapphire (corundum) have been identified in a small (1–2 cm wide), discontinuous, dike of nelsonite hosted by aluminous feldspathic gneiss. The gneiss was excavated during the construction of a hydroelectric plant on the Black River at Port Leyden, NY (western Adirondack Highlands). The sapphire location is 250 m NE of the Port Leyden nelsonite deposit. The small dike may represent a separate intrusion of nelsonite or one sheared from the main nelsonite orebody during Ottawan (circa 1050 Ma) deformation and metamorphism. The sapphires range in size from 0.1 to 2.0 mm, and commonly show parting, pleochroism, and hexagonal oscillatory zoning (from deep blue to clear). Electron microprobe analysis shows comparable levels of Fe in both clear (0.71–0.75 wt. %) and blue (0.38–0.77 wt. %) portions of grains, but clear sections have significantly lower TiO2 levels (0.002–0.011 wt.%) compared to blue sections (0.219–0.470 wt. %). Cr2O3 abundances range from 0.006 to 0.079 wt. % whereas V2O3 abundances range from 0.010 to 0.077 wt. % in blue sapphires. Small amounts of MgO were detected in one of the clear corundum grains (0.013 wt. %) and two of the six blue grains (0.001–0.015 wt. %), but the remaining five grains were below the limit of detection. Ga2O3, however, was detected in five out of six blue-colored grains (0.026–0.097 wt. %) but was below the limits of detection for clear grains. Optical spectroscopic data collected on the blue sapphire grains show broad absorbance in the yellow, orange, and red part of the spectrum (~565–740 nm) consistent with intervalence charge transfer between the next nearest neighbor Fe2+ and Ti4+. A magmatic origin of the sapphire grains is supported by petrologic and trace element data from the blue sapphires, but Cr abundances are inconsistent with this interpretation. Sapphire in a nelsonite host rock represents a new type of occurrence.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: Wollastonite is a natural silicate mineral that can be used as an agricultural soil amendment. Once in the soil, this mineral undergoes weathering and carbonation reactions, and, under certain soil and field crop conditions, our previous work has shown that this practice leads to accumulation of inorganic carbon (calcium carbonate). Mineral carbonation is the carbon sequestration approach with the greatest potential for sequestration capacity and permanency. Agricultural lands offer vast areas onto which such minerals can be applied, while benefiting crops. This work illustrates a technique to separate wollastonite-containing soils into different fractions. These fractions are characterized separately to determine organic and inorganic content, as well as to determine the chemical and mineral composition. The aim is to detect the fate of wollastonite in agricultural soils, and the fate of weathering/carbonation products in the soil. The soils used in the study were collected from soybean and potato farmlands in Southern Ontario, and from an experimental pilot plot. Soil fractionation was done using sieving, and soil fractions were analyzed by a calcimeter, X-ray diffraction, and loss-on-ignition. Acid digested samples were measured by Inductively Coupled Plasma Mass Spectrometry. Carbonates and wollastonite were enriched by fractionation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: Serpentine, a magnesium silicate mineral with positive surface charge in many sulfide ores around the world, usually deteriorates the flotation behavior by covering the target mineral surface. In this paper, the effect of surface potential regulation on serpentine flotation was revealed by flocculation experiments, zeta potential measurements, infrared spectrum analysis, and DLVO theoretical calculations. The experimental results of flocculation and sedimentation show that heterogeneous coagulation easily occurs between serpentine and pyrite particles, which reduces the floatability of pyrite. Reducing the surface potential of serpentine is an effective way to eliminate heterogeneous coagulation between minerals. The key to regulating the surface potential of serpentine is Mg2+ ion dissolution from the serpentine surface to the liquid phase. Phosphates, especially sodium hexametaphosphate, can enhance Mg2+ ion dissolution from the serpentine surface to the liquid phase and react with Mg2+ ions in the liquid phase to form stable soluble complexes.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: Since the Industrial Revolution, levels of CO2 in the atmosphere have been constantly growing, producing an increase in the average global temperature. One of the options for Carbon Capture and Storage is mineral carbonation. The results of this process of fixing are the safest in the long term, but the main obstacle for mineral carbonation is the ability to do it economically in terms of both money and energy cost. The present study outlines a methodological sequence to evaluate the possibility for the carbonation of ceramic construction waste (brick, concrete, tiles) under surface conditions for a short period of time. The proposed methodology includes a pre-selection of samples using the characterization of chemical and mineralogical conditions and in situ carbonation. The second part of the methodology is the carbonation tests in samples selected at 10 and 1 bar of pressure. The relative humidity during the reaction was 20 wt %, and the reaction time ranged from 24 h to 30 days. To show the effectiveness of the proposed methodology, Ca-rich bricks were used, which are rich in silicates of calcium or magnesium. The results of this study showed that calcite formation is associated with the partial destruction of Ca silicates, and that carbonation was proportional to reaction time. The calculated capture efficiency was proportional to the reaction time, whereas carbonation did not seem to significantly depend on particle size in the studied conditions. The studies obtained at a low pressure for the total sample were very similar to those obtained for finer fractions at 10 bars. Presented results highlight the utility of the proposed methodology.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: The iron titanium oxide ilmenite (FeTiO3) is a technologically and economically important mineral in the industrial preparation of titanium-based pigments and spintronic devices. In this study, atomistic simulation techniques based on classical pair potentials are used to examine the energetics of the intrinsic and extrinsic defects and diffusion of Fe2+ ions in FeTiO3. It is calculated that the cation anti-site (Fe‒Ti) cluster is the most dominant defect, suggesting that a small amount of cations exchange their positions, forming a disordered structure. The formation of Fe Frenkel is highly endoergic and calculated to be the second most stable defect process. The Fe2+ ions migrate in the ab plane with the activation energy of 0.52 eV, inferring fast ion diffusion. Mn2+ and Ge4+ ions are found to be the prominent isovalent dopants at the Fe and Ti site, respectively. The formation of additional Fe2+ ions and O vacancies was considered by substituting trivalent dopants (Al3+, Mn3+, Ga3+, Sc3+, In3+, Yb3+, Y3+, Ga3+, and La3+) at the Ti site. Though Ga3+ is found to be the candidate dopant, its solution enthalpy is 〉3 eV, suggesting that the formation is not significant at operating temperatures.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: Nonpolar hydrocarbon oil (NHO) is one of the most extensively used collectors in the flotation of molybdenite due to its excellent selectivity. However, NHO has low sensibility at pulp temperature. At low temperatures (〈283 K), although more kerosene is used, the recovery of molybdenite flotation is still lower than at room temperature. In this study, magnetizing treatment, which is an efficient, low-cost, innovative, and environmentally friendly emulsification method, was used to improve the flotation performance of NHO in low-temperature molybdenite flotation. The test results showed that, compared with unmagnetized kerosene (UMK), the optimum dosage of magnetized kerosene (MK) could be reduced by 11% at 298 K. At the same dosage of kerosene, the flotation recovery of MK was 3% higher than UMK at 278 K. The surface tension measurement results showed that the surface tension of MK rose periodically as the magnetic field intensity increased, and there was a maximum surface tension within each period. Further, the magnetic field intensity had the maximum flotation recovery of molybdenite at the maximum surface tension of MK. Combined with the analysis based on the Girifalco–Good theory and the static drop volume method of interfacial tension, the interfacial tension of kerosene–water was shown to decrease with the increase of the surface tension of kerosene. This finding indicates that the dispersibility of kerosene in pulp could be improved by reducing the size of oil droplets, thereby improving the molybdenite flotation recovery of kerosene at low-temperature pulp. It is helpful to improve the flotation recovery of molybdenite using NHO as a collector for low-temperature pulp (〈283 K).
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: The large compositional variations in spinels from extremely depleted, megacrystalline harzburgite–dunites in the Udachnaya-East kimberlite pipe, Yakutia, apparently reflect multistage metasomatism. Changes in the redox regime are reflected in the compositions of different parts of mineral grains. From most reduced to most oxidized, spinel compositions divide into: (1) primary (rock-forming) Cr-spinel and spinel from the central parts of sulfide grains, (2) spinel from microcracks in olivine, (3) spinel in kelyphitic rim around garnet between garnet and olivine (Rim1 and Rim2 spinel), and (4) spinel in transformed kelyphitic rim around garnet between garnet and kimberlite (Rim3 spinel). P-T conditions for the vast majority of samples, calculated using the composition of primary Cr-spinel, fall in the diamond stability field. A change in the composition of spinels of different generations occurs along the sides of the classical triangle of spinel compositions Al–Cr–Fe3+: (1) Rim2 to Rim1 spinel—Al–Cr trend, (2) primary Cr-spinel to magnetite rim in the edge—Cr–Fe3+ (kimberlite) trend, (3) replacing Rim1 to Rim3—Al–Fe3+ trend.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: Transforming waste materials into added-value products is critical for a sustainable and circular economy. Here, Mg/Fe layered double hydroxide (LDH) materials, with a Mg2+:Fe3+ ratio of 2, were successfully synthesized via the co-precipitation method from a dissolved acid mine drainage precipitate waste “ochre”, which is normally put to landfill. The prepared LDH materials were tested as a heterogeneous base catalyst to promote the production of the ketone, 12-tricosanone, from lauric acid, a component of plant oils, through a ketonic decarboxylation reaction, giving a circular economy route to catalysts for sustainable ketone production. The highest yield of the ketone observed was 80%.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: In this work, we aimed to experimentally study the nucleation and growth of CaCO3 phases precipitated from supersaturated aqueous solutions in the presence of varying concentrations of sulphate oxyanion. The experiments were conducted under pH conditions close to neutral (7.6) and by considering a wide range of initial (SO42−)/(CO32−) ratios (0 to approx. 68) in the aqueous solution. We paid special attention to the evolution of the precipitates during ageing within a time framework of 14 days. The mineralogy, morphology, and composition of the precipitates were studied by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and EDX microanalysis. The concentration of sulphate ions in the reacted aqueous solution was studied by ICPs. The experimental results showed that the mineral composition of the precipitate recovered in each run varied with the (SO42−)/(CO32−) ratio in the parental solution, which influenced the mineral evolution of the precipitates during ageing. We observed that high concentrations of sulphate in the aqueous solution stabilized the vaterite precipitates and inhibited calcite formation. Furthermore, aragonite never precipitated directly from the solution, and it was only formed via a dissolution-precipitation process in solutions with a high (SO42−)/(CO32−) ratio after long reaction times. Finally, gypsum only precipitated after long ageing in those aqueous solutions with the highest concentration of sulphate. The reaction pathways during ageing, the morphology of the calcite crystals, and the composition of vaterite and calcite were discussed considering both kinetic and thermodynamic factors. These results showed a considerably more complex behavior of the system than that observed in experiments conducted under higher pHs and supersaturation levels and lower (SO42−)/(CO32−) ratios in the aqueous phase.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: Based on the analysis of geochemical and mineralogical compositions, deep sea clay sediment characteristics and their material sources were examined in the eastern flank of the Gagua Ridge. The mineralogy mainly consists of detrital clay minerals, quartz, and authigenic phillipsite. There is scarce biogenic debris (siliceous or calcareous). The consolidated sediments are more enriched in Si, Al, K, Na, Li, Sc, Cr, Rb, and Cs than the associated crusts and nodules. The unmixed sediment samples were mainlycontributed by Asian eolian dust. The onset of the outer Fe-Mn crust growth nearly coincides with the Central Asia aridification event at ~3.5 Ma, which resulted in an abrupt increase in eolian flux of Asian dust. Intensified surface primary productivity is assumed to bring more metals to deep waters, and eventually facilitate the outer Fe-Mn crust formation. Authigenic phillipsite may come from the alteration of local basic volcanic glasses and cause excess Al, high Al/Ti, and low Si/Al ratios. However, phillipsites hardly affect the abundance of rare earth elements (REEs) and their patterns. In addition, the investigation of two kinds of burrows inside the consolidated sediments reveals that the inner nodules of the amalgamated crusts may remain on the oxic sediment surface, due to frequent benthic activities.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: In Brazil, heavy mineral sand deposits are still barely exploited, despite some references to Brazilian reserves and ilmenite concentrate production. The goal of this project is to characterize and investigate the potential recovery of heavy minerals from selected Brazilian placer occurrences. Two areas of the coastal region were chosen, in Piaui state and in Bahia Provinces. In all samples, the heavy minerals of interest (ilmenite, monazite, rutile, and zircon) were identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques and also quantified by X-ray fluorescence spectrometry (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The total heavy minerals (THM) in the Piaui samples were 6.45% and 10.14% THM, while the figure for the Bahia sample was 3.4% THM. The recovery test of the Bahia sample, using only physical separation equipment such as a shaking table and magnetic separator, showed valuable metallurgical recoveries at around or greater than 70% for each stage, and the final concentrate of pure ilmenite was composed of up to 60.0% titanium dioxide after the differential magnetic separation. Another aim is to compile accessible information about Brazilian heavy mineral main deposits complemented with a short economic overview.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: The Chibougamau pluton is a Neoarchean multiphase intrusion that is related to Cu–Au porphyry-style deposits. In Archean greenstone belts, porphyries are marginal and poorly documented mineralizations. Such deposits are, however, important in the Chibougamau area, where the main historical mining camp (Central Camp) is a magmato-hydrothermal system. Understanding such systems requires documenting the related magmatic rocks. This contribution focuses on the petrogenesis of the Chibougamau pluton to elucidate how the intrusion participated in Cu and Au mineralized systems. Using field descriptions, whole-rock analyses, and petrographic observations, we describe the source, emplacement mechanism, and chemical evolution of the Chibougamau pluton. The Chibougamau pluton is a TTD (tonalite-trondhjemite-diorite) suite that contains more K than most plutons of similar age. This suite was produced from a heterogeneous source; i.e., a hydrated basalt and possibly a metasomatized mantle. These are rare (and thus prospective) characteristics for an Archean intrusion. In addition, differentiation may have been sufficiently prolonged in the diorite phase to concentrate metals and fluids in the evolved magma. These magmatic constraints must now be tested against a renewed understanding of the Cu-dominated mineralized systems of the Chibougamau area.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: When cemented paste backfill (CPB) is used to fill underground stopes opened in permafrost, depending on the distance from the permafrost wall, the curing temperature within the CPB matrix decreases progressively over time until equilibrium with the permafrost is reached (after several years). In this study, the influence of declining curing temperature (above freezing temperature) on the evolution of the unconfined compressive strength (UCS) of CPB over 28 days’ curing is investigated. CPB mixtures were prepared with a high early (HE) cement and a blend of 80% slag and 20% General Use cement (S-GU) at 5% and 3% contents and cured at room temperature in a humidity chamber and under decreasing temperatures in a temperature-controlled chamber. Results indicate that UCS is higher for CPB cured at room temperature than under declining temperatures. UCS increases progressively from the stope wall toward the inside of the CPB mass. Under declines in curing temperature, HE cement provides better short-term compressive strength than does S-GU binder. In addition, the gradual decline in temperature does not appear to affect the fact that the higher the binder proportion, the greater the strength development. Therefore, UCS is higher for samples prepared with 5% than 3% HE cement. Findings are discussed in terms of practical applications.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: A new Wenlockian zircon U–Pb age (~426 Ma) of the Overmaraat-Gol nepheline syenite (foyaite, juvite) pluton in the SW Lake Hovsgol area (Northern Mongolia) prompts a long history of alkaline magmatism in the western Central Asian Orogenic Belt, exceeding the duration of the Devonian and Permian–Triassic events. The LILE and HFSE patterns of pluton samples analyzed by X-ray fluorescence (XRF) and inductively coupled plasma (ICP-MS) methods indicate intrusion in a complex tectonic setting during interaction of a mantle plume with accretionary-collisional complexes that previously formed on the active continental margin. As a result, the parent magma had a heterogeneous source with mixed mantle (PREMA and EM) and crustal components. This source composition is consistent with Nd–Sr isotope ratios of the Overmaraat-Gol alkaline rocks, from −0.1 to −1.2 εNd(t) and from ~0.706 to 0.707 87Sr/86Sr(t).
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: Gold–(silver) telluride minerals constitute a major part of the gold endowment at a number of important deposits across the globe. A brief overview of the chemistry and structure of the main gold and silver telluride minerals is presented, focusing on the relationships between calaverite, krennerite, and sylvanite, which have overlapping compositions. These three minerals are replaced by gold–silver alloys when subjected to the actions of hydrothermal fluids under mild hydrothermal conditions (≤220 °C). An overview of the product textures, reaction mechanisms, and kinetics of the oxidative leaching of tellurium from gold–(silver) tellurides is presented. For calaverite and krennerite, the replacement reactions are relatively simple interface-coupled dissolution-reprecipitation reactions. In these reactions, the telluride minerals dissolve at the reaction interface and gold immediately precipitates and grows as gold filaments; the tellurium is oxidized to Te(IV) and is lost to the bulk solution. The replacement of sylvanite is more complex and involves two competing pathways leading to either a gold spongy alloy or a mixture of calaverite, hessite, and petzite. This work highlights the substantial progress that has been made in recent years towards understanding the mineralization processes of natural gold–(silver) telluride minerals and mustard gold under hydrothermal conditions. The results of these studies have potential implications for the industrial treatment of gold-bearing telluride minerals.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: Effective biosynthesis of magnetite nanoparticles using current technology is challenging. We investigated the synthesis of nanoparticles by Acidithiobacillus ferrooxidans grown on ferrous iron, elemental sulphur, and mixtures of both substrates. A comparison of tests with different doping amounts of elemental sulphur in ferrous-containing medium showed that the addition of 0.25 and 0.5 M elemental sulphur to the medium resulted in an increased delay of microbial growth and ferrous iron oxidation. TEM suggested that the ferrous material was an essential energy source for the synthesis of nanoparticles in cells. TEM results indicated that the different ratios of ferrous and sulphur had no significant effect on the morphology of bacteria and the size of nanoparticles. High-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and X-ray absorption near edge structure (XANES) showed that the nanoparticles were composed of magnetite. For the first time, HRTEM and XANES spectra in-situ characterization was conducted to investigate the nanoparticles that were synthesized by A. ferrooxidans. The findings from this study indicated that the different ratios of ferrous and sulphur had no significant effect on size and shape of nanoparticles synthesized by A. ferrooxidans.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: The Kangxiwa–Dahongliutan pegmatite field in the Western Kunlun Orogen, China contains numerous granitic pegmatites around a large granitic pluton (the Dahongliutan Granite with an age of ca. 220 to 217 Ma), mainly including barren garnet-, tourmaline-bearing pegmatites, Be-rich beryl-muscovite pegmatites, and Li-, P-rich albite-spodumene pegmatites. The textures, major element contents, and trace element concentrations of columbite-group minerals (CGM) and cassiterite from three albite-spodumene pegmatites in the region were investigated using a combination of optical microscopy, SEM, EPMA and LA-ICP-MS. The CGM can be broadly classified into four types: (1) inclusions in cassiterite; (2) euhedral to subhedral crystals (commonly exhibiting oscillatory and/or sector zoning and coexisting with magmatic cassiterite); (3) anhedral aggregates; (4) tantalite-(Fe)-ferrowodginite (FeSnTa2O8) intergrowths. The compositional variations of CGM and cassiterite are investigated on the mineral scale, in individual pegmatites and within the pegmatite group. The evolution of the pegmatites is also discussed. The variation of Nb/Ta and Zr/Hf ratios of the cassiterite mimics the Nb-Ta and Zr-Hf fractionation trends in many LCT pegmatites, indicating that these two ratios of cassiterite may bear meanings regarding the pegmatite evolution.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: It is well known that reverse flotation performance of iron oxides is affected by water quality. Since many potential variations among water sources recycling in a mineral processing plant bring unpredictable effects on the flotation system of iron oxides: disturbing ions/compounds, pH, hardness, residual reagents, etc. In this study, the recycled tailing water from a local plant, characteristically constituting of Ca2+, Mg2+, Na+, K+, Al3+, Fe3+, Cl−, SO42− etc., was introduced into the cationic reverse flotation process of an iron ore. A series of bench flotation tests using iron ores, micro-flotation tests using pure fine quartz, water chemical analyses, and zeta potential measurement were conducted with the objective of identifying the possible influences of both cations and anions in the recycled tailing water on the flotation performance. The flotation results pointed out that the cation with higher valency had more severe influences on the recovery of iron oxides. The formation of the pH-dependent surface complexes on mineral surfaces, for example, Fe(OH)+, Fe(OH)2+, and Fe(OH)3 resulted from Fe3+ ions adsorption, contributed to the less negative zeta potentials of the quartz, and consequently weakened its interaction with the amine collector. It is worthy to note that SO42− ions seem to have a more positive effect on the recovery of iron oxides than Cl− ions. This is probably attributed to the formation of inner/outer- sphere surface complexes on the iron oxides, inhibiting the dissolution of the iron ions/species, and the coordination with these cations from the recycled tailing water, shielding their disturbances in the flotation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: With mining of seafloor massive sulfides (SMS) coming closer to reality, it is vital that we have a good understanding of the geochemistry of these occurrences and the potential toxicity impact associated with mining them. In this study, SMS samples from seven hydrothermal fields from various tectonic settings were investigated by in-situ microanalysis (electron microprobe (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)) to highlight the distribution of potentially-toxic trace elements (Cu, Zn, Pb, Mn, Cd, As, Sb, Co, Ni, Bi, Ag and Hg) within the deposits, their minerals and textures. We demonstrate that a combination of mineralogy, trace element composition and texture characterisation of SMS from various geotectonic settings, when considered along with our current knowledge of oxidation rates and galvanic coupling, can be used to predict potential toxicity of deposit types and individual samples and highlight which may be of environmental concern. Although we cannot quantify toxicity, we observe that arc-related sulfide deposits have a high potential toxicity when compared with deposits from other tectonic settings based on their genetic association of a wide range of potentially toxic metals (As, Sb, Pb, Hg, Ag and Bi) that are incorporated into more reactive sulfosalts, galena and Fe-rich sphalerite. Thus, deposits such as these require special care when considered as mining targets. In contrast, the exclusive concern of ultra-mafic deposits is Cu, present in abundant, albeit less reactive chalcopyrite, but largely barren of other metals such as As, Pb, Sb, Cd and Hg. Whilst geological setting does dictate metal endowment, ultimately mineralogy is the largest control of trace element distribution and subsequent potential toxicity. Deposits containing abundant pyrrhotite (high-temperature deposits) and Fe-rich sphalerite (ubiquitous to all SMS deposits) as well as deposits with abundant colloform textures also pose a higher risk. This type of study can be combined with “bulk lethal toxicity” assessments and used throughout the stages of a mining project to help guide prospecting and legislation, focus exploitation and minimise environmental impact.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: Recycling phosphogypsum (PG) for cemented paste backfill (CPB) has been widely used at phosphate mines in China. However, the impurities in PG prolong the setting time and reduce the uniaxial compressive strength (UCS), limiting the engineering application of PG. This paper aims to investigate the feasibility of treated PG (TPG) washed repeatedly using deionised water (DW) for CPB. A water-washing pre-experiment was first conducted to find the proportion with the least DW demand and the effects of water-washing on ordinary PG (OPG). Then, based on the PG:DW ratio obtained from the pre-experiment, the properties of the OPG-based CPB (OCPB) and TPG-based CPB (TCPB) were tested using slump tests, UCS tests, and microstructural analysis. The results show that (1) after 11 water-washings at the PG:DW ratio of 1:1.75, the pH of the supernatant (pH = 6.328) meets the requirements of Chinese standard GB 8978-1996. (2) Water-washing improves the particle gradation quality of PG and removes the soluble impurities adsorbed at the surface of PG crystals. (3) The initial slump values of TCPB are 0.19–1.15 cm higher than that of OCPB, furthermore, the diffusivity values of TCPB are better than the performance of OCPB, with 0.61–1.68 cm of superiority. (4) The UCS values of TCPB are up to 0.838 MPa, 1.953 MPa, and 2.531 MPa, after curing for 7, 14, and 28 days. These are 0.283 MPa, 0.823 MPa, and 0.881 MPa higher than that of OCPB, respectively. It can be concluded that water-washing pre-treatment greatly improves the workability and mechanical property of PG-based CPB. These results are of great value for creating a reliable and environmentally superior alternative for the recycling of PG and for safer mining production.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: Determination of potentially toxic elements in soils with which children have regular contact can provide valuable information to support health risk assessment. It is also important to engage schoolchildren with soil science so that they become well-informed citizens. The Soils in Scottish Schools project involved pupils across Scotland in the collection of soil from school grounds for determination of copper, lead and zinc. Samples were subjected to microwave-assisted aqua-regia digestion to determine pseudototal analyte concentrations. The simplified bioaccessibility extraction test was applied to estimate bioaccessibility. Analysis was performed by inductively coupled plasma mass spectrometry. Pseudototal analyte concentrations varied widely: Cu 15.6–220 mg∙kg−1; Pb 24.6–479 mg∙kg−1 and Zn 52.5–860 mg∙kg−1. Higher concentrations were measured in urban areas, which were historically home to heavy manufacturing industries, with lower concentrations in soils from more rural schools. Bioaccessible analyte concentrations also varied widely (Cu 3.94–126 mg∙kg−1; Pb 6.29–216 mg∙kg−1 and Zn 4.38–549 mg∙kg−1) and followed similar trends to pseudototal concentrations. None of the elements studied posed a significant health risk to children through accidental soil ingestion whilst at play during breaks in the school day, although the relatively high bioaccessible levels of lead at some locations are worthy of further investigation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: “Structural Control” remains a crucial point that is frequently absent in scientific and/or economic analyses of ore deposits, whatever their type and class, although a selection of references illustrates its importance [...]
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: The level of radionuclides is an important index for the preparation of building materials from industrial solid waste. In order to investigate the radiological hazard of five kinds of typical general industrial solid wastes in Guizhou, China, including fly ash (FA), red mud (RM), phosphorus slag (PS), phosphogypsum (PG), and electrolytic manganese residue (EMR), the radiation intensity and associated radiological impact were studied. The results show that concentrations of 238U, 235U, 232Th, 226Ra, 210Pb, and 40K for different samples vary widely. The concentration of 238U was both positively correlated with 235U and 226Ra, and the uranium contents in the measured samples were all of natural origin. The radiation levels of PG, EMR, EMR-Na (EMR activated by NaOH), and EMR-Ca (EMR activated by Ca(OH)2) were all lower than the Chinese and the world’s recommended highest levels for materials allowed to be directly used as building materials. The values of the internal and external illumination index (IRa and Iγ, respectively) for FA and RM were higher (IRa 〉 1.0 and Iγ 〉 1.3 for FA, IRa 〉 2.0 and Iγ 〉 2.0 for RM). The radium equivalent activity (Raeq), indoor and outdoor absorbed dose (Din and Dout, respectively), and corresponding annual effective dose rate (Ein and Eout) of RM, PS, and FA were higher than the recommended limit values (i.e., 370 Bq/kg, 84 nGy/h, 59 nGy/h, 0.4 mSv/y, and 0.07 mSv/y, respectively), resulting from the higher relative contribution of 226Ra and 232Th. The portion of RM, FA, and PS in building materials should be less than 75.44%, 29.72%, and 66.01%, respectively. This study provides quantitative analysis for the safe utilization of FA, RM, PS, PG, and EMR in Guizhou building materials.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: In this paper, the galvanic effect of pyrite and arsenopyrite during the leaching pretreatment of gold ores was determined with the use of electrochemical testing (open circuit potential, linear sweep voltammetry, Tafel, and electrochemical impedance spectroscopy (EIS)) and frontier orbit calculations. The results show that (i) the linear sweep voltammetry curve and Tafel curve of the galvanic pair are similar to those of arsenopyrite, (ii) the corrosion behavior of the galvanic pair is consistent with that of arsenopyrite, and (iii) the galvanic effect promotes the corrosion of arsenopyrite by simultaneously increasing the cathode and anode currents and reducing oxidation resistance. The frontier orbit calculation explains the principle of the galvanic effect of pyrite and arsenopyrite from the view of quantum mechanics.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: Andradite, variety demantoid, is a rare gem mineral. We describe gem-quality garnet crystals from serpentinized harzburgites from Dobšiná, Slovakia which were faceted. Both the andradite samples were transparent, with a vitreous luster and a vivid green color. They were isotropic with refractive indices 〉1.81. The measured density ranged from 3.82 to 3.84 g·cm−3. Andradite var. demantoid appeared red under Chelsea filter observation. Both samples contained fibrous crystalline inclusions with the typical “horsetail” arrangement. The studied garnet had a strong Fe3+ dominant andradite composition with 1.72–1.85 apfu Fe3+, Cr3+ up to 0.15 apfu, Al3+ 0.03 to 0.04 apfu, V3+ up to 0.006 apfu substituted for Fe3+, Mn2+ up to 0.002 apfu, and Mg up to 0.04 apfu substituted for Ca. Raman spectrum of garnet showed three spectral regions containing relatively strong bands: I—352–371 cm−1, II—816–874 cm−1, and III—493–516 cm−1. The optical absorption spectrum as characterized by an intense band at 438 nm and two broad bands at 587 and 623 nm and last one at 861 nm, which were assigned to Fe3+ and Cr3+. Transmission was observed in the ultraviolet spectral region (〈390 nm), near the infrared region (700–800 nm), and around 530 nm in the green region of visible light, resulting in the garnet’s green color.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: The mechanical behavior of cemented paste backfill (CPB) in permafrost regions may depend on the thermal curing conditions. However, few experimental data are available for calibrating and validating numerical models used to predict these conditions. To fill this gap, a three-dimensional (3D) laboratory heat transfer test was conducted on CPB placed in an instrumented barrel and cured under a constant temperature of −11 °C. Results were used to calibrate and validate a numerical model built with COMSOL Multiphysics®. The model was then used to predict the evolution of the temperature field for CPB cured under the thermal boundary conditions for a backfilled mine stope in the permafrost (at −6 °C). Numerical results indicated that the CPB temperature gradually decreased with time such that the entire CPB mass was frozen about five years after stope backfilling. However, the permafrost equilibrium temperature of −6 °C was not reached throughout the entire CPB mass even after 20 years of curing. In addition, the evolution of the temperature field in the permafrost rock showed that the thickness of the thawed portion reached about 1 m within 120 days. Afterwards, the temperature continues to drop over time and the thawed portion of the permafrost refreezes after 365 days.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: Tetra-auricupride, ideally AuCu, represents the only species showing the coexistence of Au with an elevated level of Pt, as in the case of a detrital grain studied structurally for the first time, from an ophiolite-associated placer at Bolshoy Khailyk, western Sayans, Russia. We infer that tetra-auricupride can incorporate as much as ~30 mol. % of a “PtCu” component, apparently without significant modification of the unit cell. The unit-cell parameters of platiniferous tetra-auricupride are: a 2.790(1) Å, c 3.641(4) Å, with c/a = 1.305, which are close to those reported for ordered AuCu(I) in the system Au–Cu, and close also to the cell parameters of tetraferroplatinum (PtFe), which both appear to crystallize in the same space group, P4/mmm. These intermetallic compounds and natural alloys are thus isostructural. The closeness of their structures presumably allows Pt to replace Au atoms so readily. The high extent of Cu + Au enrichment is considered to be a reflection of geochemical evolution and buildup in levels of the incompatible Cu and Au with subordinate Pt in a remaining volume of melt at low levels of fO2 and fS2 in the system.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: Bioleaching experiments, electrochemical tests, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were conducted to investigate the intermediates transformation of bornite by Leptospirillum ferriphilum and Acidithiobacillus caldus. The bioleaching experimental results showed that the presence of L. ferriphilum and A. caldus significantly accelerated the bornite bioleaching. In addition, the intermediate species of bornite bioleaching with these two kinds of bacteria were similar. Electrochemical analysis indicated that the dissolution of bornite was an acid-consuming process. The results of XRD showed that intermediate species, namely covellite (CuS), mooihoekit (Cu9Fe9S16) and isocubanite (CuFe2S3), were formed during bornite bioleaching, and a mass of elemental sulfur was formed in the late stage of bioleaching. The Cu 2p photoelectron spectrum revealed that Cu was present in the form of Cu (I) during the bornite bioleaching. Additionally, the S 2p3/2 photoelectron spectrum suggested that S2− and S22− were gradually converted to Sn2−/S0, and the formation of elemental sulfur hindered the further dissolution of the bornite.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: The Sizhuang gold deposit with a proven gold resource of 〉120 t, located in northwest Jiaodong Peninsula in China, lies in the southern part of the Jiaojia gold belt. Gold mineralization can be divided into altered rock type, auriferous quartz vein type, and sulfide-quartz veinlet in K-feldspar altered granite. According to mineral paragenesis and mineral crosscutting relationships, three stages of metal mineralization can be identified: early stage, main stage, and late stage. Gold mainly occurs in the main stage. The petrography and microthermometry of fluid inclusion shows three types of inclusions (type 1 H2O–CO2 inclusions, type 2 aqueous inclusions, and type 3 CO2 inclusions). Early stage quartz-hosted inclusions have a trapped temperatures range 303–390 °C. The gold-rich main stage contains a fluid-inclusion cluster with both type 1 and 2 inclusions (trapped between 279 and 298 °C), and a wide range of homogenization temperatures of CO2 occurs to the vapor phase (17.6 to 30.5 °C). The late stage calcite only contains type 1 inclusions with homogenization temperatures between 195 and 289 °C. With evidences from the H–O isotope data and the study of water–rock interaction, the metamorphic water of the Jiaodong Group is considered to be the dominating source for the ore-forming fluid. The ore-fluid belonged to a CO2–H2O–NaCl system with medium-low temperature (160–360 °C), medium-low salinity (3.00–11.83 wt% NaCl eq.), and low density (1.51–1.02 g/cm3). Fluid immiscibility caused by pressure fluctuation is the key mechanism in inducing gold mineralization in the Sizhuang gold deposit.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: The metastable olivine (Ol) wedge hypothesis assumes that Ol may exist as a metastable phase at the P conditions of the mantle transition zone (MTZ) and even deeper regions due to inhibition of the phase transitions from Ol to wadsleyite and ringwoodite caused by low T in the cold subducting slabs. It is commonly invoked to account for the stagnation of the descending slabs, deep focus earthquakes and other geophysical observations. In the last few years, several new structures with the forsterite (Fo) composition, namely Fo-II, Fo-III and Fo-IV, were either experimentally observed or theoretically predicted at very low T conditions. They may have important impacts on the metastable Ol wedge hypothesis. By performing first-principles calculations, we have systematically examined their crystallographic characteristics, elastic properties and dynamic stabilities from 0 to 100 GPa, and identified the Fo-III phase as the most likely metastable phase to occur in the cold slabs subducted to the depths equivalent to the lower part of the MTZ (below the ~600 km depth) and even the lower mantle. As disclosed by our theoretical simulations, the Fo-III phase is a post-spinel phase (space group Cmc21), has all cations in sixfold coordination at P 〈 ~60 GPa, and shows dynamic stability for the entire P range from 0 to 100 GPa. Further, our static enthalpy calculations have suggested that the Fo-III phase may directly form from the Fo material at ~22 GPa (0 K), and our high-T phase relation calculations have located the Fo/Fo-III phase boundary at ~23.75 GPa (room T) with an averaged Clapeyron slope of ~−1.1 MPa/K for the T interval from 300 to 1800 K. All these calculated phase transition pressures are likely overestimated by ~3 GPa because of the GGA method used in this study. The discrepancy between our predicted phase transition P and the experimental observation (~58 GPa at 300 K) can be explained by slow reaction rate and short experimental durations. Taking into account the P-T conditions in the cold downgoing slabs, we therefore propose that the Fo-III phase, rather than the Ol, highly possibly occurs as the metastable phase in the cold slabs subducted to the P conditions of the lower part of the MTZ (below the ~600 km depth) and even the lower mantle. In addition, our calculation has showed that the Fo-III phase has higher bulk seismic velocity, and thus may make important contributions to the high seismic speeds observed in the cold slabs stagnated near the upper mantle-lower mantle boundary. Future seismic studies may discriminate the effects of the Fo-III phase and the low T. Surprisingly, the Fo-III phase will speed up, rather than slow down, the subducting process of the cold slabs, if it metastably forms from the Ol. In general, the Fo-III phase has a higher density than the warm MTZ, but has a lower density than the lower mantle, as suggested by our calculations.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: The Liaodong Peninsula is an important mineral province in northern China. Elucidating its lithospheric architecture and structural evolution is important for gold metallogenic research and exploration in the region. In this study, Hf-Nd isotope maps from magmatic rocks are constructed and compared to geological maps to correlate isotopic signatures with geological features. It is found that gold deposits of different age periods in Liaodong are located in areas with specific εHf(t) and εNd ranges (Triassic: from −8 to −4 and from −12 to −8, Jurassic: from −22 to −8 and from −14 to −8, Cretaceous: from −12 to −10 and from −22 to −20), respectively. This may reflect that when the Paleo-Pacific plate was subducted beneath the North China Craton, the magma was derived from the juvenile lower crust and the ancient lower crust, and formed the low-to-moderate hydrothermal Au-(Ag) and Pb-Zn deposits in the Triassic. In the Jurassic, continued subduction may have led to lithospheric thickening. Subsequently, the magma from the ancient lower crust upwelled and formed low-to-moderate hydrothermal Au deposits and porphyry Mo deposits. In the Cretaceous, crustal delamination may have taken place. The magma from the ancient lower crust upwelled and formed various low-to-moderate hydrothermal Au deposits.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: The giant Pulang porphyry Cu (–Mo–Au) deposit in Northwestern Yunnan Province, China, is located in the southern part of the Triassic Yidun Arc. The Cu orebodies are mainly hosted in quartz monzonite porphyry (QMP) intruding quartz diorite porphyry (QDP) and cut by granodiorite porphyry (GP). New LA-ICP-MS zircon U–Pb ages indicate that QDP (227 ± 2 Ma), QMP (218 ± 1 Ma, 219 ± 1 Ma), and GP (209 ± 1 Ma) are significantly different in age; however, the molybdenite Re–Os isochron age (218 ± 2 Ma) indicates a close temporal and genetic relationship between Cu mineralization and QMP. Pulang porphyry intrusions are enriched in light rare-earth elements (LREEs) and large ion lithophile elements (LILEs), and depleted in heavy rare-earth elements (HREEs) and high field-strength elements (HFSEs), with moderately negative Eu anomalies. They are high in SiO2, Al2O3, Sr, Na2O/K2O, Mg#, and Sr/Y, but low in Y, and Yb, suggesting a geochemical affinity to high-silica (HSA) adakitic rocks. These features are used to infer that the Pulang HSA porphyry intrusions were derived from the partial melting of a basaltic oceanic-slab. These magmas reacted with peridotite during their ascent through the mantle wedge. This is interpreted to indicate that the Pulang Cu deposit and associated magmatism can be linked to the synchronous westward subduction of the Ganzi–Litang oceanic lithosphere, which has been established as Late Triassic.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: The artificial-caved rock composited backfilling approach can effectively restrain the dynamic phenomena in the coal seam and the associated roof and floor during mining operations, and can also improve the stability of the system of support and surrounding rock. In this study, based on the analysis of influencing factors affecting the surrounding rock movement and deformation of the composited backfilling longwall face in a steeply dipping coal seam, the roof mechanical model is developed, and the deflection differential equation is derived, to obtain the roof damage structure and the location of the roof fracture for the area without backfilling. The migration law of the roof under different inclination angles, mining depths, working face lengths, and backfilling ratios are analyzed. Finally, mine pressure is detected in the tested working face. Results show that the roof deflection, bending moment, and rotation drop with the increase of the inclination angle and backfilling ratio, whereas these parameters increase with greater mining depth and working face length. The roof failure location moves toward the upper area of the working face as the inclination angle and working face length increases, while it moves toward the center of the non-backfilling area with greater mining depth and backfilling ratio. Results from the proposed mechanical model agree well with the field test results, demonstrating the validity of the model, which can provide theoretical basis for a safe and efficient mining operation in steeply dipping coal seams.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: There is limited information available on the minerals and elements present in the Jurassic coals from Datong Coalfield. This paper investigates the geochemical and mineralogical characteristics of the Middle Jurassic coals from the Tongjialiang Mine using X-ray powder diffraction (XRD), X-ray fluorescence spectrometry (XRF), inductively coupled plasma mass spectrometry (ICP-MS), and scanning electron microscopy in combination with energy-dispersive X-ray spectrometry (SEM-EDS). No.12 coal is a low-medium volatile bituminous coal and is characterized by low ash yield content, low moisture content, and ultra-low sulfur content. Compared with Chinese coals, the Tongjialiang coals have slightly higher average percentages of MgO and P2O5, and lower average percentages of the other major oxides, including SiO2, TiO2, Al2O3, Fe2O3, CaO, MnO, Na2O, and K2O. Compared with the World hard coals, Be, Cr, Co, Ni, Ge, Sn, Ta, and W are slightly enriched in the Tongjialiang coals. The concentrations of Li, F, Sc, V, Cu, Ga, Se, Sr, Zr, Nb, Hf, Pb, Th, and U are close to the average values of the world’s hard coals. The minerals in No.12 coal mainly include quartz, kaolinite, siderite, and ankerite, along with smaller amounts of pyrite, illite, calcite, and rutile. The formation of syngenetic siderite in No.12 coal is related to the weathering of biotite in the gneiss of the Yinshan Upland. The modes of occurrence of ankerite indicate that the coals may be affected by the injection of low temperature hydrothermal fluids. It is noteworthy that a portion of epigenetic ankerite may be a product of metasomatism between syngenetic siderite and the epigenetic Fe-Mg-Ca rich hydrothermal fluids. The ratios of Al2O3/TiO2, REY (rare earth elements and yittrium) enrichment patterns, the modes of occurrence of siderite and ankerite, as well as the enriched lithophile and siderophile elements indicate that the No.12 coal may have originated from the Yinshan Upland and may also have been influenced by low temperature hydrothermal fluids that might have circulated in the coal basin.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: The nature and origin of the early Yanshanian granitoids, widespread in the South China Block, shed light on their geodynamic setting; however, understanding their magmatism processes remains a challenge. In this paper, we present both major and trace elements of bulk rock, Sr–Nd–Pb isotopic geochemistry, and zircon U–Pb–Hf isotopes of the low Sr and high Yb A2-type granites, which were investigated with the aim to further constrain their petrogenesis and tectonic implications. Zircon U–Pb dating indicates that these granites were emplaced at ca. 153 Ma. The granites are characterized by high SiO2 (〉74 wt.%) and low Al2O3 content (11.0 wt.%–12.7 wt.%; 〈13.9 wt.%). They are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Th, U, and K) and Yb, but depleted in high field-strength elements (HFSEs) (e.g., Nb, Ta, Zr and Hf), Sr, Ba P, Ti and Eu concentrations. They exhibit enriched rare earth elements (REEs) with pronounced negative Eu anomalies. They have εNd(t) values in a range from −6.5 to −9.3, and a corresponding TDM model age of 1.5 to 1.7 Ga. They have a (206Pb/204Pb)t value ranging from 18.523 to 18.654, a (207Pb/204Pb)t value varying from 15.762 to 15.797, and a (208Pb/204Pb)t value ranging from 39.101 to 39.272. The yield εHf(t) ranges from −6.1 to −2.1, with crustal model ages (TDMC) of 1.3 to 1.6 Ga. These features indicate that the low Sr and high Yb weakly peraluminous A2-type granites were generated by overlying partial melting caused by the upwelling of the asthenosphere in an extensional tectonic setting. The rollback of the Paleo-Pacific Plate is the most plausible combined mechanism for the petrogenesis of A2-type granites, which contributed to the Sn–W polymetallic mineralization along the Shi-Hang zone in South China.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: The design of a flotation circuit based on optimization techniques requires a superstructure for representing a set of alternatives, a mathematical model for modeling the alternatives, and an optimization technique for solving the problem. The optimization techniques are classified into exact and approximate methods. The first has been widely used. However, the probability of finding an optimal solution decreases when the problem size increases. Genetic algorithms have been the approximate method used for designing flotation circuits when the studied problems were small. The Tabu-search algorithm (TSA) is an approximate method used for solving combinatorial optimization problems. This algorithm is an adaptive procedure that has the ability to employ many other methods. The TSA uses short-term memory to prevent the algorithm from being trapped in cycles. The TSA has many practical advantages but has not been used for designing flotation circuits. We propose using the TSA for solving the flotation circuit design problem. The TSA implemented in this work applies diversification and intensification strategies: diversification is used for exploring new regions, and intensification for exploring regions close to a good solution. Four cases were analyzed to demonstrate the applicability of the algorithm: different objective function, different mathematical models, and a benchmarking between TSA and Baron solver. The results indicate that the developed algorithm presents the ability to converge to a solution optimal or near optimal for a complex combination of requirements and constraints, whereas other methods do not. TSA and the Baron solver provide similar designs, but TSA is faster. We conclude that the developed TSA could be useful in the design of full-scale concentration circuits.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: At some orphaned and abandoned mine sites, acid mine drainage can represent a complex challenge due to the advanced tailings’ oxidation state as well as the combination of other factors. At the field scale, several parameters control sulfides’ oxidation rates and, therefore, the acidity generation. The objective of this paper is to map the acidity and geochemical properties of oxidized tailings within a closed tailings storage facility. Based on systematic sampling, various geochemical parameters were measured within the oxidized Joutel tailings, including the: Neutralization potential, acid-generating potential, net neutralization potential, neutralization potential ratio, paste pH, thickness of oxidized, hardpan, and transition zones. The different parameters were integrated in geographical information system (GISs) databases to quantify the spatial variability of the acidity and geochemical properties of oxidized tailings. The oxidized tailings were characterized by low sulfide (mainly as pyrite) and carbonate (mainly as siderite/ankerite) contents compared to unweathered tailings. Acidic zones, identified based on paste pH, were located in the eastern portion of the southern zone and at the northern tip of the northern zone.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: This study sought to investigate in situ oxygen isotopes (δ18O) within alluvial colorless-white to blue sapphires from the Orosmayo region, Jujuy Province, NW Argentina, in order to provide additional constraints on their origin and most likely primary geological environment. Analyses were conducted using the in situ SIMS oxygen isotope technique on the same grains that were analyzed for their mineral inclusions and major and trace element geochemistry using EMPA and LA–ICP–MS methods in our previous study. Results show a significant range in δ18O across the suite, from +4.1‰ to +11.2‰. Additionally, akin to their trace element chemistry, there is significant variation in δ18O within individual grains, reaching a maximum of 1.6‰. Both the previous analyses and δ18O results from this study suggest that these sapphires crystallized within the lower crust regime, involving a complex interplay of mantle-derived lamprophyres and carbonatites with crustal felsic rocks and both mantle- and crustal-derived metasomatic fluids. This study reinforces the importance of the in situ analysis of gem corundums, due to potential significant variation in major and trace element chemistry and ratios and even oxygen isotope ratios within discrete zones in individual grains.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: Fresh samples of basalts were collected by dredging from the Nanyue intraplate seamount in the Southwest sub-basin of the South China Sea (SCS). These are alkali basalts displaying right-sloping, chondrite-normalized rare earth element (REE) profiles. The investigated basalts are characterized by low Os content (60.37–85.13 ppt) and radiogenic 187Os/188Os ratios (~0.19 to 0.21). Furthermore, 40Ar/39Ar dating of the Nanyue basalts showed they formed during the Tortonian (~8.3 Ma) and, thus, are products of (Late Cenozoic) post-spreading volcanism. The Sr–Nd–Pb–Hf isotopic compositions of the Nanyue basalts indicate that their parental melts were derived from an upper mantle reservoir possessing the so-called Dupal isotopic anomaly. Semiquantitative isotopic modeling demonstrates that the isotopic compositions of the Nanyue basalts can be reproduced by mixing three components: the average Pacific midocean ridge basalt (MORB), the lower continental crust (LCC), and the average Hainan ocean island basalt (OIB). Our preferred hypothesis for the genesis of the Nanyue basalts is that their parental magmas were produced from an originally depleted mantle (DM) source that was much affected by the activity of the Hainan plume. Initially, the Hainan diapir caused a thermal perturbation in the upper mantle under the present-day Southwest sub-basin of the SCS that led to erosion of the overlying LCC. Eventually, the resultant suboceanic lithospheric mantle (SOLM) interacted with OIB-type components derived from the nearby Hainan plume. Collectively, these processes contributed crustal- and plume-type components to the upper mantle underlying the Southwest sub-basin of the SCS. This implies that the Dupal isotopic signature in the upper mantle beneath the SCS was an artifact of in situ geological processes rather than a feature inherited from a Southern Hemispheric, upper mantle source.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...