ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-17
    Description: Real-time observations are essential for operational forecasting that in turn can be used to predict changes of the state of the ocean and its associated biochemical fi elds. In addition, real-time observations are useful to detect changes in the past with the shortest delay, to standardize practices in data collection and to exchange data between remote regions of the ocean and seas. Th e drawback is that real-time observations could be less accurate than their delayed mode counterparts due to the time constraints for data dissemination. In situ real-time data are usually decimated to be transmitted in real time (loss of accuracy and resolution), whereas satellite data are corrected with approximate algorithms and less ancillary data. Delayed mode quality control analysis increases the value of the observational data set, fl agging outliers and producing climatological estimates of the state of the system. Th us real-time data, together with a modelling system and the climatological estimates, give the appropriate information for scientifi c studies and applications. Th e principles of operational science started to develop in the 1940s and 1950s, based on the combined use of real-time data and modelling systems that can extend the information from observations in space and time. Operational science is based on a sound knowledge of the dynamics and processes for the space/timescales of interest and operational meteorology and oceanography have started to implement these principles to weather and ocean forecasting activities. In the past 20 years, operational meteorology has become a reality with a network of in situ and satellite observations that has made the weather forecast capable of extending the theoretical limit of predictability of the atmosphere (only one-two days theoretically, now forecasts are useful for more than fi ve days on average). Today meteorological observations are mainly used in their assimilated form even if observations are still collected for specifi c process-oriented studies. Recently the meteorological re-analysis projects (Gibson et al., 1997; Kalnay et al., 1996) have released a wealth of data to be understood and analysed. Th ese data sets are coherent and approximately continuous (daily), fi lling the observational gaps in space and time with a dynamical interpolation scheme. Th e model and the real-time observations are fused in one best estimate of the state of the system by data-assimilation techniques that have been developed to a great degree of sophistication in recent years (Lorenc, 2002). Th e re-analysis data are now forming the basic reference data set to understand climate variability in the atmosphere and upper oceans. Ch20.indd 73Ch20.indd 733 3/7/07 9:58:01 AM Habwatch 734 Dynamical interpolation/extrapolation of observational data for operational forecasting in the ocean began to be investigated at the beginning of the 1980s and the fi rst successful forecasts were carried out in the open ocean (Robinson and Leslie, 1985). Th ese exercises required real-time data that were initially collected with rapid ship surveys realizing adaptive sampling schemes and collecting a combination of traditional recoverable and expendable instruments (CTD, XBTs). At the same time but in a totally independent way, shelf scale and coastal real-time data from moored and drifting sensors such as meteorological buoys and sea-level stations started to be used for shelf scale storm surge operational forecasting (Prandle, 2002). Operational oceanography is now building on this experience and considers real-time measurements from opportunity platforms and satellites in a manner very similar to operational meteorology. Th is chapter aims to show the use of real-time observations in a state-of-the-art ocean-predicting system realized in the Mediterranean. We discuss the pre-processing schemes required to properly assimilate the observations into an operational nowcasting/ forecasting system, elucidate the role and impact of diff erent observations in the assimilation system and show the use of real-time data to evaluate quality of the modelling system. We start with the description of the Mediterranean Forecasting System (MFS) real-time observing system and pre-processing quality control in Section 20.2, we then describe the modelling and assimilation system in relation to the impact of diff erent real-time observations in Section 20.3. In Section 20.4 we evaluate the consistency, quality and accuracy of the forecasting system using model-data intercomparison and Section 20.5 offers conclusions
    Description: Published
    Description: 4A. Oceanografia e clima
    Description: open
    Keywords: ocean data assimiliation, ; Mediterranean case ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: An unusual nighttime impulsive electron density enhancement was observed on 6 March 2010 over a wide region of South America, below the southern crest of the equatorial anomaly, under low solar activity and quiet geomagnetic conditions. The phenomenon was observed almost simultaneously by the F2 layer critical frequency ( foF2) recorded at three ionospheric stations which are widely distributed in space, namely Cachoeira Paulista (22.4°S, 44.6°W, magnetic latitude 13.4°S), São José dos Campos (23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, and Tucumán (26.9°S, 65.4°W, magnetic latitude 16.8°S), Argentina. Although in a more restricted region over Tucumán, the phenomenon was also observed by the total electron content (TEC) maps computed by usingmeasurements from 12 GPS receivers. The investigated phenomenon is very particular because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. This compression was clearly visible both by the virtual height of the base of the F region (h′F) recorded at the aforementioned ionospheric stations, and by both the vertical electron density profiles and the slab thickness computed over Tucumán. Consequently, neither an enhanced fountain effect nor plasma diffusion from the plasmasphere can be considered as the single cause of this unusual event. A thorough analysis of isoheight and isofrequency ionosonde plots suggest that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could have likely played a significant role in causing the phenomenon.
    Description: Published
    Description: A12314
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: open
    Keywords: equatorial ionosphere ; travelling ionospheric disturbance ; ionosphere-atmosphere interactions ; instrument and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-03
    Description: The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate) obtained from 1-Hz GPS data. The scintillation occurrence coincided with the aurora borealis and aurora australis observed by an all-sky imager at the South Pole, and by special sensor ultraviolet scanning imagers on board satellites of the Defense Meteorological Satellites Program. The South Pole (SP) station is approximately conjugate with two Canadian High Arctic Ionospheric Network stations on Baffin Island, Canada, which provided the opportunity to study magnetic conjugacy of scintillation with support of riometers and magnetometers. The GPS ionospheric pierce points were mapped at their actual or conjugate locations, along with the auroral emission over the South Pole, assuming an altitude of 120 km. As the aurora brightened and/or drifted across the field of view of the all-sky imager, sequences of scintillation events were observed that indicated conjugate auroras as a locator of simultaneous or delayed bipolar scintillation events. In spite of the greater scintillation intensity in the auroral oval, where phase scintillation sometimes exceeded 1 radian during the auroral break-up and substorms, the percentage occurrence of moderate scintillation was highest in the cusp. Interhemispheric comparisons of bipolar scintillation maps show that the scintillation occurrence is significantly higher in the southern cusp and polar cap.
    Description: Published
    Description: R0216
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Scintillations ; Solar-terrestrial interaction ; Space weather ; Solar variability and solar wind ; Magnetic storms ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-27
    Description: Vertical sounding is a widely used technique to obtain ionosphere measurements, such as an estimation of virtual height versus frequency scanning. It is performed by high frequency radar for geophysical applications called "ionospheric sounder” (or "ionosonde”). Radar detection depends mainly on targets characteristics. While several targets behavior and correspondent echo detection algorithms have been studied, a survey to address a suitable algorithm for ionospheric sounder has to be carried out. This paper is focused on automatic echo detection algorithms implemented in particular for an ionospheric sounder, target specific characteristics were studied as well. Adaptive threshold detection algorithms are proposed, compared to the current implemented algorithm, and tested using actual data obtained from the Advanced Ionospheric Sounder (AIS-INGV) at Rome Ionospheric Observatory. Different cases of study have been selected according typical ionospheric and detection conditions.
    Description: Published
    Description: 1360-1372
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: restricted
    Keywords: ionogram ; layer detection ; adaptive threshold ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-02
    Description: In November 2008, the ionosonde station at Boulder, Colorado, USA (40.0°N; 105.3°W) became the host of a new ionosonde (VIPIR, Vertical Incidence Pulsed Ionospheric Radar) developed and built by Scion Associates. The VIPIR is a fully digital frequency agile radar that operates between 0.3 and 26 MHz. It features 8 digital receivers and a digital transmit exciter. Extremely high performance analog receive electronics and a 4 kW solid state amplifier provide interface to the real world. This work describes the application of Autoscala to the ionograms recorded by this ionosonde. First results, in terms of ionograms and autoscaled characteristics, are presented and discussed.
    Description: Published
    Description: 1156-1172
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Autoscala ; Ionosphere ; Ionogram ; Electron Density ; Monitoring and Modelling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-17
    Description: Radio wave scintillations are rapid fluctuations in both amplitude and phase of signals propagating through the atmosphere. GPS signals can be affected by these disturbances which can lead to a complete loss of lock when the electron density strongly fluctuates around the background ionization level at small spatial scales. This paper will present recent improvements to the theoretical Global Ionospheric Scintillation Model (GISM), particularly tailored for satellite based navigation systems such GPS coupled with Satellite Based Augmentation System (SBAS). This model has been improved in order to take into account GPS constellation, signals, and receiver response to ionospheric scintillation environments. A new modelling technique, able to describe the scintillation derived modifications of transionospheric propagating fields is shown. Results from GPS derived experimental measurements performed at high and low magnetic latitudes will show preliminary assessments of the scintillation impact on real receivers and system operations. Nevertheless, comparisons between theoretical scintillation models, such as WBMOD and GISM, with GPS derived experimental data will be shown.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2603241 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-17
    Description: Amplitude scintillation data from GPS were analyzed. The objective is to estimate the impact of ionospheric scintillations at Satellite Based Augmentation Systems Ranging and Integrity Monitoring Station (SBAS RIMS) level and at GPS user level. For this purpose, a new approach to the problem was considered. Data were studied from the point of view of the impact of scintillations on the calculation of VTEC at pierce points and ionospheric grid points. An ionospheric grid of 5° 5° surface squares was assumed. From geometrical considerations and taking into account the basic principle to compute VTEC at grid points, with the data analyzed it is shown that scintillations very seldom affect the calculation of a grid point VTEC. Data from all the RIMS and for the entire GPS satellites network must be analyzed simultaneously to describe a realistic scenario for the impact of scintillations on SBAS. Finally, GPS scintillation data were analyzed at user level: service availability problems were encountered.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: ionospheric scintillations ; GPS scintillation monitor ; SBAS ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 128704 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-16
    Description: Scintillations are rapid fluctuations in the phase and amplitude of transionospheric radio signals which are caused by small-scale plasma density irregularities in the ionosphere. In the case of the Global Navigation Satellite System (GNSS) receivers, scintillation can cause cycle slips, degrade the positioning accuracy and, when severe enough, can even lead to a complete loss of signal lock. Thus, the required levels of availability, accuracy, integrity and reliability for the GNSS applications may not be met during scintillation occurrence; this poses a major threat to a large number of modern-day GNSS-based applications. The whole of Latin America, Brazil in particular, is located in one of the regions most affected by scintillations. These effects will be exacerbated during solar maxima, the next predicted for 2013. This paper presents initial results from a research work aimed to tackle ionospheric scintillation effects for GNSS users in Latin America. This research is a part of the CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project, co-funded by the EC Seventh Framework Program and supervised by the GNSS Supervisory Authority (GSA), which aims to develop and test ionospheric scintillation countermeasures to be implemented in multi-frequency, multi-constellation GNSS receivers.
    Description: Published
    Description: A05
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: open
    Keywords: modelling and forecasting ; ionosphere ; equatorial ionosphere ; ionospheric irregularities ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-07
    Description: Ionospheric scintillations are fluctuations in the phase and amplitude of the signals from GNSS satellites occurring when they cross regions of electron density irregularities in the ionosphere. Such disturbances can cause serious degradation on GNSS system performance, including integrity, accuracy and availability. The two indices internationally adopted to characterize ionospheric scintillations are: the amplitude scintillation index, S4, which is the standard deviation of the received power normalized by its mean value, and the phase scintillation index, σΦ, which is the standard deviation of the de-trended carrier phase. At low latitudes scintillations occur very frequently and can be intense. This is because the low latitudes show a characteristic feature of the plasma density, known as the equatorial anomaly, EA, for which a plasma density enhancement is produced and seen as crests on either side of the magnetic equator. It is a region in which the electron density is considerably high and inhomogeneous, producing ionospheric irregularities causing scintillations. The upcoming solar maximum, which is expected to reach its peak around May 2013, occurs at a time when our reliance on high-precision GNSS (such as GPS, GLONASS and the forthcoming GALILEO) has reached unprecedented proportions. Understanding and monitoring of scintillations are essential, so that warnings and forecast information can be made available to GNSS end users, either for global system or local augmentation network administrators in order to guarantee the necessary levels of accuracy, integrity and availability of high precision and/or safety-of-life applications. Especially when facing severe geospatial perturbations, receiver-level mitigations are also needed to minimize adverse effects on satellite signals tracking availability and accuracy. In this context, the challenge of the CIGALA (Concept for Ionospheric scintillation mitiGAtion for professional GNSS in Latin America) project, co-funded by the European GNSS Agency (GSA) through the European 7th Framework Program, is to understand the causes of ionospheric disturbances and model their effects in order to develop novel counter-measure techniques to be implemented in professional multi-frequency GNSS receivers. This paper describes the scientific advancements made within the project to understand and characterize ionospheric scintillation in Brazil by means of historical and new datasets.
    Description: Published
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: open
    Keywords: Ionosphere ; GNSS ; Scintillation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-07
    Description: This paper shows how the solar eclipse occurred on 20 March 2015 influenced the sporadic E (Es) layer as recorded by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. In these locations, the solar eclipse was only partial, with the maximum area of the solar disk obscured by the Moon equal to ~54% at Rome and ~45% at Gibilmanna. Nevertheless, it is shown that the strong thermal gradients that usually accompany a solar eclipse, have significantly influenced the Es phenomenology. Specifically, the solar eclipse did not affect the Es layer in terms of its maximum intensity, which is comparable with that of the previous and next day, but rather in terms of its persistence. In fact, both at Rome and Gibilmanna, contrary to what typically happens in March, the Es layer around the solar eclipse time is always present. On the other hand, this persistence is also confirmed by the application of the height–time–intensity (HTI) technique. A detailed analysis of isoheight ionogram plots suggests that traveling ionospheric disturbances (TIDs) likely caused by gravity wave (GW) propagation have played a significant role in causing the persistence of the Es layer.
    Description: Published
    Description: 2064–2072
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: Mid-latitude ionosphere ; E sporadic layer ; Solar eclipse ; Gravity wave ; Height–time–intensity technique ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-06-07
    Description: To study ionospheric scintillation on L-band radio signals, it is nowadays typical to acquire data with GNSS (Global Navigation Satellite System) receivers working at high frequency sampling rate (50-100 Hz). When dealing with such data, it is common to consider the contribution coming solely from observations at elevation angles, calculated from the receiver to the selected satellite, above an arbitrary threshold, typically 15-30°. Filtering out measurements made at low elevation angles helps keeping a high SNR (Signal to Noise Ratio) and eliminating non-ionospheric related effects, such as multipath. The downside of that well consolidated method is a reduction of the field of view spanned by the GNSS receiver antenna, and, if it is the case, of the whole network. This is not crucial for dense networks or well covered areas, but it can be in the case of not well covered regions, for logistics (e.g. forests, deserts, etc.) and/or environmental reasons (e.g. oceans). The loss of information in many applications could be meaningful. In this paper, we present a method to filter out spurious data based on an “outliers analysis” able to efficiently remove multipath affected measurements, reducing the data loss from 35-45% to 10-20%. It is based upon the Ground Based Scintillation Climatology (GBSC) and the station characterization based upon GBSC [5] is applied to the CIGALA1/ CALIBRA2 network in Brazil. The research shown herein was carried out in the context of the CALIBRA (http://www.calibra-ionosphere.net) project and exploits the CIGALA/ CALIBRA network in Brazil, to which the method was applied, enlarging the field of view and, then, improving the capability of inferring the dynamics of the low latitude ionosphere.
    Description: Published
    Description: 109-117
    Description: 2A. Fisica dell'alta atmosfera
    Description: open
    Keywords: GNSS ; data filtering ; multipath ; ionsopheric scintillation ; low latitude ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-12-14
    Description: During the International Polar Year (IPY), one area of great interest is co-coordinated, multi-instrument probing of the ionosphere at high latitudes. This region is important not only for the applications that rely upon our understanding of it, but also because it contains the footprints of processes that have their origin in the interplanetary space. Many different techniques are now available for probing the ionosphere, from radar measurements to the analysis of very low frequency (VLF) wavepaths. Combining these methods provides the ability to study the ionosphere from high in the F-region to the bottom of the D-layer. Thus, coupling processes from the magnetosphere and to the neutral atmosphere can be considered. An additional dimension is through comparisons of the response of the two polar ionospheres to similar (or the same) geomagnetic activity. With more instruments available at the South Pole inter-hemispheric, studies have become easier to accomplish such that a fuller picture of the global response to Sun–Earth coupling can be painted. This paper presents a review of the current state of knowledge in ionospheric probing. It cannot provide a comprehensive guide of the work to date due to the scale of the topic.Rather it is intended to give an overview of the techniques and recent results from some of the instruments and facilities that are a part of the IPY cluster 63—Heliosphere Impact on Geospace. In this way it is hoped that the reader will gain a flavor of the recent research performed in this area and the potential for continuing collaboration and capabilities during the IPY (2007–2009).
    Description: Published
    Description: 2293-2308
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Polar ionosphere ; International polar year ; Conjugacy ; Interhemispheric studies ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-12-14
    Description: In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC) changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS), we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.
    Description: Published
    Description: R0220
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Scintillations ; Dynamics ; Solar-terrestrial interaction ; Space weather ; Statistical analysis ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-06-16
    Description: The electronic space weather upper atmosphere (eSWua) is a hardware– software system that is based on measurements collected by instruments installed by the Upper Atmosphere Physics Group of the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy). More recently, it has also included the Global Navigation Satellite System (GNSS) ionospheric scintillation and total electron content (TEC) monitor (GISTM) stations that are managed and operated by the University of Nottingham (UK). By visiting the eSWua website, it is possible to access the database that has been implemented to organize and manage the large amount of information acquired. The section of the database designed for the TEC and scintillation data has been designed to address the needs of the space weather community as well as of scientific users. Through the web tools, it is possible to visualize, plot, extract and download the data from each station. This interactive website is supported by a structured database, and it provides a powerful tool for the scientific and technological community in the field of telecommunications and space weather. At present, the data transmission procedure, the database population algorithm, the linear plot and polar plot visualization tools, the statistics page, and the user management system are fully operational. Web access to the data and tools has been realized to handle the data from the sites at low, mid and high latitudes. In this report, we present the results of the system for the GNSS data in the Arctic, the Antarctica, and the three GISTM stations operated by the University of Nottingham: Nottingham, Trondheim and Dourbes. Case studies of the efficacy of this system for scientific and application purposes are also presented and discussed.
    Description: Published
    Description: R0223
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Database ; GNSS ; Global positioning system ; Ionosphere ; Total electron content ; Ionospheric scintillation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.05. Collections
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: The performance of a computer program, called Autoscala, for the automatic scaling of foF2 and MUF(3000)F2 from ionograms has been extensively tested. Results of comparisons between automatically and manually scaled data are shown both for Autoscala and for ARTIST (release 4.01). Particular attention has been paid to the cases in which the ionograms have a truncated trace. The problem of the rejection of bad quality ionograms has been also considered. The analysis of data shows that the reliability of values automatically given as output by Autoscala is good. For the data set considered Autoscala seems to operate better than ARTIST.
    Description: Published
    Description: 1063-1073
    Description: 1.7. Osservazioni di aeronomia
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Ionosonde ; Ionogram scaling ; Automatic scaling ; Ionosphere monitoring ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: In the framework of the electronic Space Weather upper atmosphere (eSWua) project the web site http://eSWua.ingv.it represents the interactive access to the upper atmosphere database and related services. The eSWua project is based on measurements performed by all the instruments installed by the upper atmosphere physics group of the Istituto Nazionale di Geofisica e Vulcanologia, Italy and on all the related studies. The aim is the realization of a hardware-software system to standardize historical and real-time observations for different instruments. This interactive Web site, supported by a well organized database, can be a powerful tool for the scientific and technological community in the field of telecommunications and Space weather. The most common and useful database type for our purposes is the relational one, in which data are organized in tables for petabytes data archiving and the complete flexibility in data retrieving.
    Description: Published
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 5.3. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: open
    Keywords: Ionosphere ; Ionosonde ; Ionogram ; Scintillation ; Riometer ; database ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: The eSWua project is based on measurements performed by all the instruments installed by the upper atmosphere physics group of the Istituto Nazionale di Geofisica e Vulcanologia, Italy and on all the related studies. The aim is the realization of a hardware-software system to standardize historical and real-time observations for different instruments. An interactive Web site, supported by a well organized database, can be a powerful tool for the scientific and technological community in the field of telecommunications and space weather. The most common and useful database type for our purposes is the relational one, in which data are organized in tables for petabytes data archiving and the complete flexibility in data retrieving. The project started in June 2005 and will last till August 2007. In the first phase the major effort has been focused on the design of hardware and database architecture. The first two databases related to the DPS4 digisonde and GISTM measurements are complete concerning populating, tests and output procedures. Details on the structure and Web tools concerning these two databases are presented, as well as the general description of the project and technical features.
    Description: In press
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 5.3. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Ionosphere (Mid-latitude ionosphere; Polar ionosphere; Instruments and techniques) ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Nel laboratorio di geofisica ambientale dell'Istituto Nazionale di Geofisica e Vulcanologia è stato progettato e realizzato il prototipo di una ionosonda a bassa potenza a compressione di impulsi secondo i dettami della moderna tecnica radaristica. Si è puntato sulla realizzazione di una macchina a bassa potenza e dal costo contenuto con possibilità di costituire una rete di ionosonde per scopi di sorveglianza ionosferica. Il sistema con una potenza di 200W consente di investigare la ionosfera da 90 a 700km con una risoluzione verticale di 5km in un range di frequenza da 1 a 20MHz.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: ionosonde ; pulse compression ; ionosphere ; HF radar ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-03
    Description: This study describes the development and evaluation of an oceanographic three-dimensional variational (3D-VAR) data assimilation scheme based on a novel specification of the background error covariances. The new 3D-VAR scheme allows for regional variability of the background error covariance matrix, complex coastal boundary conditions and variable bottom topography. The error covariance matrix is formed by the successive application of linear operators that can consider vertical EOFs, horizontal covariance functions that consider coastlines, sea level corrections that vary from shallow to deep regions and divergence dumping of velocity corrections near the coasts. The scheme is applied to the Mediterranean Sea and the quality of analysis is assessed by comparing background estimates with observations in the period October 2005–October 2006.
    Description: Published
    Description: 89–105
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: 3.11. Oceanografia Operativa
    Description: JCR Journal
    Description: reserved
    Keywords: Data assimilation, ; Operational oceanography, ; Ocean models ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: In the frame of EPOT project (technological innovation and automation in the integrated applications of Electromagnetic and POTential field methods in active volcanic areas) an auto levelling magnetometer for geomagnetic field monitoring in volcanic areas, was proposed. In this paper a brief description of this magnetometer and some preliminary tests are described. In particular some characteristics of the non-diagonal elements of the field transform matrix A between the observatory system and the magnetometer placed in a far location are discussed with the relative implication when one of the two magnetometers would be located in a volcanic area.
    Description: Published
    Description: 97-102
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 3.4. Geomagnetismo
    Description: N/A or not JCR
    Description: open
    Keywords: autolevelling magnetometer ; magnetic monitoring ; thermal drift ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: New systematic oblique ionospheric radio sounding measurements over Central Europe, concerning the radio links between Inskip (UK, 53.51N, 2.51W) and Rome (Italy, 41.81N, 12.51E) and between Inskip and Chania (Greece, 35.71N, 24.01E), have been performed since November 2003. Different long-term (i.e. monthly median) ionospheric predictions and nowcasting techniques have been applied and compared with the oblique-incidence radio sounding measurements. The MUF (basic maximum usable frequency) measurements observed during the early part of the experiment have been used to compare the performances of different methods. The preliminary analysis has shown good performances for the long-term prediction models, in particular in winter months for ICEPAC (ionospheric communications enhanced profile analysis and circuit) and in equinox/summer months for ASAPS (advanced stand-alone prediction system) and SIRM&LKW (simplified ionospheric regional model & lockwood). The nowcasting methods SIRMUP&LKW (SIRM updating method & lockwood) and ISWIRM (instantaneous space weighted ionospheric regional model) reveal good results for moderate and disturbed geomagnetic conditions when compared with the long-term prediction methods.
    Description: Published
    Description: 854-865
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Ionosphere ; Monthly median models ; Nowcasting models ; Oblique radio sounding ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: The Italian Ionospheric Antarctic Observatory of Terra Nova Bay (74.70S, 164.11E) was recently equipped with the AIS-INGV ionosonde developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, (Italy). This paper aims to describe briefly which are the main characteristics of the instrument and show the good quality and reliability of the recorded ionograms.
    Description: Published
    Description: 47-51
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: open
    Keywords: ionosonde ; Antarctic ionospheric observatory ; ionospheric data ; vertical soundings ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: The article describes the measurements made by ISACCO during the superstorm of October 2003 used to assess the positioning errors affecting GNSS users and their correlation with the occurrence of observed levels of scintillation.
    Description: Published
    Description: 40-43
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: open
    Keywords: GPS ; ionospheric scintillations ; space weather ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: While performing an ionospheric sounding the information brought by the polarisation of the received echo is not essential. In fact, the "AIS" ionosonde [Arokiasami 2002], developed at INGV in the recent years, does not allow for this piece of information but it is able to generate good quality ionograms, from which it is possible to discriminate between the ordinary and the extraordinary ray. Anyway, if the polarisation information is available the automatic scaling of the ionograms can be more effective. This work consists of some theoretical and technological considerations, fundamental to the development of an improved ionosonde model, that has been carried on at INGV. The magnetoionic theory of propagation of radio waves into the ionosphere is assumed as known; so only some concepts concerning more tightly the waves polarisation and the creation of the ordinary and the extraordinary rays are developed; eventually the practical ways by which it is possible to discriminate them by means of a sounding instrument are described.
    Description: Published
    Description: 1-15
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: open
    Keywords: ionosfera ; sondaggio ; magnetoplasma ; polarizzazione ; propagazione ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: The ionosonde is a system which exploits the radar technique: it applies electromagnetic waves with variable frequency in the HF band to measure the ionospheric layers electron density, height and other parameters. This paper is a technical report on the new digital ionosonde (AIS-INGV), which was designed both for research purposes and for the routine service of the HF radiowave propagation forecast. It has been developed almost completely within the Laboratorio di Geofisica Ambientale (LGA) at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). It exploits advanced techniques for the signal analysis, recent technological devices and PC resources. The report is divided into two parts; the first is a general description of the design development, the second is a more detailed description of the blocks and circuits actually built and tested, directed to a specialist reader.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: ionosonde ; HF radar ; DSP ; digital techniques ; ionograms ; ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The study of amplitude scintillation on GPS radio links is usually done after detrending the time series of the transmitted power so to define scintillations as the chaotic fluctuation around a unitary value. In a sense, the choice of how to detrend the time series is part of the definition of scintillation. Here we analyse how far the continuous wavelet analysis of the detrended signal is influenced by the choice of detrending. This study is done using amplitude raw data from the GPS receivers held by INGV and the University of Bath in the Northern polar region, with a sampling time of 0.02 s. Three detrending procedures are considered: a fifth degree polynomial detrending, a high-pass filter with detrending period as twice the length of the time series considered, and a high-pass filter with detrending period determined via some statistical criterion. We show that there exists a "threshold time scale" of about half minute under which the differences between the scalograms from the signals detrended in the three ways are very small. This is not changed by applying the same detrending procedures to the segment of length reduced to one-third. Consequences in terms of scintillation definition and practical applications are given.
    Description: Published
    Description: 1740-1748
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Ionospheric scintillation ; Wavelet analysis ; Turbolence remote sensing ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: An electron density profile model with free parameters is introduced. Initially the parameters are calculated on the basis of the ionospheric characteristics automatically obtained from the ionograms by Autoscala and considering the helio- geophysical conditions. The technique used to adjust the free parameters to the particular ionograms recorded is presented.
    Description: Published
    Description: 756-766
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Ionosphere ; Ionogram ; Electron density ; Monitoring ; Modelling ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: The experience acquired from more than ten years of operation of an Antarctic geomagnetic observatory is described along with the development of data transmission facilities. The observatory was deployed at the Spanish Antarctic Station in 1996. The main instrument was an Overhauser magnetometer deployed in dual axis Helmholtz coils, a δD/δI configuration. The site is only manned during the summer, with the magnetometer left recording throughout the rest of the year. During the 2007-2008 survey the observatory instrumentation has been upgraded with a DMI suspended triaxial fluxgate magnetometer, new sampling hardware and data logging software. Both sampling and timing are carried out under the control of a PIC based microcontroller and GPS receiver. Data presentation, transmission and archiving are performed under the control of a low power embedded PC. For real time access to the data two options have been provided and rigorously tested during the last 10 years: METEOSAT and GOES Data Collection Systems, and recently, a high frequency (HF) digital radio-link, using ionospheric propagation between Antarctica and Spain, has been developed. This latest transmission system is being continuously upgraded, and it would be possible to extend its application to other remote stations. Measurements have been made during the last four years in order to determine the channel characteristics and its variability, mainly the multipath and Doppler spread and the link availability for a given SNR in the receiver. These measurements are being used to design the physical layer of a radiomodem intended to maximize the link capacity keeping the emitted power low.
    Description: Published
    Description: 45-56
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: geomagnetic observatories ; geophysical instrumentation ; data transmission ; HF radio ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: The central differencing grid with fully staggered velocity components(C grid) is widely used in primitive equations oceanographic models despite potential problems in simulating baroclinic inertiagravity and Rossby waves that can arise due to the averaging of velocity components in the Coriolis terms. This note proposes a new averaging of the velocity components in order to calculate the Coriolis terms on the C grid. The averaging weights are calculated from the minimum of a suitably defined cost function which optimally minimizes the error in the inertial part of frequencies of inertia-gravity waves and maintains the second order accuracy of the computations. The theoretical analysis of wave frequency diagrams shows that the new scheme results in more accurate frequencies of long inertia-gravity and Rossby waves, especially when the Rossby radius of deformation is not resolved well by the grid resolution.
    Description: Unpublished
    Description: 2.1. TTC - Laboratorio per le reti informatiche, GRID e calcolo avanzato
    Description: reserved
    Keywords: Coriolis terms ; calculation ; C grid ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: By analysing an ionogram several important parameters like foF2 and MUF(3000)F2 can be found, that have a significant role in the studies concerning ionospheric physics and related phenomena. Furthermore, the observation of ionospheric plasma and the forecasting of physical phenomena connected to the Sun-Magnetosphere–Ionosphere–Thermosphere system holds a remarkable scientific interest with respect to space weather, because of the influence that these phenomena have on satellite and terrestrial communications. From this point of view, the development of models whose input are real-time ionospheric parameters has become fundamental. This paper will introduce a Visual Basic program for semi-automatic scaling of ionospheric parameters from ionograms. This software allows to increase the speed of the scaling phase performed by the operator trying also to improve the output in terms of reliability.
    Description: Published
    Description: 125–130
    Description: 1.7. Osservazioni di aeronomia
    Description: JCR Journal
    Description: reserved
    Keywords: Ionosphere ; Ionosonde ; Ionogram Scaling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: A method for automatic scaling of the maximum frequency and virtual height of a sporadic E layer is presented. A set of ionograms recorded at the ionospheric observatory of Gibilmanna was used to test the performance of the algorithm. The test was performed by comparing the data obtained automatically with the values scaled by an operator.
    Description: Published
    Description: RS2012
    Description: 1.7. Osservazioni di aeronomia
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: ionograms ; automatic scaling ; Autoscala ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: At the end of August 2007 an Advanced Ionospheric Sounder (AIS), built at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, was installed at San Miguel de Tucumán, Argentina (geographical coordinates: 26.9 S, 294.6 E; magnetic coordinates: 15.5 S, 3.8 E), particularly interesting for its location, near the southern peak of the equatorial anomaly. AIS-INGV is a digital low-power pulse-compressed ionosonde. In order to reduce the transmitted power, weight, size, power consumption, and to have an excellent reliability, advanced HF-radar techniques were employed. The ionosonde is also equipped with Autoscala, a software able to perform an automatic scaling of the ionogram.
    Description: Published
    Description: 1-9
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: open
    Keywords: ionosonde ; ionogram ; Tucumán ; Autoscala ; equatorial anomaly ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Since 1995 Italian Ionospheric Antarctic Observatory at Terra Nova Bay, now “MARIO ZUCCHELLI”, station (geographic coordinates: 74.70°S, 164.11°E) performs continuous and systematic ionospheric vertical soundings. Long time series of continuous and accurate ionospheric observations (more than one solar cycle) are necessary for a deeper understanding of the complex phenomena occurring in the upper atmosphere at high latitude; furthermore high rate soundings (at least four soundings per hour or more) contribute to the short-time prediction of the radiopropagation conditions and to the Space Weather. During 2003–2004 Antarctic campaign a new digital ionosonde, recently developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, (Italy), has been installed the Ionospheric Observatory and preliminary tests have been carried out. This new Advanced Ionospheric Sounder-INGV, briefly AIS, is integrated in a stand alone system during winter time: the sounding, device settings and data sending to Rome are completely automatic and remote programmable. Ionograms are available on line at the INGV web and ftp server. The new features of the Ionospheric Observatory are presented and preliminary statistics on the reliability and validation of the experimental observation are shown and discussed.
    Description: Published
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: Antarctica ; ionosphere ; ionosonde ; radar ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: Observations from a network of specially equipped GPS scintillation receivers in Northern Europe are used to investigate the dynamics of ionospheric plasma during the storm events of 30 October and 20 November 2003. The total electron content (TEC) and scintillation data, combined with ionospheric tomography produced by the multi-instrument data analysis system (MIDAS), reveal strong enhancements and steep gradients in TEC during nighttime under a prevailing negative Bz component of the interplanetary magnetic field (IMF). Amplitude and phase scintillation maxima are often co-located with the TEC gradients at the edge of plasma patches, revealing the presence of small-scale irregularities and suggesting association with a tongue of ionization (TOI) convecting in an anti-sunward direction from the American sector across the polar cap. Similarities and differences between the ionospheric response to the two storms are investigated. The 30 October event reveals a quite complex scenario showing two phases of plasma dynamics: the former reflects the expected convection pattern for IMF Bz southward and the latter possibly indicates a sort of TEC plasma stagnation signature of the more complex convection patterns during several positive/negative excursions of IMF Bz.
    Description: Published
    Description: 879-888
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Ionospheric scintillations ; Polar pathches ; GPS ; Plasma dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: By analyzing an oblique ionogram several characteristics, such as LOF, MOF, FMUF, FHLOF, FLLOF, and 2FMOF, can be found. These characteristics are important both for ionospheric studies and for terrestrial communication purposes, as they give information about the sky wave communication conditions in the High Frequency (HF) radio spectrum. A RCS-5B sweeping HF receiver for oblique sounding was installed at Chania (Crete, Greece, 35.71N, 24.01E) in April 2005 to perform a radio link with Inskip (UK, 53.51N, 2.51W). The receiver, able to record the sounding only as a binary file, was not equipped with a tool to display and scale the recorded trace. This work describes software that is able to do this, consequently increasing the speed of the scaling phase performed by the operator. The usefulness of this software for validating FMUF prediction models is also shown.
    Description: Published
    Description: 1577–1583
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Ionospheric monitoring ; Ionogram scaling ; Maximum usable frequency ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: Nel seminario vengono presentate in modo generale le principali tecniche sperimentali di investigazione della ionosfera terrestre. Per ognuna di esse sono descritti gli elementi su cui si basa, pregi, difetti e le grandezze ionosferiche oggetto delle loro misure. Vengono presentate, poi, tre tecniche in modo approfondito, utilizzate anche nelle attività sperimentali dell'Istituto Nazionale di Geofisica e Vulcanologia: sondaggio verticale, riometro e GPS per scintillazioni.
    Description: Unpublished
    Description: Dipartimento di Fisica dell'Universita' "La Sapienza" di Roma
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.8. TTC - Formazione e informazione
    Description: open
    Keywords: Ionosfera ; sondaggio verticale ; sondaggio obliquo ; ionosonda ; radar incoerente ; riometro ; GPS ; scintillazioni ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: INGV, Sezione di Napoli, Osservatorio Vesuviano
    Description: Submitted
    Description: 5.10. TTC - Sistema web
    Description: open
    Keywords: Meteo data acquisition ; database mysql ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: The eSWua project is based on measurements performed by all the instruments installed by the upper atmosphere physics group of the Istituto Nazionale di Geofisica e Vulcanologia, Italy and on all the related studies. The aim is the realization of a hardware-software system to standardize historical and real-time observations for different instruments. An interactive Web site, supported by a well organized database, can be a powerful tool for the scientific and technological community in the field of telecommunications and space weather. The most common and useful database type for our purposes is the relational one, in which data are organized in tables for petabytes data archiving and the complete flexibility in data retrieving. The project started in June 2005 and will last till August 2007. In the first phase the major effort has been focused on the design of hardware and database architecture. The first two databases related to the DPS4 digisonde and GISTM measurements are complete concerning populating, tests and output procedures. Details on the structure and Web tools concerning these two databases are presented, as well as the general description of the project and technical features.
    Description: Published
    Description: 345-351
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 5.3. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: Ionosphere (Mid-latitude ionosphere; Polar ionosphere; Instruments and techniques) ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: Il presente lavoro contiene un insieme di concetti di base utili per comprendere la cosiddetta tecnica della “interferometria doppler”, usata, nell’ambito degli studi sulla ionosfera, per ricavare informazioni sulla conformazione e velocità degli strati riflettenti (operazione chiamata anche sky mapping). È utile ricordare, infatti, che il sondaggio ionosferico tradizionale consente solo la determinazione dell’altezza virtuale di ogni strato, pensato come un unico oggetto riflettente piano. Tale determinazione è giunta nel tempo ad avere una risoluzione molto spinta, dell’ordine di qualche chilometro, tuttavia una ionosonda tradizionale non possiede la capacità di individuare la struttura degli strati riflettenti.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: interferometria doppler ; sorgenti ionosferiche ; ionosonda digitale ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: Atmospheric and oceanic ensemble forecasting is a way to deal with uncertainty related to inaccurate knowledge of the initial state of the atmosphere and the ocean, the lateral and vertical boundary condition errors and the model physics shortfalls (Lewis, 2005, Epstein, 1969). Since the atmosphere and the ocean are extremely non-linear systems (Lorenz, 1993, Saravanan et al., 2000) initial uncertainties can amplify and limit the predictability of short term forecasts (Kleeman and Majda, 2005). For the ocean, ensemble forecasting is a novel field. Ensemble methods are used to compute the background error covariance matrix in data assimilation schemes (Evensen, 2003) but are not used yet to quantify the forecast uncertainty in short term ocean forecasting systems. Initial conditions uncertainty is a major source of unpredictability for ocean currents due to the limited observations available for nowcasting and the highly non-linear physics. In this study we explore the short term ensemble forecast variance generated by perturbing the initial conditions using a new computational facility, so-called Grid infrastructure (http://grid.infn.it/), distributed over the Italian territory. This infrastructure allowed us to perform several ensemble forecast experiments with 1000 members: they are completed within 5 hours of wall-clock time after their submission and the ensemble variance peaks at the mesoscales.
    Description: Published
    Description: 799-804
    Description: 3.11. Oceanografia Operativa
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: ocean forecasting experiment, ; Grid infrastructure ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: HF skywave (OTH) radars operate in a very challenging environment so the objective of optimizing the radar resources to address the surveillance missions can be achieved only with the aid of a variety of support systems and models. As the technological sophistication of OTH radar increases and performance expectations rise, the demands on these ancillary support systems are growing. This paper reviews the present situation and looks at some prospective developments.
    Description: Finmeccanica Selex - Sistemi Integrati, Italy
    Description: Published
    Description: Sheraton Golf Parco dè Medici, Roma
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: reserved
    Keywords: skywave propagation ; OTH radar ; frequency advice ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: This work describes a simple filter able to eliminate the traces caused by second order reflection from ionograms. This filter is applied to Autoscala in order to smooth out cases in which the autoscaling of the ionogram is mistaken because the second order F2 layer reflection is identified as first order. A dataset of 32626 ionograms recorded at the ionospheric observatory of Rome was used to test the filter.
    Description: Published
    Description: 1929-1934
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Ionospheric monitoring ; Ionosonde ; Autoscala ; Ionogram autoscaling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: A software for automatic scaling of critical frequency f0F2 and MUF(3000)F2 is presented. The program is designed to scale the ionograms without using information on polarization and can be applied to both single antenna systems and crossed antenna systems. A data set of 619 ionograms recorded at the ionospheric observatory of Rome has been used to test the performance of the software. The test has been performed comparing the values obtained automatically with the ones obtained by the standard manual method.
    Description: Published
    Description: 17-24 August 2002, Maastricht, Holland
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: Ionogram ; Ionosonde ; Automatic Scaling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: The presentation deals with one of the most popular technique to investigate the terrestrial ionosphere: the vertical radio sounding. The basic elements of the radar theory are explained starting from the envelope radar up to the most sophisticated techniques of the coded radars. Antennas design elements and problems are highlighted along with the most common solutions. Then the principles of the ionospheric measurements are reported from the ionogram to the ionospheric parameters and to the density profile. A real example of a geomagnetic storm is also presented.
    Description: Published
    Description: "Campus Reiss Romoli" COPPITO L’AQUILA (ITALY)
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: Ionosonde ; radar ; pulse compression ; ionogram ; vertical sounding ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: The performances of Autoscala and ARTIST 4.5 were comparatively evaluated using a large database of 6098 ionograms recorded from September 2005 to June 2006 by the digisonde DPS4 at the Rome ionospheric station. Results of comparisons between automatically and manually scaled data are shown for both programs highlighting the different behaviours. The Autoscala and ARTIST 4.5 values of foF2 and MUF(3000)F2 both agree with the hand-scaled values for ~95% of ionograms. For the other ~5% of ionograms, which the manual scaler classed as unscalable, ARTIST 4.5 usually gave invalid results, whereas Autoscala usually gave no result. The data recorded by the ionosondes DPS4 (interpreted by ARTIST 4.5) and AIS-INGV (interpreted by Autoscala) during 3 geomagnetic storms were also analysed. Ionograms with typical errors both for Autoscala and ARTIST 4.5 are displayed.
    Description: Published
    Description: RS4003
    Description: 1.7. Osservazioni di aeronomia
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Ionograms ; ARTIST ; Autoscala ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: This work describes a method that has been developed to automatically assess whether the F1 layer is present or not on an ionogram trace, and, if present, to scale the F1 critical frequency foF1. The ionograms in which the information related to the F1 trace is insufficient are identified and considered separately. In order to test the performance of this method and the conditions in relation to which it could be improved, a data set of ionograms recorded from September 2005 to June 2006 by the AIS-INGV ionosonde installed at Rome was used. The values obtained automatically by Autoscala, with the addition of this new F1 layer routine, were compared with those obtained by the standard manual method.
    Description: Published
    Description: RS2S91
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Autoscala ; Ionograms ; F1 layer ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: A new ionosonde VISRC2, built at the Space Research Center of Warsaw, Poland, was installed at Warsaw (52.2 N, 21.1 E) in march 2007. The main characteristics of this ionosonde are: transmitted power 10 kW, pulse duration 100 μs, sampling period 5 μs, frequency resolution 25 kHz, and capability to distinguish ordinary and extraordinary reflections. This ionosonde, able to record the sounding only as a binary file, was not equipped with a tool to perform an automatic scaling of the recorded trace. From October 2008 Autoscala (Pezzopane and Scotto, 2005, 2007, 2008; Scotto and Pezzopane, 2007) is routinely applied to the ionograms recorded by this ionosonde.
    Description: Published
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: open
    Keywords: Autoscala ; Ionosonde ; Autoscaling ; Ionospheric Monitoring ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: Lo Stretto è uno straordinario oggetto di studio, in cui gli effetti di una subduzione ancora attiva si sommano a una tettonica crostale vigorosa, di cui il terremoto del 1908 è il testimone più evidente. L’Istituto Nazionale di Geofisica e Vulcanologia ha avviato il progetto Messina 1908-2008 per unificare le reti di osservazione sismologiche e geodetiche già esistenti nello Stretto, estendendole con strumenti sul fondo marino ed elevandone gli standard tecnologici. Questo nuovo impegno scientifico mira a implementare il numero e la qualità dei dati e a rendere pienamente disponibili alla ricerca tutte le osservazioni condotte in quest’area negli ultimi tre decenni.
    Description: Published
    Description: 475-483
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: seismology ; geodesy ; Earthquakes ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: This review paper presents the main achievements of the near Earth space plasma monitoring under COST 296 Action. The outputs of the COST 296 community making data, historical and real-time, standardized and available to the ionospheric community for their research, applications and modeling purposes are presented. The contribution of COST 296 with the added value of the validated data made possible a trusted ionospheric monitoring for research and modeling purposes, and it served for testing and improving the algorithms producing real-time data and providing data users measurement uncertainties. These value added data also served for calibration and validation of space-borne sensors. New techniques and parameters have been developed for monitoring the near Earth space plasma, as time dependent 2D maps of vertical total electron content (vTEC), other key ionospheric parameters and activity indices for distinguishing disturbed ionospheric conditions, as well as a technique for improving the discrepancies of different mapping services. The dissemination of the above products has been developed by COST 296 participants throughout the websites making them available on-line for real-time applications.
    Description: Published
    Description: 221-234
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Ionosphere ; monitoring ; data validation ; monitoring techniques ; campaigns ; dissemination ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.05. Collections
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: Ionograms from Rome (41.8N, 12.5E) and Sofia (42.4N, 23.2E) ionospheric stations during earthquake(EQ)activity with magnitude(M)between 5 and 6 in Central Italy are analyzed. It is found that several ionospheric disturbances occur in the intermediate E-F region before the EQ shock. In fact, besides sporadic E (Es) layer development(of type h) of short duration (transients), fmin increase, trace gaps near the critical frequencies, and E region trace disappearance are also observed within one to three hours before the EQ shock. Before the EQ shocks we find that the F2 region parameters are practically undisturbed. The only exception is the so-called fork trace that appears mostly near the critical frequency of the F2 region. Acoustic gravity waves (AGW) are suggested as one of the possible sources of transients observed in the ionosphere before the EQ shock.
    Description: Published
    Description: 1197-1208
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.1. Fisica dei terremoti
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: ionospheric transient ; ionogram ; earthquake ; acoustic gravity wave ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: This work describes a linear regression based method for highlighting the cuspidal trace on an ionogram. This method was initially thought to smooth out cases in which the autoscaling of the ionogram performed by Autoscala was erroneous because the F2 ordinary ray was identified as the extraordinary ray. Actually the development of this method turned out to also be very useful for filtering out noise and assisting the main algorithm of Autoscala to not be misled by multiple-hop sporadic E layer echoes. Applying the algorithm to different ionograms recorded by different ionosondes showed that the application of this method considerably improved the Autoscala performance. The role that this method plays in the light of existing algorithms is also discussed.
    Description: Published
    Description: 1168-1177
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Autoscala ; Ionograms ; Image filtering ; F2 layer ; Ionosonde ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: A riometer (relative ionospheric opacity meter) measures the intensity of cosmic radio noise at the surface of a planet. When an electromagnetic wave passes through the ionosphere collisions between charged particles (usually electrons) and neutral gases remove energy from the wave. By measuring the received signal intensity at the planet's surface and comparing it to the expected value (the quietday curve) a riometer can deduce the absorption (attenuation) of the trans-ionospheric signal. Thus the absorption measurements provide an indication of ionisation changes occurring in the ionosphere. To avoid the need for orbiting sounders riometers use the cosmic noise background as a signal source. Earth-based systems are not subject to the challenging power, volume and mass restriction that would apply to a riometer for Mars. Some Earth-based riometers utilise phased-array antennas in order to provide an imaging capability.
    Description: Unpublished
    Description: Vienna - Austria
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: Riometer ; Mars ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: The Italian Upper Atmosphere Observatory at polar latitude was firstly established during the Antarctic campaign 1990-1991 to support the telecommunication logistic activity of the National Program for Antarctic Research (PNRA). The Istituto Nazionale di Geofisica e Vulcanologia (INGV), formerly Istituto Nazionale di Geofisica (ING), was involved in this action as the long time experience in HF radar, ionospheric sounding and ionospheric prediction services for radio communication purposes, managing two of the most important and historical ionospheric observatories all over the world: Rome (41.8N, 12.5E) and Gibilmanna (37.9 N, 14.0 E). Since that time, starting from 1993 up to now, several research projects have been carried on focusing on the multi instruments upper atmosphere observations in Arctic and Antarctica with the aim to study the polar ionosphere in different time and space domains, contributing both to the Global Change and to the emerging Space Weather needs. Here we briefly report on the experimental activities as well on the main scientific results obtained highlighting the latest findings in the field of bipolar GNSS (Global Navigation Satellite Systems) ionospheric scintillation measurements and investigation.
    Description: Published
    Description: 183-196
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: N/A or not JCR
    Description: open
    Keywords: ionosfera polare ; scintillazioni ionosferiche ; ionosonda ; osservazioni in Artide e Antartide ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: This paper describes how the joint utilization of autoscaled data such as the F2 peak critical frequency foF2, the propagation factor M(3000)F2 and the electron density profile, coming from two reference ionospheric stations (Rome and Gibilmanna), the regional (SIRMUP) and global (IRI) ionospheric models, can provide a valid tool for obtaining a real-time three-dimensional (3-D) electron density mapping of the ionosphere. Preliminary results of the proposed 3-D model are shown by comparing the electron density profiles given by the model with the ones measured at three testing ionospheric stations (Athens, Roquetes and S.Vito).
    Description: Published
    Description: RS5009
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: IRI ; modeling ; ionogram ; electron density ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP), South Africa using ground-based open path Fourier transform infrared (FTIR) spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O), flaming (CO2) and smoldering (CO, CH4, NH3) processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC) stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE), allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority of the fuel is burned in this stage. Our fire averaged emission ratios and factors for CO2 and CH4 agree well with those from prior studies conducted in the same area using e.g. airborne plume sampling. We also concur with past suggestions that emission factors for formaldehyde in this environment appear substantially underestimated in widely used databases, but see no evidence to support suggestions by Sinha et al. (2003) of a major overestimation in the emission factor of ammonia in works such as Andreae and Merlet (2001) and Akagi et al. (2011). We also measure somewhat higher CO and NH3 emission ratios and factors than are usually reported for this environment, which is interpreted to result from the OP-FTIR ground-based technique sampling a greater proportion of smoke from smouldering processes than is generally the case with methods such as airborne sampling. Finally, our results suggest that the contribution of burning animal (elephant) dung can be a significant factor in the emissions characteristics of certain KNP fires, and that the ability of remotely sensed fire temperatures to provide information useful in tailoring modified combustion efficiency (MCE) and emissions factor estimates maybe rather limited, at least until the generally available precision of such temperature estimates can be substantially improved. One limitation of the OP-FTIR method is its ability to sample only near-ground level smoke, which may limit application at more intense fires where the majority of smoke is released into a vertically rising convection column. Nevertheless, even in such cases the method potentially enables a much better assessment of the emissions contribution of the RSC stage than is typically conducted currently.
    Description: Published
    Description: 11591-11615
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: open
    Keywords: X-ray computed microtomography ; preferred orientation ; texture analysis ; volcanic scoria ; synchrotron X-rays ; pumice ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: The presentation deals with one of the most popular technique to investigate the terrestrial ionosphere: the vertical radio sounding. The basic elements of the radar theory are explained starting from the envelope radar up to more sophisticated techniques of the coded radars. Antennas design elements and problems are highlighted along with the most common solutions. Then the principles of the ionospheric measurements are reported from the ionogram to the ionospheric parameters and to the density profile. A detailed analysis of the ionosonde system installed at Tucumán Ionospheric Observatory, Argentina, is performed.
    Description: Unpublished
    Description: Departamento de Posgrado, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, S. Miguel de Tucumán, Argentina
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: open
    Keywords: Ionograms ; Ionosonde ; Pulse compression ; Radar ; Vertical sounding ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: A series of Power Virtual Height measurements (PVH) of radio echoes reflected from the ionosphere were acquired at a given frequency during the period 3–22 January 2008 with the purpose of studying the slow fading variations through time of the ionospheric channel. To obtain PVH data, an ionospheric vertical sounding system was suitably adapted to work at a single fixed frequency. PVH measurements were recorded between two routine ionospheric vertical soundings, providing a data type that enables evaluation of fading fluctuation through time. The time stability of the ionospheric layers is determined by analyzing the level of the received signal power within a chosen threshold. In this paper the fading behaviour and its characteristics are described, considering only temporal periodicity above 0.5 s. In a further analysis a relation is demonstrated between the recorded fading and the time stability of the signal within a fixed interval of values.
    Description: Published
    Description: 722–729
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: restricted
    Keywords: Ionospheric soundings ; Fading fluctuation ; Time-variant ionospheric channel ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: We analyze data recorded from October 2010 to September 2011, during the ascending phase of the 24th solar cycle, from an Advanced Ionospheric Sounder-Istituto Nazionale di Geofisica e Vulcanologia ionosonde and a GPS Ionospheric Scintillation and total electron content (TEC) monitor scintillation receiver, colocated at low latitude in the Southern American longitudinal sector (Tucumán, 26.9°S, 294.6°E, magnetic latitude 15.5°S, Argentina). The site offers the opportunity to perform spread-F and GPS scintillation statistics of occurrence under the southern crest of the equatorial ionospheric anomaly. Spread-F signatures, classified into four types (strong range spread-F (SSF), range spread-F, frequency spread-F (FSF), and mixed spread-F), the phase and amplitude scintillation index (σΦ and S4, respectively), the TEC, and the rate of TEC parameter, marker of the TEC gradients, that can cause scintillations, are considered. The seasonal behavior results as follows: the occurrence of all four types of spread-F is higher in summer and lower in winter, while the occurrence of scintillations peaks at equinoxes in the postsunset sector and shows a minimum in winter. The correspondence between SSF and scintillations seems to be systematic, and a possible correlation between S4 and FSF peaks is envisaged at the terminator. The investigation focused also on two particular periods, from 12 to 16 March 2011 and from 23 to 29 September 2011, both characterized by the simultaneous presence of SSF signatures and scintillation phenomena, allowing to discuss the role of traveling ionospheric disturbances as a strong candidate causing ionospheric irregularities.
    Description: Published
    Description: 4483–4502
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: restricted
    Keywords: equatorial ionosphere ; scintillation ; spread-F ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC) and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS) ionospheric scintillation and TEC monitor (GISTM) receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions), there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX) will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.
    Description: Published
    Description: R0219
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 1.10. TTC - Telerilevamento
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Total electron content ; Antarctica ; GNSS ; GPS ; Faraday rotation ; Ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: This paper is focused on unusual nighttime impulsive electron density enhancements that are rarely observed at low latitudes on a wide region of South America, under quiet and medium/high geomagnetic conditions. The phenomenon under investigation is very peculiar because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. The phenomenon was studied and analyzed using both the F2 layer critical frequency (foF2) and the virtual height of the base of the F region (h'F) values recorded at five ionospheric stations widely distributed in space, namely: Jicamarca (-12.0°, -76.8°, magnetic latitude -2.0°), Peru; Sao Luis (-2.6°, -44.2°, magnetic latitude +6.2°), Cachoeira Paulista (-22.4°, -44.6°, magnetic latitude -13.4°), and Sao Jose´ dos Campos (-23.2°, -45.9°, magnetic latitude -14.1°), Brazil; Tucumán (-26.9°, -65.4°, magnetic latitude -16.8°), Argentina. In a more restricted region over Tucumán, the phenomenon was also investigated by the total electron content (TEC) maps computed by using measurements from 12 GPS receivers. A detailed analysis of isoheight ionosonde plots suggests that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could play a significant role in causing the phenomenon both for quiet and for medium/high geomagnetic activity; in the latter case however a recharging of the fountain effect, due to electric fields penetrating from the magnetosphere, joins the TID propagation and plays an as much significant role in causing impulsive electron density enhancements.
    Description: Published
    Description: 369-384
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: restricted
    Keywords: Equatorial ionosphere ; Electron density enhancement ; Traveling ionospheric disturbance ; Fountain effect ; TEC ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: Unusual nighttime impulsive electron density enhancements that are rarely observed at low latitudes on a wide region of South America are here investigated. These phenomena are very atypical because besides being of brief duration, they are characterized by a pronounced compression of the ionosphere. The events were studied and analyzed using both the F2 layer critical frequency (foF2) and the lowest virtual height of the ordinary trace of the F region (h'F) values recorded at five ionospheric stations widely distributed in space. A careful analysis of isoheight ionosonde plots suggests that traveling ionospheric disturbances (TIDs) caused by atmospheric gravity wave (AGW) propagation could play a significant role in causing these phenomena, both for quiet and for medium-high geomagnetic activity; in the latter case however a nocturnal recharging of the fountain effect, due to electric fields penetrating from the magnetosphere, plays an as much significant role.
    Description: Published
    Description: 145-154
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: N/A or not JCR
    Description: restricted
    Keywords: Equatorial ionosphere ; Ionosphere/atmospheric interactions ; Magnetic storms, substorms ; Ionosphere/magnetosphere interactions ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: This proceeding describes an applicative software tool, named IONORT (IONOspheric Ray Tracing), for calculating a three-dimensional ray tracing of high frequency waves in the ionospheric medium. This tool runs under Windows operating systems and its friendly graphical user interface facilitates both the numerical data input/output and the two/three-dimensional visualization of the ray path. In order to calculate the coordinates of the ray and the three components of the wave vector along the path as dependent variables, the core of the program solves a system of six first order differential equations, the group path being the independent variable of integration. IONORT uses a three-dimensional electron density specification of the ionosphere, as well as geomagnetic field and neutral particles-electrons collision frequency models having validity in the area of interest.
    Description: ORGANIZZAZIONE: • C.I.S.A.M. Divisione Compatibilità Elettromagnetica • Microwave and Radiation Laboratory - Università di Pisa • Istituto per le Telecomunicazioni e l'Elettronica "Giancarlo Vallauri" del CSSN; PATROCINIO: Stato Maggiore Difesa, Università di Pisa, SegreDifesa, NaviSpelog, IEEE-MTT, Comune di Pisa, Provincia di Pisa, Unione Industrale Pisana; SPONSOR: IDS, Agilent Technologies, Narda-Safety Test Solution, Oto Melara, Selex Elsag, Rohde&Schwarz, Thales, EginSoft, Tektronix, G-Iron, Aldena, No Field S.r.l.- Sati Italia, Microrad, Lepacom.
    Description: Published
    Description: Centro Interforze Studi Applicazioni Militari - C.I.S.A.M., S. Piero a Grado, Pisa, Italia
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: Ray tracing ; Ray path ; Ionospheric models ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-11-04
    Description: A preliminary validation of the technique developed using the NeQuick ionospheric model and the «effective ionization parameter» Az, based on vertical total electron content data ingestion, was carried out in a previous study. The current study was performed to extend the analyzed conditions and confirm the results. The method to validate this technique is based on a comparison between hourly F2 peak values measured with Vertical Incidence (VI) soundings and those calculated with the new technique. Data corresponding to different hours and seasons (equinox, summer solstice, and winter solstice) during the period 2000-2003 (high and medium solar activity conditions) were compared for all available ionosonde stations. The results show a good agreement between foF2 and hmF2 values obtained with the new technique and measurements from vertical incidence soundings during quiet and storms conditions.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: electron density model ; vertical incidence ionograms ; ionospheric data ingestion ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 927413 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-11-04
    Description: A technique to reconstruct the electron density of the ionosphere starting from total electron content values has been developed using the NeQuick ionospheric electron density model driven by its effective ionization parameter Az. The technique is based on the computation of Az values for a suitable worldwide grid of points. A simple way to obtain relevant Az grids is to use global vertical Total Electron Content (TEC) maps to define for each grid point as Az value, the one that minimizes the difference between the experimental and the modeled vertical TEC. Having a global grid of Az values it is possible to compute the electron density at any point in the ionosphere using NeQuick. As a consequence, slant TEC values for specific ground station to satellite links or ionosphere peak parameter values at any location can be calculated. The results of the comparisons between experimental and reconstructed slant TEC as well as experimental and reconstructed peak parameters values indicate that the proposed reconstruction method can be used to reproduce the observed ionosphere in a realistic way.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: ionospheric data ingestion ; electrondensity model ; total electron content ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 646500 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-11-04
    Description: Most GPS users employ low cost receivers. These receivers do not allow users to record the pseudorange that they observe, but the computed coordinates. This work presents an original and simple method to correct ionospheric biases introduced in GPS signals. The originality of this method is based on the fact that no pseudorange is needed to correct the biases, only the calculated coordinates are used. This distinguishes this method from other classic alternatives. This paper evaluates the efficiency of the method with the use of real data.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: GNSS ; Global Positioning System ; singlepoint positioning ; ionospheric biases correction ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 345299 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-11-04
    Description: This paper shows the importance of the F1-layer shape in the electron density profiles obtained from ionograms with different inversion techniques when the profiles are used in ray tracing. This layer often controls the propagation on the path with ranges less than about 2000 km, particularly for spring and summer periods. Ionograms from two different stations, Hainan (19.4N, 109E) and El Arenosillo (37.1N, -6.7E), obtained during the month of July 2002 (average sunspot number: 99.6) during geomagnetic quiet conditions (Ap-index between 9 and 15) are analyzed. The profiles obtained with two different inversion techniques with different options are used together with the ray tracing program of the Proplab-Pro software. This program calculates the features of the received signal as angle of arrival, path length, height of reflection and range for each given profile assumed to define a spherically symmetric ionosphere in the region along the path. For each ionospheric condition (location, day, hour) the difference between range values obtained with Proplab-Pro program using profiles from the two techniques and the different options (POLAN no valley, POLAN valley, POLAN1-layer and NHPC) are considered.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: raytracing ; F1 region ; electron densityprofile ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 601687 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-11-04
    Description: HF-VHF radar techniques are easy to employ and commonly used in geophysical applications. They include deep radio soundings, used for probing the ionosphere, stratosphere-mesosphere measurement, weather forecast and radio-glaciology. Fast algorithms and powerful processors facilitate the development of several kinds of low power radars, but the reduction of the transmitted power has to be compensated by on-line processing of an encoded signal to maintain a favorable signal-to-noise ratio suitable for detection. Moreover, radars have to reconstruct return echoes with different travel times due to various origins (multi-path, adjacent objects, etc.). Such needs can be accomplished by means of signal phase coding and one of the most attractive is the reversal phase code. The composite echo signal must be processed to extract the physical information useful for the measurement considered. In this paper some algorithms used for on-line processing of phase-coded signals will be described, both in time and frequency domain.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: phase-coded radar ; pulse compression ; signal integration ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 277820 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-11-04
    Description: A first analysis of the possibility of interfacing regional and global electron density height profile models, over a buffer zone, was performed considering the results obtained using different models such as IRI 90 (Bilitza, 1990), DGR (Di Giovanni et al., 1992) and RAL MPQ (Dick and Bradley, 1992). The differences ?N ?cm–3 of electron density as a function of altitude between different models were calculated using monthly median experimental data measured at Rome station and values predicted by URSI, STRM (Zolesi et al., 1993) and EOF (Singer and Dvinskikh, 1991) mapping models for the same point. Composite ionograms are used to roughly evaluate the performances of the three models considered.
    Description: JCR Journal
    Description: open
    Keywords: ionosphere ; onospheric modelling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1561817 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-11-04
    Description: A steady-state mathematical model of the Earth's upper ionosphere and plasmasphere is presented. In the model the equations of continuity, momentum, and energy balance for O+, H+, and He+ ions are solved numerically along dipole magnetic field lines. As an extension of the model, a searching method is developed for de- termination of the boundary values in a self-consistent manner. Model results are compared with Atmosphere Explorer satellite measurements.
    Description: JCR Journal
    Description: open
    Keywords: mathematical modelling ; searching method ; comparison with satellite measurements ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5674386 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-11-04
    Description: This paper focuses on the problem of invalid O/X polarization tagging of an ionogram and how this can affect ionogram autoscaling methods. To illustrate this problem, 623 ionograms recorded in March and April 2004 (days 080-105) by the digisonde 256 installed at Learmonth (22.3° S, 114.1° E) were considered. These ionograms, often characterized by very unreliable O/X polarization tagging of the echoes because of unresolved antenna issues, have been autoscaled by both ARTIST 4.2 and Autoscala. Results of comparisons between automatically and manually scaled foF2 data are shown for both programs, considering as acceptable an autoscaled value that lies within 0.5 MHz of the manual value. Autoscala values of foF2 agree with the manually-scaled values for ~99% of ionograms, while ARTIST values of foF2 agree with the manually-scaled values for ~75% of ionograms. While ARTIST was coded on the assumption of valid polarization tagging, the fact remains that it produces invalid results when equipment issues cause invalid tagging. Autoscaling procedures that do not use the polarization tagging will generally work better than ARTIST in such cases. However, these other procedures are susceptible to failure in other situations.
    Description: Published
    Description: 597-607
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Ionospheric Monitoring ; Ionograms ; ARTIST ; Autoscala ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-02-24
    Description: Ionospheric TEC (total electron content) variations derived from GPS measurements recorded at 7 GPS stations in Northern, Central and Southern Italy before and after the 2009 Abruzzo earthquake (EQ) of magnitude Mw6.3 were processed and analyzed. The analysis included interpolated and non-interpolated TEC data. Variations in the TEC of both regional and local characteristics were revealed. Several regional changes were observed in the studied period: 1 January–21 April 2009. After analyzing non-interpolated TEC data of 5 GPS stations in Central Italy (Unpg (Perugia), Untr (Terni), Aqui (Aquila), M0se (Rome) and Paca (Palma Campania, (Naples)), a local disturbance of TEC was also found. This local TEC disturbance arises preparatory to the EQ main shock occurred at 01:32 UT on 06 April 2009, maximizes its amplitude of ~0.8 TECu after the shock moment and disappears after it. The local TEC disturbance was confined at heights below 160 km, i.e. in the lower ionosphere.
    Description: Published
    Description: 243–258
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: open
    Keywords: GPS measurements ; Total electron content (TEC) ; TEC disturbance ; Lower ionosphere ; Earthquake shock ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-11-04
    Description: The present study concentrates on the effects on the ionosphere of an individual severe magnetic Storm of the Sudden Commencement (SSC)type,with SSC taking place in the daytime hours.The storm started on 29 October 1968 and went on to 2 November 1968 with geomagnetic 3-hourly magnetic activity index reaching values of Kp 7. Interplanetary magnetic field polarities included A (field polarity Away from the solar wind)positive and T (field polarity Towards the solar wind)negative polarities.In these conditions,the local response of true height of F-region (hF) ionization fails nonlinearly from fixed plasma densities.The interplanetary B z ,the magnetic field H - component and K p were examined for the 5 days following the sudden commencement.Due to intensive geomagnetic SC effects,the lower and upper limits of the F -regions were unbalanced because of gravity relaxation and solar wind pressure effects,until normal levels were restored.In the F -layer 70%deviations of critical frequencies (f 0 F )from median values,as well as hF level variations reaching hundreds of kilometers,were observed and were responsible for the destruction of communication channels.With a plasmapause location value L =1.6 and with K p 7 the protonosphere reservoir should take 1.1 days for its replenishment;one day was in fact insufficient for a full plasma recovery.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: geomagnetic activity ; ionospheric positive storm ; neutral gas concentration excess ; radio reception ; ring current ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 106210 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-11-04
    Description: A new digital ionosonde called AIS-INGV (Advanced Ionospheric Sounder) was designed both for research and for routine service of HF radio wave propagation forecast. Nearly the entire system was developed in the Laboratorio di Geofisica Ambientale at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome. It exploits advanced techniques for signal analysis, recent technological devices and PC resources. This paper describes design concepts and performance of the new ionosonde.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: ionosonde ; pulse compression ; phase coherent integration ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1298929 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Publication Date: 2019-11-04
    Description: Following an investigation on the calibration of Faraday Rotation measurements by the slab thickness method, several interesting results have been obtained concerning the limits of application of TEC data in f0F2 modelling at middle latitudes.
    Description: JCR Journal
    Description: open
    Keywords: Ionosphere ; total electron content ; F0F2 modelling ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2764620 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-11-04
    Description: The Earth's ionosphere largely determines space weather effects on radio wave communications, navigation and surveillance systems. Lately there has been an increasing demand for ionospheric nowcast and accurate forecast services by various groups of users, including European industry. The paper reviews research activities in Europe based on the exploitation of real-time ground digisondes for the provision of nowcasting and forecasting ionospheric space weather information and useful products and services to support operational applications. During the last few years, important progress in databasing, modelling and forecasting ionospheric disturbances based on real-time data from ground digisondes was achieved in the frames of COST Action 271 «Effects of the Upper Atmosphere on Terrestrial and Earth-Space Communications». Further developments are expected to be deployed with the new COST Action 724 on «Developing the basis for monitoring, modelling and predicting space weather», as well as through the Space Weather Pilot Project of the European Space Agency and through projects funded by the European Commission programmes.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: ionosphere ; ionospheric nowcasting ; ionospheric forecasting ; space weather ; ionogram scaling ; digisonde ; ionospheric monitoring networks ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1597215 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-11-04
    Description: The Total Electron Content (TEC) is used to indicate the ionisation of the ionosphere. TEC is a quantity that concern for predicting space weather effects on telecommunications, improving the accuracy of satellite navigation, fly control vehicles and other systems that use transionospheric signals, because the ionospheric layer affects the mentioned signals. In this work the Slant Total Electron Content (STEC) was calculated with a technique that uses so-called «auxiliaries stations model», and a Chapman layer with scale height equal to atomic oxygen scale height (CHO). The validity was checked with STEC measurements obtained from geosynchronous satellite signals, for SIRIO-Mortelliccio link considering solstices and equinox, in high solar activity period. In general, the deviations between predictions and measurements were lower than 30% for 16 h per day (average). The results suggest that additional studies for other links and solar activity are required in order to improve the model predictions.
    Description: JCR Journal
    Description: open
    Keywords: Total Electron Content ; ionosphere ; space weather ; satellite ; scale height ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 243714 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-11-04
    Description: Using the international ground-based network of two-frequency receivers of the GPS navigation system provides a means of carrying out a global, continuous and fully-computerized monitoring of phase fluctuations of signals from satellite-borne radio engineering systems caused by the Earth's inhomogeneous and nonstationary ionosphere. We found that during major geomagnetic storms, the errors of determination of the range, frequency Doppler shift and angles of arrival of transionospheric radio signals exceeds that for magnetically quiet days by one order of magnitude as a minimum. This can be the cause of performance degradation of current satellite radio engineering navigation, communication and radar systems as well as superlong-baseline radio interferometry systems.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: total electron content ; GPS ; transionospheric radiochannel ; geomagnetic disturbances ; space weather ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2863308 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-11-04
    Description: In 2007 several events were organized to celebrate the fiftieth anniversary of the International Geophysical Year (IGY, 1957-1958). The celebrations will last until 2009 and are taking place within different contexts: the International Polar Year (IPY), the International Heliophysical Year (IHY), the electronic Geophysical Year (eGY) and the International Year of Planet Earth (IYPE). IGY offered a very appropriate and timely occasion to undertake a series of coordinated observations of various geophysical phenomena all over the globe. Italy took part in the broad international effort stimulated by IGY. In fact, Italy participated in observations and studies in many of the proposed scientific areas, in particular Geomagnetism and Aeronomy. The Istituto Nazionale di Geofisica (ING) started the installation of observatories, and updated and ensured continuous recording of geophysical observations. Geomagnetism, ionospheric physics, seismology, and other geophysical disciplines, were advanced. Although much of the work was undertaken in Italy, some attention was also devoted to other areas of the world, in particular Antarctica, where Italy participated in seismological observations. This paper gives a summary of the Geomagnetism and Ionospheric Physics activities within IGY. Furthermore, we highlight the importance of this historical event and its outcomes for the improvement of geophysical observations and the post-IGY growth of scientific investigations in Italy.
    Description: Published
    Description: 127 - 135
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: IGY ; Geomagnetism ; Aeronomy ; History of Geophisics ; Italy ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous ; 01. Atmosphere::01.03. Magnetosphere::01.03.06. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-11-04
    Description: A wideband HF simulator has been constructed that is based on a detailed physical model. It can generate an output giving a time realization of the HF wideband channel for any HF carrier frequency and bandwidth and for any given transmitter receiver path, time of day, month and year and for any solar activity/geomagnetic conditions. To accomplish this, a comprehensive solution has been obtained to the problem of HF wave propagation for the most general case of a 3D inhomogeneous ionosphere with time-varying electron density fluctuations. The solution is based on the complex phase method (Rytov s method), which has been extended to the case of an inhomogeneous medium and a point source of the field. Results of simulation obtained according to the technique developed have been presented, calculated for a single-hop path 1000 km long oriented to the south from St. Petersburg and including a horizontal electron density gradient present in the IRI model used as the basis of the ionosphere model. The fluctuations of the ionospheric electron density were characterized by an inverse power law anisotropic spatial spectrum. For this model, the random walk of the phasor at the receiver is determined and shown both for paths reflected in the E- and Fregions, being significantly larger for the latter. The oblique sounding ionogram is constructed and reveals three propagation modes: the E-mode and low and high angle F-mode paths. The time-varying field due to each of these paths is then summed at the receiving location enabling the calculation of the scattering function and also the time realization of the received signal shown as a function of both fast and slow time. This is performed both with and without the presence of the geomagnetic field; in the former case the splitting of the F2-mode into both e- and o-modes is seen. It is also shown how the scattering function can be obtained from the time realization of the channel in a way akin to experimental determination of the scattering function from channel measurements. Results from the simulations show the very significant effect of irregularities of even modest magnitude and the comparative effects due to background ionosphere dispersion and the fluctuating irregularities as well as geomagnetic mode splitting. Since the simulator is based on a physical model, it should be possible by comparison of experimental results and simulation to identify the correspondence between physical parameters (e.g., the variance and anisotropy of the electron density fluctuations, orientation of the propagation path to the magnetic meridian, bulk ionosphere motions) with observed channel parameters (e.g., Doppler spread and shift, time delay spread).
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 917997 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-11-04
    Description: Electron content statistics offers important information for planning and operation of various application systems that make use of the transionospheric propagation of radio signals. Electron content statistics meet with an important difficulty: the majority of data stem from observations on the radio signals of orbiting satellites. The database for vertical electron content derived from observations of radio signals emitted from geostationary satellites is only very small. Therefore it is important to make use of statistics for peak density from ionosonde measurements. Quantile statistics do not contain information about ionization extremes. Therefore it is necessary to complement the statistics with case studies which reveal unusual and extreme electron content structures in space and in time.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1721173 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-11-04
    Description: The Total Electron Content (TEC) of the ionosphere is a key parameter for describing the ionospheric state. This paper deals with the large scale behaviour of TEC under low and high solar activity conditions. Large scale structures of the plasma density are formed by fundamental ionospheric processes mainly driven by solar radiation input, neutral winds and electric fields. The monitoring of large scale structures contributes to a comprehensive understanding of these coupling mechanisms which are rather complex particularly under perturbed geomagnetic conditions. The paper addresses techniques to monitor TEC with sufficient accuracy of a few TEC units (1016m-2) to measure large scale structures over Europe and over the polar areas. The availability of GPS data from global GPS receiver networks as e.g., those from the International GPS Service (IGS) is dense enough to generate TEC maps on a continuous base. A model assisted technique is briefly described for mapping TEC over the European and polar areas. A statistical estimation of horizontal TEC gradients reveals large scale gradients of up to about 6 TECU/1000 km under high solar activity conditions at an occurrence probability level of about 1%. Occasionally, during severe ionospheric storms this value may increase by a factor of 10 or even more. A close correlation of large scale gradients and the geomagnetic activity has been found giving the chance to forecast TEC gradient amplitudes by using predicted geomagnetic indices. Since TEC is proportional to first-order range errors in Global Satellite Navigation Systems (GNSS) such as the US GPS and the Russian GLONASS the study of the behaviour of this parameter has a practical meaning in GNSS based navigation and positioning. The paper addresses the close relationship between TEC and ranging errors in GNSS. Having in view Galileo, the planned Europes own global satellite navigation system, some aspects related to the mitigation of ionospheric propagation errors within the European Geostationary Navigation Overlay System (EGNOS) are discussed. Since EGNOS will augment the two above mentioned satellite navigation systems and make them suitable for safety critical applications such as flying aircraft or navigating ships through narrow channels the ionospheric propagation errors have to be mitigated as much as possible.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4503667 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-11-04
    Description: The aim of this paper is to present a high data rate transmission system through the ionospheric channel in the HF-band (3-30 MHz). The applications expected in this study are image transmitting and real-time videoconferencing. Very high rates are required compared to the standard modems. Therefore, an array processing is performed with a set of antennas whose spatial response differs from one another arranged in a circular array or in a collocated sensor. Synchronization (Zero Crossing Detector) and source separation (LMS algorithm) resort to classical well-tested techniques involving training sequences. Experimental results are presented for both antenna configurations. These techniques improve data rate, reaching 20 kbits/s within the 6 kHz bandwidth (QAM 64) without coding or interleaving.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1944645 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: Radar technology has for a long time used various systems that allow detection under high-resolution conditions, while emitting at the same time low peak power. Among these systems, transmitted pulse encoding by means of biphasic codes has been used for the advanced ionospheric sounder that was developed by the AIS-INGV ionosonde. In the receiving process, suitable decoding of the signal must be accomplished. This can be achieved in both the time and the frequency domains. Focusing on the time domain, different approaches are possible. In this study, two of these approaches have been compared, using data acquired by the AIS-INGV and processed by means of software tools (mainly Mathcad©). The analysis reveals the differences under both noiseless and noisy conditions, although this does not allow the conclusive establishment as to which method is better, as each of them has benefits and drawbacks.
    Description: Published
    Description: 1-11
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: JCR Journal
    Description: open
    Keywords: Complementary code ; Correlation ; Pulse compression ; Ionosphere ; Radar ; Time domain ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: The joint utilization of autoscaled data such as the F2 peak critical frequency foF2, the propagation factor M(3000)F2 and the electron density profile, coming from two reference ionospheric stations (Rome and Gibilmanna), the regional (SIRMUP) and global (IRI) ionospheric models, can provide a valid tool for obtaining a real-time three-dimensional (3-D) electron density mapping of the ionosphere. Preliminary results of the proposed 3-D model are shown by comparing the vertical electron density profiles given by the model with the ones measured at three testing ionospheric stations (Athens, Roquetes and S.Vito). Mostly at the solar terminator the vertical electron density profile extracted from the proposed 3-D model is more representative of the real conditions of the ionosphere than the electron density profile extracted from the IRI-URSI model. Additional tests are planned for geomagnetically disturbed periods, considering more than two reference ionospheric stations, and by using a new oblique-incidence ionospheric sounding campaign between Rome (41.8° N, 12.5°E) and Chania, Greece (35.7°N, 24.0°E), in order to compare the results from radio path measurements with those obtained by the ray tracing technique applied to the real-time 3D pictures of the ionosphere specified by the new developed tool.
    Description: Science & Tecnology Facilities Council, Istituto Nazionale di Geofisica e Vulcanologia.
    Description: Submitted
    Description: Hermanus, South Africa.
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: Autoscaled data ; Regional and local ionospheric models ; Real-time 3-D IRI modeling ; Oblique-incidence ionospheric sounding ; Ray tracing technique ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: Arrays of GPS Ionospheric Scintillation and TEC Monitors (GISTMs) are used in a comparative scintillation study focusing on quasi-conjugate pairs of GPS receivers in the Arctic and Antarctic. Intense GPS phase scintillation and rapid variations in ionospheric total electron content (TEC) that can result in cycle slips were observed at high latitudes with dual-frequency GPS receivers during the first significant geomagnetic storm of solar cycle 24 on 5–7 April 2010. The impact of a bipolar magnetic cloud of north-south (NS) type embedded in high speed solar wind from a coronal hole caused a geomagnetic storm with maximum 3-hourly Kp = 8- and hourly ring current Dst =−73 nT. The interhemispheric comparison of phase scintillation reveals similarities but also asymmetries of the ionospheric response in the northern and southern auroral zones, cusps and polar caps. In the nightside auroral oval and in the cusp/cleft sectors the phase scintillation was observed in both hemispheres at about the same times and was correlated with geomagnetic activity. The scintillation level was very similar in approximately conjugate locations in Qiqiktarjuaq (75.4° N; 23.4° E CGM lat. and lon.) and South Pole (74.1° S; 18.9° E), in Longyearbyen (75.3° N; 111.2° E) and Zhongshan (74.7° S; 96.7° E), while it was significantly higher in Cambridge Bay (77.0° N; 310.1° E) than at Mario Zucchelli (80.0° S; 307.7° E). In the polar cap, when the interplanetary magnetic field (IMF) was strongly northward, the ionization due to energetic particle precipitation was a likely cause of scintillation that was stronger at Concordia (88.8° S; 54.4° E) in the dark ionosphere than in the sunlit ionosphere over Eureka (88.1° N; 333.4° E), due to a difference in ionospheric conductivity. When the IMF tilted southward, weak or no significant scintillation was detected in the northern polar cap, while in the southern polar cap rapidly varying TEC and strong phase scintillation persisted for many hours. This interhemispheric asymmetry is explained by the difference in the location of solar terminator relative to the cusps in the Northern and Southern Hemisphere. Solar terminator was in the immediate proximity of the cusp in the Southern Hemisphere where sunlit ionospheric plasma was readily convected into the central polar cap and a long series of patches was observed. In contrast, solar terminator was far poleward of the northern cusp thus reducing the entry of sunlit plasma and formation of dense patches. This is consistent with the observed and modeled seasonal variation in occurrence of polar cap patches. The GPS scintillation and TEC data analysis is supported by data from ground-based networks of magnetometers, riometers, ionosondes, HF radars and all-sky imagers, as well as particle flux measurements by DMSP satellites.
    Description: Published
    Description: 2287-2304
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Ionosphere (Ionospheric irregularities) ; Magnetospheric physics (Storms and substorms) ; Radio science (Space and satellite communication) ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Cambridge
    Publication Date: 2017-04-04
    Description: The Istituto Nazionale di Geosifica e Vulcanologia (INGV) software for automatic scaling of ionograms (Autoscala) was improved by introducing a system to identify D region absorption events, spread-F condition (frequency spreading in the F region), and Z-ray propagation. The algorithm was applied to a series of ionograms recorded by the AIS-INGV (Advanced Ionospheric Sounder-INGV) ionosonde installed at the Mario Zucchelli Station (74.78S, 164.18E), Terra Nova Bay, Antarctica. Critical cases are shown to illustrate the behaviour of the software.
    Description: Published
    Description: 88-94
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Autoscala ; instrument and techniques ; ionospheric irregularities ; polar ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-03
    Description: L’acquisizione di specifiche competenze nel Laboratorio di Geofisica Ambientale ha consentito all’inizio degli anni 2000 lo sviluppo della nuova ionosonda digitale AIS (Advanced Ionospheric Sounder). Il successo di quel progetto, unitamente al desiderio di migliorarne alcune limitazioni, hanno spinto verso la progettazione di una nuova ionosonda: AIS-2. L’intento è anche in questo caso quello di sviluppare lo strumento in ambito INGV, limitando al massimo l’acquisto di parti all’esterno. Rispetto alla prima ionosonda, nella nuova le prestazioni che si desidera migliorare sono: semplificazione del maggior numero possibile di funzioni, usando soluzioni circuitali più semplici, compatte e versatili, estensione delle prestazioni hardware, miglioramento delle prestazioni del software e del DSP, predisposizione funzioni completamente nuove. Questo rapporto tecnico descrive il progetto della nuova ionosonda a livello di sistema; per questo motivo non si entra in dettagli tecnici sulla progettazione delle singole sezioni componenti; ad ogni modo, dato che molte di esse si trovano ad un avanzato stato di realizzazione, sono anche descritti alcuni schemi a blocchi di alcune sezioni componenti.
    Description: Published
    Description: 1-36
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: N/A or not JCR
    Description: open
    Keywords: ionosonda digitale ; analisi doppler ; dinamica ; ionogramma ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-03
    Description: The paper describes a new simple method of calculation by which an artificial ionogram trace is obtained from a given vertical electron density profile. The method is discussed in terms of the target function method used by Autoscala to output a reliable estimation of the real vertical electron density profile associated to the recorded ionogram. This new approach solves the issue of the pole in the calculation of virtual height, and consequently eliminates all the divergence phenomena that sometimes characterized the artificial ionogram traces computed by Autoscala. In contrast to the POLAN procedure, the technique introduced in this paper to pass from true to virtual heights is not based on any arithmetical operation related to changes of integration variables. Since the target function method on which Autoscala is based requires that the passage from a vertical electron density profile to an artificial ionogram be repeated a very large number of times, this new calculation procedure is advantageous in terms of speeding up the associated processing time.
    Description: Published
    Description: RS1007
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: restricted
    Keywords: ionogram trace ; true height analysis ; vertical electron dendity profile ; virtual height ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-03
    Description: INGV
    Description: Published
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: reserved
    Keywords: GPS ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-04-04
    Description: We present the results of a comparative study of spread-F signatures over five low-latitude sites: Chiangmai (CGM; 18.8 N, 98.9 E, mag. Lat. 8.8 N), Thailand; Tanjungsari(TNJ; 6.9 S, 107.6 E, mag. Lat. 16.9 S), Indonesia; Palmas (PAL; 10.2 S, 311.8 E, mag. Lat. 0.9 S) and São José Dos Campos (SJC; 23.2 S, 314.1 E, mag. Lat. 14.0 S), Brazil; and Tucumán (TUC; 26.9 S, 294.6 E, mag. Lat. 16.8 S), Argentina. The investigation was based on simultaneous ionograms recorded by an FMCW (frequency modulated continuous-wave) at CGM, an IPS-71 (digital ionosonde from KEL aerospace) at TNJ, a CADI (Canadian Advanced Digital Ionosonde) at PAL and SJC, and an AIS-INGV (Advanced Ionospheric Sounder – Istituto Nazionale di Geofisica e Vulcanologia) at TUC, during the equinoctial periods March–April (R12 = 2.0 and R12 = 2.2) and September–October (R12 = 6.1 and R12 = 7.0) 2009, for very low solar activity. Spread-F signatures were categorized into two types: the range spread-F (RSF) and the frequency spread-F (FSF). The study confirms that the dynamics and the physical processes responsible for these phenomena are actually complicated. In fact, the features that arise from the investigation are different, depending on both the longitude sector and on the hemisphere. For instance, TUC, under the southern crest of the ionospheric equatorial ionization anomaly (EIA), shows a predominance of RSF signatures, while both SJC, under the southern crest of EIA but in a different longitude sector, and CGM, under the northern crest of EIA, show a predominance of FSF signatures. Moreover, the spread-F occurrence over the longitude sector that includes CGM and TNJ is significantly lower than the spread-F occurrence over the longitude sector of PAL, SJC, and TUC.
    Description: Published
    Description: 153-162
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: ionosphere ; Equatorial ionosphere ; Ionospheric irregularities ; Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: This work shows how new capabilities can emerge from a massive statistical analysis of previously overlooked autoscaled data. In particular, the paper shows how autoscaling methods for vertical ionograms, specifically Autoscala, can offer a new kind of data that are not currently available at World Data Center or elsewhere and not reported by manual ionogram scalers. In this context, an example of such new analyses is the presentation of a statistics of occurrence of the double reflection phenomenon that sometimes characterizes ionograms. In order to establish this original statistics, a method developed to smooth out a specific autoscaling problem was utilized, and a large data set of ionograms recorded from 2003 to 2008 by the AIS-INGV ionosondes installed at the ionospheric stations of Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy, was analyzed. The main results that emerged from the study are hence illustrated and briefly discussed.
    Description: Published
    Description: 43-49
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Autoscaling system ; Statistical analysis ; Ionogram ; Autoscala ; Mid-latitude ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-04-04
    Description: The paper reviews the current state of GNSS-based detection, monitoring and forecasting of ionospheric perturbations in Europe in relation to the COST action ES0803 ‘‘Developing Space Weather Products and Services in Europe’’. Space weather research and related ionospheric studies require broad international collaboration in sharing databases, developing analysis software and models and providing services. Reviewed is the European GNSS data basis including ionospheric services providing derived data products such as the Total Electron Content (TEC) and radio scintillation indices. Fundamental ionospheric perturbation phenomena covering quite different scales in time and space are discussed in the light of recent achievements in GNSS-based ionospheric monitoring. Thus, large-scale perturbation processes characterized by moving ionization fronts, wave-like travelling ionospheric disturbances and finally small-scale irregularities causing radio scintillations are considered. Whereas ground and space-based GNSS monitoring techniques are well developed, forecasting of ionospheric perturbations needs much more work to become attractive for users who might be interested in condensed information on the perturbation degree of the ionosphere by robust indices. Finally, we have briefly presented a few samples illustrating the space weather impact on GNSS applications thus encouraging the scientific community to enhance space weather research in upcoming years.
    Description: Published
    Description: A22
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: N/A or not JCR
    Description: restricted
    Keywords: ionosphere ; space weather ; total electron content ; disturbances ; positioning system ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-04-03
    Description: Il sistema CUMAS (Cabled Underwater Module for Acquisition of Seismological data) è un prodotto tecnologico-scientifico complesso nato con il Progetto V4 [Iannaccone et al., 2008] allo scopo di monitorare l’area vulcanica dei Campi Flegrei (fenomeno del bradisismo). Si tratta di un modulo sottomarino cablato e connesso a una boa galleggiante (meda elastica). Il sistema è in grado di acquisire e trasmettere alla sala di monitoraggio dell’OV, in continuo e in tempo reale, sia i segnali sismologici sia quelli di interesse geofisico ed oceanografico (maree, correnti marine, segnali acustici subacquei, parametri funzionali di varia natura). Il sistema è in grado di ricevere comandi da remoto per variare diversi parametri di acquisizione e di monitorare un cospicuo numero di variabili di funzionamento. Il sistema si avvale del supporto di una boa galleggiante attrezzata. La boa è installata a largo del golfo di Pozzuoli (Napoli) a circa 3 km dalla costa. Il modulo sottomarino, collegato via cavo alla parte fuori acqua della boa, è installato sul fondale marino a una profondità di circa 100 metri.
    Description: Submitted
    Description: 82-85
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: N/A or not JCR
    Description: open
    Keywords: Monitoraggio sismico; sistemi sottomarini; boa; meda elastica ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.01. Atmosphere::01.01.06. Thermodynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and composition ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous ; 01. Atmosphere::01.03. Magnetosphere::01.03.01. Interplanetary physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms ; 01. Atmosphere::01.03. Magnetosphere::01.03.03. Magnetospheric physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics ; 01. Atmosphere::01.03. Magnetosphere::01.03.05. Solar variability and solar wind ; 01. Atmosphere::01.03. Magnetosphere::01.03.06. Instruments and techniques ; 02. Cryosphere::02.01. Permafrost::02.01.99. General or miscellaneous ; 02. Cryosphere::02.01. Permafrost::02.01.01. Active layer ; 02. Cryosphere::02.01. Permafrost::02.01.02. Cryobiology ; 02. Cryosphere::02.01. Permafrost::02.01.03. Cryosol ; 02. Cryosphere::02.01. Permafrost::02.01.04. Periglacial processes ; 02. Cryosphere::02.01. Permafrost::02.01.05. Seasonally frozen ground ; 02. Cryosphere::02.01. Permafrost::02.01.06. Thermokarst ; 02. Cryosphere::02.01. Permafrost::02.01.07. Tundra ; 02. Cryosphere::02.01. Permafrost::02.01.08. Instruments and techniques ; 02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous ; 02. Cryosphere::02.02. Glaciers::02.02.01. Avalanches ; 02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction ; 02. Cryosphere::02.02. Glaciers::02.02.03. Geomorphology ; 02. Cryosphere::02.02. Glaciers::02.02.04. Ice ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance ; 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction ; 02. Cryosphere::02.02. Glaciers::02.02.08. Rock glaciers ; 02. Cryosphere::02.02. Glaciers::02.02.09. Snow ; 02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques ; 02. Cryosphere::02.03. Ice cores::02.03.99. General or miscellaneous ; 02. Cryosphere::02.03. Ice cores::02.03.01. Aerosols ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 02. Cryosphere::02.03. Ice cores::02.03.03. Climate Indicators ; 02. Cryosphere::02.03. Ice cores::02.03.04. Ice Core Air Bubbles ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 02. Cryosphere::02.03. Ice cores::02.03.06. Precipitation ; 02. Cryosphere::02.03. Ice cores::02.03.07. Teleconnection ; 02. Cryosphere::02.03. Ice cores::02.03.08. Temperature ; 02. Cryosphere::02.03. Ice cores::02.03.09. Instruments and techniques ; 02. Cryosphere::02.04. Sea ice::02.04.99. General or miscellaneous ; 02. Cryosphere::02.04. Sea ice::02.04.01. Atmosphere/sea ice/ocean interaction ; 02. Cryosphere::02.04. Sea ice::02.04.02. Leads ; 02. Cryosphere::02.04. Sea ice::02.04.03. Polynas ; 02. Cryosphere::02.04. Sea ice::02.04.04. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.99. General or miscellaneous ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.02. Equatorial and regional oceanography ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 03. Hydrosphere::03.02. Hydrology::03.02.01. Channel networks ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.99. General or miscellaneous ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.04. Upper ocean and mixed layer processes ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.01. Dynamo theory ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.02. Data dissemination::05.02.05. Collections ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.06. Methods::05.06.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-04-04
    Description: Numerical solutions for signal processing are described in this work as acontribution to study of echo detection methods for ionospheric sounder design. The ionospheric sounder is a high frequency radar for geophysical applications. The main detection approach has been done by implementing the spread-spectrum techniques using coding methods to improve the radar’s range resolution by transmitting low power. Digital signal processing has been performed and the numerical methods were checked. An algorithm was proposed and its computational complexity was calculated. The proposed detection process combines two channels correlations with the local code and calculates threshold (Vt) by statistical evaluation of the background noise to design a detection algorithm. The noisy signals treatment was performed depending on the threshold and echo amplitude. In each case, the detection was improved by using coherent integration. Synthetic signals, close loop and actual echoes, obtained from the Advanced Ionospheric Sounder (AIS-INGV) at Rome Ionospheric Observatory, were used to verify the process. The results showed that, even in highly noisy environments, the echo detection is possible. Given that these are preliminary results, further studies considering data sets corresponding to other geophysical conditions are needed.
    Description: Published
    Description: 1870–1877
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: restricted
    Keywords: HF radar echo detection ; Ionospheric virtual height determination ; Time domain signal processing ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-04
    Description: We present an algorithm for the identification of trace characteristics of oblique ionograms allowing determination of the Maximum Usable Frequency (MUF) for communication between the transmitter and receiver. The algorithm automatically detects and rejects poor quality ionograms. We performed an exploratory test of the algorithm using data from a campaign of oblique soundings between Rome, Italy (41.90 N, 12.48 E) and Chania, Greece (35.51 N, 24.01 E) and also between Kalkarindji, Australia (17.43 S, 130.81 E) and Culgoora, Australia (30.30 S, 149.55 E). The success of these tests demonstrates the applicability of the method to ionograms recorded by different ionosondes in various helio and geophysical conditions.
    Description: Published
    Description: 1624-1629
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: partially_open
    Keywords: Ionosphere ; Electron density ; Oblique ionograms ; MUF ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-04-04
    Description: Il presente lavoro descrive lo stato di avanzamento del progetto della ionosonda AIS-2, già descritto nel Rapporto Tecnico [Sciacca, Baskaradas, 2012]. Rispetto alla versione ivi riportata sono stati compiuti vari interventi migliorativi, specialmente nella direzione di una semplificazione ed unione delle funzioni di alcune delle schede previste inizialmente. Parallelamente all’adeguamento del progetto sono state costruite e collaudate alcune delle schede componenti ed il presente rapporto tecnico descrive in dettaglio il loro progetto e collaudo, che ha avuto un sostanziale esito positivo.
    Description: Published
    Description: 1-36
    Description: 2A. Fisica dell'alta atmosfera
    Description: N/A or not JCR
    Description: open
    Keywords: ionosonda digitale ; ionogramma ; collaudo ricevitore ; scheda acquisizione ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-04
    Description: We propose a new parameter for quality evaluation of ionogram traces reconstructed by Autoscala. This parameter efficiently assesses the reliability of the automatic interpretation of ionospheric characteristics. Based on an extensive analysis of the data, the parameter values are statistically associated with the accuracy of foF2 data automatically scaled by Autoscala. Therefore, Autoscala will be improved by providing foF2 accuracy as supplementary output information.
    Description: Published
    Description: 2316-2321
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: restricted
    Keywords: Ionogram; Ionosonde; Automatic scaling; Ionospheric monitoring ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-04
    Description: It is well known that the ionosphere affects radio wave propagation especially in the high frequency (HF) range. HF radio waves reflected by the ionosphere can reach considerable distances, often with changes in amplitude, phase, and frequency. The ionosphere is a dispersive in frequency and time, bi-refractive, absorbing medium, in which multipath propagation due to traveling irregularities is very frequent. The traveling irregularities undulate the reflecting ionospheric layer, introducing variations in signal amplitude (fading). In this multipath time variant channel fading is mainly considered, even though it is not the sole effect. Echo signals from a single reflection, as in ionospheric vertical sounding (VIS) techniques, are affected by a certain degree of variability even in quiet ionospheric conditions. In this work the behavior of the ionospheric channel is studied and characterized by observing the power variation of received echoes using the VIS technique. Multipath fading was analyzed quantifying the power variation of the signal echo due to irregularities on a temporal scale from 0.5 to 256 s. An experimental set-up derived from an ionosonde was implemented and the analysis was performed employing a special numerical algorithm operating off-line on the acquired time sequence of the signal. The gain-loss of the irregularity shapes are determined in some special cases.
    Description: Published
    Description: 403-411
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: restricted
    Keywords: Fading fluctuation; ; Multipath time-variant channel ; Ionospheric irregularities ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-04-04
    Description: The three-dimensional (3-D) electron density representation of the ionosphere computed by the assimilative IRI-SIRMUP-P (ISP) model was tested using IONORT (IONOspheric Ray-Tracing), a software application for calculating a 3-D ray-tracing for high frequency (HF) waves in the ionospheric medium. A radio link was established between Rome (41.8°N, 12.5°E) in Italy, and Chania (35.7°N, 24.0°E) in Greece, within the ISP validity area, and for which oblique soundings are conducted. The ionospheric reference stations, from which the autoscaled foF2 and M(3000)F2 data and real-time vertical electron density profiles were assimilated by the ISP model, were Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E) in Italy, and Athens (38.0°N, 23.5°E) in Greece. IONORT was used, in conjunction with the ISP and the International Reference Ionosphere (IRI) 3-D electron density grids, to synthesize oblique ionograms. The comparison between synthesized and measured oblique ionograms, both in terms of the ionogram shape and the maximum usable frequency characterizing the radio path, demonstrates both that the ISP model can more accurately represent real conditions in the ionosphere than the IRI, and that the ray-tracing results computed by IONORT are reasonably reliable.
    Description: Published
    Description: 167–179
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: Electron Density ; Ray-Tracing ; Oblique Ionogram ; IRI ; Assimilative Modelling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-04
    Description: When applying the ray tracing in ionospheric propagation, the electron density modelling is the main input of the algorithm, since phase refractive index strongly depends on it. Also the magnetic field and frequency collision modelling have their importance, the former as responsible for the azimuth angle deviation of the vertical plane containing the radio wave, the latter for the evaluation of the absorption of the wave. Anyway, the electron density distribution is strongly dominant when one wants to evaluate the group delay time characterizing the ionospheric propagation. From the group delay time, azimuth and elevation angles it is possible to determine the point of arrival of the radio wave when it reaches the Earth surface. Moreover, the procedure to establish the target (T) position is one of the essential steps in the Over The Horizon Radar (OTHR) techniques which require the correct knowledge of the electron density distribution. The group delay time generally gives rough information of the ground range, which depends on the exact path of the radio wave in the ionosphere. This paper focuses on the lead role that is played by the variation of the electron density grid into the ray tracing algorithm, which is correlated to the change of the electron content along the ionospheric ray path, for obtaining a ray tracing as much reliable as possible. In many cases of practical interest, the group delay time depends on the geometric length and the electron content of the ray path. The issue is faced theoretically, and a simple analytical relation, between the variation of the electron content along the path and the difference in time between the group delays, calculated and measured, both in the ionosphere and in the vacuum, is obtained and discussed. An example of how an oblique radio link can be improved by varying the electron density grid is also shown and discussed.
    Description: Published
    Description: 1630-1639
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: partially_open
    Keywords: Ionospheric ray tracing ; Electron density model ; Ray path correction ; Electron content ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...