ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2009-12-07
    Description: This paper describes the first evaluation of the quality of the forecast and analyses produced at the basin scale by the Mediterranean ocean Forecasting System (MFS) (http://gnoo.bo.ingv.it/mfs). The system produces short-term ocean forecasts for the following ten days. Analyses are produced weekly using a daily assimilation cycle. The analyses are compared with independent data from buoys, where available, and with the assimilated data before the data are inserted. In this work we have considered 53 ten days forecasts produced from 16 August 2005 to 15 August 2006. The forecast skill is evaluated by means of root mean square error (rmse) differences, bias and anomaly correlations at different depths for temperature and salinity, computing differences between forecast and analysis, analysis and persistence and forecast and persistence. The Skill Score (SS) is defined as the ratio of the rmse of the difference between analysis and forecast and the rmse of the difference between analysis and persistence. The SS shows that at 5 and 30 m the forecast is always better than the persistence, but at 300 m it can be worse than persistence for the first days of the forecast. This result may be related to flow adjustments introduced by the data assimilation scheme. The monthly variability of SS shows that when the system variability is high, the values of SS are higher, therefore the forecast has higher skill than persistence. We give evidence that the error growth in the surface layers is controlled by the atmospheric forcing inaccuracies, while at depth the forecast error can be interpreted as due to the data insertion procedure. The data, both in situ and satellite, are not homogeneously distributed in the basin; therefore, the quality of the analyses may be different in different areas of the basin.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-06-15
    Description: A new numerical general circulation ocean model for the Mediterranean Sea has been implemented nested within an Atlantic general circulation model within the framework of the Marine Environment and Security for the European Area project (MERSEA, Desaubies, 2006). A 4-year twin experiment was carried out from January 2004 to December 2007 with two different models to evaluate the impact on the Mediterranean Sea circulation of open lateral boundary conditions in the Atlantic Ocean. One model considers a closed lateral boundary in a large Atlantic box and the other is nested in the same box in a global ocean circulation model. Impact was observed comparing the two simulations with independent observations: ARGO for temperature and salinity profiles and tide gauges and along-track satellite observations for the sea surface height. The improvement in the nested Atlantic-Mediterranean model with respect to the closed one is particularly evident in the salinity characteristics of the Modified Atlantic Water and in the Mediterranean sea level seasonal variability.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-10-26
    Description: A new numerical general circulation ocean model for the Mediterranean Sea has been implemented nested within an Atlantic general circulation model within the framework of the Marine Environment and Security for the European Area project (MERSEA, Desaubies, 2006). A 4-year twin experiment was carried out from January 2004 to December 2007 with two different models to evaluate the impact on the Mediterranean Sea circulation of open lateral boundary conditions in the Atlantic Ocean. One model considers a closed lateral boundary in a large Atlantic box and the other is nested in the same box in a global ocean circulation model. Impact was observed comparing the two simulations with independent observations: ARGO for temperature and salinity profiles and tide gauges and along-track satellite observations for the sea surface height. The improvement in the nested Atlantic-Mediterranean model with respect to the closed one is particularly evident in the salinity characteristics of the Modified Atlantic Water and in the Mediterranean sea level seasonal variability.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-02-22
    Description: This paper describes a first comprehensive evaluation of the quality of the ten days ocean forecasts produced by the Mediterranean ocean Forecasting System (MFS). Once a week ten days forecasts are produced. The forecast starts on Tuesday at noon and the prediction is released on Wednesday morning with less then 24 hr delay. In this work we have considered 22 ten days forecasts produced from the 16 August 2005 to the 10 January 2006. All the statistical scores have been done for the Mediterranean basin and for 13 regions in which the Mediterranean sea has been subdivided. The forecast evaluation is given here in terms of root mean square (rms) values. The main skill score is computed as the root mean square of the difference between forecast and analysis (FA) and forecast and persistence (FP), where the persistence is defined as the average of the day of the analysis corresponding to the first day of the forecast. A second skill score (SSP) is defined as the ratio between rms of FA and FP, giving the percentage of accuracy of the forecast with respect to the persistence (Murphy 1993). The rms of FA is always better than FP and the FP rms error is double than the rms of FA. It is found that in the surface layers the error growth is controlled mainly by the atmospheric forcing inaccuracies while at depth the forecast errors could be due to adjustments of the data assimilation scheme to the data insertion procedure. The predictability limit for our ocean forecast seems to be 5–6 days connected to atmospheric forcing inaccuracies and to the data availability for assimilation.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-02-26
    Description: This study describes a new model implementation for the Mediterranean Sea which has the presently highest vertical resolution over the Mediterranean basin. The resolution is of 1/16°×1/16° in horizontal and 71 unevenly spaced vertical levels. This model has been developed in the frame of the EU-MFSTEP project and it is the operational forecast model presently used at the basin scale. For the first time in the Mediterranean, the model considers an implicit free surface and this characteristics enhances the model capability to simulate the sea surface height variability. In this study we show the calibration/validation experiments done before and after the model has been used for forecasting. The first experiment consist of six years of a simulation forced by a perpetual year forcing and the other experiment is a simulation from January 1997 to December 2004, forcing the model with 6 h atmospheric forcing fields from ECMWF. For the first time the model Sea Level Anomaly is compared with SLA and with ARGO data to provide evidence of the quality of the simulation. The results show that this model is capable to reproduce most of the variability of the general circulation in the Mediterranean Sea even if some basic model inadequacies stand out and should be corrected in the near future.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-11-22
    Description: This study presents the upgrade of the Optimal Interpolation scheme used in the basin scale assimilation scheme of the Mediterranean Forecasting System. The modifications include a daily analysis cycle, the assimilation of ARGO float profiles, the implementation of the geostrophic balance in the background error covariance matrix and the initialisation of the analyses. A series of numerical experiments showed that each modification had a positive impact on the accuracy of the analyses: The daily cycle improved the representation of the processes with a relatively high temporal variability, the assimilation of ARGO floats profiles significantly improved the salinity analyses quality, the geostrophically balanced background error covariances improved the accuracy of the surface elevation analyses, and the initialisation removed the barotropic adjustment in the forecast first time steps starting from the analysis.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-03-08
    Description: This study presents the upgrade of the Optimal Interpolation scheme used in the basin scale assimilation scheme of the Mediterranean Forecasting System. The modifications include a daily analysis cycle, the assimilation of ARGO float profiles, the implementation of the geostrophic balance in the background error covariance matrix and the initialisation of the analyses. A series of numerical experiments showed that each modification had a positive impact on the accuracy of the analyses: The daily cycle improved the representation of the processes with the temporal variability shorter than a week, the assimilation of ARGO floats profiles significantly improved the salinity analyses quality, the geostrophically balanced background error covariances improved the accuracy of the surface elevation analyses, and the initialisation removed the barotropic adjustment in the forecast first time steps starting from the analysis.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-01-31
    Description: This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP). The assimilation scheme, System for Ocean Forecast and Analysis (SOFA), is a reduced order Optimal Interpolation (OI) scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF). The data assimilated are Sea Level Anomaly (SLA) and temperature profiles from Expandable Bathy Termographs (XBT). The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT). The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS) between the model forecast and the analysis (the forecast RMS) is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS) is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements. Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-01-24
    Description: This study describes a new model implementation for the Mediterranean Sea with what is currently the highest vertical resolution over the Mediterranean basin. The resolution is of 1/16°×1/16° in the horizontal and has 72 unevenly spaced vertical levels. This model has been developed in the frame of the EU-MFSTEP project and is the operational forecast model currently used at the basin scale. The model considers an implicit free surface and this characteristic enhances the model's capability to simulate the sea surface height variability and the net transport at the Strait of Gibraltar. In this study we show the calibration/validation experiments performed before and after the model was used for forecasting. The first experiment consists of a six-year simulation forced by a perpetual year forcing, and the other experiment is a simulation from January 1997 to December 2004, forcing the model with 6-h atmospheric forcing fields from ECMWF. The model Sea Level Anomaly has been compared for the first time with satellite SLA and with ARGO data to provide evidence of the quality of the simulation. The results show that this model is capable of reproducing most of the variability of the general circulation in the Mediterranean Sea. However, some basic model inadequacies stand out and should be corrected in the near future.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...