ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:549  (9)
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
  • 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring
  • 04.03. Geodesy
  • Springer Berlin Heidelberg  (12)
  • Copernicus  (6)
  • EGU  (2)
  • Elsevier B.V. on behalf of KeAi Communications Co., Ltd
  • Institute of Electrical and Electronics Engineers (IEEE)
Collection
Keywords
Publisher
Language
  • 1
    Publication Date: 2020-09-07
    Description: This study presents and discusses horizontal and vertical geodetic velocities for a low strain rate region of the south Alpine thrust front in northeastern Italy obtained by integrating GPS, interferometric synthetic aperture radar (InSAR) and leveling data. The area is characterized by the presence of subparallel, south-verging thrusts whose seismogenic potential is still poorly known. Horizontal GPS velocities show that this sector of the eastern Southern Alps is undergoing ∼1 mm a−1 of NW–SE shortening associated with the Adria–Eurasia plate convergence, but the horizontal GPS velocity gradient across the mountain front provides limited constraints on the geometry and slip rate of the several subparallel thrusts. In terms of vertical velocities, the three geodetic methods provide consistent results showing a positive velocity gradient, of ∼ 1.5 mm a−1, across the mountain front, which can hardly be explained solely by isostatic processes. We developed an interseismic dislocation model whose geometry is constrained by available subsurface geological reconstructions and instrumental seismicity. While a fraction of the measured uplift can be attributed to glacial and erosional isostatic processes, our results suggest that interseismic strain accumulation at the Montello and the Bassano–Valdobbiadene thrusts it significantly contributing to the measured uplift. The seismogenic potential of the Montello thrust turns out to be smaller than that of the Bassano–Valdobbiadene fault, whose estimated parameters (locking depth equals 9.1 km and slip rate equals 2.1 mm a−1) indicate a structure capable of potentially generating a Mw〉6.5 earthquake. These results demonstrate the importance of precise vertical ground velocity data for modeling interseismic strain accumulation in slowly deforming regions where seismological and geomorphological evidence of active tectonics is often scarce or not conclusive.
    Description: Published
    Description: 1681–1698
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Southern Alps ; Vertical Velocities ; GPS and InSAR integration ; Interseismic Deformation ; Dislocation Model ; Seismic Potential ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to 10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from 10 000 μg/m3 at 0.1 km from Etna’s vents down to 7 μg/m3 at 10 km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.
    Description: Published
    Description: 11653–11680
    Description: open
    Keywords: tropospheric processing ; volcanic gas plumes ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from –48 to 29,000 (38 sites) and from –20 to 1100 mg/mˆ2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 mˆ2. At Nisyros measurements covered the Stephanos and Kaminakia areas, which represent only a part of the entire degassing area. The two areas show very different methane degassing pattern with latter showing much higher flux values. Methane output can be estimated in about 0.25 t/a from an area of about 30,000 mˆ2 at Stephanos and about 1 t/a from an area of about 20,000 mˆ2 at Kaminakia. The total output from the entire geothermal system of Nisyros probably should not exceed 2 t/a.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: methane output ; diffuse degassing ; volcanic/hydrothermal systems ; Greece ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10,000 μg/m3 at 0.1 km from Etna’s vents down to ~7 _μg/m3 at ~10km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.
    Description: Published
    Description: 1441-1450
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; volcanic gas plumes ; tropospheric processing ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR) data are used. The ash particles within the plume with effective radii from 1 to 10μm reduce the Top Of Atmosphere (TOA) radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7μm SO2 absorption bands, and the split window bands centered around 11 and 12μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Spin Enhanced Visible and Infrared Imager (SEVIRI) measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD) procedures, respectively. The simulated TOA radiance Look-Up Table (LUT) needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure underestimates the ash correction compared with the more time consuming but more accurate correction procedure. Such underestimation is greater for instruments having better ground pixel resolution, i.e. greater for MODIS than for SEVIRI.
    Description: Published
    Description: 177–191
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: N/A or not JCR
    Description: open
    Keywords: volcanic ash retrieval ; volcanic so2 retrieval ; ash correction ; remote sensing ; MODIS ; SEVIRI ; Etna volcano ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-05
    Description: The analysis of Global Positioning System (GPS) coordinates time series is a valuable tool in quantifying crustal deformations. The longer continuous GPS time series allow estimation of nonlinear signatures. As a matter of fact, besides the linear and periodic behaviors, other relevant signals are present in such time series as the so-called transient deformations. They can be related to, e.g., slow slip events, which play a crucial role in studying fault mechanisms. To give reliable estimates of these signals, an appropriate and rigorous approach for defining the deterministic and the stochastic models of the data is needed. We prove that the theory of the second order stationary random process (SOSRP) can be used to describe the stochastic behavior of the daily GPS time series. In particular, the second order stationarity condition has to be verified for the daily GPS coordinate time series to be described as a SOSRP. This method has been already used for modeling the gravity field of the earth and in predicting/filtering problems, and this work shows that it can also be useful for characterizing the colored noise in the GPS time series.
    Description: Published
    Description: id 86
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GPS ; time series ; Stationary stochastic process ; Auto-covariance function ; Power law spectrum ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-01
    Description: Geodesy, Geodynamics and Tectonics of the Italian Peninsula
    Description: We present a dense crustal velocity field and corresponding strain-rate pattern computed using Global Positioning System (GPS)- Global Navigation Satellite System (GNSS) data from several hundred permanent stations in the Italian Peninsula. GPS data analysis is based on the GAMIT/GLOBK 10.6 software, which was developed and maintained mainly by Massachusetts Institute of Technology (MIT), using tools based on the distributed-sessions approach implemented in this package. The GPS data span the period from January 2008 to December 2012 and come from several different permanent GPS networks in Italy. The GLOBK package implemented in the last version of the GAMIT package is used to compute the position time-series and velocities registered in the International Terrestrial Reference Frame (ITRF) 2008. The resulting high-density intra-plate velocity field provides indications of the tectonics of the Mediterranean region. A computation of the strain-rate pattern from GPS data is performed and compared with the map of the epicentral locations of historical earthquakes that occurred in the last 1000 years in the Italian territory, showing that, in general, higher crustal deformation rates are active in regions affected by seismicity of greater magnitude.
    Description: Published
    Description: 303-316
    Description: 7T. Struttura della Terra e geodinamica
    Description: N/A or not JCR
    Keywords: GPS ; Strain Rate ; Distributed Sessions ; Tectonics ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Elsevier B.V. on behalf of KeAi Communications Co., Ltd
    Publication Date: 2018-03-01
    Description: Geodynamics of the Calabrian Arc, Geodesy, Tectonics, Strain Rate.
    Description: The tectonics and geodynamics of the Calabria region are presented in this study. These are inferred by precise computation of Global Navigation Satellite Systems (GNSS) permanent station velocities in a stable Eurasian reference framework. This allowed computation of the coordinates, variance and covariance matrixes, and horizontal and vertical velocities of the 36 permanent sites analyzed, together with the strain rates, and using different techniques. Interesting geodynamic phenomena are presented, including compressional, and deformational fields in the Tyrrhenian coastal sites of Calabria, extensional trends of the Ionian coastal sites, and sliding movement of the Crotone Basin. Conversely, on the northern Tyrrhenian side of the network near the Cilento Park area, the usual extensional tectonic perpendicular to the Apennine chain is observed. The largescale pattern of the GNSS height velocities is shown, which is characterized by general interesting geodynamic vertical effects that appear to be due to geophysical movement and anthropic activity. Finally, the strain-rate fields computed through three different techniques are compared.
    Description: Published
    Description: 76-86
    Description: 7T. Struttura della Terra e geodinamica
    Description: N/A or not JCR
    Keywords: Global Navigation Satellite Systems (GNSS) ; Geodesy ; Geodynamics ; Calabrian Arc ; Strain Rate ; Tectonics ; Reference Frame ; Network Adjustment ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-06-23
    Description: The Rum Layered Suite, NW Scotland, hosts Cr-spinel seams at the bases of peridotite–troctolite macro-rhythmic units in the eastern portion of the intrusion. Here, we present detailed field observations together with microstructural and mineral chemical analyses for the Unit 7–8 Cr-spinel seam and associated cumulates in the Eastern Layered Intrusion. Detailed mapping and sampling reveal significant lateral variations in the structural characteristics and mineral compositions of the Unit 7–8 boundary zone rocks. Although the Cr-spinel seam is laterally continuous over ~ 3 km, it is absent towards the centre and the margins of the intrusion. The compositional characteristics of Cr-spinel and plagioclase vary systematically along strike, exhibiting a chemical evolution towards more differentiated compositions with increasing distance from the main feeder conduit of the Rum intrusion; the Long Loch Fault. On the basis of our combined datasets, we propose that the upper part of the troctolite, the anorthosite layer underlying the Cr-spinel seam and the seam itself formed during a multi-stage magma replenishment event. The stages can be summarised as follows: (1) peridotite schlieren and anorthosite autoliths formed following melt infiltration and cumulate assimilation in the crystal mush of the Unit 7 troctolite. (2) The anorthosite layer then formed from the Unit 7 troctolite crystal mush by thermal erosion and dissolution due to infiltrating magma. (3) Subsequent dissolution of the anorthosite layer by new replenishing magma led to peritectic in situ crystallisation of the Unit 7–8 Cr-spinel seam, with (4) continued magma input eventually producing the overlying Unit 8 peridotite. In the central part of the Rum Layered Suite, the aforementioned assimilation of the troctolitic footwall formed the anorthosite layer. However, the absence of anorthosite in close proximity to the Long Loch Fault can be explained by enhanced thermochemical erosion close to the feeder zone, and its absence close to the margins of the intrusion, at maximum distance from the Long Loch Fault, may be due to cooling of the magma and loss of erosion potential. In line with other recent studies on PGE-bearing chromitites in layered intrusions, we highlight the importance of multi-stage intrusive magma replenishment to the formation of spatially coupled anorthosite and Cr-spinel seams, as well as the lateral mineral chemical variations observed in the Unit 7–8 boundary zone cumulates.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:549 ; Mineralogy ; Cr-spinel seam
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Volante, S. ; Collins, W. J. ; Blereau, E. ; [et al.]
    Springer Berlin Heidelberg
    Publication Date: 2023-06-23
    Description: Accessory mineral thermometry and thermodynamic modelling are fundamental tools for constraining petrogenetic models of granite magmatism. U–Pb geochronology on zircon and monazite from S-type granites emplaced within a semi-continuous, whole-crust section in the Georgetown Inlier (GTI), NE Australia, indicates synchronous crystallisation at 1550 Ma. Zircon saturation temperature (Tzr) and titanium-in-zircon thermometry (T(Ti–zr)) estimate magma temperatures of ~ 795 ± 41 °C (Tzr) and ~ 845 ± 46 °C (T(Ti-zr)) in the deep crust, ~ 735 ± 30 °C (Tzr) and ~ 785 ± 30 °C (T(Ti-zr)) in the middle crust, and ~ 796 ± 45 °C (Tzr) and ~ 850 ± 40 °C (T(Ti-zr)) in the upper crust. The differing averages reflect ambient temperature conditions (Tzr) within the magma chamber, whereas the higher T(Ti-zr) values represent peak conditions of hotter melt injections. Assuming thermal equilibrium through the crust and adiabatic ascent, shallower magmas contained 4 wt% H2O, whereas deeper melts contained 7 wt% H2O. Using these H2O contents, monazite saturation temperature (Tmz) estimates agree with Tzr values. Thermodynamic modelling indicates that plagioclase, garnet and biotite were restitic phases, and that compositional variation in the GTI suites resulted from entrainment of these minerals in silicic (74–76 wt% SiO2) melts. At inferred emplacement P–T conditions of 5 kbar and 730 °C, additional H2O is required to produce sufficient melt with compositions similar to the GTI granites. Drier and hotter magmas required additional heat to raise adiabatically to upper-crustal levels. S-type granites are low-T mushes of melt and residual phases that stall and equilibrate in the middle crust, suggesting that discussions on the unreliability of zircon-based thermometers should be modulated.
    Description: Centre of Excellence for Core to Crust Fluid Systems, Australian Research Council http://dx.doi.org/10.13039/100012537
    Description: Ruhr-Universität Bochum (1007)
    Keywords: ddc:549 ; Zircon and monazite thermometry ; Water content ; Granitic melts ; Complete crustal section ; Phase equilibria diagrams
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-07-20
    Description: The major-element chemical composition of garnet provides valuable petrogenetic information, particularly in metamorphic rocks. When facing detrital garnet, information about the bulk-rock composition and mineral paragenesis of the initial garnet-bearing host-rock is absent. This prevents the application of chemical thermo-barometric techniques and calls for quantitative empirical approaches. Here we present a garnet host-rock discrimination scheme that is based on a random forest machine-learning algorithm trained on a large dataset of 13,615 chemical analyses of garnet that covers a wide variety of garnet-bearing lithologies. Considering the out-of-bag error, the scheme correctly predicts the original garnet host-rock in (i) 〉 95% concerning the setting, that is either mantle, metamorphic, igneous, or metasomatic; (ii) 〉 84% concerning the metamorphic facies, that is either blueschist/greenschist, amphibolite, granulite, or eclogite/ultrahigh-pressure; and (iii) 〉 93% concerning the host-rock bulk composition, that is either intermediate–felsic/metasedimentary, mafic, ultramafic, alkaline, or calc–silicate. The wide coverage of potential host rocks, the detailed prediction classes, the high discrimination rates, and the successfully tested real-case applications demonstrate that the introduced scheme overcomes many issues related to previous schemes. This highlights the potential of transferring the applied discrimination strategy to the broad range of detrital minerals beyond garnet. For easy and quick usage, a freely accessible web app is provided that guides the user in five steps from garnet composition to prediction results including data visualization.
    Description: deutsche forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Georg-August-Universität Göttingen (1018)
    Description: http://134.76.17.86:443/garnetRF/
    Keywords: ddc:549 ; Garnet major-element composition ; Database ; Host-rock discrimination ; Machine-learning ; Provenance ; Web app
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-07-04
    Description: The phase relations of iron-rich olivine and its high-pressure polymorphs are important for planetary science and meteoritics because these minerals are the main constituents of terrestrial mantles and meteorites. The olivine–ahrensite binary loop was previously determined by thermochemical calculations in combination with high-pressure experiments; however, the transition pressures contained significant uncertainties. Here we determined the binary loop of the olivine–ahrensite transition in the (Mg,Fe)2SiO4 system at 1740 K in the pressure range of 7.5–11.2 GPa using a multi-anvil apparatus with the pressure determined using in situ X-ray diffraction, compositional analysis of quenched run products, and thermochemical calculation. Based on the determined binary loop, a user-friendly software was developed to calculate pressure from the coexisting olivine and ahrensite compositions. The software is used to estimate the shock conditions of several L6-type chondrites. The obtained olivine–ahrensite phase relations can also be applied for precise in-house multi-anvil pressure calibration at high temperatures.
    Description: BMBF
    Description: H2020 European Research Council http://dx.doi.org/10.13039/100010663
    Description: Deutsches Elektronen-Synchrotron (DESY) (4201)
    Keywords: ddc:549 ; Experimental ; Olivine ; Ahrensite ; Phase transition ; Thermobarometry ; Meteorites
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-06-14
    Description: Textures and whole-rock chemistry, as well as mineral composition, were analyzed in megaspherulites (high-temperature crystallization domains [HTCDs]) that formed in different geographical and geotectonic contexts and during different geological periods (Silver Cliff, CO, USA—Paleogene; El Quevar, Argentina—Miocene; Meissen Volcanic Complex, Germany—Late Carboniferous). All of these megaspherulites have formed exclusively in rhyolitic lava, and their mineral composition is dominated by K-feldspar (sanidine) and SiO2 phases (quartz, cristobalite, tridymite). All megaspherulites represent composite HTCDs, comprising three zones: inner domain (ID), outer domain (OD), and a marginal domain (MD). Early evolution of megaspherulites is characterized by either central cavities and sector- to full-sphere spherulites or dendritic quartz-sanidine domains. The latter consist of bundles of fibrils each radiating from a single point reflecting relatively high growth rates. A common feature of OD and MD of all three megaspherulite occurrences is autocyclic banding. It mainly comprises fibrous (≤ 100 μm length), radially oriented sanidine and quartz, which formed at a temperature close to glass transition temperature (Tg). The termination of megaspherulite growth is marked by centimeter-sized sector-sphere spherulites on the surface. Megaspherulite formation requires limited nucleation, which is probably related to the low phenocryst content of the hosting lava. Latent heat from overlying crystallizing lithoidal rhyolite maintained low undercooling conditions keeping nucleation density low and facilitating high diffusion and growth rates. Late megaspherulite growth and its termination under low diffusion conditions is controlled by cooling close to Tg. Calculations based on literature data suggest that the megaspherulite growth presumably lasted less than 60 years, perhaps 30 to 40 years.
    Keywords: ddc:549 ; Rhyolitic lava ; SEM ; CL ; XRD ; EPMA ; Cristobalite ; Tridymite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-06-20
    Description: Aufgrund deutlich erhöhter Wärmebedarfsdichten urbaner Räume besteht in besonderem Maße hier die Möglichkeit und Erfordernis, durch eine nachhaltige Wärmeversorgung und saisonale Wärmespeicherung im geologischen Untergrund einen wesentlichen Beitrag zu den national und international gesetzten Klimaschutzzielen zu liefern. Eine effiziente Möglichkeit zur Wärmegewinnung und -speicherung bieten hierfür Erdwärmesonden, die jedoch aus Gründen des vorbeugenden Grundwasserschutzes in Bereichen der Trinkwassernutzung heutzutage meist nicht oder nur beschränkt genehmigt werden. Numerische Simulationen einer Erdwärmesondenleckage für Randbedingungen eines zur Trinkwassergewinnung genutzten norddeutschen Aquifers auf Grundlage von aufgearbeiteten stoffspezifischen Abbauratenkonstanten zeigen, dass Grenzwerte für die meisten handelsüblichen Wärmeträgerfluid-Inhaltsstoffe bereits bei einem Abstand von nur 100 m zwischen Erdwärmesonde und Trinkwasserentnahme aufgrund starker Verdünnung und mikrobiellen Abbaus mit einem Faktor 〉 10 unterschritten werden. Vor dem Hintergrund dieser Ergebnisse und angesichts der Zielsetzung einer Reduktion fossiler Primärenergiequellen um 80–95 % bis 2050, erscheinen pauschale Abstandsvorgaben (von zurzeit 〉 1000 m) daher zumindest hinsichtlich der Trinkwassergefährdung durch Erdwärmesondenleckagen diskussionswürdig.
    Description: Christian-Albrechts-Universität zu Kiel (3094)
    Keywords: ddc:549 ; Borehole heat exchanger ; Heat transfer fluids ; Additives ; Groundwater ; Risk assessment
    Language: German
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-07-19
    Description: Hydrothermally altered rhyolite rocks in the Permian Donnersberg Formation of a geothermal borehole in the Northern Upper Rhine Graben (Germany) were investigated to find out answers for the low hydraulic conductivity of the rocks. The composition of clay minerals and the temperature of smectite–illite transformation were carried out using X-ray diffraction, X-ray fluorescence, transmission electron microscopy, Fourier transform infrared spectroscopy, and polarized-light microscopy analyses. Clay mineral (CM) composition includes illite/muscovite (1M and 2M1 polytypes), illite–smectite interstratifications (IS-ml), smectite, and chlorite; and non-clay minerals such as quartz, feldspars, epidote, calcite, dolomite, and hematite were detected. The 2M1-polytype mica might be the only primary sheet silicates from the parent rocks, while the others occur as authigenic neo-formed CMs under heat flow and geothermal gradient. The development of CMs indicates different mechanisms of illitization and smectitization. Based on the texture, morphology, structure/polytype, and chemistry of rocks and minerals, in particular CMs, the study grouped the CM formation into three transformation processes: smectitization during magma cooling and possible contact metamorphisms with decreasing and low temperature, smectite illitization controlled by burial diagenesis and hydrothermal alteration, and illite smectitization followed exhumation and Cenozoic subsidence with decreasing temperature. The rhyolites were altered to all of the orders IS-R0, IS-R1, and IS-R3 by the dissolution-precipitation and layer-to-layer mechanisms. The first one supported small xenomorphic plates and flakes of 1Md, elongated particles of 1M, and pseudo-hexagonal forms of 2M1. The second one could lead to the platy particles of 1Md and 2M1 polytypes. The dominant temperature range for the transformation in the area has been 140–170 °C– ~ 230 °C.
    Description: Technische Universität Darmstadt (3139)
    Keywords: ddc:549 ; Geothermal borehole ; Clay mineral ; Smectite illitization ; Thermal gradient ; Upper Rhine Graben ; Donnersberg Formation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-08-17
    Description: The St. Elias orogen and the Surveyor Fan in the adjacent Gulf of Alaska are a coupled source to sink system recording the interplay of tectonics and variable degrees of glaciation during the collision of the Yakutat terrane with the southern Alaska margin since the Miocene. The Miocene to Holocene sediments of the Surveyor Fan were drilled during IODP expedition 341. The recovered material is used to constrain information on changes in erosion centers during the last 10 Ma to study the impact of climatic and tectonic processes on orogen evolution. Point counting of sand- and silt-sized light framework components and geochemical single grain analysis of heavy mineral groups epidote and pyroxene is applied to analyze patterns of sedimentary provenance of two sites on the distal and proximal Surveyor Fan (Site U1417 and U1418, respectively). The studied sands and silts of Miocene to Pleistocene age are slightly enriched in feldspar (plag 〉〉 kf) at the proximal site, compositions at both sites do not show systematical changes with time of deposition. Framework component spectra uniformly reflect the expected active margin provenance. Epidote and pyroxene compositions are very consistent and show no change with time of deposition. Associations of epidote and pyroxene with albite, titanite and pumpellyite are in line with near-shore sources in the Chugach Metamorphic Complex and the metabasite belt at its southern border, and in units of recycled detritus exposed in the fold and thrust belt on the western Yakutat Terrane, respectively. Rock fragments indicate input from mainly metamorphic sources during the Miocene and Pliocene and an increase of input from low-grade metamorphic and sedimentary rocks in the Pleistocene, a finding also indicated by the abundance of epidote and pyroxene. This implies increasing erosion of the near-shore areas of the fold and thrust belt with advance of glaciers to the shore since the Miocene, being enhanced by the onset of the Northern Hemisphere glaciation at the beginning of the Pleistocene. Climate changes connected to the mid-Pleistocene transition did not result in appreciable changes in the petrographic compositions. Glaciers seem to have remained nested in their topographically predefined positions, continuously feeding material with uniform characteristics into the fan.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Westfälische Wilhelms-Universität Münster (1056)
    Keywords: ddc:549 ; Alaska ; Provenance ; Framework components ; Pyroxene ; Epidote ; Climate–tectonic interactions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-12
    Description: Spinifex-textured olivine plates hosted in sulfides are usually named “interspinifex ore” in komatiite-hosted sulfide deposits. This ore type is rare but provides important genetic information on sulfide deposits, komatiite volcanology and thermomechanical erosion processes. Occurrences in Victor South-McLeay and Moran South (Kambalda, Western Australia) differ significantly from previously reported occurrences in their stratigraphic location, position within the ore profile and textural appearance. Thus, their formation process has to be reconsidered. Interspinifex ore reported here is situated in the lower portion of the basal lava flow between massive and net-textured sulfides in the centre of the embayment and between massive sulfides and older basalt in a “pinchout” where the sulfides melted sideways into older basalt on the embayment edge. Interspinifex ore is composed of up to 10-cm-long aggregates of parallel plates in the upper portion of massive sulfides and is overlain by barren komatiite. The texture does not allow for a classic single explanation. Thus, two possible formation mechanisms are envisaged: (1) A younger komatiite melt intrudes into its own olivine and sulfide liquid cumulate pile, while the sulfides are still liquid. The injection on top of the sulfides causes the formation of an emulsion, from which the spinifex forms due to the temperature gradient between the melts. (2) Interspinifex ore is a relic of an early komatiite flow formed in a series of successive pulses of komatiite and sulfide liquid. The spinifex of the komatiite is invaded by a younger batch of sulfide liquid replacing interstitial silicate melt.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:549 ; Interspinifex ore ; Kambalda ; Komatiite-hosted Ni sulfide deposit ; Emulsion ; Sulfide infiltration
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-05-09
    Description: Abstract A geochemical survey of fumarolic and submerged gases from fluid discharges located in the Nea Kameni and Palea Kameni islets (Santorini Island, Greece) was carried out before, during, and after the unrest related to the anomalously high seismic and ground deformation activity that affected this volcanic system since January 2011. Our data show that from May 2011 to February 2012, the Nea Kameni fumaroles showed a significant increase of H2 concentrations. After this period, an abrupt decrease in the H2 contents, accompanied by decreasing seismic events, was recorded. A similar temporal pattern was shown by the F−, Cl−, SO4 2−, and NH4 + concentrations in the fumarolic condensates. During the sharp increase of H2 concentrations, when values up to 158 mmol/ mol were measured, the δ13C–CO2 values, which prior to January 2011 were consistent with a dominant CO2 thermometamorphic source, have shown a significant decrease, suggesting an increase of mantle CO2 contribution. Light hydrocarbons, including CH4, which are controlled by chemical reactions kinetically slower than H2 production from H2O dissociation, displayed a sharp increase in March 2012, under enhanced reducing conditions caused by the high H2 concentrations of May 2011–February 2012. The general increase in light hydrocarbons continued up to July 2012, notwithstanding the contemporaneous H2 decrease. The temporal patterns of CO2 concentrations and N2/Ar ratios increased similarly to that of H2, possibly due to sealing processes in the fumarolic conduits that diminished the contamination related to the entrance of atmospheric gases in the fumarolic conduits. The compositional evolution of the Nea Kameni fumaroles can be explained by a convective heat pulse from depth associated with the seismic activation of the NE–SW-oriented Kameni tectonic lineament, possibly triggered by either injection of new magma below Nea Kameni island, as apparently suggested by the evolution of the seismic and ground deformation activity, or increased permeability of the volcanic plumbing system resulting from the tectonic movements affecting the area. The results of the present study demonstrate that the geophysical and geochemical signals at Santorini are interrelated and may be precursory signals of renewed volcanic activity and encourage the development of interdisciplinary monitoring program to mitigate the volcanic risk in the most tourist-visited island of the Mediterranean Sea.
    Description: Published
    Description: 711
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Santorini Island . ; Fluid geochemistry ; Geochemical monitoring ; Seismic crisis ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-05-09
    Description: Lake Albano (Alban Hills volcanic complex, Central Italy) is located in a densely populated area near Rome. The deep lake waters have significant dissolved CO2 concentrations, probably related to sub-lacustrine fluid discharges fed by a pressurized CO2-rich reservoir. The analytical results of geochemical surveys carried out in 1989 2010 highlight the episodes of CO2 removal from the lake. The total mass of dissolved CO2 decreased from ∼5.8× 107 kg in 1989 to ∼0.5×107 kg in 2010, following an exponential decreasing trend. Calculated values of both dissolved inorganic carbon and CO2 concentrations along the vertical profile of the lake indicate that this decrease is caused by CO2 release from the epilimnion, at depth 〈9 m, combined with (1) water circulation at depth 〈95 m and (2) CO2 diffusion from the deeper lake layers. According to this model, Lake Albano was affected by a large CO2 input that coincided with the last important seismic swarm at Alban Hills in 1989, suggesting an intimate relationship between the addition of deep-originated CO2 to the lake and seismic activity. In the case of a CO2 degassing event of an order of magnitude larger than the one that occurred in 1989, the deepest part of Lake Albano would become CO2-saturated, resulting in conditions compatible with the occurrence of a gas outburst. These results reinforce the idea that a sudden CO2 input into the lake may cause the release of a dense gas cloud, presently representing the major volcanic threat for this densely populated area
    Description: Published
    Description: 861-871
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Crater lakes ; Limnic eruption ; CO2 outburst ; Lake Albano ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...