ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean currents  (76)
  • 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
  • Bacteria
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (81)
  • Lagos (Nigeria)  (6)
  • Istituto Nazionale di Geofisica e Vulcanologia  (5)
  • American Chemical Society
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    FISON | Lagos (Nigeria)
    In:  http://aquaticcommons.org/id/eprint/24208 | 19325 | 2018-05-19 06:39:34 | 24208 | Fisheries Society of Nigeria
    Publication Date: 2021-07-15
    Description: The microbial load of four different fish species from five different market locations in Ibadan metropolis were determined using standard microbiological procedures. The bacteria count of fish sampled from Ojo market was the highest while the bacteria count of the fish sample from Bodija market was the lowest. There was no significant difference (p〈0.05) in the microbial load of the fish sampled from various market locations in Ibadan metropolis. Similarly, there was no significant difference (p〉0.05) in the microbial load on various fish species sold in Ibadan metropolis. The isolated bacteria from the study were: E. coli, Salmonella spp, Klebsiella spp, Staphylococcus aureus, Aerosomonas spp, Pseudomonas spp, Vibrio spp, Serratia spp, Chromobacterium spp, Enterobacteria spp and Shigella spp. The fungi count of fish sampled from Omi markets was the highest while the fungi count of the fish sampled from Ojo market was the lowest. The following fungi were however isolated from the study: Aspergillus flavus, Penicillium spp, Fusarium oxysporum, Trrichoderma spp and Ceotrichium albidium. The study shows that reheating may be necessary to destroy or inactivate micro-organisms in smoked fish before consumption.
    Description: Includes: 2 tables and 2 figures.;Also includes: 17 refernces.
    Keywords: Fisheries ; Nigeria ; Ibadan ; Bacteria ; Fungi ; Market ; Fish species ; freshwater environment ; Microbial contamination ; Microorganisms ; Bacteria ; Freshwater fish ; Cured products ; Sample contamination ; Fungi ; Public health ; Quality assurance ; Disinfection
    Repository Name: AquaDocs
    Type: conference_item , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 223-227
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    FISON | Lagos (Nigeria)
    In:  http://aquaticcommons.org/id/eprint/24166 | 19325 | 2018-05-13 18:40:22 | 24166 | Fisheries Society of Nigeria
    Publication Date: 2021-07-15
    Description: Probiotics are a promising feed additive to stimulate animal growth and secure a low disease response in aquaculture industry where there are high stocking densities in shrimp and fish production. Fermented locust beans (Parkia biglobosa) are known to be rich in protein and used as food condiment. Probiotic bacteria were isolated from this locally available food material. Culture and characterizations of isolates were carried out. Sugar fermentation patterns were determined by using an API 50 CHL system and incubation were performed anaerobically at 37~'C. MRS broth culture grown at 37~'C overnight was added to 9ml of MRS Agar and the bacteria were incubated at 37~'C for 24 and 48 hrs. Discrete and single colony of lactobacillus was isolated using colony morphology and biochemical tests. The most significant viable taxa isolated was Lactobacillus fermentum at a pH range of (3.0-8.0), while the least viable taxa isolated was Leuconostoc mesenteroides ssp. Microscopically they were Grampositive, rod shaped, non- motile, catalase negative and absence of Endospore.
    Description: Includes: 2 tables and 2 plates.;Also includes: 15 references.
    Keywords: Aquaculture ; Nigeria ; Lagos ; Locust bean ; Probiotics ; Lactobacillus ; Probiotics ; freshwater environment ; Feed ; Additives ; Aquaculture ; Microorganisms ; Bacteria ; Disease resistance ; Fermented products ; Fish culture ; Shrimp culture
    Repository Name: AquaDocs
    Type: conference_item , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 60-63
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    FISON | Lagos (Nigeria)
    In:  http://aquaticcommons.org/id/eprint/24224 | 19325 | 2018-05-19 07:11:26 | 24224 | Fisheries Society of Nigeria
    Publication Date: 2021-07-15
    Description: Jabi Lake is a natural water body in Abuja Federal Capital Territory (FCT). It was expanded for commercial fishing following relocation of Nigeria's headquarters to Abuja in 1993. Quantitative analysis of microbiological status of water and fish from the Lake was carried out. Samples were collected from the dam site, open water, middle lake and inlet. Result reveal that total coliform count which are indicators of pollution are high (2.0 x 103 cfu/ml, 1.1 x 103 cfu/ml, 1.0 x 103 cfu/ml and 1.1 x 103 cfu/ml for dam site, open water, middle lake, and inlet respectively). Total viable count too is high (9.2 x 103 cfu/ml, 4.9 x 103 cfu/ml, 4.6 x 103 cfu/ml and 4.9 x 103 cfu/ml for dam site, open water, middle lake and inlet respectively). There are no coliform bacteria in the muscle of the fish. High bacterial load is an indication of biological pollution and these calls for restraint on the side of those who are using the lake as site for refuse dump.
    Description: Includes: 10 references.
    Keywords: Fisheries ; Pollution ; Nigeria ; Jabi Lake ; Jabi lake ; Water ; Fish ; Bacteria ; freshwater environment ; Microbiology ; Fish ; Pollution ; Water pollution ; Lake fisheries ; Fishery surveys ; Bacteria ; Baseline studies ; Water sampling ; Microbial contamination ; Muscles ; Freshwater fish ; Pollution surveys ; Water analysis ; Freshwater pollution
    Repository Name: AquaDocs
    Type: conference_item , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 284-286
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    FISON | Lagos (Nigeria)
    In:  http://aquaticcommons.org/id/eprint/24185 | 19325 | 2018-05-16 14:41:02 | 24185 | Fisheries Society of Nigeria
    Publication Date: 2021-07-15
    Description: Bacteria has been implicated in food poisoning, and smoked fish is not an exception.Generally, fish is highly susceptible to spoilage; therefore this study evaluated the bacteria load in smoked fish from three major locations in Shiroro area of Niger State namely; Gwada, Kuta and Zumba.The smoked fish samples collected from these locations were smeared at both the gills and head regions of the fishes. The bacteria samples identified were Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermis, Pseudomonas aeruginosa, and Samonella typhi, which were common to all the three locations sampled, while only Streptococcus feacaliswas only was found to be present in both Kuta and Zumba location.The frequency of occurrence of these 68 bacteria samples isolated ranges from 8 - 20%, with Bacillius subtilis having the highest occurrence and Pseudomonas aeruginosa have the least occurrence. Out of the total 68 samples, 14 skin samples (20.6%) and 5 gills samples (7.4%) exceeded the acceptable limits of total mesophilic aerobic counts which were 10〈sup〉6〈/sup〉 - 10〈sup〉7〈/sup〉 cfu/g. In the case of total coliform counts, 12 skin samples (17.6%) and 7 gills samples (10.3%) exceeded the acceptable limit which is 4.0 x 102, while in the case of Staphylococcus aureus, 4 skin samples (5.9%) and 2 gills samples (2.9%) exceeded the acceptable limit which is 103 cfu/g. Similarly 3 skin samples (4.4%) and 1 gill sample (1.5%) exceeded the acceptable limit of Salmonella typhi which is 104 cfu/g.
    Description: Includes: 4 tables.;Also includes: 21 references.
    Keywords: Fisheries ; Health ; Escherichia coli ; Bacillus subtilis ; Staphylococcus aureus ; Staphylococcus epidermis ; Pseeudomonas aeruginosa ; Nigeria ; Shiroro L. ; Bacteria ; Smoked (Clarias spp) fish ; Location and recommended values ; brackishwater environment ; freshwater environment ; marine environment ; Bacteria ; Food poisoning ; Cured products ; Fish ; Fish spoilage ; Acceptability ; Lake fisheries ; Gills ; Brain ; Evaluation
    Repository Name: AquaDocs
    Type: conference_item , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 140-144
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    FISON | Lagos (Nigeria)
    In:  http://aquaticcommons.org/id/eprint/24222 | 19325 | 2018-05-19 07:06:04 | 24222 | Fisheries Society of Nigeria
    Publication Date: 2021-07-15
    Description: A total of 2,800 tilapia (Oreochromis niloticus) were stocked in seven duplicates 5 by 4 m2 earthen ponds in NIFFR Integrated Farm, New-Bussa, Niger-State. Raw and sterilized poultry manure of 0.13 to 0.52 kg/m3 concentrations were used to fertilize the ponds with the unfertilized ponds serving as control. The following bacteria were isolated from the cow dung manure; Escherichia coli, E. co1iOl57:H7, Aeromonas hydrophila,Salmonella typhi, Shigella dysenteriae and Staphylococcus aureus. The fish samples from the 0.13 and 0.26 kg/m3 sterilized manure fertilized ponds had zero count in the muscles while samples from other ponds had pathogens in their fish muscles. The study revealed that fish samples from sterilized manures were better in terms of microbial safety for fish productions hence sterilized manure are recommended for use in fish production to ensure the microbial safety of the fish, handlers and that of the consumers.
    Description: includes: 13 references.
    Keywords: Aquaculture ; Oreochromis niloticus ; Escherichia coli ; Aeromonas hydrophila ; Samonela typhi ; Shigella dysenteriae ; Staphylococcus aureus ; Nigeria ; Niger State ; Catfish ; Pathogens ; Microbial quality ; Raw and sterilized manue ; freshwater environment ; Bacteria ; Freshwater fish ; Fish culture ; Fish ponds ; Manure ; Microorganisms ; Freshwater aquaculture ; Aquaculture products ; Food fish ; Quality assurance ; Muscles ; Microbial contamination
    Repository Name: AquaDocs
    Type: conference_item , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 278-280
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    FISON | Lagos (Nigeria)
    In:  http://aquaticcommons.org/id/eprint/24596 | 19325 | 2018-05-20 16:13:09 | 24596 | Fisheries Society of Nigeria
    Publication Date: 2021-07-15
    Description: Sixty apparently healthy Heterobranchus bidorsalis and Clarias anguillaris from NIFFR were cultured and 30 each from Monai and wara villages as wild environments were obtained for the studies. The total bacterial load varied from 2.2 x l05 to 1.08 x l08 and 2.27 x 105 to 6.3 x l08 CFU/g of the skin of C. anguillaris and H.bidorsalis in the culture respectively, while the load varied from 1.77 x 105 to 1.17 x l08 and 2.27 x 105 to 9.0 x l07 CFU/g in the wild respectively. Eleven bacterial general species were identified which include: Bacillus species B.firmus, Pseudomonas species, P. aeruginosa, Escherichia coli, Klebsiella aerogenes, K. ozaenae, Staphylococcus aureus, Streptococcus species, S.faecalis, and Aeromonas species. The aims of this investigation is to compare the type and the load of bacteria isolates on the skin of catfish in both culture and wild environment.
    Description: Includes: 7 references.
    Keywords: Aquaculture ; Fisheries ; Clarias anguillaris ; Heterobranchus bidorsalis ; Nigeria ; Kainji L. ; Comparative study ; Bacteria ; Skin ; Clarias ; Heterobranchus ; Kainji Lake ; freshwater environment ; automation
    Repository Name: AquaDocs
    Type: conference_item , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 119-122
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gosselin, K. M., Nelson, R. K., Spivak, A. C., Sylva, S. P., Van Mooy, B. A. S., Aeppli, C., Sharpless, C. M., O’Neil, G. W., Arrington, E. C., Reddy, C. M., & Valentine, D. L. Production of two highly abundant 2-methyl-branched fatty acids by blooms of the globally significant marine cyanobacteria Trichodesmium erythraeum. ACS Omega, 6(35), (2021): 22803–22810, https://doi.org/10.1021/acsomega.1c03196.
    Description: The bloom-forming cyanobacteria Trichodesmium contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of Trichodesmium erythraeum. These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid. The high abundance and unusual branching pattern of these compounds suggest that they may play a specific role in this globally important organism.
    Description: This work was funded with grants from the National Science Foundation grants OCE-1333148, OCE-1333162, and OCE-1756254 and the Woods Hole Oceanographic Institution (IR&D). GCxGC analysis made possible by WHOI’s Investment in Science Fund.
    Keywords: Lipids ; Alkyls ; Bacteria ; Genetics ; Chromatography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanographic Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2019.
    Description: Marine microbes are key drivers of biogeochemical transformations within the world’s oceans. Although seawater appears uniform at scales that humans often interact with and sample, the world that marine microbes inhabit can be highly heterogeneous, with numerous biological and physical processes giving rise to resource hotspots where nutrient concentrations exceed background levels by orders of magnitude. While the impact of this microscale heterogeneity has been investigated in the laboratory with microbial isolates and theoretical models, microbial ecologists have lacked adequate tools to interrogate microscale processes directly in the natural environment. Within this thesis I introduce three new technologies that enable interrogation of microbial processes at the microscale in natural marine communities. The IFCB-Sorter acquires images and sorts individual phytoplankton cells, directly from seawater, allowing studies exploring connections between the diversity of forms present in the plankton and genetic variability at the single-cell level. The In Situ Chemotaxis Assay (ISCA) is a field-going microfluidic device designed to probe the distribution and role of motility behavior among microbes in aquatic environments. By creating microscale hotspots that simulate naturally occurring ones, the ISCA makes it possible to examine the role of microbial chemotaxis in resource acquisition, phytoplankton-bacteria interactions, and host-symbiont systems. Finally, the Millifluidic In Situ Enrichment (MISE) is an instrument that enables the study of rapid shifts in gene expression that permit microbial communities to exploit chemical hotspots in the ocean. The MISE subjects natural microbial communities to a chemical amendment and preserves their RNA in a minute-scale time series. Leveraging an array of milliliter-volume wells, the MISE allows comparison of community gene expression in response to a chemical stimulus to that of a control, enabling elucidation of the strategies employed by marine microbes to survive and thrive in fluctuating environments. Together, this suite of instruments enables culture-independent examination of microbial life at the microscale and will empower microbial ecologists to develop a more holistic understanding of how interactions at the scale of individual microbes impact processes in marine ecosystems at a global scale.
    Description: I’d like to thank the Gordon and Betty Moore Foundation, the National Science Foundation, and NSERC for funding portions of my research.
    Description: I’d like to thank the Gordon and Betty Moore Foundation, the National Science Foundation, and NSERC for funding portions of my research.
    Keywords: Microorganisms ; Bacteria ; Marine ecology ; Scientific apparatus and instruments ; Plankton ; Plankton--Growth ; Phytoplankton ; Chemical oceanography ; Antarctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2019.
    Description: Each year, surface ocean ecosystems export sinking particles containing gigatons of carbon into the ocean’s interior. This particle flux connects the entire ocean microbiome and constitutes a fundamental aspect of marine microbial ecology and biogeochemical cycles. Particle flux is also variable and intricately complex, impeding its mechanistic or quantitative description. In this thesis we pair compilations of available data with novel mathematical models to explore the relationships between particle flux and other key variables – temperature, net primary production, and depth. Particular use is made of (probability) distributional descriptions of quantities that are known to vary appreciably. First, using established thermodynamic dependencies for primary production and respiration, a simple mechanistic model is developed relating export efficiency (i.e. the fraction of primary production that is exported out of the surface ocean via particle flux) to temperature. The model accounts for the observed variability in export efficiency due to temperature without idealizing out the remaining variability that evinces particle flux’s complexity. This model is then used to estimate the metabolically-driven change in average export efficiency over the era of long-term global sea surface temperature records, and it is shown that the underlying mechanism may help explain glacial-interglacial atmospheric carbon dioxide drawdown. The relationship between particle flux and net primary production is then explored. Given that these are inextricable but highly variable and measured on different effective scales, it is hypothesized that a quantitative relationship emerges between collections of the two measurements – i.e. that they can be related not measurement-by-measurement but rather via their probability distributions. It is shown that on large spatial or temporal scales both are consistent with lognormal distributions, as expected if each is considered as the collective result of many subprocesses. A relationship is then derived between the log-moments of their distributions and agreement is found between independent estimates of this relationship, suggesting that upper ocean particle flux is predictable from net primary production on large spatiotemporal scales. Finally, the attenuation of particle flux with depth is explored. It is shown that while several particle flux-versus-depth models capture observations equivalently, these carry very different implications mechanistically and for magnitudes of export out of the surface ocean. A model is then proposed for this relationship that accounts for measurements of both the flux profile and of the settling velocity distribution of particulate matter, and is thus more consistent with and constrained by empirical knowledge. Possible future applications of these models are discussed, as well as how they could be tested and/or constrained observationally.
    Keywords: Signal processing ; Reynolds stress ; Ocean currents ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography and Applied Ocean Science and Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2019.
    Description: Submesoscale currents, with horizontal length scales of 1-20 km, are an important element of upper ocean dynamics. These currents play a crucial role in the horizontal and vertical redistribution of tracers, the cascade of tracer variance to smaller scales, and in linking the mesoscale circulation with the dissipative scales. This thesis investigates submesoscale flows and their properties using Lagrangian trajectories of observed and modeled drifters. We analyze statistics of observed drifter pairs to characterize turbulent dispersion at submeso-scales. Contrary to theoretical expectations, we find that nonlocal velocity gradients associated with mesoscale eddies dominate the separation of drifters even at the kilometer scale. At submeso-scales, we observe energetic motions, such as near-inertial oscillations, that contribute to the energy spectrum but are inefficient at dispersion. Using trajectories in a model of submesoscale turbulence, we find that, if drifters have a vertical separation, vertical shear dominates the dispersion and conceals horizontal dispersion regimes from drifter observations. Particularly in submesoscale flows, vertical shear is orders of magnitude larger than horizontal gradients in velocity. Since conventional drifters in the ocean are not affected by vertical shear, it is likely that drifter-derived diffusivity underestimates the diffusivity that a tracer would experience. Lastly, we test and apply cluster-based methods, using three or more drifters, to estimate the velocity gradient tensor. Since velocity gradients become large at submesoscales, the divergence, strain, and vorticity control the evolution and deformation of clusters of drifters. Observing the velocity gradients using drifters, enables us to further constrain the governing dynamics and decipher submesoscale motions from inertia-gravity waves. These insights provide a Lagrangian perspective on submesoscale flows that illuminates scales that are challenging to observe from other platforms. We reveal observational and theoretical challenges that need to be overcome in future investigations.
    Description: My doctoral studies in the WHOI/MIT Joint Program were funded by the National Science Foundation (OCE-I434788) and the Office of Naval Research (N00014-13-1-0451, Grant N00014-16-1-2470).
    Keywords: Dissertations, Academic ; Ocean currents ; Dispersion ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June, 1982
    Description: Oceanic fluctuations are dependent on geographical location. Near intense currents, the eddy field is highly energetic and has broad meridional extent. It is likely that the energy arises from instabilities of the intense current. However, the meridional extent of the linearly most unstable modes of such intense jets is much narrower than the observed region of energetic fluctuations. It is proposed here that weaker instabilities, in the linear sense, which are very weakly trapped to the current, may be the dominant waves in the far field. As a preliminary problem, the (barotropic) instability of parallel shear flow on the beta plane is discussed. An infinite zonal flow with a continuous cross-stream velocity gradient is approximated with segments of uniform flow, joined together by segments of uniform potential vorticity. This simplification allows an exact dispersion relation to be found. There are two classes of linearly unstable solutions. One type is trapped to the source of energy and has large growth rates. The second type are weaker instabilities of the shear flow which excite Rossby waves in the far field: the influence of these weaker instabilities extends far beyond that of the most unstable waves. The central focus of the thesis i: the linear stability of thin, twolayer, zonal jets on the beta plane, with both horizontal and vertical shear. The method used for the parallel shear flow is extended to the two-layer flow. Each layer of the jet has uniform velocity in the center, bordered by shear zones with zero potential vorticity gradient. The velocity in each layer outside the jet is constant in latitude. Separate linearly unstable modes arise from horizontal and vertical shear. The energy source for the vertical shear modes is nearly all potential while the source for the horizontal shear modes is both kinetic and potential. The most unstable waves are tightly trapped to the jet, within two or three deformation radii for small but nonzero beta. Rossby waves and baroclinically unstable waves (in the presence of vertical shear) exist outside the jet because of a nonzero potential vorticity gradient there. Weakly growing jet instabilities can force these waves when their phase speeds and wavelengths match. In particular, westward jets and any jets with vertical shear exterior to the jet can radiate in this sense. The radiating modes influence a large region, their decay scales inversely proportional to the growth rate. Two types of radiating instability are found: (1) a subset of the main unstable modes near marginal stability and (2) modes which appear to be destabilized neutral modes. Westward jets have more vigorously unstable radiating modes. Applications of the model are made to the eddy field south of the Gulf Stream, using data from the POLYMODE settings along 55°W and farther into the gyre at MODE. The energy decay scale and the variation of vertical structure with latitude in different frequency bands can be roughly explained by the model. The lower frequency disturbances decay more slowly and become more surface intensified in the far field. These disturbances are identified with the weak, radiating instabilities of the model. The higher frequency disturbances are more trapped and retain their vertical structure as they decay, and are identified with the trapped, strongly unstable modes of the jet.
    Description: This work was supported by a grant from the National Science Foundation, Office of Atmospheric Science.
    Keywords: Baroclinicity ; Eddy flux ; Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: The Gulf Stream and Deep Western Boundary Current (DWBC) shape the distribution of heat and carbon in the North Atlantic, with consequences for global climate. This thesis employs a combination of theory, observations and models to probe the dynamics of these two western boundary currents. First, to diagnose the dynamical balance of the Gulf Stream, a depth-averaged vorticity budget framework is developed. This framework is applied to observations and a state estimate in the subtropical North Atlantic. Budget terms indicate a primary balance of vorticity between wind stress forcing and dissipation, and that the Gulf Stream has a significant inertial component. The next chapter weighs in on an ongoing debate over how the deep ocean is filled with water from high latitude sources. Measurements of the DWBC at Line W, on the continental slope southeast of New England, reveal water mass changes that are consistent with changes in the Labrador Sea, one of the sources of deep water thousands of kilometers upstream. Coherent patterns of change are also found along the path of the DWBC. These changes are consistent with an advective-diffusive model, which is used to quantify transit time distributions between the Labrador Sea and Line W. Advection and stirring are both found to play leading order roles in the propagation of water mass anomalies in the DWBC. The final study brings the two currents together in a quasi-geostrophic process model, focusing on the interaction between the Gulf Stream’s northern recirculation gyre and the continental slope along which the DWBC travels. We demonstrate that the continental slope restricts the extent of the recirculation gyre and alters its forcing mechanisms. The recirculation gyre can also merge with the DWBC at depth, and its adjustment is associated with eddy fluxes that stir the DWBC with the interior. This thesis provides a quantitative description of the structure of the overturning circulation in the western North Atlantic, which is an important step towards understanding its role in the climate system.
    Description: My research was funded by National Science Foundation grants OCE-0241354, OCE- 0726720 and OCE-1332667 as well as a graduate fellowship from the American Meteorological Society. Support for travel and educational supplies was also provided by the MIT Houghton Fund and the WHOI Academic Programs Office.
    Keywords: Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: The daily heating of the ocean by the sun can create a stably stratified near-surface layer when the winds are slight and solar insolation is strong. This type of shallow stable layer is called a Diurnal Warm Layer (DWL). This thesis examines the physics and dynamics of DWLs from observations of the subtropical North Atlantic Ocean associated with the Salinity Processes in the Upper ocean Regional Study (SPURS-I). Momentum transferred from the atmosphere to the ocean through wind stress becomes trapped within the DWL, generating shear across the layer. During SPURS-I, strong diurnal shear across the DWL was coincident with enhanced turbulent kinetic energy (TKE) dissipation (𝜖, 𝜖 〉 10−5 W/kg) observed from glider microstructure profiles of the near-surface. However, a scale analysis demonstrated that surface forcing, including diurnal shear, could not be the sole mechanism for the enhanced TKE dissipation. High-frequency internal waves (𝜔 ≫ 𝑓) were observed in the upper ocean during the daytime within the DWL. Internal waves are able to transfer energy from the deep ocean into the DWL through the unstratified remnant mixed layer, which is the intervening layer between the DWL and seasonal thermocline. As the strength of the stratification of the DWL increases, so does the shear caused by the tunneling internal waves. The analysis demonstrates that internal waves can generate strong enough shear to cause a shear-induced instability, and are a plausible source of the observed enhanced TKE dissipation. Vertically-varying horizontal transport across the upper ocean occurs because a diurnal current exists within the DWL, but not in the unstratified remnant mixed layer below. Therefore, when a DWL is present, the water within DWL is horizontally transported a different distance than the water below. Coupled with nocturnal convection that mixes the DWL with the unstratified layer at night, this cycle is a mechanism for submesoscale (1-10 km) lateral diffusion across the upper ocean. Estimates of a horizontal diffusion coefficient are similar in magnitude to current estimates of submesoscale diffusion based on observations, and are likely an important source of horizontal diffusion in the upper ocean.
    Description: Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program and the National Science Foundation under Grant No. OCE-1129646. The collection and analysis of data from the SPURS-I central mooring were supported under National Aeronautics and Space Administration (NASA) Grant No. NNX11AE84G and NNX14AH38G.
    Keywords: SPURS: Salinity Processes in the Upper Ocean Regional Study ; Ocean circulation ; Ocean waves ; Ocean currents ; Diffusion ; Knorr (Ship : 1970-) Cruise KN209 ; Endeavor (Ship: 1976-) Cruise EN522
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2014
    Description: This thesis explores the buoyancy-driven circulation in the Red Sea, using a combination of observations, as well as numerical modeling and analytical method. The first part of the thesis investigates the formation mechanism and spreading of Red Sea Overflow Water (RSOW) in the Red Sea. The preconditions required for open-ocean convection, which is suggested to be the formation mechanism of RSOW, are examined. The RSOW is identified and tracked as a layer with minimum potential vorticity and maximum chlorofluorocarbon-12. The pathway of the RSOW is also explored using numerical simulation. If diffusivity is not considered, the production rate of the RSOW is estimated to be 0.63 Sv using Walin’s method. By comparing this 0.63 Sv to the actual RSOW transport at the Strait of Bab el Mandeb, it is implied that the vertical diffusivity is about 3.4 x 10-5m2 s-1 . The second part of the thesis studies buoyancy-forced circulation in an idealized Red Sea. Buoyancy-loss driven circulation in marginal seas is usually dominated by cyclonic boundary currents on f-plane, as suggested by previous observations and numerical modeling. This thesis suggests that by including β-effect and buoyancy loss that increases linearly with latitude, the resultant mean Red Sea circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In mid-basin, the northward surface flow crosses from the western boundary to the eastern boundary. The observational support is also reviewed. The mechanism that controls the crossover of boundary currents is further explored using an ad hoc analytical model based on PV dynamics. This ad hoc analytical model successfully predicts the crossover latitude of boundary currents. It suggests that the competition between advection of planetary vorticity and buoyancy-loss related term determines the crossover latitude. The third part of the thesis investigates three mechanisms that might account for eddy generation in the Red Sea, by conducting a series of numerical experiments. The three mechanisms are: i) baroclinic instability; ii) meridional structure of surface buoyancy losses; iii) cross-basin wind fields.
    Description: This work is supported by Award Nos. USA 00002, KSA 00011 and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST) , National Science Foundation OCE0927017, and WHOI Academic Program Office.
    Keywords: Ocean circulation ; Ocean currents ; Aegaeo (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2014
    Description: The nitrogen fixation and abundance of Trichodesmium colonies and their connections with physical processes were investigated through Video Plankton Recorder (VPR) and other observations collected in fall 2010 and spring 2011 in the western subtropical–tropical North Atlantic. A data processing procedure for estimating rare taxon abundance was devised to leverage the accuracy of manual classification and the effort savings of automatic classification. In fall 2010, local maxima in colony abundance were observed in a series of cyclones. We hypothesized Ekman transport convergence/divergence in cyclones/anticyclones as a driving mechanism and investigated the process using idealized three-dimensional models. Elevated abundances in anticyclones in spring 2011 were correlated with anomalously fresh water connected to river outflow. A bio-optical model based on carbon-normalized nitrogen fixation rates measured in fall 2010 and spring 2011 was used to estimate nitrogen fixation over the VPR transects. Mean VPR-based estimates of abundance and volume-specific nitrogen fixation rates at depth in the tropical North Atlantic were not inconsistent with estimates derived from conventional sampling methods compiled in a database by Luo et al. (2012). These findings did not reveal the systematic underestimation of deep colony populations and nitrogen fixation hypothesized by Davis and McGillicuddy (2006).
    Description: This work was supported through a NASA Earth and Space Science Fellowship (NASA NNX11AL59H Understanding the role of the nitrogen- xing cyanobacterium Trichodesmium in the oceanic nitrogen and carbon cycles: in situ measurement, satellite observation, and biogeochemical modeling) as well as fellowship support from the Ocean Life Institute and Academic Programs O ce at WHOI. Additional grant support was provided by NSF OCE-0925284 Quanti cation of Trichodesmium spp. Vertical and Horizontal Abundance Patterns and Nitrogen Fixation in theWestern North Atlantic, NSF OCE-1048897 MOBY: Modeling Ocean Variability and Biogeochemical Cycles, NASA NNX13AE47G Physical and Biological Dynamics of Nonlinear Mesoscale Eddies: Satellite Observations, in situ Measurements, and Numerical Simulations on a Global Scale, and NASA NNX08AL71G Carbon cycling in the North Atlantic from regional to basin scales: satellite data, in situ observations, and numerical models.
    Keywords: Nitrogen ; Ocean currents ; Oceanus (Ship : 1975-) Cruise OC469 ; Oceanus (Ship : 1975-) Cruise OC471
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2014
    Description: Viral predation on bacteria in the ocean liberates carbon from the particulate fraction, where it is accessible to higher trophic levels, and redirects it to the dissolved fraction, where it supports microbial growth. Although viruses are highly abundant in the ocean little is known about how their interactions with bacteria are structured. This challenge arises because the diversity of both bacteria and viruses is exceedingly high and interactions between them are mediated by specific molecular interactions. This thesis uses heterotrophic bacteria of the genus Vibrio as a model to quantify virus-host interactions in light of host population structure and ecology. The methods developed in this thesis include streamlining of standard bacteriophage protocols, such as the agar overlay, and facilitate higher throughput in the isolation and characterization of novel environmental virus-host systems. Here, 〉1300 newly isolated Vibrio are assayed for infection by viral predators and susceptibility is found to be common, though total concentrations of predators are highly skewed, with most present at low abundance. The largest phylogenetically-resolved host range cross test available to date is conducted, using 260 viruses and 277 bacterial strains, and highly-specific viruses are found to be prevalent, with nearly half infecting only a single host in the panel. Observations of blocks of multiple viruses with nearly identical infection profiles infecting sets of highly-similar hosts suggest that increases in abundance of particular lineages of bacteria may be important in supporting the replication of highly specific viruses. The identification of highly similar virus genomes deriving from different sampling time points also suggests that interactions for some groups of viruses and hosts may be stable and persisting. Genome sequencing reveals that members of the largest broad host-range viral group recovered in the collection have sequence homology to non-tailed viruses, which have been shown to be dominant in the surface oceans but are underrepresented in culture collections. By integrating host population structure with sequencing of over 250 viral genomes it is found that viral groups are genomically cohesive and that closely-related and co-occurring populations of bacteria are subject to distinct regimes of viral predation.
    Description: I also gratefully acknowledge the WHOI Ocean Ventures Fund, which provided funding for the sequencing of over 250 viral genomes of the Nahant Collection and thereby contributed immensely to the impact of the thesis work presented here. Work presented in this thesis was also made possible by support from National Science Foundation grant DEB 0821391, National Institute of Environmental Health Sciences grant P30- ES002109, the Moore Foundation and the Broad Institute’s SPARC program.
    Keywords: Host-virus relationships ; Bacteria ; Ecology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1996
    Description: This thesis addresses the question of how a highly energetic eddy field could be generated in the interior of the ocean away from the swift boundary currents. The energy radiation due to the temporal growth of non-trapped (radiating) disturbances in such a boundary current is thought to be one of the main sources for the described variability. The problem of stability of an energetic current, such as the Gulf Stream, is formulated. The study then focuses on the ability of the current to support radiating instabilities capable of significant penetration into the far-field and their development with time. The conventional model of the Gulf Stream as a zonal current is extended to allow the jet axis to make an angle to a latitude circle. The linear stability of such a nonzonal flow, uniform in the along-jet direction on a beta-plane, is first studied. The stability computations are performed for piece-wise constant and continuous velocity profiles. New stability properties of nonzonal jets are discussed. In particular, the destabilizing effect of the meridional tilt of the jet axis is demonstrated. The radiating properties of nonzonal currents are found to be very different from those of zonal currents. In particular, purely zonal flows do not support radiating instabilities, whereas flows with a meridional component are capable of radiating long and slowly growing waves. The nonlinear terms are then included in the consideration and the effects of the nonlinear interactions on the radiating properties of the solution are studied in detail. For these purposes, the efficient numerical code for solving equation for the QG potential vorticity with open boundary conditions of Orlanski's type is constructed. The results show that even fast growing linear solutions, which are trapped during the linear stage of developement, can radiate energy in the nonlinear regime if the basic current is nonzonal. The radiation starts as soon as the initial fast exponential growth significantly slows. The initial trapping of those solutions is caused by their fast temporal growth. The new mechanism for radiation is related to the nonzonality of a current.
    Description: This work was supported by NSF Grant OCE 9301845.
    Keywords: Ocean currents ; Ocean circulation ; Rossby waves ; Turbulence ; Eddies ; Electric conductivity
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: Two high-resolution mooring arrays extending from the outer shelf to the mid continental slope are used to elucidate shelf-basin exchange at the inflow to and the outflow from the Arctic Ocean. Pacific Water entering the Arctic Ocean forms the Western Arctic shelfbreak current along the Beaufort Sea slope. Data from the mooring array at 152°W—approximately 150 km east of Pt. Barrow, AK—reveals that this current has two distinct states in summer depending on the water mass it transports. When advecting Alaskan Coastal Water it is surface-intensified and both baroclinically and barotropically unstable. This configuration lasts about a month with an average transport of 0.7 Sv. When advecting Chukchi Summer Water the current is bottom-intensified and is only baroclinically unstable. This state also exists for approximately a month with an average transport of 0.6 Sv. The strong mean-to-eddy energy conversion causes both configurations of the current to spin down over a distance of a few hundred kilometers, suggesting that warm Pacific Water does not enter the Canadian Arctic Archipelago via this route. Dense water formed in the Nordic Seas overflows the Denmark Strait and undergoes vortex stretching, forming intense cyclones that propagate along the East Greenland slope. Data from the mooring array at 65°N—roughly 300 km downstream of Denmark Strait—was used to determine the full water column structure of the cyclones. On average a cyclone passes the array every other day in the vicinity of the 900 m isobath, although the depth range of individual cyclones ranges between the 500 m and 1600 m isobaths. The cyclones self-propagate at 0.45 m/s and are also advected by the mean flow of 0.27 m/s, resulting in a total propagation speed of 0.72 m/s. They have a peak azimuthal speed of 0.22 m/s at a radius of 7.8 km and contain overflow water in their core. In the absence of the cyclones, the background flow is dominated by the East Greenland Spill Jet. This is shown to be a year-round feature transporting 2–4 Sv of dense water equatorward along the upper continental slope.
    Description: Financial support for this work was provided by National Science Foundation grants OCE-0726640 and OCE-0612143, by the Arctic Research Initiative at WHOI, by the Y-S Anonymous Fellowship from the Office of the Dean of Graduate Education at MIT, and by WHOI Academic Programs Office funds.
    Keywords: Ocean currents ; Deep-sea moorings ; Oceanus (Ship : 1975-) Cruise OC369
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1996
    Description: The transformation of potential vorticity within and stability of nonlinear deep western boundary currents in an idealized tropical ocean are studied using a shallowwater model. Observational evidence indicates that the potential vorticity of fluid parcels in deep western boundary currents must change sign as they cross the equator, but this evidence is otherwise unable to clarify the process. A series of numerical experiments investigate this transformation in a rectangular basin straddling the equator. A mass source located in the northwestern corner feeds fluid into the domain where it is constrained to cross the equator to reach a distributed mass sink. Dissipation is included as momentum diffusion. The Reynolds number, defined as the ratio of the mass source per unit depth to the viscosity, determines the nature of the flow, and a critical value, Rec, divides its possible behavior into two regimes. For Re 〈 Rec, the flow is laminar and well described by linear theory. For Re just above the critical value, the flow is time-dependent, with cyclonic eddies forming in the western boundary current near the equator. For still larger Reynolds number, eddies of both signs emerge and form a complicated, interacting network that extends into the basin several deformation radii from the western boundary, as well as north and south of the equator. The eddy field is established as the mechanism for potential vorticity transformation in nonlinear cross-equatorial flow. The analysis of vorticity fluxes follows from the flux-conservative form of the absolute vorticity equation. It is shown that the zonally integrated meridional flux of vorticity across the equator using no slip boundary conditions is virtually zero even in the strongly nonlinear limit suggesting that the eddies are extremely efficient vorticity transfer agents. A decomposition of the vorticity fluxes into components due to mean advection, eddy transport, and friction, reveals the growth with Reynolds number of a turbulent boundary layer that exchanges vorticity between the inertial portion of the boundary current and a frictional sub-layer where modification is straightforward. A linear stability analysis of the shallow-water system in the tropical ocean examines the initial formation of the eddy field. The formulation assumes that the basic state is purely meridional and on a local f-plane. Realistic western boundary current profiles undergo a horizontal shear instability that is partially stabilized by viscosity. Calculations at several latitudes indicate that the instability is enhanced in the tropics where the internal deformation radius is a maximum. The linear stability analysis predicts a length scale of the disturbance, a location for its origin, and a critical Reynolds number that agree well with numerical results.
    Description: Financial support for this research was provided by NSF grant number OCE- 9115915 and ONR ASSERT grant number N00014-94-1-0844.
    Keywords: Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1996
    Description: This thesis addresses the issue, "Which approach to instabilities-temporal, spatial or pulse theory- is the most appropriate model for the Gulf Stream?" I also address the question of how the observations might be compared to theory. This thesis consists of two closely related parts: analytical studies that compare the three types of instability using the same realistic velocity and topography profiles; and numerical modeling that uses a continuous forcing function to examine the three types of theory in the direct context of the Gulf Stream.
    Description: My first three years in the Joint Program were supported by the National Science Foundation under grant OCE-9011066 and last two and half years under NSF grant OCE-9314140.
    Keywords: Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: This is the first volume of an international scientific journal that is dedicated to issues of geoethics and geological culture. Its goal is to inform the Italian and international scientific communities about what emerged at the GeoItalia 2011 conference, attended by not only Italian geoscientists. At this conference, the geoscientists questioned their role in society and the responsibilities that they have to assume as scholars of the planet Earth and experts of the territory. They highlighted the need for rediscovery of the cultural values of geology as a science that can contribute to the construction of correct social knowledge, and the need to be aware that geoethics cannot exist without a real awareness among geoscientists of the cultural value of the Earth sciences.
    Description: Published
    Description: 331
    Description: 5.9. Formazione e informazione
    Description: JCR Journal
    Description: open
    Keywords: Geoethics ; Geoetica ; Geological Culture ; Earth Sciences ; Philosophy ; Education ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: Prof. Giulio Giorello is amongst the most prominent philosophers of science in Italy and in the world. He is currently Professor of the Philosophy of Science at the University of Milan, Director of the Series ‘Science and Ideas’ (Raffaele Cortina Books Editor), and Literary Journalist of the cultural pages of the Corriere della Sera, one of the most important of the Italian newspapers. In this keynote presentation, in interview form, he talks about the value that the Earth sciences have had through history, framing this group of disciplines in ethical and epistemological terms, and highlighting some important elements that have to be considered in geological activities.
    Description: Published
    Description: 343-346
    Description: 5.9. Formazione e informazione
    Description: JCR Journal
    Description: open
    Keywords: Geoethics ; Geological Culture ; Geoetica ; Giulio Giorello ; Earth Sciences ; Interview ; Philosophy ; Epistemology ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: The international debate in the field of geoethics focuses on some of the most important environmental emergencies, while highlighting the great responsibilities of geoscientists, whatever field they work in, and the important social, cultural and economic repercussions that their choices can have on society. The GeoItalia 2009 and 2011 conferences that were held in Rimini and Turin, respectively, and were organized by the Italian Federation of Earth Science, were two important moments for the promotion of geoethics in Italy. They were devoted to the highlighting of how, and with what tools and contents, can the geosciences contribute to the cultural renewal of society. They also covered the active roles of geoscientists in the dissemination of scientific information, contributing in this way to the correct construction of social knowledge. Geology is culture, and as such it can help to dispel misconceptions and cultural stereotypes that concern natural phenomena, disasters, resources, and land management. Geological culture consists of methods, goals, values, history, ways of thinking about nature, and specific sensitivity for approaching problems and their solutions. So geology has to fix referenced values, as indispensable prerequisites for geoethics. Together, geological culture and geoethics can strengthen the bond that joins people to their territory, and can help to find solutions and answers to some important challenges in the coming years regarding natural risks, resources, and climate change. Starting from these considerations, we stress the importance of establishing an ethical criterion for Earth scientists, to focus attention on the issue of the responsibility of geoscientists, and the need to more clearly define their scientific identity and the value of their specificities.
    Description: Published
    Description: 335-341
    Description: 5.9. Formazione e informazione
    Description: JCR Journal
    Description: open
    Keywords: Geoethics ; Education ; History of science ; Public issues ; General (Philosophy of Earth sciences) ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: Franco Ferrarotti, Professor emeritus at ‘La Sapienza’ University of Rome; since winning the first Chair in this discipline in Italy in 1961, he has been considered the Father of Italian Sociology. An independent Member of Italian Parliament in the third government (1958-1963), a member of the New York Academy of Sciences, and a ‘visiting Professor’ at many universities in Europe, North America, Russia, Japan and Latin America. Franco Ferrarotti has taught and still teaches in Europe and America, and he has received many awards throughout his career. In this interview, he talks about the social aspects and consequences of Earth sciences studies.
    Description: Published
    Description: 347-348
    Description: 5.9. Formazione e informazione
    Description: JCR Journal
    Description: open
    Keywords: Geoethics ; Geological Culture ; Geoetica ; Social aspects ; Geologists activity ; Scientific information ; Society ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: We argue here that the introduction of an ethical code of conduct that follows the example of the Hippocratic Oath of physicians will help geologists to acquire binding awareness of their professional and social responsibilities. The ethical behavior and obligations of modern geologists involve, but are not limited to, the following issues: correct land/ environment use and management; respect of truth and science; and protection of the Earth systems, on both the local and global scales, and therefore, of our well-being. We believe that for geoligists, the explicit acceptance of an ethical code will help to promote: (i) an awareness of their social role, expertise and sense of belonging to a professional community; (ii) an understanding of the expectations of citizens and society; and (iii) cultural growth, with better use of research and implementation of scientific and professional skills. All this should enhance the public recognition of the social mission of geologists, which is essential for the well-being of society. Therefore, we suggest that like in the majority of medical schools, ethical training should be a part of the university curriculum for students in geology.
    Description: Published
    Description: 365-369
    Description: 5.9. Formazione e informazione
    Description: JCR Journal
    Description: open
    Keywords: Geoethics ; Geological Culture ; Geoetica ; Hippocratic Oath ; Geologists ; Social responsibility ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Ocean Engineer at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1989
    Description: When ocean waves in deep water interact with a current, the direction of propagation and characteristics of the waves such as height and length are affected. Swell in the open ocean can undergo significant refraction as it passes through major current systems like the Gulf Stream or Antarctic Circumpolar Current. Remote sensing techniques such as synthetic aperture radars (SAR) have the potential to detect wave systems over a wide geographical area. Combining a model for wave refraction in the presence of currents with SAR measurements, the inverse problem of using the measured wave data can be solved to determine the direction and magnitude of the intervening currents. In this study the behavior of swell measured by SAR on a satellite pass over the Gulf Stream is examined. The refraction predicted by a numerical model under conditions of varying current profiles and velocities is compared to SAR generated wave spectra. By matching the current profile which results in the best correlation of wave refraction to the SAR data, the tomographic problem of measuring the Gulf Stream current is solved. The best correlation between the model and SAR data is obtained when a current is modeled by a top hat velocity profile with a direction of 75° and a current speed of 2 m/s. The direction agrees with that visually observed from the SAR images, and the direction and speeds are close to the Coast Guard estimates for the Gulf Stream at the time of the SEASAT,pass. The current profiles used did not take into account a possible widening of the Gulf Stream at the position of the satellite overpass. There is a great deal of scatter in the SAR data, both before and in the Gulf Stream, so it is difficult to correlate every point with specific current behavior, but the increase in wave length and change in wave angle in the center of the Gulf Stream seem to indicate that there may be a non-uniform feature such as the formation of an eddy or other lateral variability near the current's edge.
    Description: I was supported by the U. S. Navy.
    Keywords: Ocean currents ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2012
    Description: Interactions between the ocean circulation in sub-ice shelf cavities and the overlying ice shelf have received considerable attention in the context of observed changes in flow speeds of marine ice sheets around Antarctica. Modeling these interactions requires parameterizing the turbulent boundary layer processes to infer melt rates from the oceanic state at the ice-ocean interface. Here we explore two such parameterizations in the context of the MIT ocean general circulation model coupled to the z-coordinates ice shelf cavity model of Losch (2008). We investigate both idealized ice shelf cavity geometries as well as a realistic cavity under Pine Island Ice Shelf (PIIS), West Antarctica. Our starting point is a three-equation melt rate parameterization implemented by Losch (2008), which is based on the work of Hellmer and Olbers (1989). In this form, the transfer coefficients for calculating heat and freshwater fluxes are independent of frictional turbulence induced by the proximity of the moving ocean to the fixed ice interface. More recently, Holland and Jenkins (1999) have proposed a parameterization in which the transfer coefficients do depend on the ocean-induced turbulence and are directly coupled to the speed of currents in the ocean mixed layer underneath the ice shelf through a quadratic drag formulation and a bulk drag coefficient. The melt rate parameterization in the MITgcm is augmented to account for this velocity dependence. First, the effect of the augmented formulation is investigated in terms of its impact on melt rates as well as on its feedback on the wider sub-ice shelf circulation. We find that, over a wide range of drag coefficients, velocity-dependent melt rates are more strongly constrained by the distribution of mixed layer currents than by the temperature gradient between the shelf base and underlying ocean, as opposed to velocity-independent melt rates. This leads to large differences in melt rate patterns under PIIS when including versus not including the velocity dependence. In a second time, the modulating effects of tidal currents on melting at the base of PIIS are examined. We find that the temporal variability of velocity-dependent melt rates under tidal forcing is greater than that of velocity-independent melt rates. Our experiments suggest that because tidal currents under PIIS are weak and buoyancy fluxes are strong, tidal mixing is negligible and tidal rectification is restricted to very steep bathymetric features, such as the ice shelf front. Nonetheless, strong tidally-rectified currents at the ice shelf front significantly increase ablation rates there when the formulation of the transfer coefficients includes the velocity dependence. The enhanced melting then feedbacks positively on the rectified currents, which are susceptible to insulate the cavity interior from changes in open ocean conditions.
    Description: National Science and Engineering Research Council of Canada
    Keywords: Ocean circulation ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1989
    Description: A triangular CTD/ADCP survey was made across the Kuroshio west of Kyushu aboard the R/V Thompson during January, 1986 in order to investigate the water properties and flow field in the Kuroshio. A similar CTD survey was made in July, 1986 aboard the R/V Washington to study the seasonal variability in the Kuroshio. The Kuroshio in this region exhibited a marked seasonal change in its near-surface stratification and water properties. In January, the Kuroshio water was separated from the vertically well-mixed coastal water over the shelf by a strong front located near the shelf break. Horizontal mixing between the Kuroshio and coastal water was observed but was limited near the shelf break. In July, surface coastal water extended far past the shelf break over the Kuroshio region near the surface, and in turn, Kuroshio water intruded onto the shelf near the bottom. Mixing between the Kuroshio and coastal water was found over much of the mid and outer shelf and upper slope, spanning a cross-stream distance of 75 km. In addition, evidence of deep vertical mixing within the Kuroshio itself was found near 32.0°N and 128.2°E, most likely due to internal tidal mixing over the slope. Since Loran C navigation coverage in the study region was poor during the R/V Thompson cruise, a simple averaging technique has been used to convert the ADCP data into an absolute velocity. An error analysis shows that the total error in the absolute ADCP velocity was about ±5 cm/s. The absolute geostrophic velocity using the absolute Doppler velocity at 60 m as the reference velocity was then calculated for the sides of the triangle. The results show that the ADCP velocity shear was in good agreement with the geostrophic shear in the Kuroshio. The Kuroshio flowed through the western section as a coherent current, then split into two streams around a tall seamount as it left through the eastern section. Some recirculation also occurred between the core of the Kuroshio and the slope as well as near the seamount. The geostrophic velocity field calculated relative to the bottom missed some of the important features of the true flow field such as splitting of the Kuroshio and the recirculation in the slope region. The volume, salt and heat transports of the Kuroshio during the January 1986 survey have been cakulated using the absolute geostrophic velocity and CTD data. The volume transport of the Kuroshio west of Kyushu in January 1986 was 31.7± 2.0 Sv, which is comparable to that of the Gulf Stream in the Florida Strait. The volume transport through the triangle was conserved within measurement uncertainty, so that a streamfuction field can be defined by the transport. The resulting streamlines clearly show the structure of the flow field in the Kuroshio and its adjacent currents during the survey. The advective heat transport of the Kuroshio west of Kyushu in January 1986 was 28.2 ± 1.8 x 1014 W. The salt transport in January 1986 was about 108.0 ± 7.3 x 1010 kg/s, and the net salt flux was zero within measurement error. Analysis of the potential vorticity based on the January 1986 absolute geostrophic velocity field shows that the total potential vorticity in the Kuroshio may be approximately given by the product of the vertical gradient of the potential density and the sum of the planetary and relative vorticities. The distribution of relative vorticity plays a significant role in determining the structure of the potential vorticity in the Kuroshio. The path of the Kuroshio can be traced in the field of potential vorticity. Facing in the direction of the current, the axis of the maximum velocity is located to the right of the core of maximum potential vorticity. Finally, the Kuroshio was potentially unstable since the gradient of potential vorticity changed its sign on potential density surfaces across the Kuroshio.
    Keywords: Ocean currents ; Thomas G. Thompson (Ship) Cruise ; Thomas Washington (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1992
    Description: This thesis consists of two parts: (I) variability of currents and water properties in late spring in the northern Great South Channel and (II) numerical study of stratified tidal rectification over Georges Bank. In part I, the combined analysis of CTD, ADCP, satellite-track drifters, and zooplankton distributions in the northern Great South Channel clearly shows (1) the seasonal evolution of the surface low salinity plume, (2) the threedimensional structure of residual flow, and (3) a coherent relationship between the surface low salinity plume and high concentration of zooplankton. In part II, the numerical model of Georges Bank shows that as the fluid becomes stratified , tidal mixing and rectification intensify both along- and cross-bank residual currents and modify the vertical structure of the flow. Along- and cross-bank residual currents increase as either stratification increases or the depth of the bank decreases. Model results over Georges Bank are in good agreement with observation, particularly in the position of the tidal mixing front and residual currents on the northern flank of the Bank.
    Description: This research was supported by the National Science Foundation under grants OCE 87-13988 and OCE 91-01034 and by the National Center for Atmospheric Research (NCAR) under computer time grants Nos. 35781029 and 35781035.
    Keywords: Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1993
    Description: The dynamical aspects involved in the assimilation of altimeter data in a numerical ocean model have been investigated. The model used for this study is a quasi-geostrophic model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height which have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. We have analyzed the mechanisms of the model adjustment, and the final statistical equilibrium characteristics of the model simulation when the surface data are assimilated. Since the surface data are the superposition of a mean component and an eddy component, in order to understand the relative role of these two components in determining the characteristics of the final st atistical steady state, we have considered two different experiments: in the first experiment only the climatological mean field is assimilated, while in the second experiment the total surface streamfunction field (mean + eddies) has been used. We have found that the mean component of the surface data determines, to a large extent, the structure of the flow field in the subsurface layers, while the eddy field, as well as the inflow/outflow conditions at the open boundaries, affect its intensity. In particular, if surface eddies are not assimilated only a weak flow develops in the two deeper model layers where no inflow/ outflow is prescribed at the boundaries. Comparisons of the assimilation results with available in situ observations show a considerable improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. In particular, the possibility of building into the model more realistic eddy characteristics, through the assimilation of the surface eddy field, proves very successful in driving components of the mean model circulation that are in good agreement with the available observations.
    Description: This research was carried out with the support of the National Aeronaut ics Space Administration, through a contract to MIT from the Jet Propulsion Laboratory, # 958208, as a part of the TOPEX-Poseidon investigation.
    Keywords: Ocean-atmosphere interaction ; Ocean currents ; Ocean temperature
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution February 1994
    Description: In this work we study motion of a baroclinic upper-ocean eddy over a large-scale topography which simulates a continental slope. We use a quasigeostrophic f-plane approximation with continuous stratification. To study this problem we develop a new numerical technique which we call "semi-lagrangian contour dynamics". This technique resembles the traditional 2-D contour dynamics method but differs significantly from it in the numerical algorithm. In addition to "Lagrangian" moving contours it includes an underlying "Eulerian" regular grid to which vorticity or density fields are interpolated. To study topographic interactions in a continuously stratified model we use density contours at the bottom in a similar manner as vorticity contours are used in the standard contour dynamics. For the case of a localized upper-ocean vortex moving over a sloping bottom the problem becomes computationally 2-dimensional (we need to follow only bottom density contours and the position of the vortex itself) although the physical domain is still 3-dimensional. Results of the numerical model lndicate importance of baroclinic effects in the vortex-topography interaction. After the initial surge of topographic Rossby waves a vortex moves almost steadily due to the interaction with a bottom density anomaly which is created and supported by a vortex itself. This anomaly is equivalent to a region of opposite-signed vorticity with a total circulation exactly compensating that of a vortex. This results in a vertically aligned dipolar structure with the total barotropic component equal to zero. Analytical considerations explaining this effect are presented and formulated in a more general statement which resembles but does not coincide with the "zero angular momentum theorem" of Flierl, Stern and Whitehead, 1983. In such steady translation the centroid of a bottom density anomaly is displaced horizon tally from the center of an upper-ocean vortex so the whole system moves due to this misalignment, which is known as a "he tonic mechanism". Cyclonic vortices go generally upslope, and anticyclones - in a downslope direction. The along-slope component of their motion depends upon the strength of a vortex, curvature of the bottom slope and background flows. When surrounded by a bowl-shaped topography anticyclonic vortices tend to stay near the deepest center of a basin, even resisting ambient flows which advect them outward. Application of this results to various oceanic examples (particularly to the "Shikmona eddy" in the Eastern Meditenanian) is discussed. Our results show that the behavior of a vortex over a sloping bottom differs significantly from its motion on the planetary beta-plane (but with a flat bottom). To explain this difference we introduce the concept of a "wave-breaking regime" relevant for the case of a planetary beta-effect, and a "wave-gliding regime" which characterizes the interaction of an eddy with a topographic slope.
    Description: This work was supported by the NSF grant #OCE 90-12821.
    Keywords: Ocean circulation ; Ocean currents ; Ocean bottom ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution October 1993
    Description: Hydrographic and expendable current profiler (XCP) data taken during the Gulf of Cadiz Expedition in September 1988 are analyzed to diagnose the mixing and dynamics of the Mediterranean outflow. The overall structure of the outflow is consistent with that described in the historical literature (Heezen and Johnson, 1969). This data shows that the overflow transport doubles from .85 Sv to 1.9 Sv, and that the velocity weighted salinity decreases from 37.8 pss to 36.7 pss in the first 60 km of the path. The core salinity of the neutrally buoyant outflow near Cape St. Vincent is 36.6 pss, which indicates that most of the mixing has taken place close to the Strait in the initial descent of the outflow. Cross stream variations in the overflow T/S properties increase as the flow spreads from 10 km to 90 km wide. The outflow begins with less than a 0.5°C across-stream variation in temperature in the Strait with the saltiest, coldest water to the south and slightly fresher and warmer outflow to the north. As the outflow spreads, the northern near-shelf flow follows a path higher in the water column and mixes with warmer North Atlantic water than does the deeper offshore flow. Within the first 100 km, the cross stream variation in temperature on an isopycnal becomes more than a 2°C. The flow eventually settles along two preferred isopycnals: 27.5 and 27.8 (Zenk 1975b). The spreading of the flow contains both a barotropic and baroclinic character. The average change in angle above and below the maximum velocity of the outflow is 8°while at the edges of the flow the average direction of the outflow diverges by as much as 50°. Gradient Richardson numbers less than 1/4 are found in the interface (up to 50 m thick) between westward flowing Mediterranean water and eastward flowing North Atlantic water, even though there is a strong stabilizing stratification present. Bulk Froude numbers greater than 1 are found near the Strait coincident with the vigorous mixing noted above. Lower bulk Froude numbers were observed in regions where less entrainment was taking place. The momentum balances are diagnosed using hydrographic and XCP data. Evaluation of the cross stream momentum balance shows the importance of advection as the flow makes a 90 degree inertial turn upon entering the Gulf of Cadiz. A form of the Bernoulli function can be evaluated to infer the total stress (entrainment and bottom drag) acting on the outflow. This stress is as large as 5 Pa within 20 km of the Strait, while further downstream the stress decreases to about 1/2 Pa. The entrainment stress estimated from the property fluxes reaches a maximum of about 0.8 Pa near section C, indicating that bottom stress is dominant. Near the Strait, advection, bottom drag and the Coriolis force are all critical to the dynamics of the outflow. Further downstream, the outflow becomes a damped geostrophic current. A simple geostrophic adjustment model is used to show that in the absence of frictional stresses, the outflow would very quickly become geostrophically balanced and descend only about 10 m down the continental slope. Thus, friction is critical for the outflow to cross isobaths. A simple numerical model that uses a Froude number dependent entrainment and a quadratic bottom friction law is used to simulate the outflow (Price and Baringer, 1993). Some of the properties of the outflow including localized entrainment, large stresses and high Rossby number of the flow (initially as high as 0.6), are simulated rather well, though the model overestimates the magnitude of the outflow current. We suspect that this is a consequence of assuming a passive ocean. Two different methods for specifying the broadening of the flow are compared: one using the highly parameterized concept of Ekman spreading, the other using the conservation of potential vorticity. The potential vorticity broadening more accurately reproduces the observed width of the flow near Cape St. Vincent where the width varies inversely with the bottom slope. However, both methods produce essentially the same equilibrium temperature, salinity and transport of the outflow which is a testament to the robustness of the model solution. with the formation process of NADW.
    Keywords: Ocean currents ; Oceanus (Ship : 1975-) Cruise OC202
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1996
    Description: During January-March, Scotian Shelf water has been observed to flow episodically from the southwestern Scotian Shelf directly across the Northeast Channel to Georges Bank. The possible factors that allow Scotian Shelf water to break the topographic constraint presented by the Northeast Channel and flow directly to Georges Bank are considered. As a simple analog to the flow over the southwestern Scotian Shelf near the Northeast Channel, the adjustment of a barotropic current near a shelf-break to a sharp bend in the shelf topography is studied numerically. For parameters within the oceanographic range, the adjustment to the bend is smooth and steady with no eddies shed at the corner. The vorticity dynamics allow a balance between the vortex stretching in the flow and the curvature in the flow. This is possible since the bend is a right-hand one facing downstream, a similar balance not being possible for a left-hand bend, in which case eddy formation is likely. A simple model of this balance clarifies the vorticity dynamics and provides the scaling rc = √eL/0.765 for any streamline in the flow, where rc is the radius of curvature at the corner, E = u0/fL and L = h0/b, where uo is the initial speed, f the coriolis parameter, h0 the initial depth and b the bottom slope. These results show that other factors such as stratification, wind stress, and time-dependent inflow must play a role in any flow across the Northeast Channel.
    Description: I am very grateful to the US-GLOBEC program for providing the funding for this study (N.S.F. grant OCE-9313671).
    Keywords: Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1995
    Description: Geosat altimeter data and numerical model output are used to examine the circulation and dynamics of the Antarctic Circumpolar Current (ACC). The mean sea surface height across the ACC has been reconstructed from height variability measured by the Geosat altimeter, without assuming prior knowledge of the geoid. For this study, an automated technique has been developed to estimate mean sea surface height for each satellite ground track using a meandering Gaussian jet model, and errors have been estimated using Monte Carlo simulation. The results are objectively mapped to produce a picture of the mean Subantarctic and Polar Fronts, which together comprise the major components of the ACC. The locations of the fronts are consistent with in situ observations and indicate that the fronts are substantially steered by bathymetry. The jets have an average Gaussian width of about 44 km in the meridional direction and meander about 75 km to either side of their mean locations. The width of the fronts is proportional to 1/f, indicating that with constant stratification, the width is proportional to the baroclinic. Rossby radius. The average height difference across the Subantarctic Front (SAF) is 0.7 m and across the Polar Front (PF) 0.6 m. The mean widths of the fronts are correlated with the size of the baroclinic Rossby radius. The meandering jet model explains between 40% and 70% of the height variance along the jet axes. Bathymetric constrictions are associated with increased eddy variability, a smaller percentage of which may be explained by the meandering of the ACC fronts, indicating that propagating eddies and rings may be spawned at topographic features. Detailed examination of spatial and temporal variability in the altimeter data indicates a spatial decorrelation scale of 85 km and a temporal e-folding scale of 34 days. The sea surface height variability is objectively mapped using these scales to define autocovariance functions. The resulting maps indicate substantial evidence of mesoscale eddy activity. Over 17-day time intervals, meanders of the PF and SAF appear to elongate, break off as rings, and propagate. Statistical analysis of ACC variability from altimeter data is conducted using empirical orthogonal functions (EOFs ). The first mode EOF describes 16% of the variance in total sea surface height across the ACC; reducing the domain into basin scales does not significantly increase the variance represented by the first EOF, suggesting that the scales of motion are relatively short, and may be determined by local instability mechanisms rather than larger basin scale processes. Likewise, frequency domain EOFs indicate no statistically significant traveling wave modes. The momentum balance of the ACC has been investigated using both output from a high resolution primitive equation model and sea surface height measurements from the Geosat altimeter. In the Semtner-Chervin general circulation model, run with approximately quarter-degree resolution and time varying ECMWF winds, topographic form stress is the dominant process balancing the surface wind forcing. Detailed examination of form stress in the model indicates that it is due to three large topographic obstructions located at Kerguelen Island, Campbell Plateau, and Drake Passage. In order to reduce the effects of standing eddies, the model momentum balance is considered in stream coordinates; vertically integrated through the entire water column, topographic form drag is the dominant balance for wind stress. However, at mid-depth the cross-stream momentum transfer is dominated by horizontal biharmonic friction. In the upper ocean, horizontal friction, mean momentum flux divergence, transient momentum flux divergence, and mean vertical flux divergence all contribute significantly to the momentum balance. Although the relative importance of individual terms in the momentum balance does not vary substantially along streamlines, elevated levels of eddy kinetic energy are associated with the three major topographic features. In contrast, altimeter data show elevated energy levels at many more topographic features of intermediate scales, suggesting that smaller topographic effects are better able to communicate with the surface in the real ocean than in the model. Transient Reynolds stress terms play a small role in the the overall momentum balance; nonetheless, altimeter and model measurements closely agree, and suggest that transient eddies tend to accelerate the mean flow, except in the region between the major fronts which comprise the ACC. Potential vorticity is considered in the model output along Montgomery streamfunction. Even at about 1000 m depth, it varies in response to wind forcing, largely as a result of changes in vertical stratification, indicating that forcing and dissipation do not locally balance in the Southern Ocean. In order to compare model and altimeter potential vorticity estimates, two different proxies for potential vorticity on surface streamlines are considered. Both proxies show very similar results for model and altimeter, suggesting that differences in surface streamlines estimated by the altimeter and the model are not significant in explaining the Southern Ocean flow. The proxies are both roughly conserved along surface height contours but undergo substantial jumps near topographic features. However, they cannot capture stratification changes which may be critically important to the overall potential vorticity balance.
    Description: Funding for this research was provided by an Office of Naval Research graduate student fellowship and National Aeronautics and Space Administration contract NAGW-1666.
    Keywords: Ocean currents ; Eddy flux
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1991
    Description: A set of four hydrographic sections through the Brazil Current are analyzed to identify downstream changes in the Brazil Current. The data, from the Thomas Washington Marathon Cruise, Leg 9, are at 27, 31, 34 and 36°S. The region they span details the change of the current from a relatively small near surface feature to a large, deep current. While the Brazil Current does not appear to develop transports as large as those found in the Gulf Stream, the calculated transports greatly exceed previous estimates. At 27°S the current extends down to approximately 700 m and transports 12 Sv southward; this value is consistent with previous estimates farther north. Downstream, surface layer transport increases, the current deepens, and the transport reaches a maximum of 80 Sv at 36°S. Part of the growth comes from the tight recirculation found just offshore of the Brazil Current. The recirculation strengthens and deepens to the south, with a minimum transport of 4 Sv north at 27°S and a maximum of 33 Sv at 36°S. The change in the current is also reflected in its shear profiles. At 27°S Brazil Current shear is found only in the upper portion of the water column, over the continental slope. Downstream, the current moves off the slope into deeper water and develops top-to-bottom, monotonic shear. To obtain velocity from the shear profiles, zero velocity surfaces are chosen based on conservative use of tracer information. A simple basin-wide model is used at 31°S to tie limits on the size of the Brazil Current and recirculation to various limits on layer-to-layer exchanges south of the section. The multi-layer model - based on changes in depth of several isotherms is used to extend the interpretation of the current beyond that of an isolated ocean feature. The model is required to conserve mass in each layer, either by applying barotropic transports or by allowing layer-to-layer exchanges south of the section. Solutions are deemed acceptable if the sense, or direction, of the various layer-to-layer conversions are consistent with accepted ideas of water mass formation. Initially, a two layer model is employed. Governed by the conservation of mass in each layer, the two layer model has only one constraint on the resulting solutions: a conversion of cold-to-warm water in the south (or the surface layer flowing north and the deep layer flowing south). Such a meridional flow pattern is consistent with the equatorward heat flux in the South Atlantic. The single constraint, however, is not strong enough to limit the solution region in any significant way. The final model presented has four layers, and acceptable solutions have the net transports of the surface layer and the bottom water northward and form intermediate water from North Atlantic Deep Water in the south. The resulting solution set has a fairly small range of transports for the Brazil Current, with surface layer transports between 20 and 35 Sv; this range is consistent with the value calculated from hydrographic data at 31°S. Given the complex interleavings of the South Atlantic water masses, the four layer model performs remarkably well. Finally, total potential vorticity is calculated from the hydrographic sections. Contrary to what one might expect, the reference level choice is not a significant problem: where currents are large, most of the signal in relative potential vorticity comes from the measured shear, and where currents are small, the relative potential vorticity is not significant compared to the planetary vorticity. Unfortunately, the process of taking two horizontal derivatives of the density field results in a jittery relative potential vorticity signal. As a result, a clear potential vorticity profile could not be constructed for the current. This variablitiy may be real -the ocean is frequently much noisier than one imagines. It may also be possible, though, to smooth the data sufficiently so that a cleaner picture emerges. Despite the problems involved in obtaining a quantitative profile of the potential vorticity, qualitative changes are useful in detecting different flow regimes. By comparing the downstream changes in total and planetary potential vorticity, one can deduce frictional and inertial regimes in the different layers. The presence of a frictional regime at the inshore edge suggests that care should be taken in assuming that potential vorticity is conserved in western boundary currents. In addition the potential vorticity sections trace a pattern of the recirculation feeding into the Brazil Current in the upper layers; other tracers did not provide a clear image. The final picture which emerges is not of a small, surface-trapped Brazil Current; rather, it is that of a classic western boundary current, increasing in strength and depth before turning east into the interior ocean.
    Description: Financial support for the data collection and initial analysis was provided through the Office of Naval Research South Atlantic Accelerated Research proposal under contract N00014-82-C-0019. Continued analysis was supported by the National Science Foundation under grant OCE86-14486.
    Keywords: Ocean currents ; Thomas Washington (Ship) Marathon Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1991
    Description: Using a semi-geostrophic, reduced gravity thin jet model, we analytically study the evolution of initial meanders into pinched-off rings. The model used is similar to the path equation developed by Flierl and Robinson {1984) for vertically coherent meanders. However, in the present model, the meanders are baroclinic, and a stretching term arises due to the motion of the interface. It can be shown that the equation governing the time-dependent meander of this jet (Pratt, 1988) can be transformed into the Modified Korteweg- deVries (MKdV) equation in intrinsic coordinates. The MKdV equation admits two types of solitary wave solutions, loop solitons and breathers. The breathers are permanent meanders which propagate on the path , and some are able to form rings. Using the inverse scattering transform , we can predict breather and ring formation for simple initial meanders. The inverse scattering t ransform is applied to S and Ω shaped meanders with piecewise constant and continuous curvature. S shaped meanders, or steps, must be multi-valued to form breathers, and must have very steep angles in order to form rings. Due to integral constraints, Ω shaped meanders, or lobes, are unable to pinch together to form rings unless they are wide enough so that the two side flanks of the lobe act as two independent steps. The numerical solutions indicate that the breathers predicted by the inverse scattering is a very good approximation to the full solution.
    Description: This work has been supported by NSF contract number OCE 89-16446 and ONR contract number N00014-S9-J-1182.
    Keywords: Ocean currents ; Shear flow ; Fluid dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution March 1992
    Description: Rotating baroclinic and barotropic boundary currents flowing around a corner in the laboratory were studied in order to discover the circumstances under which eddies were produced at the corner. Such flows are reminiscent of oceanic coastal flows around capes. When the baroclinic currents, which consisted of surface flows bounded by a density front, encountered a sharp corner, immediately downstream of the corner an anticyclone grew in the surface layer for an angle of greater than 40 degrees. Varying the initial condition of the flow or the depth of the lower layer did not noticeably affect the gyre's properties except for its growth speed, which was greater when the lower layer was shallower. The barotropic currents were pumped along a sloping bottom, and also formed anticyclonic gyres which quickly attained an approximately steady state. For a given topography, the size of the gyre was proportional to the inertial radius u/f. Volume flux calculations based on the surface velocity revealed vertical shear which increased with gyre size. Hydraulic models were also applied to flow around gently curving topography to determine the critical separation curvature as a function of upstream parameters.
    Description: This work was supported by the National Science Foundation grant OCE 89-15408.
    Keywords: Eddies ; Fluid dynamics ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1991
    Description: This thesis examines the effect of mean large-scale currents on the vertical structure of the upper ocean during two recent observational programs: the Long Term Upper Ocean Study (LOTUS) and the TROPIC HEAT experiments. The LOTUS experiment took place in the northwest Atlantic Ocean, a mid-latitude region away from strong mean currents, and extended over one entire seasonal cycle. The TROPIC HEAT experiments took place in the central equatorial Pacific Ocean during two 12-day periods in 1984 and 1987, at opposite extremes of the seasonal cycle. We use observations from these field experiments as well as one-dimensional numerical models of the upper ocean to analyze the dynamics of the vertical structure of the upper ocean at the equator and in mid-latitudes. Due to the different nature of the observations, we focus on the long term mean structure of the upper ocean in the LOTUS observations (Chapters 2 and 3), and on the diurnal cycle in the equatorial upper ocean in our analysis of the TROPIC HEAT observations (Chapters 4 and 5). In the LOTUS observations, we find that the observed current is coherent with the wind over low frequencies (greater than an inertial period). Using a wind-relative averaging method we find good agreement with Ekman transport throughout the first summer and winter of the LOTUS experiment, with the exception of a downwind component in the wintertime. The mean current spiral is flat compared to the classic Ekman spiral, in that it rotates less with depth than does the Ekman spiral. The mean current has an e-folding depth scale of 12m in the summer and 25 min the winter. Diurnal cycling is the dominant variability in the summer and determines the vertical structure of the spiral. In the winter, diurnal cycling is almost non-existent due to greatly reduced solar insolation. There is a persistent downwind shear in the upper 15 m during the winter which may be partially due to a bias induced by surface wave motion but which is also consistent with a logarithmic boundary layer. The Price et al. (1986) model is reasonably successful in simulating the current structure during the summer, capturing both the mean and the diurnal variation. The model is less successful in the winter, though it does capture the overall depth scale of the current spiral. In our analysis of the TROPIC HEAT observations, we extend the Price et al. (1986) model to the equatorial upper ocean. The model is initialized with the stratification and shear of the Equatorial Undercurrent (EUC), and is driven with heating and wind stress. A surface mixed layer is determined by bulk stability requirements, and a transition layer below the mixed layer is simulated by requiring that the gradient Richardson number be no less than 1/4. A principal result is that the nighttime phase of the diurnal cycle is strongly affected by the EUC, resulting in deep mixing and large dissipation at night consistent with observations of the equatorial upper ocean during TROPIC HEAT. Other features of the equatorial circulation (upwelling and the zonal pressure gradient) are of little direct importance to the diurnal cycle. The daytime (heating) phase of the simulated diurnal cycle is unaffected by equatorial circulation and is very similar to its mid-latitude counterpart. Solar heating produces a stably stratified surface layer roughly 10 m thick within which there is little, 0(3 x 10-8 W kg-1), turbulent dissipation. The diurnal stratification, though small compared to the EUC, is sufficient to insulate the EUC from wind stress during the day. For the typical range of conditions at the equator, diurnal warming of the sea surface is 0.2-0.5°C, and the diurnal variation of surface current (diurnal jet) is 0.1-0.2 m s-1, consistent with observations. The nighttime (cooling) phase of the simulated diurnal cycle is quite different from that seen at mid-latitudes. As cooling removes the warm, stable surface layer, the wind stress can work directly against the shear of the EUC. This produces a transition layer that can reach to 80 m depth, or nearly to the core of the EUC. Within this layer the turbulent dissipation is quite large, 0(2 x 10-7 W kg-1). Thus, the simulated dissipation has a diurnal range of more than a factor of five, as observed in the 1984 TROPIC HEAT experiment, though the diurnal cycle of stratification and current are fairly modest. Dissipation estimated from the model is due to wind working directly against EUC, and is similar to observed values of dissipation in both magnitude and depth range. Overall dissipation values in the model are set by the strength of the wind stress rather than the structure of the EUC, and rise approximately like u*3 for a given Undercurrent. This suggests that the lower values of dissipation observed in the 1987 TROPIC HEAT experiment were due to the lower wind stress values rather than the relatively weak Undercurrent. The main findings of this thesis are: 1) When the diurnal cycle in solar heating is strong, it determines the local vertical structure of the upper ocean (in both the LOTUS and TROPIC HEAT observations). The Price et al. (1986) model and its extension to the equator simulate the upper ocean fairly well when the diurnal cycle is strong. Under these conditions it is necessary to make measurements very near the surface ( 〈 10 m depth) to fully resolve the wind-driven flow. 2) When surface waves are strong, surface-moored measurements of current may have a significant wave bias. To accurately estimate this bias, simultaneous measurements of current, current meter motion, and surface waves are needed. 3) Mean currents strongly amplify the nighttime phase of the diurnal cycle in the equatorial upper ocean, and therefore alter the mean structure of the equatorial upper ocean.
    Description: The Office of Naval Research supported this work under contract N00014-89-J-1053.
    Keywords: Long Term Upper Ocean Study (LOTUS) ; Ocean currents ; Thomas G. Thompson (Ship) Cruise ; Wecoma (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1992
    Description: This study concerns the barotropic interactions between a mesoscale eddy and a straight monotonic bottom topography. Through simple to relatively complicated modeling effort, some of the fundamental properties of the interaction are investigated. In chapter two, the fundamental aspects of the interaction are examined using a simple contour dynamics model. With the simplest model configuration of an ideal vortex and a step topography, the basic dynamical features of the observed oceanic eddy-topography interaction are qualitatively reproduced. The results consist of eddy-induced cross-topography exchange, formation of topographic eddies, eddy propagation and generation of topographic waves. In chapter three, a more complicated primitive equation model is used to investigate a mesoscale eddy interacting with an exponential continental shelf/slope topography on both f and β-planes. The f-plane model recasts the important features of chapter two. The roles of the eddy size and strength and the geometry of topography are studied. It is seen that the multiple anticyclonic eddy-slope interactions strongly affect the total cross-slope volume transport and the evolution of both the original anticyclone and the topographic eddy. Since a cyclone is trapped at the slope and eventually moves on to the slope, it is most effective in causing perturbation on the shelf and slope. The responses on the shelf and slope are mainly wavelike with dispersion relation obeying that of the free shelf-trapped wave modes. On the β-plane, the problem of an eddy colliding onto a continental shelf/slope from a distance with straight or oblique incident angles is investigated. It is found that the straight eddy incident is more effective in achieving large onslope eddy penetration distance than the oblique eddy incident. The formation of a dipole-like eddy pair consisting of the original anticyclone and the topographic cyclone acts to suppress the eddy decay due to long Rossby wave radiation. A weak along-slope current near the edge of the slope is found, which is part of a outer slope circulation cell originated from the Rossby wave wake trailing the propagating eddy. Model-observation comparisons in_chapter four show favorable qualitative agreement of the model results with some of the observed events in the eastern U.S. continental margins and in the Gulf of Mexico. The model results give dynamical interpretations to some observed features of the oceanic eddy-topography interactions and provide enlightening insight into the problem.
    Keywords: Eddies ; Ocean currents ; Fluid dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1990
    Description: The contribution of tropical instability waves to the momentum and energy balances of the Pacific Equatorial Undercurrent is investigated using velocity and temperature time series from the three-dimensional Equatorial Pacific Ocean Climate Study mooring array at 110°W. Tropical instability waves are an energetic band of variability typically with periods between 14 and 36 days which are thought to be generated by instability of the equatorial currents. They are frequently observed as meanders of the equatorial front in satellite sea surface temperature maps. Here, they are observed as large oscillations in the meridional velocity records at l10°W with an energy peak at 21 days. Westward phase propagation is observed in this band with a phase speed of -0.9 (±0.3) m s-1 and a wavelength of 1660 km. Upward phase propagation is observed which is consistent with downward energy propagation. The observed propagation characteristics are compared with those of the mixed Rossby-gravity wave. The variability in this band produces large northward fluxes of eastward momentum and southward fluxes of temperature which affect the dynamics of the mean Undercurrent through the Reynolds stress divergence, and the Eliassen-Palm flux divergence. The waves produce a northward flux of eastward momentum, uv, which is largest at the northern mooring in the upper part of the array. The meridional divergence of eastward momentum, -δ(uv)/δy, decelerates the Undercurrent core down to 150 m. This implies a coupling between the Undercurrent and the South Equatorial Current with the eastward momentum of the Undercurrent transferred to the westward flowing South Equatorial Current. To estimate the vertical momentum flux divergence, the vertical eddy flux of eastward momentum, uw, is inferred using the eddy temperature equation. The vertical eddy momentum flux is positive and largest at the core of the Undercurrent, implying an acceleration of the eastward flow above the core and a deceleration below. The Eliassen-Palm flux divergence is small above the core of the Undercurrent at 75 m, but below the core, is sufficient to balance the deeply penetrating eastward pressure gradient force. The instability waves are important to the energetics of the mean Undercurrent. An exchange of kinetic energy from the mean Undercurrent to the waves through shear production is estimated. A local exchange is suggested since the rate at which the mean Undercurrent loses kinetic energy through instability is comparable to the rate at which the waves gain energy through shear production. The conversion from mean to eddy potential energy is an order of magnitude smaller with the waves gaining potential energy through conversion of mean available potential energy. The observations of upward phase propagation and downward Eliassen-Palm flux suggest that the waves propagate energy downward into the deep ocean. The energetics and momentum balance of the mean Undercurrent is investigated further by analyzing the downstream change in the Bernoulli function on the equator along isentropes or potential density surfaces using mean hydrographic sections at 150°W and 110°W. A downstream decrease in the Bernoulli function is observed which is due to a decrease in the Acceleration Potential since the mean kinetic energy of the Undercurrent changes little from 150°W to 110°W. The lateral divergence of eddy momentum fluxes calculated on isotherms is sufficient to balance the observed decrease in the Acceleration Potential. The downstream decrease in the Acceleration potential has further implications for the mean energetics since this "downhill" flow releases mean available potential energy stored in the east-west sloping thermocline. The rate at which the Undercurrent releases available potential energy, is shown to be comparable to the rate at which the mean flow loses kinetic energy by interaction with the waves, with the waves gaining kinetic energy in the process. Thus, it is hypothesized that in the eastern Pacific this downstream release of available potential energy is ultimately converted into a downstream increase in the kinetic energy of the waves rather than the kinetic energy of the mean flow as occurs in the western Pacific. To maintain an equilibrium, the waves radiate energy into the deep ocean as is suggested by the upward phase propagation and the downward Eliassen-Palm flux.
    Description: Financial support of the National Science Foundation under contracts OCE 82-14955 and OCE 85-19551, for participation in Tropic Heat, and OCE 85-04125.
    Keywords: Ocean currents ; Ocean waves ; Wave-motion
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1999
    Description: This thesis studies the problems of generation and maintenance of recirculations by Gulf Stream instabilities. Observations show that the horizontal structure of the jet and its recirculations suffer significant changes in time. Here, the role of internal dynamics of the jet is isolated as one of the possible sources of such variability, and the differences between barotropic and baroclinic instabilities are investigated. The problem of recirculation development is considered in a framework of a free spin down of the 2-layer and the 1-layer, zonally symmetric, quasi-geostrophic jets. Linear stability analysis shows that in strongly baroclinic basic flows, eddies are capable of driving recirculations in the lower layer through the residual meridional circulation. In strongly barotropic jets, the linearly most unstable wave simply diffuses the jet. Nonlinear stability analysis indicates that recirculations are robust features of the 2-layer model. The strength of recirculations is a function of the model’s parameters. It increases with a decrease in the value of the nondimensional /3 due to potential vorticity homogenization constrained by enstrophy conservation. The recirculation strength is a non-monotonic function of the baroclinic velocity parameter; it is the strongest for strongly baroclinic basic flows, weakest for flows with intermediate baroclinic structure and of medium strength for strongly barotropic basic flows. Such non-monotonic behavior is the result of two different processes responsible for the recirculation development: linear eddy-mean flow interactions for strongly baroclinic basic flows and strongly nonlinear eddy-eddy and eddy-mean flow interaction for strongly barotropic flows. In the case of the reduced-gravity model, recirculations develop only for infinite deformation raduis. Basic flows with finite deformation radius are only weakly supercritical and therefore produced negligible recirculations after equilibration. The problem of maintenance of the recirculations is coupled to the questions of existence of low frequency variability and of multiple dynamical regimes of a system consisting of a quasi-geostrophic jet and its recirculations. The problem is studied in a framework of a 2-layer or a reduced-gravity colliding jets model which has no windforcing. Instead, it is forced by inflows and outflows through the open boundaries. Oniy the western boundary of the domain is closed, and a free slip boundary condition is used there. The results of the numerical experiments show that when oniy the mechanism of barotropic instability is present, the model has two energy states for a wide range of interfacial friction coefficients. The high energy state is characterized by well-developed recirculations and displays strong variability associated with either large recirculating gyres and a weak eddy field or small recirculations and a strong eddy field. The iow energy state is characterized by large meridional excursions in the separation point and large amplitude, westward propagating meanders that produce strong rings after interacting with the western wall. For physically relevant bottom friction values, the presence of baroclinic in stability in the recirculation regions of the 2-layer model allows for a unique dynamical regime characterized by well-developed recirculations in both layers. The low-frequency variability associated with the regime is weak and is related to meridional shifts in the position of the jet, to wrapping of the recirculations around each other, and to pulsations in their zonal extent. For strong bottom friction, the 2-layer model has only the mechanism of barotropic instability which reduces it to a 1 1/2-layer configuration; the model displays two dynamical regimes and strong low frequency variability in the upper layer, while the lower layer is strongly frictional.
    Description: Financial support for this research was provided by NSF grant number OCE 9617848.
    Keywords: Ocean circulation ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2011
    Description: Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the pressure gradient through the Tokar Gap on the Sudanese coast, at about 18°N, during the summer monsoon season. It disturbs the prevailing along-sea (southeastward) winds with strong cross-sea (northeastward) winds that can last from days to weeks and reach amplitudes of 20-25 m/s. By comparing scatterometer winds with along-track and gridded sea level anomaly observations, it is shown that an intense dipolar eddy spins up in less than seven days in response to the wind jet. The eddy pair has a horizontal scale of 140 km. Maximum ocean surface velocities can reach 1 m/s and eddy currents extend at least 200 m into the water column. The eddy currents appear to cover the width of the sea, providing a pathway for rapid transport of marine organisms and other drifting material from one coast to the other. Interannual variability in the strength of the dipole is closely matched with variability in the strength of the wind jet. The dipole is observed to be quasi-stationary, although there is some evidence for slow eastward propagation—simulation of the dipole in an idealized high-resolution numerical model suggests that this is the result of self-advection. These and other recent in situ observations in the Red Sea show that the upper ocean currents are dominated by mesoscale eddies rather than by a slow overturning circulation.
    Description: This work is supported by Award Nos. USA 00002, KSA 00011 and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST).
    Keywords: Ocean-atmosphere interaction ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1999
    Description: Observations of diapycnal mixing rates are examined and related to diapycnal advection for both double-diffusive and turbulent regimes. The role of double-diffusive mixing at the site of the North Atlantic Tracer Release Experiment is considered. The strength of salt-finger mixing is analyzed in terms of the stability parameters for shear and double-diffusive convection, and a nondimensional ratio of the thermal and energy dissipation rates. While the model for turbulence describes most dissipation occurring in high shear, dissipation in low shear is better described by the salt-finger model, and a method for estimating the salt-finger enhancement of the diapycnal haline diffusivity over the thermal diffusivity is proposed. Best agreement between tracer-inferred mixing rates and microstructure based estimates is achieved when the salt-finger enhancement of haline flux is taken into account. The role of turbulence occurring above rough bathymetry in the abyssal Brazil Basin is also considered. The mixing levels along sloping bathymetry exceed the levels observed on ridge crests and canyon floors. Additionally, mixing levels modulate in phase with the spring-neap tidal cycle. A model of the dissipation rate is derived and used to specify the turbulent mixing rate and constrain the diapycnal advection in an inverse model for the steady circulation. The inverse model solution reveals the presence of a secondary circulation with zonal character. These results suggest that mixing in abyssal canyons plays an important role in the mass budget of Antarctic Bottom Water.
    Description: This work was supported by contracts N00014-92-1323 and N00014-97-10087 of the Office of Naval Research and grant OCE94-15589 of the National Science Foundation.
    Keywords: Turbulence ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1988
    Description: Analysis of vertical profiles of absolute horizontal velocity collected in January 1981, February 1982 and April 1982 in the central equatorial Pacific as part of the Pacific Equatorial Ocean Dynamics (PEQUOD) program, revealed two significant narrow band spectral peaks in the zonal velocity records, centered at vertical wavelengths of 560 and 350 stretched meters (sm). Both signals were present in all three cruises, but the 350 sm peak showed a more steady character in amplitude and a higher signal-to-noise ratio. In addition, its vertical scales corresponded to the scales of the conspicuous alternating flows generically called the equatorial deep jets in the past (the same terminology will be used here). Meridional velocity and vertical displacement spectra did not show any such energetic features. Energy in the 560 sm band roughly doubled between January 1981 and April 1982. Time lagged coherence results suggested upward phase propagation at time scales of about 4 years. East-west phase lines computed from zonally lagged coherences, tilted downward towards the west, implying westward phase propagation. Estimates of zonal wavelength (on the order of 10000 km) and period based on these coherence calculations, and the observed energy meridional structure at this vertical wavenumber band, seem consistent, within experimental errors, with the presence of a first meridional mode long Rossby wave packet, weakly modulated in the zonal direction. The equatorial deep jets, identified with the peak centered at 350 sm, are best defined as a finite narrow band process in vertical wavenumber (311-400 sm), accounting for only 20% of the total variance present in the broad band energetic background. At the jets wavenumber band, latitudinal energy scaling compared well with Kelvin wave theoretical values and a general tilt of phase lines downward towards the east yielded estimates of 10000-16000 km for the zonal wavelengths. Time-lagged coherence calculations revealed evidence for vertical shifting of the jets on interannual time scales. Interpretation of results in terms of single frequency linear wave processes led to inconsistencies, but finite bandwidth (in frequency and wavenumber) Kelvin wave processes of periods on the order of three to five years could account for the observations. Thus, the records do not preclude equatorial waves as a reasonable kinematic description of the jets.
    Description: This research was supported by grant OCE-8600052 from the National Science Foundation, through the Woods Hole Oceanographic Institution.
    Keywords: Ocean currents ; Ocean-atmosphere interaction ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2011
    Description: Hurricane activity in the Northeastern Gulf of Mexico and its relationship to regional and large-scale climate variability during the Late Holocene is explored. A 4500-year record of hurricane-induced storm surges is developed from sediment cores collected from a coastal sinkhole near Apalachee Bay, Florida. Reconstructed hurricane frequency is shown to exhibit statistically significant variability with the greatest activity occurring between 2700 and 2400 years ago and the least activity between 1900 to 1600 years ago and after 600 years ago. Proxy records of stormrelevant climate variables contain similar timescales of variability and suggest both regional and large-scale mechanisms have influenced hurricane activity on centennial to millennial timescales. In particular, low-frequency migrations of the Loop Current may exercise control over regional hurricane activity by changing the thermal structure of the upper ocean and influencing the role of storm-induced upwelling on hurricane intensification. A new method for estimating the frequency of hurricanegenerated storm surges is presented and applied to Apalachee Bay, Florida. Multisite paleohurricane reconstructions from this region are developed, and the effects of geographic boundary conditions and temporal resolution on estimates of paleohurricane frequency are explored.
    Description: Financial support provided by the American Meteorological Society, the National Science Foundation, the Bermuda Risk Prediction Initiative, the National Center for Airborne Laser Mapping, and the Coastal Ocean Institute.
    Keywords: Paleoclimatology ; Holocene ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1988
    Description: This study focuses on the zonal weakening, eastern termination and seasonal variations of the Atlantic equatorial undercurrent (EUC). The main and most original contribution of the dissertation is a detailed analysis of the Atlantic EUC simulated by Philander and Pacanowski's (1986) general circulation model (GCM), which provides a novel description of the dynamical regimes governing various regions of a nonlinear stratified undercurrent. Only in a narrow deep western region of the simulation does one find an approximately inertial regime corresponding to zonal acceleration. Elsewhere frictional processes cannot be ignored. The bulk of the mid-basin model EUC terminates in the overlying westward surface flow while only a small fraction (the deeper more inertial layers) terminates at the eastern coast. In agreement with observations, a robust feature of the GCM not present in simpler models is the apparent migration of the EUC core from above the thermocline in the west to below it in the east. In the GCM, this happens because the eastward flow is eroded more efficiently by vertical friction above the base of the thermocline than by lateral friction at greater depths. This mechanism is a plausible one for the observed EUC. A scale analysis using a depth scale which decreases with distance eastwards predicts the model zonal transition between western inertial and eastern inertio-frictional regimes. Historical and recent observations and simple models of the equatorial and coastal eastern undercurrents are reviewed, and a new analysis of current measurements in the eastern equatorial Atlantic is presented. Although the measurements are inadequate for definitive conclusions, they suggest that Lukas' (1981) claim of a spring surge of the Pacific EUC to the eastern coast and a seasonal branching of the EUC into a coastal southeastward undercurrent may also hold for the Atlantic Ocean. To improve the agreement between observed and modelled strength of the eastern undercurrent, it is suggested that the eddy coefficient of horizontal mixing should be reduced in future GCM simulations.
    Description: This work was supported by NSF grants OCE82-14771, OCE82-08744 and OCE85-14885.
    Keywords: Ocean currents ; Thermoclines ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1988
    Description: In previous Gulf Stream work (Hall and Bryden, 1985, Hall, 1985, 198GA, 198GB), a decomposition of multiple depth current records was developed which produced along- and cross-stream components. The cross-stream component was found to occasionally match lateral displacements of the Stream, as determined by temperature changes measured at the current meters. This study determined where within the meander pattern of the Gulf Stream the cross-stream velocity calculated from current meters at depth correctly predicted translations of the Gulf Stream as measured by satellite data. Additionally, the effects of recently quantified cross-stream velocities associated with the curvature of Gulf Stream meanders were analyzed.
    Description: Funds for this work were provided by ONR contracts N00014-86-K-0751 and N00014-87-K-0007.
    Keywords: Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1988
    Description: The highly energetic Agulhas Retroflection region south of the African continent lies at the junction of the South Indian, South Atlantic, and Circumpolar Oceans. A new survey of the Agulhas Retroflection taken in March 1985, plus historical hydrographic data, allow its dynamical and water-mass characteristics, and its role in exchanging mass, tracers, and vorticity between the three oceans, to be extensively characterized. The 1985 survey is composed of three independent, synoptic elements: a grid of closely-spaced, full-water-depth hydrographic stations (the first entirely full-water-column survey in this area), including several transects of the Agulhas and Agulhas Return Currents; a continuous survey of the path of the currents (the first such survey in the Agulhas); and a contemporaneous and relatively cloud-free sea surface temperature image derived from satellite infrared measurements. Mass transport balances within the closed grid boxes of the 1985 hydrographic survey provide information about current transport, recirculation (transport in excess of estimated returning interior ocean transport), and the overall Retroflection transport pattern. The current transport values exceed by as much as a factor of 1.5 the maximum interior transport computed from observed wind-stress curl and linear theory. Agulhas Current transports ranged from 56 to 95 x 106 m s-l at four 1985 transects crossing the current. Agulhas Return Current transports at the two 1985 transects were 54 and 65 x 106 m s-l. These transports are computed relative to 2400 dbar, which lies below the deep oxygen minimum emanating from the South Indian Ocean, and above the North Atlantic Deep Water salinity maximum. The current retroflected in two distinct branches in 1985, with a cold ring and a partially isolated warm recirculation cell found between the two branches. The satellite-derived sea surface temperature (SST) image, in agreement with the in situ measurements, showed that the cold ring lacked a cold SST anomaly; that the subsurface current path, as represented by a survey of the 15 C isotherm and 200 dbar surface intersection, was closely followed by a sharp front in sea surface temperature; and that most of the Agulhas's surface warm core retroflected upstream of the second retroflection branch. Anticyclonic curvature vorticity at sharp turns in the subsurface current path was found to exceed the maximum allowed by gradient wind balance, indicating that at these locations time-dependence and cross-frontal flow are important. The current's density field is found to meet necessary conditions for baroclinic and barotropic instability. These instability mechanisms may play a role in ring formation and current meandering. Top-to-bottom cross-stream spatial and isopycnal water-mass layering in the Agulhas Current, Agulhas Return Current, and associated rings are presented in two sets of sections, one contoured with pressure and the other with potential density as vertical coordinate. Temperature, salinity, oxygen, potential density and velocity sections are shown contoured versus pressure; and pressure, salinity, oxygen, and planetary potential vorticity are shown contoured versus potential density. These sections clearly illustrate water-mass structure both in space and relative to isopycnal surfaces. Strong salt, oxygen, and potential vorticity fronts on isopycnals in the upper -300 m across the Agulhas and Agulhas Return Current are observed, as are deep western boundary filaments of (i) salty, low oxygen water at intermediate depths traceable to Red Sea Water influences, and (ii) salty North Atlantic Deep Water close round the tip of Africa. The 1985 cold-core ring is the first cold-cored isolated feature to be observed within the Retroflection itself. Its transport was 64 x 106 m s-1, its integrated kinetic and available potential energy anomalies were 8.3 and 61 x 1015 J respectively, and its integrated planetary potential vorticity anomaly was 2.8 x 10-12 m-1 s-1. The potential vorticity flux associated with the exchange of 25 warm ring/cold ring pairs per year between the South Indian and Southern Oceans would balance the potential vorticity input by the wind to the entire South Indian Ocean. Interbasin flow of warm thermocline water (warmer than 8 C) from the South Indian to the South Atlantic Ocean is reconsidered in light of the 1985 hydrographic data. Thermocline water flow from the South Indian Ocean into the South Atlantic in the 1985 and historical observations is found to range from 2.8 to 〈9.6 x 106 m s-I. These values are less than the S;10 x 106 m s·1 needed to balance the Atlantic Ocean export of deep water, and implies that the deep water export is balanced in part by water colder than 8 C.
    Description: Funding was provided by the Office of Naval Research under contract numbers NOOOI4-84-C-OI34 (NR083-400), NOOOI4-85-C-OOOl (NR083-004), and NOOOI4-87-K-0007 (NR083-004).
    Keywords: Ocean currents ; Ocean temperature ; Thomas Washington (Ship) Cruise 3 ; Knorr (Ship : 1970-) Cruise ; Oceanus (Ship : 1975-) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2011
    Description: Throughout this thesis we will discuss the theoretical background and empirical observation of a swell band shore normal flux divergence reversal. Specifically, we will demonstrate the existence and persistence of the energy flux divergence reversal in the nearshore region of Atchafalaya Bay, Gulf of Mexico, across storms during the March through April 2010 deployment. We will show that the swell band offshore component of energy flux is rather insignificant during the periods of interest, and as such we will neglect it during the ensuing analysis. The data presented will verify that the greatest flux divergence reversal is seen with winds from the East to Southeast, which is consistent with theories which suggest shoreward energy flux as well as estuarine sediment transport and resuspension prior to passage of a cold front. Employing the results of theoretical calculations and numerical modeling we will confirm that a plausible explanation for this phenomena can be found in situations where temporally varying wind input may locally balance or overpower bottom induced dissipation, which may also contravene the hypothesis that dissipation need increase shoreward due to nonlinear wave-wave interactions and maturation of the spectrum. Lastly, we will verify that the data presented is consistent with other measures collected during the same deployment in the Atchafalaya Bay during March - April 2010.
    Keywords: Ocean-atmosphere interaction ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1999
    Description: The thesis investigates the circulation at a 76-m deep study site on the southern flank of Georges Bank, a shallow submarine bank located between the deeper Gulf of Maine and the continental slope. Emphasis is placed on the vertical structure of the bottom boundary layer driven by the semi diurnal tides and the flow field's response to wind forcing. The observational analysis presented here is based on a combination of moored array and bottom tripod-mounted current, temperature, conductivity, and meteorological data taken between February and August 1995. Results from the bottom boundary layer analysis are compared to numerical model predictions for tidal flow over rough bottom topography. The flow response to wind forcing is examined and brought into context with the existing understanding of the wind-induced circulation in the Georges Bank region. Particular attention is given to the vertical distribution of the wind-driven currents, whose variation with background stratification is discussed and compared to observations from open ocean studies.
    Description: The research presented in this thesis was generously supported by the National Science Foundation under grants OCE 93-13671 and OCE 96-32357 as part of the U.S. GLOBEC/Georges Bank Program.
    Keywords: Global Ocean Ecosystems Dynamics (Program) ; Boundary layer ; Banks ; Ocean circulation ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1999
    Description: A state-of-the-art, high-resolution ocean general circulation model is used to estimate the time-dependent global ocean heat transport and investigate its dynamics. The north-south heat transport is the prime manifestation of the ocean’s role in global climate, but understanding of its variability has been fragmentary owing to uncertainties in observational analyses, limitations in models, and the lack of a convincing mechanism. These issues are addressed in this thesis. Technical problems associated with the forcing and sampling of the model, and the impact of high-frequency motions are discussed. Numerical schemes are suggested to remove the inertial energy to prevent aliasing when the model fields are stored for later analysis. Globally, the cross-equatorial, seasonal heat transport fluctuations are close to +4.5 x 1015 watts, the same amplitude as the seasonal, cross-equatorial atmospheric energy transport. The variability is concentrated within 200 of the equator and dominated by the annual cycle. The majority of it is due to wind-induced current fluctuations in which the time-varying wind drives Ekman layer mass transports that are compensated by depth-independent return flows. The temperature difference between the mass transports gives rise to the time-dependent heat transport. The rectified eddy heat transport is calculated from the model. It is weak in the central gyres, and strong in the western boundary currents, the Antarctic Circumpolar Current, and the equatorial region. It is largely confined to the upper 1000 meters of the ocean. The rotational component of the eddy heat transport is strong in the oceanic jets, while the divergent component is strongest in the equatorial region and Antarctic Circumpolar Current. The method of estimating the eddy heat transport from an eddy diffusivity derived from mixing length arguments and altimetry data, and the climatological temperature field, is tested and shown not to reproduce the model’s directly evaluated eddy heat transport. Possible reasons for the discrepancy are explored.
    Description: Funding for this research came from the Department of Defense under a National Defense Science and Engineering Graduate Fellowship. Financial support was also contributed by the National Science Foundation through grants #OCE-9617570 and #OCE-9730071, and the Tokyo Electric Power Company through the TEPCO/MIT Environmental Research Program. The author received partial support from an MIT Climate Modeling Fellowship, made possible by a gift from the American Automobile Manufacturers Association.
    Keywords: Ocean-atmosphere interaction ; Heat budget ; Ocean circulation ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2009
    Description: Interaction between the Antarctic Circumpolar Current and the continental slope/shelf in the Marguerite Bay and west Antarctic Peninsula is examined as interaction between a wind-driven channel flow and a zonally uniform slope with a bay-shaped shelf to the south. Two control mechanisms, eddy advection and propagation of topographic waves, are identified in barotropic vortex-escarpment interactions. The two mechanisms advect the potential vorticity (PV) perturbations in opposite directions in anticyclone-induced interactions but in the same direction in cyclone-induced interactions, resulting in dramatic differences in the two kinds of interactions. The topographic waves become more nonlinear near the western(eastern if in the Northern Hemisphere) boundary of the bay, where strong cross-escarpment motion occurs. In the interaction between a surface anticyclone and a slope penetrating into the upper layer in a two-layer isopycnal model, the eddy advection decays on length scales on the order of the internal deformation radius, so shoreward over a slope that is wider than the deformation radius, the wave mechanism becomes noticeably significant. It acts to spread the cross-isobath transport in a much wider range while the transport directly driven by the anticyclone is concentrated in space. A two-layer wind-driven channel flow is constructed to the north of the slope in the Southern Hemisphere, spontaneously generating eddies through baroclinic instability. A PV front forms in the first layer shoreward of the base of the topography due to the lower-layer eddy-slope interactions. Perturbed by the jet in the center of the channel, the front interacts with the slope/shelf persistently yet episodically, driving a clockwise mean circulation within the bay as well as crossisobath transport. Both the transports across the slope edge and out of the bay are comparable with the maximum Ekman transport in the channel, indicative of the significance of the examined mechanism. The wave-boundary interaction identified in the barotropic model is found essential for the out-of-bay transport and responsible for the heterogeneity of the transport within the bay. Much more water is transported out of the bay from the west than from the east, and the southeastern area is the most isolated region. These results suggest that strong out-of-bay transport may be found near the western boundary of the Marguerite Bay while the southeastern region is a retention area where high population of Antarctic krill may be found.
    Keywords: Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1984
    Description: The distribution and feeding behavior of bacterivorous micro flagellates (2-20 μm protozoa) and their ingestion by copepods were examined in an attempt to assess the importance of these protozoa as a trophic link between planktonic bacteria and zooplankton. The abundance of microflagellates relative to other picoplankton (0.2-2.0 μm) and nanoplankton (2-20 μm) populations in water samples in the North Atlantic and in Lake Ontario and on macroaggregates in the North Atlantic was determined using direct microscopical and culture estimation techniques. Seasonal, vertical and geographical changes in the density of microflagellates were generally not greater than one order of magnitude. Microscopical counts of heterotrophic nanoplankton (presumably microflagellates) typically ranged from a few hundred to a few thousand m1-1 for a variety of planktonic environments. They constituted approximately 1/3 to 1/2 of the nanoplankton in the euphotic zone and dominated the nanoplankton in the aphotic zone. Most Probable Number (MPN) estimation of the density of bacterivorous protozoa indicated that microflagellates were, on average, an order of magnitude more abundant than bacterivorous ciliates and amoebae. MPN and direct microscopical counts of microflagellates differed by as much as 104. This discrepancy was smaller in eutrophic environments (e.g. Continental Shelf and Lake Ontario) and on macroscopic detrital aggregates. All microbial populations enumerated were highly concentrated on macroscopic detrital aggregates relative to their abundance in the water surrounding the aggregates. Enrichment factors (the ratio of abundance of a population on a macroaggregate to its abundance in the surrounding water) increased along a eutrophic-to-oligotrophic gradient because of the combined effects of an increased abundance of microorganisms on macroaggregates in oligotrophic environments and a decreased abundance in the surrounding water in these same environments. Average enrichment factors for direct microscopical counts of heterotrophic nanoplankton (range = 17-114) were not as large as enrichment factors observed for MPN estimates of the number of bacterivorous microflagellates (range = 273-18400). Microflagellates numerically dominated the bacterivorous protozoa cultured from macroaggregates by one to two orders of magnitude, but ciliates and amoebae were also highly enriched on macroaggregates. Microenvironments are therefore a potentially important aspect for the ecology of planktonic microorganisms. Observations on the microbial colonization of mucus sloughed by ctenophores and discarded appendicularian houses suggest that these materials may be important sources of macroaggregates. Batch and continuous culture experiments were conducted with clonal cultures of microflagellates to test their ability to grow on various types and densities of bacteria. The doubling time of Monas sp. 1 ranged from 43 hr (when fed the cyanobacterium Synechococcus Strain WH 8101) to 6.9 hr (when fed the heterotrophic bacterium Serratia marinorubra). Cell yields (i.e. the conversion of bacterial biomass into protozoan biomass) of Monas sp. 1 fed two species of heterotrophic bacteria were greater than yields for the microflagellate fed two species chroococcoid cyanobacteria (range = 7-68%). Cell yields of two other species of microflagellates (Monas sp. 2 and Cryptobia maris) were 48% and 61%, respectively, on the bacterium Pseudomonas halodurans. Microflagellates grew in continuous culture at concentrations of bacteria which were lower than bacterial densities required for the growth of ciliates as shown by other investigations. Therefore, microflagellates appear to be well-adapted for grazing bacterioplankton. Microflagellates were also investigated for their ability to graze bacteria attached to particles. Bodo nanorensis and Rhynchomonas nasuta both showed a marked ability to graze attached bacteria and a limited ability to graze unattached cells. These results suggest that microflagellates may also be important consumers of bacteria attached to particles in the plankton and may explain the highly elevated densities of microflagellates on macroaggregates. Grazing experiments performed with the copepod Acartia tonsa indicated that heterotrophic microflagellates were ingested by the copepods at rates comparable to the ingestion of phytoplankton of similar size. The presence of heterotrophic microflagellates did not depress filtration rates of the copepods, and one species (Cryptobia maris) appeared to be selectively grazed. Survival of A. tonsa on a diet of heterotrophic microflagellates was similar to survival on a diet of phytoplankton and was significantly longer than survival of starved Controls or copepods fed only bacteria. Due to their ability to grow at in-situ densities of planktonic bacteria, their relatively high cell yields, and their acceptability as food for zooplankton, it is concluded that bacterivorous microflagellates may constitute an important trophic link between bacteria and zooplankton. This link may provide a mechanism whereby organic material and energy from the detrital food chain can be returned to the classical phytoplankton-copepod-fish food chain.
    Description: This research was supported by National Science Foundation grants OCE80-2444l and OCE82-l4928 and Ocean Industry Program grant 4473 awarded to Dr. Laurence P. Madin, NSF Doctoral Dissertation grant OCE8l-l299l, the Woods Hole Oceanographic Institution Education Program and the Wood Hole Oceanographic Institution Biology Department.
    Keywords: Plankton populations ; Bacteria ; Oceanus (Ship : 1975-) Cruise OC136 ; Oceanus (Ship : 1975-) Cruise OC137 ; Oceanus (Ship : 1975-) Cruise OC115 ; Atlantis II (Ship : 1963-) Cruise AII109 ; Knorr (Ship : 1970-) Cruise KN94 ; Columbus Iselin (Ship) Cruise CI83
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1984
    Description: This thesis addresses several aspects of the problem of determining the effect of the low-frequency eddy variability on the mean circulation of the Western North Atlantic. A framework for this study is first established by scale analysis of the eddy and mean terms in the mean momentum, vorticity, and heat balances in three regions of the Western North Atlantic -- the northern recirculation, the southern recirculation, and the mid-ocean. The data from the last decade of field experiments suggest somewhat different conclusions from the earlier analysis of Harrison (1980). In the momentum balance we confirm that the eddy terms are negligible compared to the lowest order mean geostrophic balance. The eddy term may be an 0(1) term in the vorticity balance only in the northern recirculation region where the mean flow is anisotropic. In the mean heat balance, if the mean temperature advection is scaled using the thermal wind relation, then the eddy heat flux is negligible in the mid-ocean, but it may be important in the recirculation areas. For all the balances the eddy terms are comparable to or an order of magnitude larger than the mean advective terms. We conclude from the scale analysis that the eddy field is most likely to be important in the Gulf Stream recirculation region. These balances are subsequently examined in more detail using data from the Local Dynamics Experiment (LDE). Several inconsistencies are first shown in McWilliams' (1983) model for the mean dynamical balances in the LDE. The sampling uncertainties do not allow us to draw conclusions about the long-term dynamical balances. However, it is shown that if we assume that the linear vorticity balance holds between the surface and the thermocline for a finite record, then the vertical velocity induced by the eddy heat flux divergence is non-zero. The local effect of the mesoscale eddy field on the mean potential vorticity distribution of the Gulf Stream recirculation region is determined from the quasigeostrophic eddy potential vorticity flux. This flux is calculated by finite difference of current and temperature time series from the Local Dynamics Experiment. This long-term array of moorings is the only experimental data from which the complete eddy flux can be calculated. The total eddy flux is dominated by the term due to the time variation in the thickness of isopycnal layers. This thickness flux is an order of magnitude larger than the relative vorticity flux. The total flux is statistically significant and directed 217° T to the southwest with a magnitude of 1.57 x 10 -5 cm/2s. The direction of the eddy flux with respect to the mean large scale potential vorticity gradient from hydrographic data indicates that eddies in this region tend to reduce the mean potential vorticity gradient. The results are qualitatively consistent with numerical model results and with other data from the Gulf Stream recirculation region. We find that the strength of the eddy transfer in the enstrophy cascade is comparable to the source terms in the mean enstrophy balance. The Austauch coefficient for potential vorticity mixing is estimated to be 0(107cm2/sec). An order of magnitude estimate of the enstrophy dissipation due only to the internal wave field shows that other processes must be important in enstrophy dissipation. The measured eddy potential vorticity fluxes are compared to the linear stability model of Gill, Green, and Simmons (1974). An earlier study (Hogg, 1984) has shown agreement between the empirical orthogonal modes of the data and the predicted wavenumbers, growth rates, and phase speeds of the most unstable waves. However, we show substantial disagreement in a comparison of the higher moments the eddy heat and potential vorticity fluxes. Because the critical layer of the model is located near the surface, the model predicts that most of the eddy potential vorticity and eddy heat flux should occur within about 300 meters of the surface. The data show much greater deep eddy heat flux than predicted by the model. It is suggested that the unstable modes in the ocean have a longer vertical scale because of the reduction in the buoyancy frequency near the surface. The evidence for in situ instability is also examined in the decay region of the Gulf Stream from an array of current and temperature recorders. Although there is vertical phase propagation in the empirical orthogonal modes for some of the variables at some of the moorings, there is not much evidence for a strong ongoing process of wave generation.
    Description: This research has been conducted under NSF contract numbers OCE 77-19403, ATM 79-21431, and OCE 82-00154.
    Keywords: Eddies ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1999
    Description: A new, global inversion is used to estimate the large scale oceanic circulation based on the World Ocean Circulation Experiment and Java Australia Dynamic Experiment hydrographic data. A linear inverse "box" model is used to combine consistently the transoceanic sections. The circulation is geostrophic with an Ekman layer at the surface and oceanic layers defined by neutral surfaces. Near-conservation of mass, salt and top-to-bottom silica is required and, in addition, heat and the phosphate-oxygen combination (170[P04]+[02]) are conserved in layers that are not in contact with the surface. A globally-consistent solution is obtained for a depth-independent adjustment to the thermal wind field, freshwater flux divergenees, the Ekman transport, and the advective and diffusive dianeutral fluxes between layers. A detailed error budget permits calculation of statistical uncertainties, taking into account both the non-resolved part of the solution and the systematic errors due to the temporal oceanic variability. The estimated water mass transports during the WOCE period (1985-1996) are generally similar to previous published estimates. However, important differences are found. In particular, the inflow of bottom waters into the Pacific Ocean is smaller than in most previous estimates. Utilization of property anomaly conservation constraints allows the estimation of significant dianeutral diffusivities in deep layers, with a global average of 3 ± lcm2s- 1 north of 30°S. Dianeutral transfers indicate that about 20 Sv of bottom water is formed in the Southern Ocean. Significant ocean-atmosphere heat fluxes are found, with a global heating of 2.3 ± 0.4PW in the tropical band and a corresponding cooling at high latitudes. The signature of a large-scale average export production is found for nutrients in several temperate regions. Despite the large uncertainties, the production magnitudes are consistent with independent measurements from sediment traps and isotopic data. Net nutrient sources or sinks are found in several regions, suggesting either transport of dissolved organic matter or a seasonal alias. Oxygen indicates large exchanges with the atmosphere, with intake at high latitudes and outgassing/remineralization at low latitudes.
    Description: This work was supported in part by the Jet Propulsion Laboratory/CALTECH (contract #958125), and by gifts from Ford, General Motors, and Daimler-Chrysler to MIT's Climate Modelling Initiative.
    Keywords: Computer simulation ; Ocean circulation ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1985
    Description: From October, 1982 to October, 1983 a current meter mooring reaching from the bottom into the thermocline was deployed for the first time in the Gulf Stream at 68°W. The temperatures, pressures, and velocities at the uppermost instrument indicate the Gulf Stream moved back and forth across the mooring site, so that the entire Stream was sampled in time; hence the data may be used to examine horizontal as well as vertical structure of the Stream. The two key points to the success of the analysis are: 1)the well-defined relationship between temperature and cross-stream distance in the thermocline, enabling the use of the former as a horizontal coordinate; and 2)a daily-changing definition of Gulf Stream flow direction based on the shear between the thermocline and 2000 m depth. Time-series of daily-rotated velocities may be used to calculate empirical orthogonal functions for the long- and cross-stream vertical structures, which are decoupled and are respectively baroclinic and barotropic. Using the inferred horizontal coordinate one can estimate mass, momentum and kinetic energy fluxes for four individual events when the entire Stream swept by the mooring. The results agree well with historical data. Bryden's (1980) method has been used to calculate vertical velocities from the temperature equation; the resulting time-series of w are visually coherent throughout the water column and their vertical amplitude structure is reminiscent of that for a two-layer system. The rms vertical velocities are large (0(.05 cm/s)), and these as well as other estimates have been used to explore the validity of the quasi-geostrophic approximation at the mooring site. The Rossby number for the thermocline flow is about 0.3, and for the deep flow is ≤ 0.1. The entire data set may also be used to construct a horizontal and vertical profile of velocity in the Gulf Stream, from which a cross-section of the mean potential vorticity can be produced. The latter shares many common feature with cross-sections from past work for a nearby site, as well as analogous data from a three-layer numerical model, thus suggesting that they are robust features of Gulf Stream-like currents. These features are, in particular, a strong jump from low to high values crossing the Stream from south to north; and a change in the sign of the potential vorticity gradient on isothermal surfaces for T 〉 12°C. To complement the analysis of the observational data, a set of diagnostic calculations has been performed on an eddy-resolving qeneral circulation model, to provide a complete picture of the kinetic energy budgets of the free jet and its environs. It is found that the downstream convergence of kinetic energy in the decelerating jet is balanced primarily by an ageostrophic flow against the pressure gradient, which in turn implies some conversion of kinetic to available potential energy in the region. Energetic analysis of the observations as well as the numerical data suggests barotropic and baroclinic instabilities may be equally important to the kinetic energy budgets in the Stream. Because there is but one mooring, the dynamics governing the fluctuations remain elusive. Nonetheless, a kinematic framework is proposed, which is consistent with the data and accounts for a variety of unusual features that arise in the original analysis (for example, distinct asymmetries in the four Gulf Stream crossings, and the rather large vertical velocities). It is sugqested that the data we are now capable of collecting is proffering fundamentally new attributes of the Gulf Stream, which must be included and accounted for in future theoretical work.
    Keywords: Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1980
    Description: Data from the COBOLT experiment, which investigated the first 12 km off Long Island's south shore, are analyzed and discussed. Moored current meter records indicate that the nearshore flow field is strongly polarized in the alongshore direction and its fluctuations are well correlated with local meteorological forcing. Complex empirical orthogonal function analysis suggests that subtidal velocity fluctuations are barotropic in nature and are strongly influenced by bottom friction. Wind-related inertial currents were observed within the coastal boundary layer (CBL) under favorable meteorological and hydrographical conditions. The magnitude of these oscillations increases with distance from shore, and they display a very clear 180° phase difference between surface and bottom layers. Nearshore inertial oscillations of both velocity and salinity records appear to lead those further seaward, suggesting local generation and subsequent radiation away from the coast. The response of the coastal zone to impulsive wind forcing is discussed using simple slab and two-layer models, and the behavior of the nearshore current field examined. The major features of the observed inertial motions are in good qualitative agreement with model predictions. It is found that, in a homogeneous domain, the coastal boundary condition effectively prohibits inertial currents over the entire coastal zone. In the presence of stratification the offshore extent of this prohibition is greatly reduced and significant inertial currents may occur within one or two internal deformation radii of the coast. The "coastal effect", in the form of surface and interfacial waves which propagate away from the coast, modifies the "pure" inertial response as it would exist far from shore. The kinematics of this process is such that a 180° phase difference between currents in the two layers is characteristic of the entire coastal zone even before the internal wave has had time to traverse the CBL. It is also suggested that, for positions seaward of several internal deformation radii, interference between the surface and internal components of the coastal response will cause maximum inertial amplitudes to occur for t 〉 x/c2, where c2 is the phase speed of the internal disturbance. The hydrographic structure of the CBL is observed to undergo frequent homogenization. These events are related to both advective and mixing processes. Horizontal and vertical exchange coefficients are estimated from the data, and subsequently used in a diffusive model which accurately reproduces the observed mean density distribution in the nearshore zone. Dynamic balance calculations are performed which indicate that the subtidal cross-shore momentum balance is very nearly geostrophic. The calculations also suggest that the longshore balance may be reasonably represented by a steady, linear equation of motion which includes surface and bottom stresses. Evidence is presented which shows that variations in the longshore wind-stress component are primarily responsible for the energetic fluctuations in the sea surface slope along Long Island. Depth-averaged velocities characteristically show net offshore transport in the study area, and often display dramatic longshore current reversals with distance from shore. These observations are interpreted in terms of a steady circulation model which includes realistic nearshore topography. Model results suggest that longshore current reversals within the CBL may be limited to the eastern end of Long Island, and that this unusual flow pattern is a consequence of flow convergence related to the presence of Long Island Sound.
    Description: This work was supported by the Department of Energy through contract no. DE-AC02-EVI0005 entitled Coastal-Shelf Transport and Diffusion.
    Keywords: Boundary layer ; Ocean currents ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2010
    Description: In a stratified rotating fluid, frictionally driven circulations couple with the buoyancy field over sloping topography. Analytical and numerical methods are used to quantify the impact of this coupling on the vertical circulation, spindown of geostrophic flows, and the formation of a shelfbreak jet. Over a stratified slope, linear spindown of a geostrophic along-isobath flow induces cross-isobath Ekman flows. Ekman advection of buoyancy weakens the vertical circulation and slows spindown. Upslope (downslope) Ekman flows tend to inject (remove) potential vorticity into (from) the ocean. Momentum advection and nonlinear buoyancy advection are examined in setting asymmetries in the vertical circulation and the vertical relative vorticity field. During nonlinear homogeneous spindown over a flat bottom, momentum advection weakens Ekman pumping and strengthens Ekman suction, while cyclonic vorticity decays faster than anticyclonic vorticity. During nonlinear stratified spindown over a slope, nonlinear advection of buoyancy enhances the asymmetry in Ekman pumping and suction, whereas anticyclonic vorticity can decay faster than cyclonic vorticity outside of the boundary layers. During the adjustment of a spatially uniform geostrophic current over a shelfbreak, coupling between the Ekman flow and the buoyancy field generates Ekman pumping near the shelfbreak, which leads to the formation of a jet. Scalings are presented for the upwelling strength, the length scale over which it occurs, and the timescale for jet formation. The results are applied to the Middle Atlantic Bight shelfbreak.
    Description: Funding for my research and education was provided by MIT EAPS, the WHOI Academic Programs O ce and the MIT Presidential Fellowship. Financial assistance from the Houghton Fund is also acknowledged.
    Keywords: Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2010
    Description: The Labrador Sea, as one of a few places of deep water formation, plays an important role in the Meridional Overturning Circulation. While the interior of the Labrador Sea, where the deepest convection takes place, is known to experience variability on time scales ranging from days to decades, little is known about the variability of the other components of the Labrador Sea circulation - the boundary current system and the eddies that connect it with the interior. Using various types of in situ data combined with the surface flux and satellite altimetry data products, I studied the variability of both the boundary current system and the eddies on different time scales as well as their influence on the post-convective restratification of the Labrador Sea interior. The analysis presented in the thesis supports the result of the previous theoretical studies that argue that lateral fluxes, driven by the boundary current/interior gradients, play an important role in the post-convective restratification of the Labrador Sea. I found that both components of the boundary current, the surface West Greenland Current and the subsurface Irminger Current, have a strong seasonal cycle. In the spring both the West Greenland and Irminger Currents are colder and fresher than in the fall. However, the West Greenland Current is faster and thicker in the spring while the Irminger Current is the fastest and thickest in the fall. My analysis suggests that the observed seasonal changes in the velocity are primarily due to the baroclinic component of the current while the barotropic component remains nearly unchanged. The Subpolar Gyre, and the Labrador Sea in particular, have experienced a decline in the circulation accompanied by the warming of the water column over the last decades. I found that a similar trend is seen in the West Greenland Current system which slowed down from 1992 to 2004, primarily due to a decrease in the barotropic flow. At the same time, the subsurface Irminger Current has become warmer, saltier, and lighter, something that is also reflected in the properties of the eddies. Two years exhibited pronounced anomalies: in 1997 and 2003 the velocity, temperature and salinity of the Irminger Current abruptly increase with respect to the overall trend. Finally, I discuss the impacts of the boundary current changes on the lateral fluxes that are responsible for the restratification of the Labrador Sea and the properties of the interior.
    Description: The financial support for my research came from the Academic Programs Office and from the NSF grants OCE-0424492 and OCE-0137023.
    Keywords: Hydrography ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2010
    Description: The variability in the DWBC, its connection to the forcing in the northern North Atlantic and interaction with the Gulf Stream were explored from a combination of remote sensing and in-situ measurements in the western North Atlantic. Using satellite altimetry and Sea Surface Temperature (SST) we found evidence of the relation between changes in the Gulf Stream path and the variability in the temperature and velocity fields in the Slope Water. This relation was such that southward shifts of the main axis of the Gulf Stream were preceded by cold temperature anomalies and intensification of the southwestward flow. The analysis of 5.5 years of moored CTD and horizontal velocity data in the DWBC at 69°W recorded during the period 2002-2008, showed that the variability along the DWBC is linked to changes in the dense water formation regions. The evolution of potential vorticity (PV) at the mooring site, characterized by a transition from deep to upper Labrador Sea Water (LSW), was similar to that observed in the Labrador Sea 6 to 9 years earlier, and imply spreading rates for the LSW that varied over time from 1.5 to 2.5cm/s. The time dependence of the spreading rates was in good agreement with changes in the strength of the DWBC at the mooring site. The evolution of the DWBC transport was explored in more detail from a 5-element moored array, also at 69°W. The results, for the period of 2004-2008, were consistent with the single mooring analysis. The variability measured from the array showed that upper, intermediate and deep water mass layers expand and contract at each other’s expense, leading to alternating positive and negative PV anomalies at the upper-LSW, deep-LSW and Overflow Water (OW). Larger DWBC transports were associated with enhanced presence of recently ventilated upper-LSW and OW, rather than deep-LSW. The relative contribution of the different water masses to the observed circulation was investigated by inverting individual PV anomalies isolated from the observations. We found that changes in the depth-integrated circulation were mostly driven by changes in the OW.
    Description: During the first two years, my time here was funded through a La Caixa Foundation fellowship as well as an MIT presidential fellowship. Financial support for my thesis work was provided by National Science Foundation grants OCE-0241354 and OCE-0726720. Support for traveling to meetings was also provided by the MIT Houghton Fund and the WHOI Academic Programs Office.
    Keywords: Ocean currents ; Ocean temperature ; Endeavor (Ship: 1976-) Cruise EN256 ; Endeavor (Ship: 1976-) Cruise EN257 ; 440 ; Knorr (Ship : 1970-) Cruise KN173-2 ; Oceanus (Ship : 1975-) Cruise OC269 ; Oceanus (Ship : 1975-) Cruise OC401 ; Oceanus (Ship : 1975-) Cruise OC411 ; Oceanus (Ship : 1975-) Cruise OC417 ; Oceanus (Ship : 1975-) Cruise OC421 ; Oceanus (Ship : 1975-) Cruise OC432 ; Oceanus (Ship : 1975-) Cruise OC436 ; Oceanus (Ship : 1975-) Cruise OC446
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2009
    Description: My thesis covers two general circulation problems that involve the stability of largescale oceanic flows and the importance of non-local effects. The first problem examines the stability of meridional boundary currents, which are found on both sides of most ocean basins because of the presence of continents. A linear stability analysis of a meridional boundary current on the beta-plane is performed using a quasi-geostrophic model in order to determine the existence of radiating instabilities, a type of instability that propagates energy away from its origin region by exciting Rossby waves and can thus act as a source of eddy energy for the ocean interior. It is found that radiating instabilities are commonly found in both eastern and western boundary currents. However, there are some significant differences that make eastern boundary currents more interesting from a radiation point of view. They possess a larger number of radiating modes, characterized by horizontal wavenumbers which would make them appear like zonal jets as they propagate into the ocean interior. The second problem examines the circulation in a nonlinear thermally-forced two-layer quasi-geostrophic ocean. The only driving force for the circulation in the model is a cross-isopycnal flux parameterized as interface relaxation. This forcing is similar to the radiative damping used commonly in atmospheric models, except that it is applied to the ocean circulation in a closed basin and is meant to represent the large-scale thermal forcing acting on the oceans. It is found that in the strongly nonlinear regime a substantial, not directly thermally-driven barotropic circulation is generated. Its variability in the limit of weak bottom drag is dominated by high-frequency barotropic basin modes. It is demonstrated that the excitation of basin normal modes has significant consequences for the mean state of the system and its variability, conclusions that are likely to apply for any other system whose variability is dominated by basin modes, no matter the forcing. A linear stability analysis performed on a wind- and a thermally-forced double-gyre circulation reveals that under certain conditions the basin modes can arise from local instabilities of the flow.
    Description: I was supported through a graduate research assistantship from the National Science Foundation Grant OCE-0423975 and the Woods Hole Oceanographic Institution Academic Programs Office.
    Keywords: Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1984
    Description: Part one of this thesis discusses the structure of the thermocline and the current pattern within a two-layer model. The corresponding flow field is explored as the amount of water in the upper layer is gradually reduced (or as the wind stress is gradually increased). In the model, when the amount of water in the upper layer is less than a first critical value, the lower layer outcrops near the middle of the western boundary. A dynamically consistent picture includes a whole loop of boundary currents, which surround the outcropping zone completely and have quite different structures. In addition to the boundary currents found in previous models, there is an isolated western boundary current (i.e. bounded on one side by the wall and on the other by a streamline along which the upper layer thickness vanishes), an internal boundary current and possibly isolated northern/southern boundary currents. Within the limitations of the two-layer model, the isolated western boundary current appears to represent the Labrador Current while the internal boundary current may represent the North Atlantic Current. A first baroclinic mode of water mass exchange occurs across the ZWCL (zero-wind-curl-line). When the amount of water in the upper layer is less than a second critical value, the upper layer separates from the eastern wall and becomes a warm water pool in the south-west corner of the basin. Under this warm water pool is the ventilated lower layer. The sea surface density distribution is not specified; it is determined from a consistent dynamical and mass balance. Implicit in this model is the assumption that advection dominates in the mixed layer. The subtropical gyre and the subpolar gyre combine asymmetrically with respect to the ZWCL. Chapter I discusses the case when the lower layer depth is infinite. Chapter II discusses the case when the lower layer depth is finite. In the Addendum the climatological meaning of this two-layer model is discussed. Part two of this thesis concerns the use of a continuously stratified model to represent the thermocline and current structures in subtropical/subpolar basins. The ideal fluid thermocline equation system Is a nonlinear, non-strict hyperbolic system. In an Addendum to Chapter III the mathematical properties of this equation system are studied and a proper way of formulating boundary value problems is discussed. Although the equations are not of standard type, so that no firm conclusions about the existence and uniqueness of solutions have been drawn, some possible approaches to properly posed boundary value problem are suggested. Chapter III presents some simple numerical solutions of the ideal fluid thermocline equation for a subtropical gyre and a subtropical/subpolar basin using one of these approaches. Our model predicts the continuous three dimensional thermocline and current structures in a continuously stratified wind-driven ocean. The upper surface density and Ekman pumping velocity are specified as input data; in addition, the functional form of the potential vorticity is specified. The present model emphasizes the idea that the ideal fluid thermocline model is incomplete. The potential vorticity distribution can not be determined within this idealized model. This suggests that the diffusion and upwelling/downwelling within the western boundary current and the outcropping zone in the north-west corner are important parts of the entire circulation system.
    Description: This work was supported by NSF Grant 80-19260-0CE.
    Keywords: Thermoclines ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2009
    Description: Trichodesmium is a colonial, N2-fixing cyanobacterium found in tropical oceans. Species of Trichodesmium are genetically similar but several species exist together in the same waters. In order to coexist, Trichodesmium spp. may occupy different niche spaces through differential utilization of resources such as nutrients and light, and through responses to physical characteristics such as temperature and turbulence. To investigate niche differentiation in Trichodesmium, I characterized cultured strains of Trichodesmium, identified and enumerated Trichodesmium clades in the field, and investigated P stress and N2 fixation in field populations. Species of Trichodesmium grouped into two clades based on sequences from 16S rDNA, the internal transcribed spacer (ITS), and the heterocyst differentiation gene hetR. Clade I contained Trichodesmium erythraeum and Trichodesmium contortum, and clade II contained Trichodesmium thiebautii, Trichodesmium tenue, Trichodesmium hildebrandtii, and Trichodesmium pelagicum. Each clade was morphologically diverse, but species within each clade had similar pigmentation. I developed a quantitative polymerase chain reaction (qPCR) method to distinguish between these two clades. In field populations of the Atlantic and Pacific Oceans, the qPCR method revealed that clade II Trichodesmium spp. were more prominent than clade I in the open ocean. Concentrations of Trichodesmium did not correlate with nutrient concentrations, but clade I had wider temperature and depth distributions than clade II. Temperature and light are physical characteristics that may define niche spaces for species of Trichodesmium. Clade I and II concentrations correlated with each other in the Pacific but not in the Atlantic, indicating that the two clades were limited by the same factors in the Pacific while different factors were limiting the abundance of the two clades in the Atlantic. Trichodesmium populations in the North Atlantic were more P stressed and had higher N2 fixation rates than populations in the western Pacific. While nutrient concentrations didn’t directly correlate with Trichodesmium concentrations, the contrasting nutrient regimes found in the Atlantic and Pacific Oceans might influence distributions of the two clades differently. Unraveling the differences among species of Trichodesmium begins to explain their coexistence and enables us to understand factors controlling global N2 fixation.
    Description: National Science Foundation (NSF) Biocomplexity Program Grant (OCE-0323332); the Center for Microbial Oceanography Research and Education (C-MORE), an NSF Science and Technology Center (EF-0424599); the Woods Hole Oceanographic Institution (WHOI) Ocean Life Institute (OLI) grant to J. Waterbury, and the WHOI Academic Programs Office.
    Keywords: Trichodesmium ; Bacteria ; Kilo Moana (Ship) Cruise KM0701 ; Kilo Moana (Ship) Cruise KM0703 ; Seward Johnson (Ship) Cruise SJ0609
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009.
    Description: This thesis examines the nature of eddy-mean flow interactions in western boundary current jets and recirculation gyre dynamics from both theoretical and observational perspectives. It includes theoretical studies of eddy-mean flow interactions in idealized configurations relevant to western boundary current jet systems, namely (i) a study of the mechanism by which eddies generated from a localized forcing drive mean recirculation gyres through the process of nonlinear rectification; and (ii) a study of the role of eddies in the downstream evolution of a baroclinic jet subject to mixed instabilities. It also includes an observational analysis to characterize eddy-mean flow interactions in the Kuroshio Extension using data from the downstream location of maximum eddy kinetic energy in the jet. New insights are presented into a rectification mechanism by which eddies drive the recirculation gyres observed in western boundary current systems. Via this mechanism, eddies drive the recirculations by an up-gradient eddy potential vorticity flux inside a localized region of eddy activity. The effectiveness of the process depends on the properties of the energy radiation from the region, which in turn depends on the population of waves excited. In the zonally-evolving western boundary current jet, eddies also act to stabilize the unstable jet through down-gradient potential vorticity fluxes. In this configuration, the role of eddies depends critically on their downstream location relative to where the unstable time-mean jet first becomes stabilized by the eddy activity. The zonal advection of eddy activity from upstream of this location is fundamental to the mechanism permitting the eddies to drive the mean flows. Observational results are presented that provide the first clear evidence of a northern recirculation gyre in the Kuroshio Extension, as well as support for the hypothesis that the recirculations are, at least partially, eddy-driven. Support for the idealized studies’ relevance to the oceanic regime is provided both by indications that various model simplifications are appropriate to the observed system, as well as by demonstrated consistencies between model predictions and observational results in the downstream development of time-mean and eddy properties.
    Description: Funding was for this research and my education was provided by the MIT Presidential Fellowship and NSF grants OCE-0220161 and OCE-0825550. The financial assistance of the Houghton Fund, the MIT Student Assistance Fund, and WHOI Academic Programs is also gratefully acknowledged.
    Keywords: Ocean currents ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008
    Description: The subtidal circulation of the southeast Greenland shelf is described using a set of highresolution hydrographic and velocity transects occupied in summer 2004. The main feature present is the East Greenland Coastal Current (EGCC), a low-salinity, highvelocity jet with a wedge-shaped hydrographic structure characteristic of other surface buoyancy-driven currents. The EGCC was observed along the entire Greenland shelf south of Denmark Strait, while the transect north of the strait showed only a weak shelf flow. This observation, combined with evidence from chemical tracer measurements that imply the EGCC contains a significant Pacific Water signal, suggests that the EGCC is an inner branch of the polar-origin East Greenland Current (EGC). A set of idealized laboratory experiments on the interaction of a buoyant current with a submarine canyon also supported this hypothesis, showing that for the observed range of oceanic parameters, a buoyant current such as the EGC could exhibit both flow across the canyon mouth or into the canyon itself, setting the stage for EGCC formation. Repeat sections occupied at Cape Farewell between 1997 and 2004 show that the alongshelf wind stress can also have a strong influence on the structure and strength of the EGCC and EGC on timescales of 2-3 days. Accounting for the wind-induced effects, the volume transport of the combined EGC/EGCC system is found to be roughly constant (~2 Sv) over the study domain, from 68°N to Cape Farewell near 60°N. The corresponding freshwater transport increases by roughly 60% over this distance (59 to 96 mSv, referenced to a salinity of 34.8). This trend is explained by constructing a simple freshwater budget of the EGCC/EGC system that accounts for meltwater runoff, melting sea-ice and icebergs, and net precipitation minus evaporation. Variability on interannual timescales is examined by calculating the Pacific Water content in the EGC/EGCC from 1984-2004 in the vicinity of Denmark Strait. The PW content is found to correlate significantly with the Arctic Oscillation index, lagged by 9 years, suggesting that the Arctic Ocean circulation patterns bring varying amounts of Pacific Water to the North Atlantic via the EGC/EGCC.
    Description: Funding for the cruise and analysis was provided by National Science Foundation grant OCE-0450658, which along with NSF grant OCE- 0095427 provided funds for my tuition and stipend as well.
    Keywords: Ocean currents ; Oceanography ; James Clark Ross (Ship) Cruise JR105
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1982
    Description: Mean long-isobath drift of the order 5 cm/sec has been observed on several continental shelves, e.g. in the Middle Atlantic Bight and in the Weddell Sea. A theoretical model is developed to explore the driving mechanism of this mean circulation. In the model, the velocity field is decomposed into a depth-independent bottom geostrophic component and a thermohaline component relative to the bottom. The latter can be calculated from the density field, and the former is described by a parabolic equation which expresses the tendency-to balance vorticity between bottom stress curl and vortex stretching. The near-bottom flow field is studied both analytically and numerically under forcing by wind, deep ocean flow, and long-isobath density differences. Model solutions are derived for circulations over a shelf/slope topography driven by wind stress, wind stress curl, and deep ocean currents. The resulting flow patterns show strong dependence on the topography. Over the continental slope, large bottom depth variation suppresses the flow driven by local forcing and insulates the slope region from circulations on the shelf and in the deep-ocean. Geochemical observations on the continental shelf and slope support the argument that the flow on the upper slope below the thermocline is weak. Under the condition of a vertically homogeneous layer below the thermocline, near-bottom density advection is mainly caused by the bottom geostrophic velocity field. Using the parabolic vorticity equation together with a density equation, circulations driven by coastal buoyancy flux and surface cooling are investigated. In the mid-shelf region, away from the coast and the shelf break, the density field is governed by Burgers' equation, which shows longshore self-advection of density perturbations and the formation of front with strong density gradient in the longshore direction. A dense water blob moves in the direction of Kelvin wave propagation. The direction is reversed for the movement of a light water blob. In the near-shore region, the light river water bottom is also self-advected in the direction of Kelvin wave propagation. For a heavy density anomaly at the coast, the initial movement is offshore, and the accumulation of dense water in the mid-shelf region leads to long-isobath propagation of density perturbations, similar to the case of a dense water blob. This theory sheds light on the bottom water movements in the Adriatic Sea, the Antarctic Continent, and the Middle Atlantic Bight. The model solutions are applied to the flow on the western North Atlantic shelf. Southwestward flow is produced near the coast by the self-advection of river water in winter and spring. The southwestward long-isobath propagation of thermal fronts caused by winter cooling contributes significantly to the mean circulation over the mid-shelf. It is suggested that density-driven current is an important component of the near-bottom mean circulation in the Middle Atlantic Bight in spring and summer.
    Description: This work was supported by the Department of Energy through contract entitled Coastal-Shelf Transport and Diffusion.
    Keywords: Ocean circulation ; Ocean currents ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute and the Woods Hole Oceanographic Institution August 1975
    Description: This thesis is made of two separate, but interrelated parts. In Part I the instability of a baroclinic Rossby wave in a two-layer ocean of inviscid fluid without topography, is investigated and its results are applied in the ocean. The velocity field of the basic state (the wave) is characterized by significant horizontal and vertical shears, non-zonal currents, and unsteadiness due to its westward propagation. This configuration is more relevant to the ocean than are the steady, zonal 'meteorological' flows, which dominate the literature of baroclinic instability. Truncated Fourier series are used in perturbation analyses. The wave is found to be unstable for a wide range of the wavelength; growing perturbations draw their energy from kinetic or potential energy of the wave depending upon whether the wavelength, 2πL, is much smaller or larger than 2πLρ, respectively, where Lρ is the internal radius of deformation. When the shears are comparable dynamically, L~Lρ , the balance between the two energy transfer processes is very sensitive to the ratios L/Lρ and U/C as well, where U is a typical current speed, and C a typical phase speed of the wave. For L = Lρ they are augmenting if U 〈 C, yet they detract from each other if U 〉 C. The beta-effect tends to stabilize the flow, but perturbations dominated by a zonal velocity can grow irrespective of the beta-effect. It is necessary that growing perturbations are comprised of both barotropic and baroclinic modes vertically. The scale of the fastest growing perturbation is significantly larger than L for barotropically controlled flows (L 〈 Lρ ), reduces to the wave scale L for a mixed kind (L ~ Lρ ) and is fixed slightly larger than Lρ for baroclinically controlled flows (L 〉 Lρ ). Increasing supply of potential energy causes the normalized growth rate, αL/U, to increase monotonically as L → Lρ from below. As L increases beyond Lρ, the growth rate αLρ /U shows a slight increase, but soon approaches an asymptotic value. In a geophysical eddy field like the ocean this model shows possible pumping of energy into the radius of deformation (~ 40 km rational scale, or 250 km wavelength) from both smaller and larger scales through nonlinear interactions, which occur without interference from the beta-effect. The e-folding time scale is about 24 days if U = 5 cm/sec and L = 90 km. Also it is strongly suggested that, given the observed distribution of energy versus length scale, eddy-eddy interactions are more vigorous than eddy-mean interaction, away from intènse currents like the Gulf Stream. The flux of energy toward the deformation scale, and the interaction of barotropic and baroclinic modes, occur also in fully turbulent 'computer' oceans, and these calculations provide a theoretical basis for source of these experimental cascades. In Part II an available potential energy (APE) is defined in terms appropriate to a limited area synoptic density map (e.g., the 'MODE-I' data) and then in terms appropriate to time-series of hydrographic station at a single geographic location (e. g., the 'Panulirus' data). Instantaneously the APE shows highly variable spatial structure, horizontally as well as vertically, but the vertical profile of the average APE from 19 stations resembles the profile of vertical gradient of the reference stratification. The eddy APE takes values very similar to those of the average kinetic energy density at 500 m, 1500 m and 3000 m depth in the MODE area. In and above the thermocline the APE has roughly the same level in the MODE area (centered at 28°N, 69° 40'W) as at the Panulirus station (32° 10'N, 64° 30'W), yet in the deep water there is significantly more APE at the Panulirus station. This may in part indicate an island effect near Bermuda.
    Description: This research has been supported by the National Science Foundation grant IDO 73-09737, formerly GX-36342.
    Keywords: Rossby waves ; Ocean waves ; Wave-motion ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1982
    Description: Four different problems concerning Gulf Stream Rings are considered. The first deals with the particle trajectories of, and advection-diffusion by, a dynamic model of a Ring. It is found that the streaklines computed from the assumptions that the Ring is a steadily propagating and permanent form structure accurately describe its Lagrangian trajectories. The dispersion field of the Ring produces east-west asymmetries in the streaklines, not contained in earlier kinematic studies, which are consistent with observed surface patterns. In the second problem, we compute the core mixed layer evolution of both warm and cold Rings, and compare them to the background SST, in an effort to explain observed SST cycles of Rings. We demonstrate that warm Rings retain their anomalous surface identity, while cold Rings do not, because of differences in both the local atmospheric states of the Sargasso and the Slope and the typical mixed layer structures appropriate to each. The third and fourth problems concern the forced evolution of Gulf Stream Rings as effected by atmospheric interactions. First, we compute the forced spin down of a Gulf Stream Ring. The variations in surface stress across the Ring necessary to spin it down are caused by the variations in relative air-sea velocity, of which the stress is a quadratric function. From numerical simulations, we find the forced decay rates are comparable to those inferred from Ring observations. In the final problem, it is suggested that a substantial fraction of meridional Ring migration is a forced response, caused by Ring SST and the temperature dependence of stress. The warm central waters of anticyclonic Rings are regions of enhanced stress, producing upwelling to the north, and downwelling to the south, which shifts the Ring to the south. A similar, southward shift is computed for cyclonic Rings with cold centers, which tends to reconcile their numerically computed propagation with observations.
    Description: The present research has been conducted under NOAA contract # NA80AA-D-0057 and NSF contract II OCE-8240455
    Keywords: Ocean-atmosphere interaction ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2002
    Description: A numerical model of the tropical Atlantic ocean is used to investigate the upper layer pathways of the Meridional Overturning Circulation (MOC) in the tropical Atlantic. The main focus of this thesis is on those parts of the tropical circulation that are thought to be important for the MOC return flow, but whose dynamics have not been understood yet. It is shown how the particular structure of the tropical gyre and the MOC act to inhibit the flow of North Atlantic water into the equatorial thermocline. As a result, the upper layers of the tropical Atlantic are mainly fed by water from the South Atlantic. The processes that carry the South Atlantic water across the tropical Atlantic into the North Atlantic as part of the MOC are described here, and three processes that were hitherto not understood are explained as follows: The North Brazil Current rings are created as the result of the reflection of Rossby waves at the South American coast. These Rossby waves are generated by the barotropically unstable North Equatorial Countercurrent. The deep structure of the rings can be explained by merger of the wave's anticyclones with the deeper intermediate eddies that are generated as the intermediate western boundary current crosses the equator. The bands of strong zonal velocity in intermediate depths along the equator have hitherto been explained as intermediate currents. Here, an alternative interpretation of the observations is offered: The Eulerian mean flow along the equator is negligible and the observations are the signature of strong seasonal Rossby waves. The previous interpretation of the observations can then be explained as aliasing of the tropical wave field. The Tsuchyia Jets are driven by the Eliassen-Palm flux of the tropical instability waves. The equatorial current system with its strong shears is unstable and generates tropical instability waves. These waves cause a poleward temperature flux which steepens the isotherms which in turn generates are geostrophically balanced zonal flow. In the eastern part of the basin this zonal flow feeds the southeastward flow of the equatorial gyre.
    Description: NASA and ONR ~ho generously funded me with their respective grants NAG5- 7194 and N00014-98-10881.
    Keywords: Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1981
    Description: This thesis consists of three loosely related theoretical studies. In chapters 1 - 3 the physical mechanisms which determine the three dimensional structure of the currents in the Sverdrup interior of a wind-driven gyre are discussed. A variety of simple analytic models suggest that the subsurface geostrophic contours in a wind gyre are closed and so the flow in these regions is not determined by lateral boundary conditions. Instead a turbulent, quasigeostrophic extension of the Batchelor-Prandtl theorem suggests that the potential vorticity is uniform inside these laterally isolated regions. The requirement that the potential vorticity be uniform leads simply and directly to predictions of the shape and extent of the wind gyre and the vertical structure of the currents within it. In chapter 4 the propogation of Rossby wave trains through slowly varying forced mean flows is examined by solving the linearized potential vorticity equation using the WKB method. If the mean flow is forced the action defined by Bretherton and Garrett (1968) is not conserved. Surprisingly, there is another quadratic wave property which is conserved, the wave enstrophy. In chapter 5 shear dispersion in an oscillatory velocity field, similar to that of an inertial oscillation, is discussed. The goal of this section is to develop intuition about the role of internal waves in horizontal ocean mixing. The problem is examined using a variety of models and techniques. The most important result is (23.2) which is an expression for the effective horizontal diffusivity produced by the interaction of vertical diffusivity and oscillatory vertical shear. Given an empirical velocity shear spectrum and an estimate of the vertical diffusivity this result could be used to calculate a horizontal eddy diffusivity which parameterizes the horizontal mixing due to the internal wave field.
    Description: NSF Grant OCE-78-25692 has supported me throughout my stay in the Joint Program.
    Keywords: Ocean circulation ; Ocean currents ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: Red Pompeian paintings, very famous for their deep intensity, are currently suffering from darkening. The origins of this darkening degradation are not clearly identified yet and remain a major issue for curators. In the specific case of cinnabar (HgS)-based red pigment, a photoinduced conversion into black metacinnabar is usually suspected. This work is focused on the blackening of red cinnabar paintings coated on a sparry calcite mortar. Different samples exhibiting different levels of degradation were selected upon visual observations and analyzed by synchrotron-based microanalytical techniques. Atomic and molecular compositions of the different debased regions revealed two possible degradation mechanisms. On one hand, micro X-ray fluorescence elemental maps show peculiar distributions of chlorine and sulfur. On the other hand, X-ray absorption spectroscopy performed at both Cl and S K-edges confirms the presence of characteristic degradation products: (i) Hg- Cl compounds (e.g., corderoite, calomel, and terlinguaite), which may result from the reaction with exogenous NaCl, in gray areas; (ii) gypsum, produced by the calcite sulfation, in black coatings. Metacinnabar is never detected. Finally, a cross section was analyzed to map the in-depth alteration gradient. Reduced and oxidized sulfur distributions reveal that the sulfated black coating consists of a 5-ím-thick layer covering intact cinnabar.
    Description: Published
    Description: 7484-7492
    Description: reserved
    Keywords: Microspectroscopy Analysis ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1991
    Description: A general discussion of possible techniques for observation of near-surface currents indicates that the surface-following frame of reference will provide several advantages over the Eulerian or Lagrangian frames. One problem with surface-following measurements is the biasing effects of the waves. A technique for making unbiased measurements is developed. This technique requires that both the sensor velocity and the fluid velocity be measured. A sensor platform, the Surface Acoustic Shear Sensor (SASS), which makes the required measurements is described. The processing scheme for interpreting the measurements from the SASS is described at length. The data that SASS has obtained from two deployments in the Shelf Mixed Layer Experiment (SMILE) is presented. This data shows clearly that the biasing effects of waves can not, in general, be ignored. In the summary of the data we find surprisingly little shear in the downwind direction in the top 4m of the water column. In the crosswind direction observed, observed shear seems to be indicative of an across shelf pressure gradient and intense near-surface mixing.
    Description: Financial support for my work was from NSF grant OCE-87-16937.
    Keywords: Surface waves ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April 1978
    Description: The structure of the membrane-free nucleoid of Escherichia coli and of unfolded chromosomal DNA was investigated by sedimentation on neutral sucrose gradients after irradiation with 60Co gamma-rays and ultraviolet light (2S4nm). Irradiation both in vivo and in vitro was used as a molecular probe of the constraints on DNA~packaging in the bacterial chromosome. The extremely gentle lysis and unfolding procedures which were developed yielded undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically-significant doses of ionizing radiation. In vitro UV-irradiation of nucleoids resulted in an increase in the observed rate of sedimentation due to the formation of an unknown photo-product. In contrast, UV-irradiation of wild-type cells in vivo showed evidence of the formation of incision breaks which resulted in the relaxation of supercoiling in the nucleoid. Strand breakage was also observed following in vivo UV-irradiation of a uvrB-5 strain, but at a lower rate and also accompanied by considerable unfolding of the chromosome. Such lesions may have been the result of direct photochemical reactions in the nucleoid, or enzyme activity associated with a uvr-independent mode of repair. The number of domains of supercoiling was estimated at 170 per genome equivalent of DNA based on measurements of relaxation caused by single-strand break formation in in vivo- and in vitro-gamma-irradiated folded chromosomes. Similar estimates based on the target size of RNA molecules responsible for maintaining the compact packaging of the nucleoid predicted negligible unfolding due to the formation of RNA single-strand breaks at doses up-to 10 Krad, and were born out by experimental measurements. Unfolding of the nucleoid in vitro by limit-digestion with RNase or by heating at 70° resulted in DNA complexes with sedimentation coefficients of 1030±59S and 625±15S respectively. The difference in these rates was apparently due to more complete deproteinization and thus less mass in the heated material. These structures are believed to represent intact, replicating genomes in the form of complex-theta structures containing 2-3 genome equivalents of DNA. The rate of formation of double-strand breaks was determined from molecular weight measurements of thermally unfolded chromosomal DNA gamma-irradiated in vitro. Break formation was linear with dose up to 10 Krad, resulting in 0.27 double-strand breaks per kilorad per genome equivalent of DNA and requiring 1080 eV/double-strand break. The influence of possible non-linear DNA conformations of these calculations is discussed. Repair of ionizing radiation damage to folded chromosomes was observed within 2-3 hours of post-irradiation incubation in growth medium. A model based on recombinational repair is proposed to explain the formation of 2200-2300S material during early stages of incubation and subsequent changes in the gradient profiles. Such behavior is not observed for post-irradiation incubation of wild-type cells in buffer or for a recA-13 strain incubated in growth medium. Association of unrepaired DNA with plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (〉〉3100S) during the later stages of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from RNAse-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2-3 hours of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells which survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that 1-2 double-strand breaks per genome are repairable in this strain of E. coli.
    Keywords: Escherichia coli ; Bacteria ; Bacterial genetics ; DNA repair ; Chromosomes ; Centrifugation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August, 1978
    Description: A two-layer linear analytic model is used to study the response of the mid-latitude ocean to the seasonal variation of the windstress. The most important component of the response is a barotropic quasi-steady Sverdrup balance. A meridional ridge such as the Antilles Arc is modeled as an infinitely thin meridional barrier that blocks the lower layer but does not protrude into the upper layer. It is found that such a barrier has little effect on the upper layer flow across the barrier. This result is obtained provided the frequency of the motion is low enough so that free short Rossby waves are essentially nondivergent. In this case there is little coupling between the layers for energy propagating to the east away from the barrier. A study of the dynamics of flow over a sloping bottom is made and the results are used to determine the effect on seasonal oscillations of eastern boundary slopes and triangular ridges. It is found that the presence of a slope at the eastern boundary has little effect. A meridional ridge that does not reach the interface may cause substantial scattering of free Rossby waves, but unless the ridge is steep its effect on the quasi-steady Sverdrup balance is minimal. However, if the ridge height is a substantial fraction of the lower layer depth and the width is comparable to the scale of free short Rossby waves, the ridge will tend to block flow in the lower layer, acting like the infinitely thin barrier. The theory suggests that the Antilles Arc should have the effect of a thin barrier, while the Mid-Atlantic Ridge should have little effect on the response of the ocean to seasonal wind variations.
    Description: For three and a half years of generous financial support I am grateful to the John and Fannie Hertz Foundation, from which I received a Graduate Fellowship. Research money and other support were provided by the National Science Foundation under contract OCE 77 15600.
    Keywords: Ocean circulation ; Ocean currents ; Ocean-atmosphere interaction ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August, 1978
    Description: A linearized theory for the response of a circular pendulum spar in 2-dimensional waves and a uniform current is developed. The linear forces on the cylinder are predicted using an approximate potential flow theory for slender bodies. The dynamic equations are then amended to account for the wake effects of viscous bluff body flow by including a quadratic drag law and neglecting wave damping. A spectral model for the forces on a cylinder due to an oscillating wake, modeling the force as a frequency modulation process, is proposed. The non-linear equations of motion which result are then solved, assuming constant force coefficients, by linearization for use with a Gaussian random sea. The method of equivalent linearization is extended to include mean flow effects and a spatially distributed process. Some numerical experiments are then used to test the performance of the linearization. For a variety of environments, the linearization predicts the standard deviation of the simulation response to within 10% and the mean angle of inclination to within 30%. Results of the numerical experiments indicate that there is significant variation (order of magnitude changes) in both response and mean angle of inclination. Thus, significant changes are followed by the linearization. A laboratory experiment was carried out to test the linearized spar model in a realistic fluid environment. Only the low Keulegan Carpenter number regime was investigated. With some minimal manipulations, good agreement is obtained between the experiment and the linearized estimates. It appears that the drag coefficients for vortex induced in-line forces may be an order of magnitude larger than those reported in the literature, .5 instead of .06, and that the shedding of vortices due to steady flow may reduce the added mass coefficient significantly, as observed in oscillating flows with significant vortex shedding.
    Description: The National Science Foundation provided tuition and stipend support under an NSF Graduate Fellowship for three years. I was fortunate to have been selected by the Board of Trustees of the Naval Postgraduate School Foundation as the first recipient of the Carl E. Menneken Fellowship for Scientific Research, which provided partial support during 1976-77.
    Keywords: Ocean waves ; Ocean currents ; Wakes ; Equations of motion ; Fluid dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005
    Description: A key question in biological oceanography is how plankton populations maintain themselves in regions of favorable growth and survival in the face of horizontal transport by ocean currents. Plankton are thought to be retained on the highly productive Georges Bank by the clockwise flow, which intensifies with vernal warming. The extent to which plankton are transported off the bank to the southwest or transported northward and retained on the bank remains poorly understood. This thesis examined the relationship between plankton and physical properties in the southwest corner of the bank, the retention-loss region (RLR). Analysis of field data (Video Plankton Recorder, Acoustic Doppler Current Profiler, and satellite-tracked drifters) and modeling results was performed to quantify the relationships between plankton, hydrography, and currents and the fluxes through the RLR. Temperature-salinity-plankton diagrams and factor analysis revealed that most plankton taxa had characteristic relationships to the hydrography, with the exception of copepods which were everywhere abundant. The flux of plankton during a complete tidal cycle and in the de-tided current data indicated this region was not retentive to plankton, since the bulk of the flow remained to the southwest, despite the presence of a vernally warmed surface layer. A Lagrangian particle trajectory model was used to further examine transport of plankton through the RLR during late spring /early summer (June) when vernal stratification was established. Passive particles were used, since no die1 vertical migration by plankton was found in the data. The model revealed that the bulk of the plankton was carried out of the RLR through the southern and western boundaries. The modeling and data analysis show clearly that the plankton were lost from the bank to the southwest rather than being re-circulated to the north. These results have important implications for the plankton populations on Georges Bank and can be used in future modeling efforts that examine the factors controlling plankton populations in this region.
    Keywords: Plankton populations ; Ocean currents ; Endeavor (Ship: 1976-) Cruise EN302
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Oceanographic Engineer at the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology and for the degree of Master of Science in Ocean Engineering at the Massachusetts Institute of Technology February 1979
    Description: The development and application of an autonomous field instrumentation system consisting of four current meters and four wave gauges, along with a field monitor and digital recorder, is documented. The flow sensors are electromagnetic current meters, which employ the principle of electromagnetic induction to sense an induced electrical potential from the flow of water through an imposed magnetic field. The 10 cm diameter, discus-shaped sensor was tested in the laboratory under a wide variety of conditions, including both steady and oscillatory flow tests. The results of these tests indicate an excellent response in terms of linearity and horizontal cosine. The vertical cosine response is close to ideal in the region of ±30°, but beyond a negative angle of attack of approximately -30° the response is compromised by the onset of separation under dominantly steady flow conditions. The wave gauges are surface-piercing digital sensors, relying on the presence or absence of water at 128 individual sensing electrodes spaced 1.5 cm apart along the front surface of the wave gauge. On command, the instantaneous water surface elevation is measured, then telemetered digitally to the shorebased monitor and recorder. Field measurements of waves and currents at four stations across the width of the surf zone were made, using this system at a beach along the southern coast of Maine. Spilling breakers (approximately 1.0 m in height with an angle at breaking of about 8°), translated across the 30 m surf zone, generated an observed net longshore current during the four hour measurement period. The subsequently analyzed data from this experiment showed a strong longshore current which varied across the width of the surf zone, having a maximum of about 15 cm/ sec just inside the breaker line. A net offshore current was observed at all four stations, and averaged approximately 10 cm/sec to 15 cm/sec. Using a simplified force balance model for the generation of longshore currents on a plane, uniform beach, the data was further analyzed to investigate the validity and parameterization of the momentum flux forces and bottom friction forces within the surf zone. There was an observed shoreward loss in momentum flux across the width of the surf zone, from about -150,000 dynes/cm outside the breakers to near zero close to the shoreward extent of the surf zone. The computed friction coefficient from the balancing longshore current-induced bottom friction was found to be relatively unstable during periods of changing wave and current conditions, but was observed to be between 0.10 and 0.15 during more stable conditions.
    Description: The support of the NOAA Sea Grant Program through the MIT Sea Grant Program, along with the MIT/WHOI Joint Research Seed Funds is acknowledged.
    Keywords: Oceanographic instruments ; Ocean currents ; Ocean waves ; Flow meters ; Hydrodynamics ; Water current meters ; Electromagnetic measurements ; Digital counters
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April 1977
    Description: A 37 day long field program was carried out in March 1974 on the New England continental shelf break to study the current and hydrographic structure and variability on the shelf and in the shelf/slope front. A second experiment was conducted in the shelf break region for one week in January 1975 to study frontal exchange processes. The mean currents during the March 1974 experiment all had a westward alongshore component, increasing in magnitude progressing offshore from ~5 cm/sec to a maximum at the nearshore edge of the shelf/slope front of between 10 and 20 cm/ sec, and decreasing in magnitude with depth. The current structure was such that the velocity vector rotated clockwise with depth in the shelf waters inside the front. The mean alongshore transport of shelf water was on the order of 0.4 Sverdrups through a cross-shelf transect south of Block Island. About 30% of the transport occurred in the wedge-shaped region offshore of the 100 m isobath and inshore of the front. Comparison of the observed mean currents with those predicted by the steady frictional boundary layer model of Csanady (1976) indicates that the model captures most of the essential features of the shelf circulation. The low frequency currents contain approximately 30% of the total current variance. An empirical orthogonal modal analysis indicates that for low frequency alongshore motions the whole shelf together with the water above the front moves as a unit and that the on- offshore currents are characterized by opposing flows at surface and bottom. The alongshore wind stress component is the dominant forcing term for these low frequency motions and for the subsurface pressure field as well. For motion with periods longer than 33 hours, the time derivative term in the cross-shelf momentum balance is comparable with the Coriolis term while the advective terms are 2 to 10 times smaller, on the average. The semi-diurnal tide is barotropic over the shelf with current magnitudes that increase almost by a factor of two between the shelf break and the inshore mooring 70 km shoreward. At the shelf break one-dimensional continuity gives the correct relation between the surface tide and the semi-diurnal currents. The semi-diurnal tide is clockwise polarized. The diurnal tide is baroclinic, increasing somewhat toward the bottom, is less clockwise polarized than the semi-diurnal, and has tidal ellipses aligned with the isobaths. The diurnal tidal energy decreases toward shore. Inertial energy in the frontal zone is equal to the semi-diurnal tidal energy near the surface. The inertial energy decreases with depth and is an order of magnitude smaller further on the shelf. The inertial oscillations are shown to be highly correlated with the wind stress record, arising and decaying on a time scale of 3 to 4 days. The inertial oscillations are shown to be preferentially forced by wind stress events that have a large amount of clockwise energy at near inertial periods. The frontal zone is shown to be in near geostrophic balance with an anticipated vertical shear across the front of the order of 5 to 8 cm/sec. Thus, there is a wedge-shaped region of velocity deficit that is confined directly under the front and above ~200 m. Outside of this region the velocity is alongshore to the west. Low frequency motion of the front is shown to exist on time scales from 3 to 10 days although the complete nature of the motions is not known. An oscillation of the front about its mid-depth position at periods of 3 1/2 to 4 days was caused initially by an eastward wind stress event forcing the front offshore near surface and onshore along the bottom. This was accompanied by large temperature oscillations near the bottom at midshelf and current oscillations confined to those current meters near the front. The internal wave band is most energetic in the center of the front, is about half as energetic above the front where it is subject to variations associated with the wind stress, and is smaller and nearly constant below the front. The internal wave energy decreases shoreward reflecting the decreasing stratification shoreward of the wintertime hydrography. Linear internal wave theory seems to break down in the conditions of the frontal zone. A stability analysis of the front to small perturbations is carried out by extending the model of Margules frontal stability of Orlanski (1968) to include the steep bottom topography of the shelf break region. The study covers the parameter range pertinent to the New England continental shelf break region and indicates that the front is indeed unstable; however, the associated growth rates are so slow that baroclinic instability does not seem to be a viable explanation for the observed frontal motions. Application of the theory to the nearly flat topography of the shelf itself shows that the front would be at least 20 times more unstable there suggesting that the front would migrate offshore to the shelf break region until a stable equilibrium was established between frictional dissipation and the instabilities.
    Description: Funds for 'the field program and the data analysis of the New England Shelf Dynamics Experiment have been provided by the National Science Foundation through grants GA-4l075 and DES 74-03001.
    Keywords: Ocean currents ; Continental shelf ; Fronts ; Ocean circulation ; Dallas (Ship) Cruise ; A.E. Verrill (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June, 1970
    Description: Measurements of ocean currents were made by the author in the Western Mediterranean Sea at five depths for two months during early 1969. In terms of the dominant and persistent presence of inertial oscillations, circularly polarized currents having periods of a half pendulum day, the data are among the most striking ever collected. Two contemporary theories have been adapted for interpretation of this data. On the basis of a ray or short-wave-length theory, energy arriving at the observing site is found to fall into two categories, that making direct arrival from the, surface where it is assumed to have been generated, and that which undergoes one or more reflections. To the extent that the former dominates, it is found that the Algerian Coast about 130 km. to the south would cast a shadow to the north, the precise shape of which would be highly dependent on small variations in frequency. The nature of this frequency dependence implies a gradual increase in frequency with depth at the observing latitude. Although the data show a measurable shift (about 3%) towards higher frequencies, which is roughly the required amount, the lack of progressive frequency change with depth does not support the shadow hypothesis. In addition, the data is interpreted in terms of normal mode theory, where the nearby coast is seen to force a discrete modal structure to the solutions. The observed variation of current phase with depth indicates that a single internal mode dominates over a large portion of the data, while variations of both current amplitude and phase with depth are consistent this being the third internal vertical mode. Existence of a normal mode is also consistent with the long time, on the order of three weeks, for which the oscillations were observed to persist and with the dimensions of the Mediterranean Basin.
    Description: This work was supported by the National Science Foundation under contract GA10208 and by the Office of Naval Research under contract NONR 241-11.
    Keywords: Ocean currents ; Atlantis II (Ship : 1963-) Cruise AII49
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology October 1979
    Description: An investigation was carried out to observe the geologic effects of steady bottom currents on sediments of East Katla Ridge on the southern insular rise of Iceland. Near-bottom southwest to west-flowing currents exceeded 20 cm sec-1 for two weeks over a 25-kilometer wide section of the ridge flank between approximately 1400 and 1800 meters water depth; maximum density and minimum temperature were observed at 1800 meters. Total transport of Iceland-Scotland Overflow Water was calculated to be 5.0 x 106 m3 sec-1; suspended sediment transport is approximately 0.4 x 106 grams sec-1, with a net deposition of 10 to 15 cm/1000 years estimated from the flux difference in and out of the station array. Sediment distribution patterns indicate that the current axis, where flow exceeds approximately 15 cm sec-1, is a site of erosion and winnowing (sand layer formation) while the current margin is a site of rapid accumulation (from observed Holocene rates of 25 to 35 cm per 1000 yr to estimated rates of greater than 100 cm/1000 yr based on 3.5 kHz echo-sounder records). Holocene silty turbidites are locally thick in a sub-marine channel; sandy turbidites and current-winnowed 'sandy contourites' are present in the axis of the major submarine canyon. ‘ Sandy contourite' deposits beneath the axis of the Iceland-Scotland Overflow Current are very poorly sorted muddy sands lacking primary sedimentary structures. Bioturbation is inferred to cause the unique characteristics of these deposits, as well as the absence of fine silt laminae in 'muddy contourites' at the current margin.
    Description: Financial support for shipboard operations and most of the post-cruise data analysis was provided by NSF Grant OCE76-Sl49l to Dr. Charles Hollister. Sediment trap and hydrocast operations received partial support under ONR Contract N00014-74-C-0262.
    Keywords: Marine sediments ; Sedimentation and deposition ; Ocean currents ; Submarine geology ; Ocean circulation ; Atlantis II (Ship : 1963-) Cruise AII94-1
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Except for the presence in most localities of a shallow homogeneous surface layer and of a relatively homogeneous and deeper bottom layer, the oceans of the temperate and tropical regions are stratified and vertically stable at all depths. Due to the opacity of water for long-wave radiation and to the damping of vertical turbulence by the stability, there is no potent mechanism for altering the potential density of any water element below the layer of direct surface influences. Hence there can be no flow of major proportions across surfaces of constant potential density. For these reasons it is now generally accepted that flow takes place essentially parallel to these surfaces. It follows that the major sources for the water on each surface of constant potential density are to be found along its intersection with the sea surface in higher latitudes.
    Keywords: Ocean currents ; Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 3671049 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April, 1976
    Description: Two numerical applications of two-level quasigeostrophic theory are used to investigate the interrelationships of the mean and mesoscale eddy fields in a closed-basin ocean model. The resulting techniques provide a more accurate description of the local dynamics, origins, and parametric dependences of the eddies than that available in previous modelling studies. First, we propose a novel and highly efficient quasigeostrophic closed-domain model which has among its advantages a heightened resolution in the boundary layer regions. The pseudospectral method, employing an orthogonal expansion in Fourier and Chebyshev functions, relies upon a discrete Green's function technique capable of satisfying to spectral accuracy rather arbitrary boundary conditions on the eastern and western (continental) walls. Using this formulation, a series of four primary numerical experiments tests the sensitivity of wind-driven single and double-gyred eddying circulations to a transition from free-slip to no-slip boundary conditions. These comparisons indicate that, in the absence of topography, no-slip boundaries act primarily to diffuse vorticity more efficiently. The interior transport fields are thus reduced by as much as 50%, but left qualitatively unchanged. In effect, once having separated from the western wall, the internal jet has no know1edge, apart from its characteristic flow speed, of the details of the boundary layer structure. Next, we develop a linearized stability theory to analyze the local dynamic processes responsible for the eddy fields observed in these idealized models. Given two-dimensional (x, z) velocity profiles of arbitrary horizontal orientation, the resulting eigenfunction problems are solved to predict a variety of eddy properties: growth rate, length and time scales, spatial distribution, and energy fluxes. This simple methodology accurately reproduces many of the eddy statistics of the fully nonlinear fields; for instance, growth rates of 10-100 days predicted for the growing waves by the stability analysis are consistent with observed model behavior and have been confirmed independently by a perturbation growth test. Local energetic considerations indicate that the eddy motions arise in distinct and recognizable regions of barotropic and baroclinic activity. The baroclinic instabilities deîend sensitively on the vertical shear which must exceed 0(5 cm sec-1) across the thermocline to induce eddy growth. As little as a 10% reduction in |uz|, however, severely suppresses the cascade of mean potential energy to the eddy field. In comparison, the barotropic energy conversion process scales with the horizontal velocity shear, |uy|, whose threshold values for instability, a (2 x 10-6 sec-1), is undoubtedly geophysically realizable. A simple scatter diagram of |uy| versus |uz| for all the unstable modes studied shows a clear separation between the regions of barotropic and baroclinic instability. While the existence of baroclinic modes can be deduced from either time mean or instantaneous flow profiles, barotropic modes cannot be predicted from mean circulation profiles (in which the averaging process reduces the effective horizontal shears). Finally, we conduct a separate set of stability experiments on analytically generated jet profiles. The resulting unstable modes align with the upper level velocity maxima and, although highly sensitive to local shear amplitude, depend much less strongly on jet separation and width. Thus, the spatial and temporal variability of the mesoscale statistics monitored in the nonlinear eddy simulations can be attributed almost entirely to time-dependent variations in local shear strength. While these results have been obtained in the absence of topography and in an idealized system, they yet have strong implications for the importance of the mid-ocean and boundary layer regions as possible eddy generation sites.
    Description: This research has been made possible by National Science Foundation grant OCE74-03001 A03, formerly DES73-00528, and the National Science Foundation funded National Center for Atmospheric Research.
    Keywords: Ocean currents ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 6161797 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1976
    Description: The temporal and spatial variability of low frequency moored temperature and velocity observations, obtained as part of the Mid-Ocean Dynamics Experiment (MODE), are analyzed to study the kinematics and energetics of mesoscale eddies in the ocean. The temporal variability of the low frequency motions is characterized by three regimes: very low frequencies with periods greater than 200 days, an eddy energy containing band of 80 to 120 day periods, and high frequencies wìth periods less than 30 days. At very low frequencies, the zonal kinetic energy exceeds the meridional at all depths. In the thermocline, the very low frequency zonal flow dominates the total kinetic energy. The greatest contribution to the kinetic and potential energy in the MODE region, except for the thermocline zonal flow, is from an eddy energy containing band of 80 to 120 day periods. Eddy scale kinetic energy spatial variations are confined to this band. At high frequencies, the kinetic and potential energy scale with frequency as ω-2.5 and with depth in the WKB sense. Energy at high frequencies is partitioned evenly between zonal kinetic, meridional kinetic and potential energy and is homogeneous over 100 km. Using the technique of empirical orthogonal expansion, the vertical structure of the energetically dominant eddies is described by a few modes. The displacement is dominated by a mode with a thermocline maximum and in phase displacements with depth, while the kinetic energy is dominated by an equivalent barotropic mode. A smaller portion of the kinetic and potential energy is associated with out of phase thermocline and deep water currents and displacements. The dynamics of the mesoscale eddies are very nonlinear. Using the vertical veering of the current at MODE Center, the estimated horizontal advection of heat contributes significantly to the low frequency thermal balance. The observed very low frequency anisotropic flow is consistent with the nonlinear eddy spindown models, dominated by cascades of vorticity and energy. At high frequencies, the spectral similarity is consistent with advected geostrophic turbulence.
    Description: The National Science Foundation supported the work through grants GX29034 and IDO-75-03998 and a graduate fellowship.
    Keywords: Ocean currents ; Ocean circulation ; Ocean temperature
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 7112504 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April, 1977
    Description: A total of four moorings from POLYMODE Array I and II were analyzed in an investigation of internal wavefield-mean flow interactions. In particular, evidence for wave-mean flow interaction was sought by searching for time correlations between the wavefield vertically-acting Reynolds stress (estimated using the temperature and velocity records), and the mean shear. No significant stress-shear correlations were found at the less energetic moorings, indicating that the magnitude of the eddy viscosity was under 200 cm2/sec, with the sign of the energy transfer uncertain. This is considerably below the 0(4500 cm2/sec) predicted by Müller (1976). An extensive error analysis indicates that the large wave stress predicted by the theory should have been clearly observable under the conditions of measurement. Theoretical computations indicate that the wavefield "basic state" may not be independent of the mean flow as assumed by Müller, but can actually be modified by large-scale vertical shear and still remain in equilibrium. In that case, the wavefield does not exchange momentum with a large-scale vertical shear flow, and, excepting critical layer effects, a small vertical eddy viscosity is to be expected. Using the Garrett-Munk (1975) model internal wave spectrum, estimates were made of the maximum momentum flux (stress) expected to be lost to critical layer absorption. Stress was found to increase almost linearly with the velocity difference across the shear zone, corresponding to a vertical eddy viscosity of -100 cm2 s -1. Stresses indicative of this effect were not observed in the data. The only significantly non-zero stress correlations were found at the more energetic moorings. Associated with the 600 m mean velocity and the shear at the thermocline were a positively correlated stress at 600 m, and a negatively correlated stress at 1000 m. These stress correlations were most clearly observable in the frequency range corresponding to 1 to 8 hour wave periods. The internal wavefield kinetic and potential energy were modulated by the mean flow at both levels, increasing by a factor of two with a factor of ten in the mean flow. The observed stress correlations and energy level changes were found to be inconsistent with ideas of a strictly local eddy viscosity, in which the spectrum of waves is only slightly modified by the shear. When Doppler effects in the temperature equation used to estimate vertical velocity were considered, the observations of stress and energy changes were found to be consistent with generation of short (0.4 to 3 km) internal waves at the level of maximum shear, about 800 m. The intensity of the generated waves increases with the shear, resulting in an effective vertical eddy viscosity (based on the main thermocline shear) of about +100 cm2 s-1 The stresses were not observable at the 1500 m level, indicating that the waves were absorbed within 500 m of vertical travel. The tendency for internal wave currents to be horizontally anisotropic in the presence of a mean current was investigated. Using the Garrett- Munk (1975) model internal wave spectrum, it was found that critical layer absorption cannot induce anisotropies as large as observed. A mechanical noise problem was found to be the cause of large anisotropies measured with Geodyne 850 current meters. It could not be decided, however, whether or not the A.M.F. Vector Averaging Current Meter is able to satisfactorily remove the noise with its averaging scheme.
    Description: The research reported here was provided by Office of Naval Research Contract Numer N00014-76-C-0197 NR 083-400.
    Keywords: Internal waves ; Ocean waves ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 10418025 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January, 1971
    Description: Observations of the ocean in the vicinity of Bermuda on two different occasions show systematic distortions of the isotherms close to the island and an area of intensive mixing on the northern coast. Two mechanisms are investigated and each produces some agreement with data from different flow regimes. Firstly, the island is modeled as a circularly symmetric obstacle with steep sides and a small aspect ratio. A steady, rotating, and stratified flow which, far from the island, is uniform in the horizontal and a linear function of the vertical coordinate is taken to be flowing past the island. Neglecting circulation effects, the problem is solved to first order in a small parameter, α, which measures the steepness of the island and a small Rossby number, ε. This allows a calculation of the depth contours of isotherms to 0(ε2,εα). For one set of data the flow is such that the slope effect of 0(εα) predominates while for another period of observation both slope and Rossby number influences are of the same magnitude. In both cases qualitative agreement between fact and theory is remarkably good. In addition, it is shown that the north slope (for a west-east current) is the most favored area for mixing as there the Richardson number is a minimum and the flow is most likely to separate from the boundary. A second means of producing isotherm distortion and mixing areas close to the island concerns the nonlinear effects of shoaling internal gravity waves. For normal incidence on a two-dimensional beach the Reynolds stresses produced by the fundamental wave motion are shown to force a mean Eulerian current which is equal hut opposite in sense to the Stokes drift. This causes the mean Lagrangian current to vanish so that the physical constraint that there be no net motion of fluid particles along isopycnals into the beach is satisfied. In addition, isotherms are distorted in a fashion analogous to the surface set-down produced by shoaling surface waves. The mean isopycnal shift can be as much as 10m where the theory has some validity. Distortions of the predicted form are observed in the data from a period when the mean currents were small. Consideration of the oblique incidence problem shows that this generalization has little effect on the expected magnitude of the shifts but that a significant longshore current can be forced by the breaking of the waves.
    Description: This study was supported by the Office of Naval Research under contracts Nonr 1841(74) and Nonr 3963(31) with the Massachusetts Institute of Technology. Additional support came from the National Science Foundation in the form of a summer fellowship and computer time under contract NSF GJ-133 with the Woods Hole Oceanographic Institution.
    Keywords: Ocean waves ; Gravity waves ; Ocean currents ; Submarine topography ; Atlantis II (Ship : 1963-) Cruise AII47 ; Gosnold (Ship : 1962-1973) Cruise 144
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 4506611 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: During the past four years a deliberate effort has been made at the Woods Hole Oceanographic Institution to devise methods of kinematic observation generally suited to the needs of oceanographers. One result of this work, the electromagnetic method, has been brought from the experimental stage to one of useful maturity. Many of the theoretical potentialities of the method are still to be explored and developed. Nevertheless it seems likely that this remaining work may be done more soundly if present developments of the theory and instrumentation are made available for use and evaluation by, others. These studies in methods of kinematic observation have been supported mainly under the provisions of Bureau of Ships Contract NObs-2083, and Office of Naval Research Contract N6onr-277-1. This support and the assistance of the Naval Ordnance Laboratory, the Hydrographic Office (Oceanographic Division), the United States Coast Guard, and the David Taylor Model Basin of the United States Navy is gratefully acknowledged.
    Keywords: Ocean circulation ; Ocean currents ; Tides ; Water current meters ; Oceanographic instruments ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 4668471 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: The purpose of this paper is to discuss the nature of the electrical field induced in the ocean by particular types of velocity distribution. It is believed that these examples will be helpful in the interpretation of measurements by towed electrodes in the sea. The electrical field induced by waves and tidal streams, originally predicted by Faraday (1832), was first measured experimentally by Young, Gerrard and Jevons (1920), who used both moored and towed electrodes in their observations. Recently, the technique of towed electrodes has been developed by von Arx (1950, 1951) and others into a useful means of detecting water movements in the deep ocean. While the method has been increasingly used, the problem of interpreting the measurements in terms of water movements has become of great importance. Two of the present authors have made theoretical studies (Longuet-Higgins 1949, Stommel 1948) dealing with certain cases of velocity fields, and Malkus and Stern (1952) have proved some important integral theorems. There seems, however, to be a need for a more extended discussion of the principles underlying the method, and for the computation of additional illustrative examples. This is all the more desirable since some of the theoretical discussions published previously have been misleading.
    Keywords: Ocean currents ; Ocean waves ; Electric fields ; Electrodes
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 1953949 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1976
    Description: Measurements of horizontal and vertical current by propeller cluster current meters and temperature by thermistors mounted on a rigid array 8 m high and 20 m long moored in the oceanic main thermocline near Bermuda are interpreted in terms of thermocline-trapped internal wave modes in the presence of temperature and density fine-structure. Two turning-point uniformly valid asymptotic solutions to the internal wave equation are developed to describe the wave functions. Mode decay beyond the turning point in depth or frequency produces a sharp cutoff in vertical current spectra above the local buoyancy frequency N(z). An internal wave wavenumber-frequency spectral model Ε(α,ω) = E(ω/No)-2 (α./α0)-2 describes vertical current spectra and potential energy to horizontal kinetic energy ratios. The red wavenumer shape suppresses peaks in both these quantities at frequencies near N(z). The data are consistent with time-averaged horizontal isotropy of the wave field. A dip in the vertical current spectra at 0.5 cph not predicted by the model appears related to the bottom slope. Temperature fine-structure is modeled as a passive vertical field advected by internal waves. Quasi-permanent fine-scale features of the stratification and vertically small-scale internal waves are indistinguishable in this study. The model of McKean (1974) is generalized to include fine-structure fields specified by their vertical wavenumber spectra as well as different Poisson-distributed layer models. Together with the trapped internal wave model, moored temperature spectra, temperature vertical difference spectra, and coherence over vertical separations are described using a fine-structure vertical wavenumber spectrum PT(k) =ATk-5/2 which agrees with other spectra made using vertical profiling instruments in the range 0.1 to 1.0 cpm. Horizontal current fine-structure is also modeled as a passive field advected vertically by long internal waves. The model describes moored horizontal current spectra (least successfully at frequencies near N(z)) and finite-difference vertical shear spectra. Contours of temperature in depth versus time indicate possible mixing events. These events appear concurrently with high shear and Richardson numbers O. 25≤ R ≤ 1.0. Over 7 m a cutoff in Ri at 0.25 is observed, indicating saturation of the internal wave spectrum. Spectra of finite-difference approximations to shear and buoyancy frequency are dominated by fine-structure contributions over nearly the whole internal wave range, suggesting that breaking is enhanced by fine-structure. Breaking appears equally likely at all frequencies in the internal wave range.
    Description: This research was supported by Office of Naval Research contract N00014-67-0204-0047 and continuation contract NOOOl4-75-C-0291.
    Keywords: Ocean waves ; Internal waves ; Gravity waves ; Ocean currents ; Fine-structure constant ; Knorr (Ship : 1970-) Cruise KN52 ; Eastward (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 6274218 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: The present investigation may be regarded as a part of a systematic effort to introduce into meteorology and physical oceanography methods and results which for a number of years have contributed to the rapid growth and increasing practical significance of experimental fluid mechanics. This science has recognized that the exact character of the forces controlling the motion of a turbulent fluid is not known and that consequently there is very little justification for a purely theoretical attack on problems of a practical character. For this reason fluid mechanics has been forced to develop a research technique all of its own, in which the theory is developed on the basis of experiments and then used to predict the behavior of fluids in cases which are not accessible to experimentation. In oceanography it has long been regarded as an axiom that the movements of the water are controlled by three forces, the horizontal pressure gradient, the deflecting force, and the frictional force resulting from the relative motion of superimposed strata. It is significant that thirty-five years of intensive theoretical work on this basis have failed to produce a theory capable of explaining the major features of the observed oceanic circulation below the pure drift current layer. The present investigation considers a force which has been completely disregarded by theoretical investigators although its existence has been admitted implicitly by practically everyone who has approached physical oceanography from the descriptive side, namely the frictional force resulting from large-scale horizontal mixing. The intro- . duction of this force permits us to see how motion generated in the surface layers may be diffused and finally dissipated without recourse to doubtful frictional forces at the bottom of the ocean.
    Keywords: Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 2272508 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: This paper is a discussion of possible discrepancies in computations of ocean currents (based on horizontal variations of dynamic topography calculated from arbitrary deep lying reference surfaces), because of time variations of temperature and salinity at fixed depths in the sea (illustrated for a 24-hour period at "Atlantis" Station 2639). The results contained herein, while based chiefly on information from the western North Atlantic, are of general applicability, since time variations of the same order of magnitude have been observed over extensive areas of the Atlantic ocean. In selecting material for analysis of dynamic situations in the region concerned, consideration has been given only to those favorably located stations from which the structural features could most conveniently be obtained for illustrating the points in question.
    Keywords: Ocean currents ; Oceanography ; Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 1914329 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1973
    Description: This thesis presents an investigation of the dynamics of bottom boundary currents in the ocean. The major emphasis is to develop simple mathematical models in which various dynamical features of these complex geophysical flows may be isolated and explored. Two separate models are formulated and the theoretical results are compared to observational data and/or laboratory experiments. A steady flow over a constant sloping bottom is treated in each model. A streamtube model which describes the variatlon in average cross-sectional properties of the flow is derived to examine the interaction between turbulent entrainment and bottom friction in a rotating stratified fluid. Empirical laws are used to parameterize these processes and the associated entrainment and friction coefficients (Eo,K) are evaluated from data for two bottom currents: the Norwegian Overflow and the Mediterranean Outflow. The ability to fit adequately all observations with the solutions for a single parameter pair demonstrates the dynamical consistency of the streamtube model. The solutions indicate that bottom stresses dominate the frictional drag on the dense fluid layer in the vicinity of the source whereas relatively weak entrainment slowly modulates the flow properties in the downstream region. The combined influence of entrainment and ambient stratification help limit the descent of the Mediterranean Outflow to a depth of approximately 1200 m. while strong friction acting over a long downstream scale allows the flow of Norwegian Sea water to reach the ocean floor. A turbulent Ekman layer model with a constant eddy viscosity is also formulated. The properties of the flow are defined in terms of the layer thickness variable d(x,y), whose governing equation is judged intractable for the general case. However, limiting forms of this equation may be solved when the layer thickness is much less than (weak rotation) or greater than (strong rotation) the Ekman layer length scale. In the weak rotation limit, a similarity soltition is derived which describes the flow field in an intermediate downstream range. Critical measurements in a laboratory experiment are used to establish distinctive properties of rotational perturbations to the viscous flow, such as the antisymmetric corrections to the layer thickness profile and the surface velocity distribution, which depend on downstream distance like y2/7. The constraint of weak rotational effects precludes a meaningful comparison with oceanic bottom currents. The analysis of the strong rotation limit leads to the prediction of an Ekman flux mechanism by which dense fluid is drained from the lower boundary of the thick core of the current and the geostrophic flow is extinguished. The form of a similarity solution for the downstream flow is derived subject to the specification of a single constant by the upstream boundary condition. The results of some exploratory experiments are sufficient to confirm some qualitative aspects of this solution, but transience of the laboratory flow limits a detailed comparison to theory. Some features of the Ekman flux mechanism are noted in the observational data for the Norwegian Overflow.
    Keywords: Ocean currents ; Dynamic oceanography ; Hudson (Ship) Cruise BIO 0267
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 8549866 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Ocean Engineer at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution and Master of Science in Ocean Engineering at the Massachusetts Institute of Technology August, 1972
    Description: A bottom mounted electromagnetic current meter measures the vertically-averaged conductivity-weighted velocity. This measurement complements free-fall relative velocity profiles and is valuable for transport determination and dynamics studies. Such an instrument has been designed to measure the three components of the electric field, Ex, Ey, and Ez. Salt bridges used with switched electrodes permit the induced e1ectromotive forces to be measured with only a short baseline; eight foot arms are planned. The first part of this report covers the theory behind the bottom mounted electric field meter. The second part discusses the design of the instrument as well as a brief description of the prototype bottom mounted electric field meter.
    Keywords: Ocean currents ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 2207561 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June, 1975
    Description: A set of vertical profiles of horizontal ocean currents, obtained by electro-magnetic profilers in the Atlantic Ocean southwest of Bermuda in the spring of 1973, has been analyzed in order to study the vertical structure and temporal behavior of internal waves, particularly those with periods near the local inertial period. An important feature of the observed structure is the polarization of horizontal velocity components in the vertical. This polarization, along with temporal changes of the vertical wave structure seen in a time series of profiles made at one location, has been related to the direction of vertical energy flux due to the observed waves. Whereas the observed vertical phase propagation can be affected by horizontal advection of waves past the point of observation, the use of wave polarization to infer the direction of vertical energy propagation has the advantage that it is not influenced by horizontal advection. The result shows that at a location where profiles were obtained over smooth topography, the net energy flux was downward, indicating that the energy sources for these waves were located at or near the sea surface. An estimate of the net, downward energy flux (~ .2 - .3 erg/cm2/sec) has been obtained. Calculations have been made which show that a frictional bottom boundary layer can be an important energy sink for near-inertial waves. A rough estimate suggests that the observed, net, downward energy flux coul d be accounted for by energy losses in this frictional boundary layer. A reflection coefficient for the observed waves as they reflect off the bottom has been estimated. In contrast, some profiles made over a region of rough topography indicate that the rough bottom may also be acting to generate near-inertial waves which propagate energy upward. Ca1culations of vertical flux of horizontal kinetic energy, using an empirical form for the energy spectrum of internal waves, show that this vertical flux reaches a maximum for frequencies 10% - 20% greater than the local inertial frequency. Comparison with profiler velocity data and frequency spectra supports the conclusion that the dominant waves had frequencies 10% - 20% greater than the inertial frequency. The fact that the waves were propagating energy in the vertical is proposed as the reason for the observed frequency shift. Finally, energy spectra in vertical wave number have been calculated from the profiles in order to compare the data with an empirical model of the energy density spectrum for internal waves proposed by C. Garrett and W. Munk (1975). The result shows that although the general shape and magnitude of the observed spectrum compares well with the empirica1 model, the two-sided spectrum is not symmetric in vertical wave number. This asymmetry has been used to infer that more energy was propagating downward than upward. These calculations have also been used to obtain the coherence between profiles made at the same location, but separated in time (the so-called dropped, lagged, rotary coherence). This coherence is compared with the aforementioned empirical model. The coherence results show that the contribution of the semidiurnal tide to the energy of the profiles is restricted to long vertical wave lengths.
    Description: Support for the experiment which is described in this report was provided by the Office of Naval Research under contracts N00014-66-C-0241, NR 083-004 and N00014-74-C-0262, NR 083-004.
    Keywords: Ocean currents ; Internal waves ; Measurement
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 5803807 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution July, 1975
    Description: The local dynamics of low-frequency motions in the MODE region are investigated from three arrays of moored measurements of current and temperature. Tests for lowest-order balances of horizontal momentum, mass, heat, heat and vorticity within established errors are carried out. Geostrophic comparisons of four-day averaged observed and geostrophic current differences from the MODE-l array indicate that ageostrophic balance within estimated errors is the lowest-order horizontal momentum balance. The discrepancy between observed and geostrophic current differences has a standard deviation of 1.9 cm/see which is 26% as large as the standard deviation of the current differences. In the mass balance comparisons of estimates of δυ/δχ and δν/δγ from the MODE-O Array l indicate that within estimated errors the low frequency currents are horizontally nondivergent. The standard deviation of horizontal divergence, which is the discrepancy from horizontal nondivergence, is .22 x 10 6 sec 1 which is 36% as large as the standard deviation of the estimates of horizontal derivatives of velocity. These tests significantly increase the observational basis for geostrophy and horizontal nondivergence and confirm the validity of the error estimates. In the heat balance, estimates of horizontal advection of temperature balance local time changes of temperature within estimated errors for the IWEX observations. These estimates have small errors because a representation of horizontal advection of temperature in terms of the speed and turning about the vertical of the horizontal current is used. The errors are so small that from future measurements it may be possible to estimate the sum of local change plus horizontal advection of temperature and from this sum it may be possible to estimate vertical velocity. This balance between local change and horizontal advection demonstrates that horizontal advection of spatially varying features is an important cause of local time changes. The horizontal advection could not be explained in terms of advection by the long time-averaged flow field. This suggests that the local dynamics of low-frequency motions in the MODE region are strongly nonlinear. An indication of energy transfer, which occurs in nonlinear processes, is found in a phase lag such that estimates of horizontal advection lead local changes of temperature. In the context of the baroclinic instability model this phase lag is consistent with the growth of perturbation wave energy by conversion of potential energy contained in the forty-day averaged flow field. In the vorticity balance, estimates of planetary advection account for only half the local time change of vorticity for MODE-0 Array 1 measurements. Within estimated errors these two terms do not balance, so these observations cannot be explained as manifestations of barotropic Rossby waves alone. Estimates of vortex stretching and horizontal advection of relative vorticity could not be made. A phase lag such that estimates of planetary advection lead local changes of vorticity is consistent in the context of the instability model with an increase in perturbation wave enstrophy, which must occur when the perturbation wave grows, due to the conversion of planetary enstrophy. Because of the importance of the vorticity balance for understanding the dynamics of low-frequency motions an experiment is suggested to estimate accurately all terms in the lowest-order vorticity balance. From such measurements the energy transfer and enstrophy conversion could also be estimated.
    Description: Support to carry out this thesis work was provided by the Office of Naval Research under contracts N00014-66-C0241 and C0262 NR 083-004 and by the National Science Foundation Office of the International Decade of Ocean Exploration under grant IDO75-03962.
    Keywords: Ocean currents ; Ocean temperatures ; Dynamic meteorology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 4305789 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...