ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (23)
  • Arctic Ocean  (20)
  • American Geophysical Union  (43)
  • American Chemical Society
Collection
  • 1
    Publication Date: 2021-03-01
    Description: A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864–1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.
    Description: Published
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Turrialba volcano ; eruptive activity ; 3He/4He ; fumarole gases ; glassy shards ; juvenile component ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-24
    Description: On 24 August 2013 a sudden gas eruption from the ground occurred in the Tiber river delta, nearby Rome's international airport of Fiumicino. We assessed that this gas, analogous to other minor vents in the area, is dominantly composed of deep, partially mantle-derived CO2, as in the geothermal gas of the surrounding Roman Comagmatic Province. Increased amounts of thermogenic CH4 are likely sourced from Meso-Cenozoic petroleum systems, overlying the deep magmatic fluids. We hypothesize that the intersection of NE-SW and N-S fault systems, which at regional scale controls the location of the Roman volcanic edifices, favors gas uprising through the impermeable Pliocene and deltaic Holocene covers. Pressurized gas may temporarily be stored below these covers or within shallower sandy, permeable layers. The eruption, regardless the triggering cause—natural or man-made, reveals the potential hazard of gas-charged sediments in the delta, even at distances far from the volcanic edifices.
    Description: Published
    Description: 5632–5636
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; deep CO2 ; Tiber river delta ; thermogenic CH4 ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: Beside anthropogenic influences, mercury in the environment can also be of natural origin. Among geologic sources, volcanic activity has been of main interest so far. Modern estimations of global natural emissions are between 2000 and 5200 tonnes per year. However, these estimates are very uncertain, thus more detailed and systematic research on natural sources of mercury is necessary. Tectonic activity is connected to certain phenomena such as degassing of Hg and other gases from active faults, geothermal activity, volcanoes, etc., especially on tectonic plate margins. Elemental mercury concentrations in air, soil gases and fluxes, as well as its speciation, in connection to tectonic activity, were studied in different environments such are karst cave (Postojna Cave), active volcano areas (Mt. Etna, Italy), and active tectonic areas in the Mediterranean Basin on Africa-Adriatic tectonic plate margin. Postojna Cave is characterized by elevated Hg (up to 150 ng m-3) air concentrations at certain areas in vicinity of active faults; however the concentrations showed also strong seasonal variations. Mt. Etna on Sicily is the largest and most active Mediterranean volcano. Concentrations of mercury in air in the vicinity of the volcano are relatively high (between 4 and 30 ng m-3) and rise towards the summit crater (65 to 130 ng m-3). Concentrations in sulphatare and fumaroles gases on the summit of the volcano can reach very high values (even up to 60 μg m-3). The Mediterranean Basin is characterized by strong tectonic activity as a consequence of subduction of African plate under the Eurasian plate. A possible source of DGM (dissolved gaseous mercury in sea water) in deeper and bottom waters could be intensive tectonic activity of the seafloor, since higher concentrations and portions of DGM were found near the bottom at locations with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea, Ionian Sea). Distribution of different mercury species in sediment and water of the Mediterranean Sea showed that the main source of mercury is geotectonic activity and its accompanying phenomena.
    Description: Published
    Description: San Francisco
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: restricted
    Keywords: Mercury ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The recent eruption of Mount Etna (July 2001) offered the opportunity to analyze magma-derived volatiles emitted during preand syn-eruptive phases, and to verify whether their composition is affected by changes in volcanic dynamics. This paper presents the results of analyses of F, Cl and S in the volcanic plume collected by filter-packs, and interprets variations in the composition based on contrasting solubility in magmas. A Rayleigh-type degassing mechanism was used to fit the acquired data and to estimate Henryâ s solubility constant ratios in Etnean basalt. This model provided insights into the dynamics of the volcano. Abundances of sulfur and halogens in eruptive plumes may help predict the temporal evolution of an ongoing effusive eruption.
    Description: -Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 1559
    Description: partially_open
    Keywords: magmatic degassing ; acidic gases ; plume chemistry ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 275912 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The soil CO2 flux on Mt. Etna as recorded by the ETNAGAS network (an automatic system for measuring soil CO2 flux and meteorological parameters) started to increase strongly about 5 months prior to the onset of the 2004–2005 eruption and decreased a few months before the end of the eruption. Time delays in the occurrences of anomalies in soil CO2 flux at different sites in the geochemical network constrain the relationship between soil CO2 flux distributions and the tectonic framework of Etna volcano. The anomalies observed before the 2004–2005 eruption support the intrusion of new undegassed magma into the upper feeding system of the volcano (〈20 km below sea level). Magma subsequently rose slowly in the volcano conduits, thereby triggering the onset of the 2004–2005 eruption. The time delays in the occurrences of anomalies in combination with spectral analysis indicate the importance of tectonic and volcanotectonic structures in driving the ascent of deep gases within the crust. Moreover, greatest amplitude pulsations of the low-frequency components of the CO2 flux signals were correlated with the paroxystic activities of the 2004–2005 eruption. This study confirms that CO2 flux variation is a useful indicator for volcanic activity in the surveillance of the Mt. Etna and similar basaltic volcanoes.
    Description: Dipartimento Protezione Civile Ministero degli Interni
    Description: Published
    Description: B09206
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux ; Continuous monitoring of soil CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: A new method for extracting dissolved gases in natural waters has been developed and tested, both in the laboratory and in the field. The sampling device consists of a polytetrafluroethylene (PTFE) tube (waterproof and gas permeable) sealed at one end and connected to a glass sample holder at the other end. The device is pre-evacuated and subsequently dipped in water, where the dissolved gases permeate through the PTFE tube until the pressure inside the system reaches equilibrium. A theoretical model describing the time variation in partial gas pressure inside a sampling device has been elaborated, combining the mass balance and ‘‘Solution-Diffusion Model’’ which describes the gas permeation process through a PTFE membrane). This theoretical model was used to predict the temporal evolution of the partial pressure of each gas species in the sampling device. The model was validated by numerous laboratory tests. The method was applied to the groundwater of Vulcano Island (southern Italy). The results suggest that the new sampling device could easily extract the dissolved gases from water in order to determine their chemical and isotopic composition.
    Description: - European Social Fund.
    Description: Published
    Description: Q09005
    Description: partially_open
    Keywords: dissolved gases ; helium isotope ; PTFE membrane ; Vulcano Island ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 446781 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We present the first regional map of CO2 Earth degassing from a large area (most of central and south Italy) derived from the carbon of deep provenance dissolved in the main springs of the region. The investigation shows that a globally significant amount of deeply derived CO2 (10% of the estimated global CO2 emitted from subaerial volcanoes) is released by two large areas located in western Italy. The anomalous flux of CO2 suddenly disappears in the Apennine in correspondence to a narrow band where most of seismicity concentrates. Here, at depth, the gas accumulates in crustal traps generating CO2 overpressurized reservoirs which induce seismicity.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Carbon dioxide ; Central Italy ; Southern Italy ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 426 bytes
    Format: 284605 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO2 flux (8.5 Mg d 1), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO2/SO2 ratio; by multiplying these data we compute a CO2 flux of 170 Mg d 1. Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydro-thermal systems, relative to SO2, the ability to remotely measure CO2 fluxes is significant, with promise to provide more profound geochemical insights, and earlier eruption forecasts, than possible with SO2 fluxes alone: the most ubiquitous current source of remotely sensed volcanic gas data.
    Description: Published
    Description: L06303
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Plume measurements ; carbon dioxide fluxes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Long time series of fumarolic compositions at Campi Flegrei (Italy), Mammoth Mountain (California), Panarea (Italy) and Nisyros (Greece) show rapid increases, up to orders of magnitude, of the CO2/CH4 ratio systematically with the occurrence of volcanic unrest periods. These easily detected anomalies originate with the arrival of CH4-poor magmatic fluids in the shallower levels of the volcanoes. The data suggest that volcanoes are characterized by magmatic activity at depth also in periods of apparent quiescence. The activity is constituted by the pulsing release of large amount of fluids which either cause unrest periods (seismicity and ground deformation) or possibly could precede volcanic eruption. This type of volcanic activity can be monitored trough the classical geophysical techniques together with the systematic sampling and analysis of fumaroles.
    Description: In press
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: fumarole ; magma degassing ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Long duration time-series of the chemical composition of fumaroles and of soil CO2 flux reveal that important variations in the activity of the Solfatara fumarolic field, the most important hydrothermal site of Campi Flegrei, occurred in the 2000-2008 period. A continuous increase of the CO2 concentrations, and a general decrease of the CH4 concentrations are interpreted as the consequence of the increment of the relative amount of magmatic fluids, rich in CO2 and poor in CH4, hosted by the hydrothermal system. Contemporaneously, the H2O-CO2-He-N2 gas system shows remarkable compositional variations in the samples collected after July 2000 with respect to the previous ones, indicating the progressive arrival at the surface of a magmatic component different from that involved in the 1983-84 episode of volcanic unrest (1983-1984 bradyseism). The change starts in 2000 concurrently with the occurrence of relatively deep, long-period seismic events which were the indicator of the opening of an easy-ascent pathway for the transfer of magmatic fluids towards the shallower, brittle domain hosting the hydrothermal system. Since 2000, this magmatic gas source is active and causes ground deformations, seismicity as well as the expansion of the area affected by soil degassing of deeply derived CO2. Even though the activity will most probably be limited to the expulsion of large amounts of gases and thermal energy, as observed in other volcanoes and in the past activity of Campi Flegrei, the behavior of the system in the future is, at the moment, unpredictable.
    Description: Published
    Description: B03205
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; CO2 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Five gas discharges in the area of Mount Etna volcano (Italy) and in the near Hyblean plateau have been monitored since 1996. All the emissions displayed low contributions from crustal fluids, whereas magmatic gases were the main component. Selective dissolution of these gases into hydrothermal aquifers has been recognized and modeled, allowing us to calculate the original composition of the magma-released gases. The inferred composition of the magmatic gases exhibits synchronous variations of He/Ne and He/CO2 ratios, which are coherent with the magma degassing process. On the basis of numerical simulations of volatile degassing from Etnean basalts we have computed the initial and final pressures of the magma batches feeding the emissions. We thus can define the levels of the Etna plumbing system where magmas are stored. Pressure values were around 360 and 160 MPa for initial and final stages, respectively, meaning related depths of about 10 and 3 km below sea level, matching those obtained by geophysical investigations for the deep and shallow magma reservoirs. In addition, we have been able to recognize episodes of magma migration from the deeper reservoir toward the shallow one. An important magma injection into the shallow storage volume was detected during the onset of the 2001 eruption (17 July). No further injection had taken place during this period until September 2001, providing a possible reason for the quick exhaustion of the eruption. In view of this we suggest that the sampled emissions are a powerful geochemical tool to investigate the Etna’s plumbing system and its magma dynamics, as well as the development of eruptive events.
    Description: Published
    Description: 2463
    Description: partially_open
    Keywords: gas geochemistry ; magma degassing ; modeling ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 695870 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: We report results on the measured high 3He/4He isotope ratio in western Sicily, interpreted together with the heat data. The study of this sector of the Europe-Africa interaction is crucial to a better understanding of the tectonics and the geodynamical evolution of the central Mediterranean area. The estimated mantle-derived helium fluxes in the investigated areas are up to 2–3 orders of magnitude greater than those of a stable continental area. The highest flux, found in the southernmost area near the Sicily Channel, where recent eruptions of the Ferdinandea Island occurred 20 miles out to sea off Sciacca, has been associated with a clear excess of heat flow. Our results indicate that there is an accumulation of magma below the continental crust of western Sicily that is possibly intruding and out-gassing through roughly N-S trending deep fault systems linked to the mantle, that have an extensional component. Although the identification of these faults is not sufficiently constrained by our data, they could possibly be linked to the pre-existing faults that originated during the Mesozoic extensional-transtensional tectonic phases.
    Description: Published
    Description: L04312
    Description: partially_open
    Keywords: helium isotopes ; heat production ; tectonics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 134391 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Long time series of fumarolic compositions at Campi Flegrei (Italy), Mammoth Mountain (California), Panarea (Italy) and Nisyros (Greece) show rapid increases, up to orders of magnitude, of the CO2/CH4 ratio systematically with the occurrence of volcanic unrest periods. These easily detected anomalies originate with the arrival of CH4-poor magmatic fluids in the shallower levels of the volcanoes. The data suggest that volcanoes are characterized by magmatic activity at depth also in periods of apparent quiescence. The activity is constituted by the pulsing release of large amount of fluids which either cause unrest periods (seismicity and ground deformation) or possibly could precede volcanic eruption. This type of volcanic activity can be monitored trough the classical geophysical techniques together with the systematic sampling and analysis of fumaroles.
    Description: Published
    Description: L02302
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: CO2/CH4 ; magma degassing ; quiescent volcanoes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-03
    Description: Here we report new data on the sulfur isotopic compositions (d34S) of fumarolic and plume gases collected at Mount Etna volcano during 2008–2009. While low-temperature fumaroles are affected by postmagmatic processes that modify the pristine isotopic signature, high-temperature and plume gases allow establishment of a d34S range of 0 1‰ for magmatic SO2. We compared our data with those from S dissolved in primitive melt inclusions from 2002 lava and in whole rocks that erupted during the past two thousand years. Such a comparison revealed that d34S is systematically lower for magmatic gases than for sulfur dissolved in the melt. We modeled how isotopic fractionation due to magma degassing process may vary d34S value in both the melt and gaseous phases. This modeling required assessment of the fractionation factor (agas-melt). The most recent measurements on the oxidation state of sulfur in basaltic melt inclusions indicate that nearly all S is dissolved as sulfate (S6+), which would be possible in oxidized magmatic systems (DNNO ≥ 1). Under these conditions the exsolved gaseous phase is depleted with respect to the melt and the proposed model fits both gas and melt data, and constrains the Etnean magmatic d34S to 1.0 1.5‰. It is remarkable that the assessed redox conditions—which are significantly more oxidizing than previously thought—are able to explain why the dominant sulfur species measured in the Etnean plume is SO2.
    Description: Published
    Description: Q05015
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna ; SO2 ; degassing ; fumarole ; plume ; sulfur isotope ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: We investigated the carbon isotope composition of mantle source beneath the Hyblean Plateau (southeast Sicily, Italy) by studying CO2 in fluid inclusions from ultramafic xenoliths recovered in some Miocene diatremes. In order to constrain the processes influencing the isotopic marker of carbon we combined d13CCO2 results with information about noble gases (He and Ar) obtained in a previous investigation of the same products. Although Ar/CO2 and He/Ar ratios provide evidence of Rayleigh-type fractional degassing, the isotopic geochemistry of carbon is poorly influenced by this process. Mixing related to metasomatic processes where MORB-type pyroxenitic melts permeate a peridotite mantle probably contaminated by crustal fluids inherited from a fossil subduction can explain the measured d13C and CO2/3He variations, ranging from 24&to 22& and from 109 to 1010, respectively. Simple mass-balance calculations highlighted that the Hyblean peridotite source was mainly contaminated by the carbonate source, being carbonate and organic matter present at a ratio that varied within the range from 7:1 to 4:1.
    Description: Published
    Description: 600-611
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: xenoliths ; mantle heterogeneity ; Hyblean Plateau ; fluid inclusions ; isotopic carbon ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Gas from mud volcanoes, dry mofettes, springs, and wells were sampled in a region of active tectonics and high seismicity in the southern Apennines (Italy), where there is a long history of disastrous earthquakes, with the latest (Ms = 6.9) occurring in 1980. The fluids consist of a mixture of mantle-derived and crust-derived volatiles, with a low atmosphere-derived contribution, as identified by the He isotope signature and He/Ne ratio measurements. One year of monthly monitoring of the He concentrations and He isotopes revealed no seasonal modifications or variations induced by low seismicity. There are extraordinary high outputs of 4He produced in the crust in the area (up to 2.5 × 1028 atoms yr 1). These outputs cannot be solely due to the whole-rock production rate and a long-lasting diffusion degassing through the crust of the produced 4He. This study explored the relation between the volume of fractured rock and the related release of He. The results support that crustal degassing can be controlled by tectonic events resulting in earthquakes. The high seismicity in this sector of the Apennines provides the conditions necessary for a massive release of He that has accumulated in the rock over a long time period. We identified that the assessed high crustal 4He output can be attributed to an intense fracturing of a calculable volume of rock, which gives new constraints on the volume of rock involved in high-magnitude earthquakes in the region.
    Description: Published
    Description: 2200-2211
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: xtraordinary high radiogenic helium flux in continental region ; Release of crustal 4He due to rock fracturing ; Relationship between rock involved in earthquake and radiogenic He flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-24
    Description: We present unprecedented data of real-time measurements of the concentration and isotope composition of CO2 in air and in fumarole-plume gases collected in 2013 during two campaigns at Mount Etna volcano, which were made using a laser-based isotope ratio infrared spectrometer. We performed approximately 360 measurements/h, which allowed calculation of the δ13C values of volcanic CO2. The fumarole gases of Torre del Filosofo (2900mabove sea level) range from 3.24 ± 0.06‰to 3.71 ± 0.09‰, comparable to isotope ratio mass spectrometry (IRMS) measurements of discrete samples collected on the same dates. Plume gases sampled more than 1 km from the craters show a δ13C= 2.2 ± 0.4‰, in agreement with the crater fumarole gases analyzed by IRMS. Measurements performed along ~17km driving track from Catania to Mount Etna show more negative δ13C values when passing through populated centers due to anthropogenic-derived CO2 inputs (e.g., car exhaust). The reported results demonstrate that this technique may represent an important advancement for volcanic and environmental monitoring.
    Description: Published
    Description: 2382–2389
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Real-time data of CO2 content and δ13C in atmospheric/volcanic gases ; This study opens new perspective for the community for volcanic surveillance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: We report on the first geochemical investigation of the Monticchio maar lakes (Mt. Vulture volcano, southern Italy) covering an annual cycle that aimed at understanding the characteristic features of the physical structures and dynamics of the two lakes. We provide the first detailed description of the lakes based on high-resolution CTD profiles, chemical and isotopic (H and O) compositions of the water, and the amounts of dissolved gases (e.g., He, Ar, CH4 and CO2). The combined data set reveals that the two lakes, which are separated by less than 200 m, exhibit different dynamics: one is a meromictic lake, where the waters are rich in biogenic and mantle-derived gases, while the other is a monomictic lake, which exhibits complete turnover of the water in winter and the release of dissolved gases. Our data strongly suggest that the differences in the dynamics of the two lakes are due to different density profiles affected by dissolved solutes, mainly Fe, which is strongly enriched in the deep water of the meromictic lake. A conceptual model of water balance was constructed based on the correlation between the chemical composition of the water and the hydrogen isotopic signature. Gas-rich groundwaters that feed both of the lakes and evaporation processes subsequently modify the water chemistry of the lakes. Our data highlight that no further potential hazardous accumulation of lethal gases is expected at the Monticchio lakes. Nevertheless, geochemical monitoring is needed to prevent the possibility of vigorous gas releases that have previously occurred in historical time.
    Description: Published
    Description: 1411–1434
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: geochemistry ; noble gases ; maar lake ; lake dynamics ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: Piton de la Fournaise (PdF) is recognised as one of the world’s most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced. Yet, with the sole exception of rather modest intracrateric fumarole activity, this seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence. Measurement campaigns were undertaken during a long-lasting quiescent period (2012-2014) and just after a short lived summit eruption (June 2014) in order to identify potential degassing areas in relation to the main structural features of the volcano (ex. rift zones) with the aim of developing a broader understanding of the geometry of the plumbing and degassing system. In order to assess the possible existence of anomalous soil CO2 flux, 513 measurements were taken along transects roughly orthogonal to the known tectonic lineaments crossing PdF edifice. In addition, 53 samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO2 concentration in the soil. CO2 flux values range from 10 to 1300 g m-2 d-1 while 13C are between -26.6 to -8‰. The results of our investigation clearly indicate that there is a strong spatial correlation between the anomalous high values of diffusive soil emissions and the main rift zones cutting the PdF massif and, moreover, that generally high soil CO2 fluxes show a d13C signature clearly related to a magmatic origin.
    Description: INSU (CNRS) and La Réunion Préfecture (Projet pour la quantification de l’aléa volcanique à La Réunion)
    Description: Published
    Description: 4388–4404
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 soil degassing anomalies at Piton de la Fournaise ; d13C magmatic signature ; Close link between anomalous CO2 degassing and the main seismotectonic structures ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: This paper focuses on the chemical composition changes in soil gases through both a theoretical model and laboratory experiments. The model describes the one-dimensional mass transfer process, which is triggered by changes in the flux parameters of the system, and the time-dependent evolution of the composition of the soil gases as a function of i) the pristine gas mixture, ii) the diffusivity of the chemicals, and iii) the thickness of the transited medium. Carbon dioxide (CO2), hydrogen (H2), and helium (He) were used in a laboratory-scale flux simulator to investigate the evolution of the gas composition profile in an artificial soil of constant thickness. The agreement between the theoretical calculations and the experimental results supports the validity of the model. Our results indicate a good reproducibility of the transient changes in the concentrations of CO2, He, and H2 in CO2-rich gas mixtures that contain He and H2 as trace gases. Finally, the theoretical results were used to analyze the H2 and CO2 continuous monitoring data collected at Etna volcano in 2010
    Description: Published
    Description: 1565–1583
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: open
    Keywords: Soil gases ; Volcanic gas composition ; Hydrogen ; Carbon dioxide ; CO2 ; Helium ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C04008, doi:10.1029/2001JC001248.
    Description: Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology and the patterns for each year in the past 2 decades. The frequency of storms is also shown to be correlated (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.
    Description: This study has been supported by the NASA Cryospheric Science Program and the International Arctic Reseach Center. We benefited from discussion with Dr. A. Proshutinsky. D. Walsh wishes to thank the Frontier Research System for Global Change for their support. The IOEB program was supported by ONR High-Latitude Dynamics Program and Japan Marine Science and Technology Center (JAMSTEC).
    Keywords: Arctic Ocean ; Mixing ; Storm ; Upper ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D03, doi:10.1029/2011JC006975.
    Description: Data collected by an autonomous ice-based observatory that drifted into the Eurasian Basin between April and November 2010 indicate that the upper ocean was appreciably fresher than in 2007 and 2008. Sea ice and snowmelt over the course of the 2010 drift amounted to an input of less than 0.5 m of liquid freshwater to the ocean (comparable to the freshening by melting estimated for those previous years), while the observed change in upper-ocean salinity over the melt period implies a freshwater gain of about 0.7 m. Results of a wind-driven ocean model corroborate the observations of freshening and suggest that unusually fresh surface waters observed in parts of the Eurasian Basin in 2010 may have been due to the spreading of anomalously fresh water previously residing in the Beaufort Gyre. This flux is likely associated with a 2009 shift in the large-scale atmospheric circulation to a significant reduction in strength of the anticyclonic Beaufort Gyre and the Transpolar Drift Stream.
    Description: This work was funded by the National Science Foundation Office of Polar Programs Arctic Sciences Section under awards ARC‐0519899, ARC‐0856479, and ARC‐ 0806306.
    Keywords: Arctic Ocean ; Circulation ; Fresh water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03002, doi:10.1029/2003JC001962.
    Description: Pathways of Pacific Water flowing from the North Pacific Ocean through Bering Strait and across the Chukchi Sea are investigated using a two-dimensional barotropic model. In the no-wind case, the flow is driven only by a prescribed steady northward flow of 0.8 Sv through Bering Strait. The resulting steady state circulation consists of a broad northeasterly flow, basically following the topography, with a few areas of intensified currents. About half of the inflow travels northwest through Hope Valley, while the other half turns somewhat toward the northeast along the Alaskan coast. The flow through Hope Valley is intensified as it passes through Herald Canyon, but much of this flow escapes the canyon to move eastward, joining the flow in the broad valley between Herald and Hanna Shoals, another area of slightly intensified currents. There is a confluence of nearly all of the flow along the Alaskan coast west of Pt. Barrow to create a very strong and narrow coastal jet that follows the shelf topography eastward onto the Beaufort shelf. Thus in this no-wind case, nearly all of the Pacific Water entering the Chukchi Sea eventually ends up flowing eastward along the narrow Beaufort shelf, with no discernable flow across the shelf edge toward the interior Canada Basin. Travel times for water parcels to move from Bering Strait to Pt. Barrow vary tremendously according to the path taken; e.g., less than 6 months along the Alaskan coast, but about 30 months along the westernmost path through Herald Canyon. This flow field is relatively insensitive to idealized wind-forcing when the winds are from the south, west or north, in which cases the shelf transports tend to be intensified. However, strong northeasterly to easterly winds are able to completely reverse the flows along the Beaufort shelf and the Alaskan coast, and force most of the throughflow in a more northerly direction across the Chukchi Sea shelf edge, potentially supplying the surface waters of the interior Canada Basin with Pacific Water. The entire shelf circulation reacts promptly to changing wind conditions, with a response time of ~2–3 days. The intense coastal jet between Icy Cape and Pt. Barrow implies that dense water formed here from winter coastal polynyas may be quickly swept away along the coast. In contrast, there is a relatively quiet nearshore region to the west, between Cape Lisburne and Icy Cape, where dense water may accumulate much longer and continue to become denser before it is carried across the shelf.
    Description: Financial support was provided to PW by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), and the J. Seward Johnson Fund. Funding for DCC came through a grant from the Coastal Ocean Institute at WHOI.
    Keywords: Arctic Ocean ; Pacific Water ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S01, doi:10.1029/2006JC004017.
    Description: This research is supported by the National Science Foundation Office of Polar Programs under cooperative agreements (OPP-0002239 and OPP-0327664) with the International Arctic Research Center, University of Alaska Fairbanks.
    Keywords: Modeling ; Arctic Ocean ; Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D04, doi:10.1029/2010JC006688.
    Description: A sea ice model was developed by converting the Community Ice Code (CICE) into an unstructured-grid, finite-volume version (named UG-CICE). The governing equations were discretized with flux forms over control volumes in the computational domain configured with nonoverlapped triangular meshes in the horizontal and solved using a second-order accurate finite-volume solver. Implementing UG-CICE into the Arctic Ocean finite-volume community ocean model provides a new unstructured-grid, MPI-parallelized model system to resolve the ice-ocean interaction dynamics that frequently occur over complex irregular coastal geometries and steep bottom slopes. UG-CICE was first validated for three benchmark test problems to ensure its capability of repeating the ice dynamics features found in CICE and then for sea ice simulation in the Arctic Ocean under climatologic forcing conditions. The model-data comparison results demonstrate that UG-CICE is robust enough to simulate the seasonal variability of the sea ice concentration, ice coverage, and ice drifting in the Arctic Ocean and adjacent coastal regions.
    Description: This work was supported by the NSF Arctic Program for projects with grant numbers of ARC0712903, ARC0732084, and ARC0804029. The Arctic Ocean Model Intercomparison Project (AOMIP) has provided an important guidance for model improvements and ocean studies under coordinated experiments activities. We would like to thank AOMIP PI Proshutinsky for his valuable suggestions and comments on the ice dynamics. His contribution is supported by ARC0800400 and ARC0712848. The development of FVCOM was supported by the Massachusetts Marine Fisheries Institute NOAA grants DOC/NOAA/ NA04NMF4720332 and DOC/NOAA/NA05NMF4721131; the NSF Ocean Science Program for projects of OCE‐0234545, OCE‐0227679, OCE‐ 0606928, OCE‐0712903, OCE‐0726851, and OCE‐0814505; MIT Sea Grant funds (2006‐RC‐103 and 2010‐R/RC‐116); and NOAA NERACOOS Program for the UMASS team. G. Gao was also supported by the Chinese NSF Arctic Ocean grant under contract 40476007. C. Chen’s contribution was also supported by Shanghai Ocean University International Cooperation Program (A‐2302‐10‐0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU).
    Keywords: Arctic Ocean ; Finite-volume ; Sea ice modeling ; Unstructured-grid
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7983-8003. doi:10.1029/2018JC014298.
    Description: A melt pond (MP) distribution equation has been developed and incorporated into the Marginal Ice‐Zone Modeling and Assimilation System to simulate Arctic MPs and sea ice over 1979–2016. The equation differs from previous MP models and yet benefits from previous studies for MP parameterizations as well as a range of observations for model calibration. Model results show higher magnitude of MP volume per unit ice area and area fraction in most of the Canada Basin and the East Siberian Sea and lower magnitude in the central Arctic. This is consistent with Moderate Resolution Imaging Spectroradiometer observations, evaluated with Measurements of Earth Data for Environmental Analysis (MEDEA) data, and closely related to top ice melt per unit ice area. The model simulates a decrease in the total Arctic sea ice volume and area, owing to a strong increase in bottom and lateral ice melt. The sea ice decline leads to a strong decrease in the total MP volume and area. However, the Arctic‐averaged MP volume per unit ice area and area fraction show weak, statistically insignificant downward trends, which is linked to the fact that MP water drainage per unit ice area is increasing. It is also linked to the fact that MP volume and area decrease relatively faster than ice area. This suggests that overall the actual MP conditions on ice have changed little in the past decades as the ice cover is retreating in response to Arctic warming, thus consistent with the Moderate Resolution Imaging Spectroradiometer observations that show no clear trend in MP area fraction over 2000–2011.
    Description: We gratefully acknowledge the support of the NASA Cryosphere Program (grants NNX15AG68G, NNX17AD27G, and NNX14AH61G), the Office of Naval Research (N00014‐12‐1‐0112), the NSF Office of Polar Programs (PLR‐1416920, PLR‐1603259, PLR‐1602521, and ARC‐1203425), and the Department of Homeland Security (DHS, 2014‐ST‐061‐ML‐0002). The DHS grant is coordinated through the Arctic Domain Awareness Center (ADAC), a DHS Center of Excellence, which conducts maritime research and development for the Arctic region. The views and conclusions in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the DHS. MODIS‐derived MP area data are available at https://icdc.cen.uni‐hamburg.de/1/daten/cryosphere/arctic‐meltponds.html. MP area fraction statistics derived from MEDEA images are available from http://psc.apl.uw.edu/melt‐pond‐data/. Sea ice thickness and snow observations are available at http://psc.apl.washington.edu/sea_ice_cdr. CFS forcing data used to drive MIZMAS are available at https://www.ncdc.noaa.gov/data‐access/model‐data/model‐datasets/climate‐forecast‐system‐version2‐cfsv2.
    Description: 2019-04-18
    Keywords: Arctic Ocean ; sea ice ; melt ponds ; numerical modeling ; climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: In seismically active areas, tectonic stress deforms and breaks the rocks of the crust. Ongoing deformation produces detectable modifications in the shallower portions of the crust, resulting in a wide variety of changes in several parameters. In this paper, we report the results of a large-scale spatial (across an area of 15,000 km2) and temporal (up to 3 years) investigation of the relationship between active crustal stress and soil CO2 flux. We deployed a network of 10 automatic stations in most of the seismically active districts of southern Italy to monitor the soil CO2 fluxes, and we used seismicity data to track crustal stress. The results of the investigation show that the CO2 flux signals varied independently in the districts with low and sporadic seismicity. Conversely, in the only district with nearly continuous seismic activity, almost all of the CO2 flux signals were well correlated with each other, and we recorded a clear synchronous sharp increase of the seismicity and signals recorded by several stations. The high spatial and temporal correlation between seismicity and gas discharge evidenced in this study prove that the crustal stress associated with the seismogenic process is able to effectively modulate the gas release in a seismically active area.
    Description: Published
    Description: 7071–7085
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; Crustal stress ; seismotectonic process ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-02-28
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(8), (2022): e2022GB007320, https://doi.org/10.1029/2022GB007320.
    Description: Biogeochemical cycles in the Arctic Ocean are sensitive to the transport of materials from continental shelves into central basins by sea ice. However, it is difficult to assess the net effect of this supply mechanism due to the spatial heterogeneity of sea ice content. Manganese (Mn) is a micronutrient and tracer which integrates source fluctuations in space and time while retaining seasonal variability. The Arctic Ocean surface Mn maximum is attributed to freshwater, but studies struggle to distinguish sea ice and river contributions. Informed by observations from 2009 IPY and 2015 Canadian GEOTRACES cruises, we developed a three-dimensional dissolved Mn model within a 1/12° coupled ocean-ice model centered on the Canada Basin and the Canadian Arctic Archipelago (CAA). Simulations from 2002 to 2019 indicate that annually, 87%–93% of Mn contributed to the Canada Basin upper ocean is released by sea ice, while rivers, although locally significant, contribute only 2.2%–8.5%. Downstream, sea ice provides 34% of Mn transported from Parry Channel into Baffin Bay. While rivers are often considered the main source of Mn, our findings suggest that in the Canada Basin they are less important than sea ice. However, within the shelf-dominated CAA, both rivers and sediment resuspension are important. Climate-induced disruption of the transpolar drift may reduce the Canada Basin Mn maximum and supply downstream. Other micronutrients found in sediments, such as Fe, may be similarly affected. These results highlight the vulnerability of the biogeochemical supply mechanisms in the Arctic Ocean and the subpolar seas to climatic changes.
    Description: This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Climate Change and Atmospheric Research Grant: GEOTRACES (RGPCC 433848-12) and VITALS (RGPCC 433898), an NSERC Discovery Grant (RGPIN-2016-03865) to SEA, and by the University of British Columbia through a four year fellowship to BR. Computing resources were provided by Compute Canada (RRG 2648 RAC 2019, RRG 2969 RAC 2020, and RRG 1541 RAC 2021).
    Keywords: GEOTRACES ; Arctic Ocean ; Trace elements ; Canadian Arctic Archipelago ; Ocean modeling ; Micronutrients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bullock, E., Kipp, L., Moore, W., Brown, K., Mann, P., Vonk, J., Zimov, N., & Charette, M. Radium inputs into the Arctic Ocean from rivers a basin‐wide estimate. Journal of Geophysical Research: Oceans, 127(9), (2022): e2022JC018964, https://doi.org/10.1029/2022jc018964.
    Description: Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are [7.0–9.4] × 1014 dpm y−1 and [15–18] × 1014 dpm y−1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of [7.4–17] × 1015 and [15–27] × 1015 dpm y−1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone.
    Description: This study was a broad, collaborative effort that would not have been possible without contributions from numerous funding sources, including the National Science Foundation (NSF-0751525, NSF-1736277, NSF-1458305, NSF-1938873, NSF-2048067, NSF-2134865), the NERC-BMBF project CACOON [NE/R012806/1] (UKRI NERC) and BMBF-03F0806A, and an EU Starting Grant (THAWSOME-676982).
    Keywords: Radium isotopes ; Arctic Ocean ; River fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M. D., Lai, C., Timmermans, M., Krishfield, R. A., Proshutinsky, A., & Torres, D. Inorganic carbon and pCO(2) variability during ice formation in the Beaufort Gyre of the Canada Basin. Journal of Geophysical Research-Oceans, 124(6), (2019): 4017-4028, doi:10.1029/2019JC015109.
    Description: Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC and AT to deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 year pCO2 mooring time series where a ~35‐μatm increase in pCO2 was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resulting pCO2 is sensitive to the ratio of AT and DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derived AT and DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing the pCO2 at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC and pCO2 in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover.
    Description: Research Associate Cory Beatty (University of Montana) prepared the CO2 instruments and helped with the mooring deployments and data processing. Pierce Fix (undergraduate intern, University of Montana) helped with the mass balance modeling. The moorings were designed and deployed by personnel at Woods Hole Oceanographic Institution. Michiyo Yamamoto‐Kawai (University of Tokyo) and Marty Davelaar (Institute of Ocean Sciences; IOS) provided the alkalinity and dissolved inorganic carbon data. We thank the captain, officers, crew, and chief scientists (Bill Williams and Sarah Zimmerman, IOS) of the CCGS Louis S. St. Laurent. The data used in this study are available through the U.S. National Science Foundation (NSF) Arctic Data Center (https://arcticdata.io). This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and PLR‐1723308).
    Keywords: Sea ice ; Dissolved inorganic carbon ; Carbon cycle ; Solute exclusion ; Partial pressure of CO2 ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M-L., Williams, W. J., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S-H., Cho, K-H., Tateyama, K., & Zhao, J. Analysis of the Beaufort Gyre freshwater content in 2003-2018. Journal of Geophysical Research-Oceans, 124(12), (2019): 9658-9689, doi:10.1029/2019JC015281.
    Description: Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle interannual variations.
    Description: National Science Foundation. Grant Numbers: PLR‐1302884,OPP‐1719280, and OPP‐1845877, PLR‐1303644 and OPP‐1756100, OPP‐1756100, PLR‐1303644, OPP‐1845877, OPP‐1719280, PLR‐1302884 Key Program of National Natural Science Foundation of China. Grant Number: 41330960 Global Change Research Program of China. Grant Number: 2015CB953900 Ministry of Education, Korea Japan Aerospace Exploration Agency (JAXA) /Earth Observation Research Center (EORC) Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Stanback Postdoctoral Fellowship Russian Foundation for Basic Research. Grant Number: 17‐05‐00382 Presidium of Russian Academy of Sciences HYCOM NOPP. Grant Number: N00014‐15‐1‐2594 DOE. Grant Number: DE‐SC0014378 National Aeronautics and Space Administration Tokyo University of Marine Science and Technology Department of Fisheries and Oceans Canada Woods Hole Oceanographic Institution
    Keywords: Beaufort Gyre ; Arctic Ocean ; Freshwater balance ; Circulation ; Modeling ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4618-4630, doi: 10.1029/2019JC014940.
    Description: The Arctic Ocean mixed layer interacts with the ice cover above and warmer, nutrient‐rich waters below. Ice‐Tethered Profiler observations in the Canada Basin of the Arctic Ocean over 2006–2017 are used to investigate changes in mixed layer properties. In contrast to decades of shoaling since at least the 1980s, the mixed layer deepened by 9 m from 2006–2012 to 2013–2017. Deepening resulted from an increase in mixed layer salinity that also weakened stratification at the base of the mixed layer. Vertical mixing alone can explain less than half of the observed change in mixed layer salinity, and so the observed increase in salinity is inferred to result from changes in freshwater accumulation via changes to ice‐ocean circulation or ice melt/growth and river runoff. Even though salinity increased, the shallowest density surfaces deepened by 5 m on average suggesting that Ekman pumping over this time period remained downward. A deeper mixed layer with weaker stratification has implications for the accessibility of heat and nutrients stored in the upper halocline. The extent to which the mixed layer will continue to deepen appears to depend primarily on the complex set of processes influencing freshwater accumulation.
    Description: We gratefully acknowledge J. Toole for helpful conversations. S. Cole was supported by the National Science Foundation under grant PLR‐1602926 and J. Stadler by the Woods Hole Oceanographic Institution Summer Student Fellowship program. Profile data are available via the Ice‐Tethered Profiler program website: http://whoi.edu/itp. SSM/I ice concentration data were downloaded from the National Snow and Ice Data Center.
    Description: 2019-12-22
    Keywords: Arctic Ocean ; Mixed layer ; Freshwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M., Evans, W., Timmermans, M., Krishfield, R., Williams, B., & Steele, M. Changes in the arctic ocean carbon cycle with diminishing ice cover. Geophysical Research Letters, 47(12), (2020): e2020GL088051, doi:10.1029/2020GL088051.
    Description: Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface pCO2 at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface pCO2 measurements collected over a 6‐year period along a fixed cruise track in the Canada Basin. The measurements show that mean pCO2 levels are significantly higher during low ice years. The pCO2 increase is likely driven by ocean surface heating and uptake of atmospheric CO2 with large interannual variability in the contributions of these processes. These findings suggest that increased ice‐free periods will further increase sea surface pCO2, reducing the Canada Basin's current role as a net sink of atmospheric CO2.
    Description: This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and OPP‐1723308). In addition, M. S. was supported by ONR (Grant 00014‐17‐1‐2545), NASA (Grant NNX16AK43G), and NSF (Grants PLR‐1503298 and OPP‐1751363).
    Keywords: Arctic Ocean ; Ice concentration ; Seawater CO2 ; Interannual variability ; Canada Basin ; Shipboard CO2 measurements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(5), (2019): 3279-3297, doi: 10.1029/2019JC014988.
    Description: Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and 〉30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.
    Description: We thank the captain and crew of the USCGC Healy (HLY1502) and the chief scientists D. Kadko and W. Landing for coordinating a safe and successful expedition. We thank the members of the pump team, P. Lam, E. Black, S. Pike, X. Yang, and M. Heller for their assistance with sample collection and for their unfailingly positive attitudes during this 65‐day expedition. We also appreciate sampling assistance from P. Aguilar and M. Stephens, and MATLAB assistance from B. Corlett, A. Pacini, P. Lin, and M. Li. The radium data from the HLY1502 expedition are available through the Biological & Chemical Oceanography Data Management Office (https://www.bco‐dmo.org/dataset/718440) and the radium measurements from the SHEBA, AWS‐2000, and SBI expeditions can be found in the supporting information. This work was funded by NSF awards OCE‐1458305 to M.A.C., OCE‐1458424 to W.S.M., and PLR‐1504333 to R.S.P. This research was conducted with Government support under and awarded by a DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship awarded to L.E.K., 32 CFR 168a.
    Description: 2019-10-26
    Keywords: Radium ; Arctic Ocean ; GEOTRACES ; Chukchi shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(7), (2021): e2021JC017407, https://doi.org/10.1029/2021JC017407.
    Description: The Arctic Ocean receives a large supply of dissolved organic matter (DOM) from its catchment and shelf sediments, which can be traced across much of the basin's upper waters. This signature can potentially be used as a tracer. On the shelf, the combination of river discharge and sea-ice formation, modifies water densities and mixing considerably. These waters are a source of the halocline layer that covers much of the Arctic Ocean, but also contain elevated levels of DOM. Here we demonstrate how this can be used as a supplementary tracer and contribute to evaluating ocean circulation in the Arctic. A fraction of the organic compounds that DOM consists of fluoresce and can be measured using in-situ fluorometers. When deployed on autonomous platforms these provide high temporal and spatial resolution measurements over long periods. The results of an analysis of data derived from several Ice Tethered Profilers (ITPs) offer a unique spatial coverage of the distribution of DOM in the surface 800 m below Arctic sea-ice. Water mass analysis using temperature, salinity and DOM fluorescence, can clearly distinguish between the contribution of Siberian terrestrial DOM and marine DOM from the Chukchi shelf to the waters of the halocline. The findings offer a new approach to trace the distribution of Pacific waters and its export from the Arctic Ocean. Our results indicate the potential to extend the approach to separate freshwater contributions from, sea-ice melt, riverine discharge and the Pacific Ocean.
    Description: Danish Strategic Research Council for the NAACOS project (grant no. 10-093903), the Danish Center for Marine Research (grant no. 2012-01). C. A. S. has received funding from the Independent Research Fund Denmark Grant No. 9040-00266B. Funding for R.M.W.A. came from the US NSF, Arctic Natural Science program grant 1504469. RG-A has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 839311. ITP93 and part of the work by MH and BR were a contribution to the Helmholtz society strategic investment Frontiers in Arctic Marine monitoring (FRAM). The work of BR is a contribution to the cooperative projects Regional Atlantic Circulation and global Change (RACE) grant #03F0824E funded by the German Ministry of Science and Education (BBMF) and Advective Pathways of nutrients and key Ecological substances in the Arctic (APEAR) grants NE/R012865/1, NE/R012865/2 and #03V01461, part of the Changing Arctic Ocean program, jointly funded by the UKRI Natural Environment Research Council (NERC) and the BMBF. Support for Krishfield was made possible by grants from the NSF Arctic Observing Network program (PLR-1303644 and OPP-1756100).
    Description: 2021-12-27
    Keywords: Arctic Ocean ; CDOM ; DOM ; FDOM ; Fluorescence ; Halocline
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4006, doi:10.1029/2008GB003396.
    Description: The spatial distribution and fate of riverine dissolved organic carbon (DOC) in the Arctic may be significant for the regional carbon cycle but are difficult to fully characterize using the sparse observations alone. Numerical models of the circulation and biogeochemical cycles of the region can help to interpret and extrapolate the data and may ultimately be applied in global change sensitivity studies. Here we develop and explore a regional, three-dimensional model of the Arctic Ocean in which, for the first time, we explicitly represent the sources of riverine DOC with seasonal discharge based on climatological field estimates. Through a suite of numerical experiments, we explore the distribution of DOC-like tracers with realistic riverine sources and a simple linear decay to represent remineralization through microbial degradation. The model reproduces the slope of the DOC-salinity relationship observed in the eastern and western Arctic basins when the DOC tracer lifetime is about 10 years, consistent with published inferences from field data. The new empirical parameterization of riverine DOC and the regional circulation and biogeochemical model provide new tools for application in both regional and global change studies.
    Description: I.M.M. and M.J.F. are grateful to National Science Foundation for financial support.
    Keywords: Arctic Ocean ; Ocean circulation ; Biogeochemical processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L24602, doi:10.1029/2011GL049714.
    Description: We reconstructed subsurface (∼200–400 m) ocean temperature and sea-ice cover in the Canada Basin, western Arctic Ocean from foraminiferal δ18O, ostracode Mg/Ca ratios, and dinocyst assemblages from two sediment core records covering the last 8000 years. Results show mean temperature varied from −1 to 0.5°C and −0.5 to 1.5°C at 203 and 369 m water depths, respectively. Centennial-scale warm periods in subsurface temperature records correspond to reductions in summer sea-ice cover inferred from dinocyst assemblages around 6.5 ka, 3.5 ka, 1.8 ka and during the 15th century Common Era. These changes may reflect centennial changes in the temperature and/or strength of inflowing Atlantic Layer water originating in the eastern Arctic Ocean. By comparison, the 0.5 to 0.7°C warm temperature anomaly identified in oceanographic records from the Atlantic Layer of the Canada Basin exceeded reconstructed Atlantic Layer temperatures for the last 1200 years by about 0.5°C.
    Description: J.R.F., T.M.C., and R.C.T. thank support by USGS Global Change Program, G.S.D. thanks support from the USGS Global Change Program and the NSF Office of Polar Programs, A.d.V. thanks support by Fond québécois de la recherché sur la nature et les technologies (FQRNT) and the Ministere du Développement économique, innovation et exportation (MDEIE) of Quebec.
    Description: 2012-06-17
    Keywords: Arctic Ocean ; Atlantic Layer ; Temperature ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC015920.
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Description: Funding for Arctic GEOTRACES was provided by the U.S. National Science Foundation, Swedish Research Council Formas, French Agence Nationale de la Recherche and LabexMER, Netherlands Organization for Scientific Research, and Independent Research Fund Denmark. Data from GEOTRACES cruises GN01 (HLY1502) and GN04 (PS94) have been archived at the Biological and Chemical Oceanography Data Management Office (Biological and Chemical Oceanography Data Management Office (BCO‐DMO); https://www.bco-dmo.org/deployment/638807) and PANGAEA (https://www.pangaea.de/?q=PS94&f.campaign%5B%5D=PS94) websites, respectively. The inorganic carbon data are available at the NOAA Ocean Carbon Data System (OCADS; doi:10.3334/CDIAC/OTG.CLIVAR_ARC01_33HQ20150809).
    Description: 2020-10-08
    Keywords: Arctic Ocean ; Transpolar Drift ; trace elements ; carbon ; nutrients ; GEOTRACES]
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1679-1698, doi:10.1029/2018JC014759.
    Description: The characteristics and seasonality of the Svalbard branch of the Atlantic Water (AW) boundary current in the Eurasian Basin are investigated using data from a six‐mooring array deployed near 30°E between September 2012 and September 2013. The instrument coverage extended to 1,200‐m depth and approximately 50 km offshore of the shelf break, which laterally bracketed the flow. Averaged over the year, the transport of the current over this depth range was 3.96 ± 0.32 Sv (1 Sv = 106 m3/s). The transport within the AW layer was 2.08 ± 0.24 Sv. The current was typically subsurface intensified, and its dominant variability was associated with pulsing rather than meandering. From late summer to early winter the AW was warmest and saltiest, and its eastward transport was strongest (2.44 ± 0.12 Sv), while from midspring to midsummer the AW was coldest and freshest and its transport was weakest (1.10 ± 0.06 Sv). Deep mixed layers developed through the winter, extending to 400‐ to 500‐m depth in early spring until the pack ice encroached the area from the north shutting off the air‐sea buoyancy forcing. This vertical mixing modified a significant portion of the AW layer, suggesting that, as the ice cover continues to decrease in the southern Eurasian Basin, the AW will be more extensively transformed via local ventilation.
    Description: We are grateful to the crew of the R/V Lance for the collection of the data. The U.S. component of A‐TWAIN was funded by the National Science Foundation under grant ARC‐1264098 as well as a grant from the Steven Grossman Family Foundation. The Norwegian component of A‐TWAIN was funded by the “Arctic Ocean” flagship program at the Fram Centre. The data used in this study are available at http://atwain.whoi.edu and data.npolar.no (Sundfjord et al., 2017). The data from Fram Strait are available at https://doi.pangaea.de/10.1594/PANGAEA.853902
    Description: 2019-08-15
    Keywords: Atlantic Water ; Svalbard branch ; A‐TWAIN ; seasonality ; Arctic Ocean ; Fram Strait branch
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.
    Description: The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (〈−1.2°C), salty (〉32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 〉 550 μatm) and undersaturated in aragonite (Ωaragonite 〈 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.
    Description: Funding for this work was provided by the National Science Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694- LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021- RHB) and the West Coast & Polar Regions Undersea Research Center (POFP00983 – CLM and JM).
    Description: 2012-10-11
    Keywords: Arctic Ocean ; CO2 fluxes ; Ocean acidification ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: image/tiff
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(8), (2019): 7562-7587, doi: 10.1029/2019JB017587.
    Description: From 1963 to 1973 the U.S. Geological Survey measured heat flow at 356 sites in the Amerasian Basin (Western Arctic Ocean) from a drifting ice island (T‐3). The resulting measurements, which are unevenly distributed on Alpha‐Mendeleev Ridge and in Canada and Nautilus Basins, greatly expand available heat flow data for the Arctic Ocean. Average T‐3 heat flow is ~54.7 ± 11.3 mW/m2, and Nautilus Basin is the only well‐surveyed area (~13% of data) with significantly higher average heat flow (63.8 mW/m2). Heat flow and bathymetry are not correlated at a large scale, and turbiditic surficial sediments (Canada and Nautilus Basins) have higher heat flow than the sediments that blanket the Alpha‐Mendeleev Ridge. Thermal gradients are mostly near‐linear, implying that conductive heat transport dominates and that near‐seafloor sediments are in thermal equilibrium with overlying bottom waters. Combining the heat flow data with modern seismic imagery suggests that some of the observed heat flow variability may be explained by local changes in lithology or the presence of basement faults that channel circulating seawater. A numerical model that incorporates thermal conductivity variations along a profile from Canada Basin (thick sediment on mostly oceanic crust) to Alpha Ridge (thin sediment over thick magmatic units associated with the High Arctic Large Igneous Province) predicts heat flow slightly lower than that observed on Alpha Ridge. This, along with other observations, implies that circulating fluids modulate conductive heat flow and contribute to high variability in the T‐3 data set.
    Description: B.V. Marshall of the U.S. Geological Survey (USGS) was critical to the T‐3 heat flow studies and would have been included as a coauthor on this work if he were not deceased. The original T‐3 heat flow data acquisition program was supported by the USGS and by the Naval Arctic Research Laboratory of the Office of Naval Research. Over the decade of USGS research on T‐3 Ice Island, numerous researchers and technical staff, including B.V. Marshall, P. Twichell, D. Scoboria, J. Tailleur, B. Tailleur, and others, spent months on the island and endured difficult and sometimes dangerous conditions to acquire this data set alongside colleagues from other institutions. Outstanding support from the USGS Menlo Park office, transportation and logistics assistance from other U.S. federal government agencies, Arctic expertise supplied by native Alaskan communities, and collaboration with Lamont researchers made this research program possible. B. Lachenbruch and L. Lawver revived interest in this data set in 2016, and they, along with D. Darby and J. K. Hall, provided ancillary information on T‐3 studies. B. Clarke and M. Arsenault assisted with initial data digitization. We thank M. Jakobsson, R. Saltus, and G. Oakey for providing critical shapefiles and other data and R. Jackson and S. Mukasa for clarification on unpublished information. Reviews by J. Hopper, P. Hart, and W. Jokat improved the manuscript, and V. Atnipp Cross and A. Babb were instrumental in completion of data releases. The USGS's Coastal/Marine Hazards and Resources Program supported C.R. and D.H. between 2016 and 2019, and C.R. used office space provided by the Earth Resources Laboratory at the Massachusetts Institute of Technology during completion of this work. Data in Figure 11 were provided by the U.S. Extended Continental Shelf (ECS) Project. The opinions, findings, and conclusions stated herein are those of the authors and the U.S. Geological Survey, but do not necessarily reflect those of the U.S. ECS Project. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government. Digital data, metadata, and supporting plots for T‐3 heat flow, navigation, and radiogenic heat content, along with Lamont gravity and magnetics data, are available from Ruppel et al. (2019), and the original T‐3 expedition report with explanatory metadata can be downloaded from Lachenbruch et al. (2019).
    Keywords: Arctic Ocean ; heat flow ; thermal history ; ice island
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-05-09
    Description: Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d−1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d−1, CO2 ~ 638 t d−1, HCl ~ 66 t d−1, H2 ~ 3.3 t d−1, and HBr ~ 0.05 t d−1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahue's unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d−1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.
    Description: Published
    Description: 6071–6084
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: water/rock interaction ; volcanic lakes ; volcanic/hydrothermal gases ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...