ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-01-30
    Keywords: Ammonia; black carbon; Black carbon, dissolved; Cadmium; Carbon, organic, dissolved; Chlorophyll a; Cobalt; Copper; Date/Time of event; DEPTH, water; Event label; Iron; Latitude of event; Lead; Longitude of event; Manganese; Nickel; Nitrate and Nitrite; Phosphate; Replicates; Salinity; Santa Barbara Basin; Santa Barbara Basin, California, United States of America; SBB_SW-1; SBB_SW-2; SBB_SW-3; SBB_SW-4; SBB_SW-5; SBB_SW-6; SBB_SW-7; SBB_SW-8; Silicate; SW-1; SW-2; SW-3; SW-4; SW-5; SW-6; SW-7; SW-8; Temperature, water; Thomas Fire; trace metals; Ventura River; wildfire; Zinc; δ13C, chlorophyll a; δ13C, chlorophyll a, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 164 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-30
    Keywords: black carbon; Black carbon, dissolved; Cadmium; Calculated; Carbon, organic, dissolved; Cobalt; Comment; Copper; Date/Time of event; Discharge; Event label; Height; Iron; Latitude of event; Lead; Longitude of event; Manganese; Nickel; Santa Barbara Basin; Thomas Fire; Time in hours; trace metals; Ventura River; Ventura River, California, United States of America; VR-1; VR-10; VR-11; VR-12; VR-13; VR-2; VR-3; VR-4; VR-5; VR-6; VR-7; VR-8; VR-9; wildfire; Zinc
    Type: Dataset
    Format: text/tab-separated-values, 287 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-11
    Description: Aerosol, seawater, and floodwater samples were taken during the 2017 California Thomas Fire and subsequent flash flood event. These samples were used to examine how fire-flood sequences affect metal and black carbon delivery to coastal waters, such as the Santa Barbara Basin (SBB). On day 11 of the Thomas Fire, aerosols sampled at sea level under a smoke plume over the SBB found high levels of PM2.5, levoglucosan, and black carbon (average: 49 μg/m^3, 1.05 μg/m^3, 14.93 μg/m^3, respectively) and both soluble and total aerosol metal concentrations were consistent with a forest fire signature. Metal, nutrient, and chlorophyll a concentrations in surface seawater (average: 2.42 nM Fe, 0.14 µM phosphate, and 0.44 µgChla/L) were similar to concentrations during non-fire conditions, thus we could not establish fire-related increases in the SBB surface waters. On days 37 to 40 of the fire, before, during, and after a flash flood in the Ventura River, dissolved organic carbon, dissolved black carbon, and dissolved metal concentrations were positively correlated with discharge. Our findings confirm that black carbon and metals were released by the Thomas Fire and transported by both atmospheric and fluvial pathways.
    Keywords: black carbon; Santa Barbara Basin; Thomas Fire; trace metals; Ventura River; wildfire
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-11
    Keywords: black carbon; Black carbon, aerosol; Cadmium; Cadmium, soluble; Cobalt; Cobalt, soluble; Copper; Copper, soluble; Date/time end; Date/time start; Iron; Iron, soluble; Lead; Lead, soluble; Levoglucosan; Manganese; Manganese, soluble; Manganese, total; Nickel; Nickel, soluble; Particulate matter, 〈 2.5 µm; Sample ID; Sample volume; Santa_Barbara_Basin_Aerosols; Santa Barbara Basin; Size fraction; Thomas Fire; trace metals; Ventura River; wildfire; Zinc; Zinc, soluble
    Type: Dataset
    Format: text/tab-separated-values, 383 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the total dissolvable (i.e. acidified unfiltered whole seawater) Fe, Zn, Mn, Ni, Cd, Co, Cu, and Pb concentrations for 242 surface seawater samples. Trace metal analyses were performed with the goals of characterizing the surface seawater trace metal distribution across the open ocean and coastal regions in both the Atlantic and Pacific, and exploring metal-dependent ecosystem structure and metabolism. Some of the findings include high concentrations of iron (Fe) and manganese (Mn) in several regions, such as the North Atlantic Ocean and near the South Pacific islands, possibly due to Saharan dust and hydrothermal vent input, respectively. Elevated lead (Pb) was found in the North Pacific near southeast Asia, where anthropogenic sources may contribute. We also observe interbasin differences in concentrations for most of the metals, such as cobalt (Co), which is relatively high in the North Atlantic in comparison to the Pacific, perhaps due to dust deposition or continental weathering. There are also intrabasin differences in metal concentrations between oligotrophic and upwelling regions, exemplified by the higher cadmium (Cd) concentrations near the Peruvian coast, likely due to upwelling. Overall we captured high-resolution trace metal data that depicts the nuances in the metal distribution of the global ocean.
    Keywords: Bottle, multi level trace metal; Cadmium, dissolved; Cobalt, dissolved; Comment; Copper, dissolved; Depth, bottom/max; Depth, top/min; DEPTH, water; Environmental feature; Event label; Fondation Tara Expeditions; FondTara; HANDHELD-BOW-POLE; INLINE-PUMP; Iron, dissolved; Lead, dissolved; Manganese, dissolved; MLTM; Nickel, dissolved; OA000-I00-S00; OA000-I10-S01; OA000-I10-S02; OA000-I14-S00; OA000-I18-S03; OA000-I21-S01; OA000-I21-S02; OA000-I31-S00; OA001-I00-S00; OA002-I00-S00; OA003-I00-S00; OA004-I00-S00; OA005-I00-S00; OA006-I00-S00; OA009-I00-S00; OA010-I00-S00; OA011-I00-S00; OA012-I00-S00; OA013-I00-S00; OA014-I00-S00; OA015-I00-S00; OA016-I00-S00; OA017-I00-S00; OA018-I00-S00; OA019-I00-S00; OA020-I00-S00; OA021-I00-S00; OA022-I00-S00; OA023-I00-S00; OA024-I00-S00; OA025-I00-S00; OA026-I00-S00; OA027-I00-S00; OA028-I00-S00; OA029-I03-S00; OA030-I03-S00; OA031-I00-S00; OA032-I00-S00; OA033-I00-S00; OA039-I00-S00; OA040-I00-S00; OA041-I04-S00; OA042-I04-S00; OA043-I04-S00; OA044-I04-S00; OA045-I00-S00; OA046-I00-S00; OA047-I00-S00; OA048-I05-S00; OA049-I05-S00; OA050-I05-S00; OA051-I00-S00; OA052-I00-S00; OA053-I06-S00; OA054-I06-S00; OA055-I06-S00; OA056-I00-S00; OA057-I00-S00; OA058-I00-S00; OA061-I07-S00; OA062-I00-S00; OA063-I08-S00; OA064-I08-S00; OA065-I00-S00; OA066-I09-S00; OA067-I09-S00; OA068-I10-S00; OA069-I10-S00; OA070-I10-S00; OA071-I10-S00; OA072-I11-S00; OA073-I11-S00; OA074-I11-S00; OA075-I12-S00; OA076-I12-S00; OA077-I12-S00; OA078-I00-S00; OA079-I00-S00; OA080-I13-S00; OA081-I13-S00; OA082-I13-S00; OA083-I13-S00; OA084-I00-S00; OA085-I00-S00; OA086-I00-S00; OA087-I00-S00; OA088-I00-S00; OA089-I14-S00; OA090-I14-S00; OA091-I14-S00; OA092-I15-S00; OA093-I15-S00; OA094-I00-S00; OA095-I16-S00; OA096-I00-S00; OA097-I00-S00; OA098-I00-S00; OA099-I00-S00; OA100-I00-S00; OA101-I00-S00; OA102-I00-S00; OA103-I00-S00; OA104-I00-S00; OA105-I00-S00; OA106-I00-S00; OA107-I00-S00; OA108-I00-S00; OA109-I00-S00; OA110-I00-S00; OA111-I00-S00; OA112-I00-S00; OA113-I00-S00; OA114-I00-S00; OA115-I00-S00; OA116-I00-S00; OA117-I00-S00; OA118-I00-S00; OA119-I00-S00; OA120-I00-S00; OA121-I00-S00; OA122-I00-S00; OA123-I00-S00; OA124-I00-S00; OA125-I00-S00; OA126-I00-S00; OA127-I18-S00; OA128-I18-S00; OA129-I18-S00; OA130-I18-S00; OA131-I00-S00; OA132-I00-S00; OA133-I00-S00; OA134-I00-S00; OA135-I00-S00; OA136-I00-S00; OA137-I00-S00; OA139-I00-S00; OA140-I19-S00; OA141-I19-S00; OA142-I19-S00; OA143-I19-S00; OA144-I00-S00; OA145-I20-S00; OA146-I20-S00; OA147-I00-S00; OA148-I21-S00; OA149-I21-S00; OA150-I00-S00; OA151-I00-S00; OA152-I00-S00; OA153-I00-S00; OA154-I00-S00; OA155-I22-S00; OA156-I23-S00; OA157-I23-S00; OA158-I23-S00; OA159-I23-S00; OA160-I24-S00; OA161-I24-S00; OA162-I24-S00; OA163-I00-S00; OA164-I00-S00; OA165-I00-S00; OA166-I25-S00; OA167-I26-S00; OA168-I26-S00; OA169-I00-S00; OA170-I27-S00; OA171-I27-S00; OA172-I28-S00; OA173-I00-S00; OA174-I00-S00; OA175-I00-S00; OA176-I00-S00; OA177-I00-S00; OA178-I00-S00; OA179-I00-S00; OA180-I00-S00; OA181-I00-S00; OA182-I00-S00; OA184-I00-S00; OA185-I00-S00; OA186-I00-S00; OA187-I00-S00; OA188-I00-S00; OA189-I00-S00; OA190-I29-S00; OA191-I29-S00; OA192-I00-S00; OA193-I00-S00; OA194-I00-S00; OA195-I00-S00; OA196-I00-S00; OA197-I00-S00; OA198-I00-S00; OA199-I00-S00; OA200-I00-S00; OA201-I00-S00; OA202-I00-S00; OA203-I00-S00; OA204-I00-S00; OA205-I00-S00; OA206-I00-S00; OA207-I00-S00; OA208-I00-S00; OA209-I00-S00; OA210-I00-S00; OA211-I00-S00; OA212-I00-S00; OA213-I00-S00; OA214-I00-S00; OA216-I30-S00; OA217-I00-S00; OA218-I00-S00; OA221-I31-S00; OA223-I00-S00; OA224-I00-S00; OA225-I00-S00; OA226-I00-S00; OA227-I00-S00; OA228-I00-S00; OA229-I00-S00; OA230-I32-S00; OA232-I32-S00; OA233-I00-S00; OA234-I00-S00; OA235-I00-S00; OA236-I00-S00; OA237-I00-S00; OA238-I00-S00; OA240-I00-S00; OA241-I00-S00; OA242-I00-S00; OA243-I00-S00; OA244-I00-S00; OA245-I00-S00; OA246-I00-S00; OA247-I00-S00; OA249-I00-S00; Pacific; Quality control; Sample code/label; Sample comment; Sample ID; surface seawater; SV Tara; TARA_20160529T1635Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160530T1630Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160531T1345Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160601T1629Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160602T1436Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160604T1445Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160605T1850Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160608T1605Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160609T1734Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160610T1502Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160611T1513Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160613T1430Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160614T1325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160615T1643Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160616T1906Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160617T1920Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160618T1702Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160619T1928Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160620T2234Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160621T1710Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160622T1700Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160623T1715Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160624T2100Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160625T1800Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160626T1800Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160627T1350Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160706T2202Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160712T1649Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160816T2000Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160817T2124Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160818T2253Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160819T2150Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160819T2355Z_D_O-SRF_INLINE-PUMP; TARA_20160820T2229Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160822T2300Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160823T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160824T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160825T2355Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160828T0013Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160828T1845Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160829T1944Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160830T1644Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160831T0515Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160831T1723Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160908T0615Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160909T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160910T1615Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160911T1802Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160912T1712Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160917T1520Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160917T2237Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160919T0110Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160919T1708Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160920T2340Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160921T0603Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160928T0751Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160929T0110Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160929T1905Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161001T1721Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161111T0102Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161111T1810Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161112T1810Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161118T0317Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161119T1921Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161120T1915Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161120T2155Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161127T0232Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161127T2023Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161128T0826Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20161130T0206Z_D_S-SRF_HANDHELD-BOW-POLE; TARA_20161201T0215Z_D_S-SRF_HANDHELD-BOW-POLE; TARA_20161203T1902Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161204T0303Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161204T1723Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161228T0551Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161228T2150Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161229T2310Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170103T0931Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20170103T2210Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170104T2118Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20170105T2251Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20170106T0955Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20170106T2245Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170112T0647Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170112T2125Z_D_I-SRF_HANDHELD-
    Type: Dataset
    Format: text/tab-separated-values, 14588 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-09
    Description: Abstract A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25�50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s�1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2007
    Description: Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton, and seawater. By measuring Zn isotopes in a diverse array of marine samples, we hope to understand how Zn isotopes are fractionated in the oceans and how Zn isotopes may be used as tracers of marine biogeochemical processes. Common forms of anthropogenic Zn had δ66Zn from +0.08‰ to +0.32‰, a range similar to Zn ores and terrigenous materials. Larger variations were discovered in hydrothermal fluids and minerals, with hydrothermal fluids ranging in δ66Zn from 0.02‰ to +0.93‰, and chimney minerals ranging from -0.09‰ to +1.17‰. Lower-temperature vent systems had higher δ66Zn values, suggesting that precipitation of isotopically light Zn sulfides drives much of the Zn isotope fractionation in hydrothermal systems. In cultured diatoms, a relationship was discovered between Zn transport by either high-affinity or low-affinity uptake pathways, and the magnitude of Zn isotope fractionation. We established isotope effects of δ66Zn = -0.2‰ for high-affinity uptake and δ66Zn = -0.8‰ for low-affinity uptake. This work is the first to describe the molecular basis for biological fractionation of transition metals. Biological fractionation of Zn isotopes under natural conditions was investigated by measuring Zn isotopes in plankton collected in the Peru Upwelling Region and around the world. Seawater dissolved Zn isotopes also reflect the chemical and biological cycling of Zn. The δ66Zn of deep seawater in the North Pacific and North Atlantic is about 0.5‰, and the dissolved δ66Zn gets lighter in the upper water column. This is unexpected based our observations of a biological preference for uptake of light Zn isotopes, and suggests that Zn transport to deep waters may occur by Zn adsorption to sinking particles rather than as primary biological Zn. The thesis, by presenting data on several important aspects of Zn isotope cycling in the oceans, lays the groundwork for further use of Zn isotopes as a marine biogeochemical tracer.
    Description: This research was funded by NSF Research Grants OCE-0002273 and OCE-0326689, the Martin Family Society Fellowship for Sustainability, the Woods Hole Ocean Ventures Fund, and Arunas and Pam Chesonis through an MIT Earth Systems Initiative Ignition Grant.
    Keywords: Zinc ; Isotopes ; Biogeochemical cycles ; Atlantis (Ship : 1996-) Cruise AT11-2
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bundy, R. M., Tagliabue, A., Hawco, N. J., Morton, P. L., Twining, B. S., Hatta, M., Noble, A. E., Cape, M. R., John, S. G., Cullen, J. T., & Saito, M. A. Elevated sources of cobalt in the Arctic Ocean. Biogeosciences, 17(19), (2020): 4745-4767, doi:10.5194/bg-17-4745-2020.
    Description: Cobalt (Co) is an important bioactive trace metal that is the metal cofactor in cobalamin (vitamin B12) which can limit or co-limit phytoplankton growth in many regions of the ocean. Total dissolved and labile Co measurements in the Canadian sector of the Arctic Ocean during the U.S. GEOTRACES Arctic expedition (GN01) and the Canadian International Polar Year GEOTRACES expedition (GIPY14) revealed a dynamic biogeochemical cycle for Co in this basin. The major sources of Co in the Arctic were from shelf regions and rivers, with only minimal contributions from other freshwater sources (sea ice, snow) and eolian deposition. The most striking feature was the extremely high concentrations of dissolved Co in the upper 100 m, with concentrations routinely exceeding 800 pmol L−1 over the shelf regions. This plume of high Co persisted throughout the Arctic basin and extended to the North Pole, where sources of Co shifted from primarily shelf-derived to riverine, as freshwater from Arctic rivers was entrained in the Transpolar Drift. Dissolved Co was also strongly organically complexed in the Arctic, ranging from 70 % to 100 % complexed in the surface and deep ocean, respectively. Deep-water concentrations of dissolved Co were remarkably consistent throughout the basin (∼55 pmol L−1), with concentrations reflecting those of deep Atlantic water and deep-ocean scavenging of dissolved Co. A biogeochemical model of Co cycling was used to support the hypothesis that the majority of the high surface Co in the Arctic was emanating from the shelf. The model showed that the high concentrations of Co observed were due to the large shelf area of the Arctic, as well as to dampened scavenging of Co by manganese-oxidizing (Mn-oxidizing) bacteria due to the lower temperatures. The majority of this scavenging appears to have occurred in the upper 200 m, with minimal additional scavenging below this depth. Evidence suggests that both dissolved Co (dCo) and labile Co (LCo) are increasing over time on the Arctic shelf, and these limited temporal results are consistent with other tracers in the Arctic. These elevated surface concentrations of Co likely lead to a net flux of Co out of the Arctic, with implications for downstream biological uptake of Co in the North Atlantic and elevated Co in North Atlantic Deep Water. Understanding the current distributions of Co in the Arctic will be important for constraining changes to Co inputs resulting from regional intensification of freshwater fluxes from ice and permafrost melt in response to ongoing climate change.
    Description: This work was supported by National Science Foundation Ocean Sciences (NSF OCE) grants (grant nos. 1435056, 1736599, and 1924554) to Mak A. Saito, as well as by a Woods Hole Oceanographic Institution Postdoctoral Scholar grant to Randelle M. Bundy and Mattias R. Cape. Mariko Hatta was supported by NSF OCE grant no. 1439253. Alessandro Tagliabue was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (BYONIC, grant no. 724289). Benjamin S. Twining was supported by NSF OCE grant no. 1435862. Peter L. Morton was supported by NSF OCE grant no. 1436019, and a portion of the work was completed at the NHMFL, which is supported by the National Science Foundation through DMR-1644779 and the State of Florida. Jay T. Cullen was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and an International Polar Year (IPY) Canada grant.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 9944-9949, doi:10.1073/pnas.1509448112.
    Description: Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton, and iron (Fe) is an essential micronutrient that limits productivity in many parts of the ocean. To investigate how coastal and oceanic Atlantic Synechococcus strains acclimate to Fe availability, we compared the growth, photophysiology, and quantitative proteomics of two Synechococcus strains from different Fe regimes. Synechococcus strain WH8102, from a region in the southern Sargasso Sea that receives substantial dust deposition, showed impaired growth and photophysiology as Fe declined, yet utilized few acclimation responses. Coastal WH8020, from the dynamic, seasonally variable New England shelf, displayed a multi-tiered, hierarchical cascade of acclimation responses with different Fe thresholds. The multi-tiered response included changes in Fe acquisition, storage, and photosynthetic proteins, substitution of flavodoxin for ferredoxin, and modified photophysiology, all while maintaining remarkably stable growth rates over a range of Fe concentrations. Modulation of two distinct ferric uptake regulator (Fur) proteins that coincided with the multi-tiered proteome response was found, implying the coastal strain has different regulatory threshold responses to low Fe availability. Low nitrogen (N) and phosphorus (P) availability in the open ocean may favor the loss of Fe response genes when Fe availability is consistent over time, whereas these genes are retained in dynamic environments where Fe availability fluctuates and N and P are more abundant.
    Description: This work was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology to K.R.M.M. (NSF 1103575), National Science Foundation Oceanography grants OCE-1220484, OCE-0928414, OCE-1233261, OCE- 1155566, OCE-1131387, and OCE-0926092, as well as Gordon and Betty Moore Foundation grants 3782 and 3934.
    Keywords: Iron adaptation ; Synechococcus ; Photosynthesis ; Quantitative proteomics
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-08
    Description: Abstract A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600Â km horizontally and ~25-50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (10^6 m3 s-1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...