ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Entropy
  • American Association for the Advancement of Science (AAAS)  (24)
  • American Physical Society  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2006. This article is posted here by permission of American Physical Society for personal use, not for redistribution. The definitive version was published in Physical Review Letters 96 (2006): 018305, doi:10.1103/PhysRevLett.96.018305.
    Description: We study the liquid-crystalline phase behavior of a concentrated suspension of helical flagella isolated from Salmonella typhimurium. Flagella are prepared with different polymorphic states, some of which have a pronounced helical character while others assume a rodlike shape. We show that the static phase behavior and dynamics of chiral helices are very different when compared to simpler achiral hard rods. With increasing concentration, helical flagella undergo an entropy-driven first order phase transition to a liquid-crystalline state having a novel chiral symmetry.
    Description: M. S. and R. O. are supported by NIH Grant No. EB002583.
    Keywords: Entropy ; Molecular biophysics ; Liquid crystal phase transformations ; Symmetry ; Chirality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 765344 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-26
    Description: Experimental, theoretical, and computational studies of small proteins suggest that interresidue contacts not present in the folded structure play little or no role in the self-assembly mechanism. Non-native contacts can, however, influence folding kinetics by introducing additional local minima that slow diffusion over the global free-energy barrier between folded and unfolded states. Here, we combine single-molecule fluorescence with all-atom molecular dynamics simulations to discover the structural origin for the slow diffusion that markedly decreases the folding rate for a designed alpha-helical protein. Our experimental determination of transition path times and our analysis of the simulations point to non-native salt bridges between helices as the source, which provides a quantitative glimpse of how specific intramolecular interactions influence protein folding rates by altering dynamics and not activation free energies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Hoi Sung -- Piana-Agostinetti, Stefano -- Shaw, David E -- Eaton, William A -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):1504-10. doi: 10.1126/science.aab1369.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA. chunghoi@niddk.nih.gov stefano.piana-agostinetti@DEShawResearch.com david.shaw@DEShawResearch.com eaton@helix.nih.gov. ; D. E. Shaw Research, New York, NY 10036, USA. chunghoi@niddk.nih.gov stefano.piana-agostinetti@DEShawResearch.com david.shaw@DEShawResearch.com eaton@helix.nih.gov. ; D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. chunghoi@niddk.nih.gov stefano.piana-agostinetti@DEShawResearch.com david.shaw@DEShawResearch.com eaton@helix.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404828" target="_blank"〉PubMed〈/a〉
    Keywords: Diffusion ; Entropy ; Hydrogen-Ion Concentration ; Kinetics ; *Models, Chemical ; Molecular Dynamics Simulation ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-24
    Description: The fleeting lifetimes of the transition states (TSs) of chemical reactions make determination of their three-dimensional structures by diffraction methods a challenge. Here, we used packing interactions within the core of a protein to stabilize the planar TS conformation for rotation around the central carbon-carbon bond of biphenyl so that it could be directly observed by x-ray crystallography. The computational protein design software Rosetta was used to design a pocket within threonyl-transfer RNA synthetase from the thermophile Pyrococcus abyssi that forms complementary van der Waals interactions with a planar biphenyl. This latter moiety was introduced biosynthetically as the side chain of the noncanonical amino acid p-biphenylalanine. Through iterative rounds of computational design and structural analysis, we identified a protein in which the side chain of p-biphenylalanine is trapped in the energetically disfavored, coplanar conformation of the TS of the bond rotation reaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearson, Aaron D -- Mills, Jeremy H -- Song, Yifan -- Nasertorabi, Fariborz -- Han, Gye Won -- Baker, David -- Stevens, Raymond C -- Schultz, Peter G -- 2 R01 GM097206-05/GM/NIGMS NIH HHS/ -- F32 GM099210/GM/NIGMS NIH HHS/ -- F32GM099210/GM/NIGMS NIH HHS/ -- R01 GM097206/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):863-7. doi: 10.1126/science.aaa2424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute (HHMI), University of Washington, Seattle, WA 98195, USA. ; Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. schultz@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700516" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/chemistry ; Archaeal Proteins/*chemistry ; Biphenyl Compounds/*chemistry ; Computer Simulation ; Computer-Aided Design ; Crystallography, X-Ray ; Entropy ; Models, Chemical ; Protein Structure, Secondary ; Pyrococcus abyssi/*enzymology ; Software ; Threonine-tRNA Ligase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-24
    Description: Macromolecular function is rooted in energy landscapes, where sequence determines not a single structure but an ensemble of conformations. Hence, evolution modifies a protein's function by altering its energy landscape. Here, we recreate the evolutionary pathway between two modern human oncogenes, Src and Abl, by reconstructing their common ancestors. Our evolutionary reconstruction combined with x-ray structures of the common ancestor and pre-steady-state kinetics reveals a detailed atomistic mechanism for selectivity of the successful cancer drug Gleevec. Gleevec affinity is gained during the evolutionary trajectory toward Abl and lost toward Src, primarily by shifting an induced-fit equilibrium that is also disrupted in the clinical T315I resistance mutation. This work reveals the mechanism of Gleevec specificity while offering insights into how energy landscapes evolve.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405104/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405104/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, C -- Agafonov, R V -- Hoemberger, M -- Kutter, S -- Zorba, A -- Halpin, J -- Buosi, V -- Otten, R -- Waterman, D -- Theobald, D L -- Kern, D -- GM094468/GM/NIGMS NIH HHS/ -- GM096053/GM/NIGMS NIH HHS/ -- GM100966-01/GM/NIGMS NIH HHS/ -- R01 GM094468/GM/NIGMS NIH HHS/ -- R01 GM096053/GM/NIGMS NIH HHS/ -- R01 GM100966/GM/NIGMS NIH HHS/ -- T32 EB009419/EB/NIBIB NIH HHS/ -- T32 GM007596/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):882-6. doi: 10.1126/science.aaa1823.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA. ; Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA. ; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA. dkern@brandeis.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700521" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/chemistry/*pharmacology ; Benzamides/chemistry/*pharmacology ; Drug Resistance, Neoplasm/*genetics ; Entropy ; *Evolution, Molecular ; Humans ; Imatinib Mesylate ; Mutation ; Oncogene Proteins v-abl/chemistry/genetics ; Phylogeny ; Piperazines/chemistry/*pharmacology ; Protein Binding ; Protein Kinase Inhibitors/chemistry/*pharmacology ; Protein Structure, Secondary ; Pyrimidines/chemistry/*pharmacology ; src-Family Kinases/*chemistry/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-21
    Description: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins drive membrane fusion by assembling into a four-helix bundle in a zippering process. Here, we used optical tweezers to observe in a cell-free reconstitution experiment in real time a long-sought SNARE assembly intermediate in which only the membrane-distal amino-terminal half of the bundle is assembled. Our findings support the zippering hypothesis, but suggest that zippering proceeds through three sequential binary switches, not continuously, in the amino- and carboxyl-terminal halves of the bundle and the linker domain. The half-zippered intermediate was stabilized by externally applied force that mimicked the repulsion between apposed membranes being forced to fuse. This intermediate then rapidly and forcefully zippered, delivering free energy of 36 k(B)T (where k(B) is Boltzmann's constant and T is temperature) to mediate fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677750/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677750/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Ying -- Zorman, Sylvain -- Gundersen, Gregory -- Xi, Zhiqun -- Ma, Lu -- Sirinakis, George -- Rothman, James E -- Zhang, Yongli -- DK027044/DK/NIDDK NIH HHS/ -- GM093341/GM/NIGMS NIH HHS/ -- R01 GM093341/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1340-3. doi: 10.1126/science.1224492. Epub 2012 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22903523" target="_blank"〉PubMed〈/a〉
    Keywords: Cell-Free System ; DNA/chemistry/metabolism ; Entropy ; Neurons/metabolism ; *Optical Tweezers ; Qa-SNARE Proteins/chemistry ; SNARE Proteins/*chemistry ; Vesicle-Associated Membrane Protein 2/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flueck, Werner T -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1092-3. doi: 10.1126/science.333.6046.1092-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868651" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Entropy ; *Food Chain ; Photosynthesis ; Predatory Behavior ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-06-17
    Description: Protein dynamics are essential for protein function, and yet it has been challenging to access the underlying atomic motions in solution on nanosecond-to-microsecond time scales. We present a structural ensemble of ubiquitin, refined against residual dipolar couplings (RDCs), comprising solution dynamics up to microseconds. The ensemble covers the complete structural heterogeneity observed in 46 ubiquitin crystal structures, most of which are complexes with other proteins. Conformational selection, rather than induced-fit motion, thus suffices to explain the molecular recognition dynamics of ubiquitin. Marked correlations are seen between the flexibility of the ensemble and contacts formed in ubiquitin complexes. A large part of the solution dynamics is concentrated in one concerted mode, which accounts for most of ubiquitin's molecular recognition heterogeneity and ensures a low entropic complex formation cost.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lange, Oliver F -- Lakomek, Nils-Alexander -- Fares, Christophe -- Schroder, Gunnar F -- Walter, Korvin F A -- Becker, Stefan -- Meiler, Jens -- Grubmuller, Helmut -- Griesinger, Christian -- de Groot, Bert L -- New York, N.Y. -- Science. 2008 Jun 13;320(5882):1471-5. doi: 10.1126/science.1157092.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18556554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Anisotropy ; Chemistry, Physical ; Crystallography, X-Ray ; Entropy ; Kinetics ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Solutions ; Ubiquitin/*chemistry/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bar-Ziv, Roy -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1078-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel. roy.bar-ziv@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006730" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; *Computers, Molecular ; DNA/chemistry ; Entropy ; Nanotechnology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-11-17
    Description: Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, David Yu -- Turberfield, Andrew J -- Yurke, Bernard -- Winfree, Erik -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computation and Neural Systems, California Institute of Technology, MC 136-93, 1200 East California Boulevard, Pasadena, CA91125, USA. dzhang@dna.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Chemical Engineering ; *Computers, Molecular ; DNA/*chemistry ; Entropy ; Equipment Design ; Feedback, Physiological ; Mice ; Nanotechnology ; Nucleic Acid Hybridization ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-11-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elbaum, Michael -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):766-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel. michael.elbaum@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082441" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Motifs ; Biopolymers/chemistry ; Entropy ; Hydrogels ; Hydrophobic and Hydrophilic Interactions ; *Models, Biological ; Nuclear Pore/*metabolism ; Nuclear Pore Complex Proteins/*chemistry/*metabolism ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...