ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (2,852)
  • American Association for the Advancement of Science (AAAS)  (2,852)
  • American Institute of Physics (AIP)
Collection
Keywords
Publisher
Years
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: The success of the green revolution largely resulted from the creation of dwarf cultivars of wheat and rice, which had much higher yields than conventional crops. Characterization of these dwarf cultivars showed that the mutant genes were involved in either the synthesis or signaling of gibberellin, a plant growth hormone. In his Perspective, Salamini highlights new work (Multani et al.) that identifies the cause of dwarfism in agronomically important varieties of maize and sorghum. In these cases, dwarfism is caused by defective transport of another growth hormone called auxin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salamini, Francesco -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):71-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Breeding Research, 50829 Koln, Germany. salamini@mpiz-koeln.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526071" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Arabidopsis/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Biological Transport ; Breeding ; *Genes, Plant ; Genetic Engineering ; Genome, Plant ; Indoleacetic Acids/*metabolism ; Light ; Mutation ; P-Glycoproteins/genetics/metabolism ; Phenotype ; Plant Proteins/genetics/metabolism ; Poaceae/genetics/growth & development/*metabolism ; Quantitative Trait Loci ; Zea mays/genetics/growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gundersen, Gregg G -- Bretscher, Anthony -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2040-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology and Department of Pathology, Columbia University, New York, NY 10032, USA. ggg1@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829769" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Division ; Cell Polarity ; Cyclins/metabolism ; Microtubule Proteins/metabolism ; Microtubule-Organizing Center/*metabolism/ultrastructure ; Microtubules/*metabolism/ultrastructure ; Models, Biological ; Mutation ; Myosin Heavy Chains/metabolism ; Myosin Type V/metabolism ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Transport ; Saccharomyces cerevisiae/cytology/metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/metabolism ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2003-08-23
    Description: To elucidate gene function on a global scale, we identified pairs of genes that are coexpressed over 3182 DNA microarrays from humans, flies, worms, and yeast. We found 22,163 such coexpression relationships, each of which has been conserved across evolution. This conservation implies that the coexpression of these gene pairs confers a selective advantage and therefore that these genes are functionally related. Many of these relationships provide strong evidence for the involvement of new genes in core biological functions such as the cell cycle, secretion, and protein expression. We experimentally confirmed the predictions implied by some of these links and identified cell proliferation functions for several genes. By assembling these links into a gene-coexpression network, we found several components that were animal-specific as well as interrelationships between newly evolved and ancient modules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stuart, Joshua M -- Segal, Eran -- Koller, Daphne -- Kim, Stuart K -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):249-55. Epub 2003 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stanford Medical Informatics, 251 Campus Drive, Medical School Office Building X-215, Stanford, CA 94305-5329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Caenorhabditis elegans/genetics ; Cell Cycle/genetics ; Cell Division/genetics ; Computational Biology ; Conserved Sequence ; Databases, Genetic ; Drosophila melanogaster/genetics ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes, Fungal ; Genes, Helminth ; Genes, Insect ; Humans ; Models, Statistical ; Mutation ; *Oligonucleotide Array Sequence Analysis ; Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; Signal Transduction/genetics ; Species Specificity ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, John F -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1530-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden. john.allen@plantbio.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624254" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/genetics/isolation & purification/metabolism ; Animals ; Binding Sites ; Chlamydomonas reinhardtii/*enzymology/genetics/metabolism ; Chlorophyll/metabolism ; Electron Transport ; Fluorescence ; Gene Library ; Light ; Light-Harvesting Protein Complexes ; Models, Biological ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*metabolism ; Plastoquinone/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*isolation & ; purification/*metabolism ; Signal Transduction ; Thylakoids/*enzymology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Svejstrup, Jesper Q -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1053-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research, London Research Institute, Clare Hall Laboratories, Hertfordshire, UK. j.svejstrup@cancer.org.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12933997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/metabolism ; DNA/metabolism ; *DNA-Binding Proteins ; Dimerization ; Drosophila/genetics/metabolism ; *Drosophila Proteins ; *High Mobility Group Proteins ; Histones/*metabolism ; Humans ; Mutation ; Nuclear Proteins/*metabolism ; Nucleosomes/*metabolism ; RNA Polymerase II/*metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; *Transcription, Genetic ; Transcriptional Elongation Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2003-09-27
    Description: A survey of the dog genome sequence (6.22 million sequence reads; 1.5x coverage) demonstrates the power of sample sequencing for comparative analysis of mammalian genomes and the generation of species-specific resources. More than 650 million base pairs (〉25%) of dog sequence align uniquely to the human genome, including fragments of putative orthologs for 18,473 of 24,567 annotated human genes. Mutation rates, conserved synteny, repeat content, and phylogeny can be compared among human, mouse, and dog. A variety of polymorphic elements are identified that will be valuable for mapping the genetic basis of diseases and traits in the dog.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirkness, Ewen F -- Bafna, Vineet -- Halpern, Aaron L -- Levy, Samuel -- Remington, Karin -- Rusch, Douglas B -- Delcher, Arthur L -- Pop, Mihai -- Wang, Wei -- Fraser, Claire M -- Venter, J Craig -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1898-903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/genetics ; Computational Biology ; Conserved Sequence ; Contig Mapping ; DNA, Intergenic ; Dogs/*genetics ; Genetic Variation ; *Genome ; Genome, Human ; Genomics ; Humans ; Long Interspersed Nucleotide Elements ; Male ; Mice/genetics ; Molecular Sequence Data ; Mutation ; Phylogeny ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Sequence Alignment ; *Sequence Analysis, DNA ; Short Interspersed Nucleotide Elements ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2003-10-25
    Description: Many vertebrate organs adopt asymmetric positions with respect to the midline, but little is known about the cellular changes and tissue movements that occur downstream of left-right gene expression to produce this asymmetry. Here, we provide evidence that the looping of the zebrafish gut results from the asymmetric migration of the neighboring lateral plate mesoderm (LPM). Mutations that disrupt the epithelial structure of the LPM perturb this asymmetric migration and inhibit gut looping. Asymmetric LPM migration still occurs when the endoderm is ablated from the gut-looping region, suggesting that the LPM can autonomously provide a motive force for gut displacement. Finally, reducing left-sided Nodal activity randomizes the pattern of LPM migration and gut looping. These results reveal a cellular framework for the regulation of organ laterality by asymmetrically expressed genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horne-Badovinac, Sally -- Rebagliati, Michael -- Stainier, Didier Y R -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Movement ; Cues ; Endoderm/physiology ; *Gene Expression Regulation, Developmental ; Guanylate Kinase ; Homeodomain Proteins/genetics/physiology ; Intestines/*embryology ; Isoenzymes ; Mesoderm/cytology/physiology ; Morphogenesis ; Mutation ; *Nuclear Proteins ; Nucleoside-Phosphate Kinase/genetics/metabolism ; Oligonucleotides, Antisense ; Phenotype ; Protein Kinase C/genetics/physiology ; Transcription Factors/genetics/physiology ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2003-01-25
    Description: Disruption of the adaptor protein ELF, a beta-spectrin, leads to disruption of transforming growth factor-beta (TGF-beta) signaling by Smad proteins in mice. Elf-/- mice exhibit a phenotype similar to smad2+/-/smad3+/- mutant mice of midgestational death due to gastrointestinal, liver, neural, and heart defects. We show that TGF-beta triggers phosphorylation and association of ELF with Smad3 and Smad4, followed by nuclear translocation. ELF deficiency results in mislocalization of Smad3 and Smad4 and loss of the TGF-beta-dependent transcriptional response, which could be rescued by overexpression of the COOH-terminal region of ELF. This study reveals an unexpected molecular link between a major dynamic scaffolding protein and a key signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Yi -- Katuri, Varalakshmi -- Dillner, Allan -- Mishra, Bibhuti -- Deng, Chu-Xia -- Mishra, Lopa -- R01 DK56111/DK/NIDDK NIH HHS/ -- R01 DK58637/DK/NIDDK NIH HHS/ -- R03 DK53861/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, Department of Medicine, Georgetown University, Washington, DC 20007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543979" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple ; Animals ; Carrier Proteins/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Contractile Proteins/metabolism ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Filamins ; Gene Targeting ; Genes, fos ; Liver/abnormalities/embryology/*metabolism ; Mice ; Mice, Knockout ; Microfilament Proteins/metabolism ; Microscopy, Confocal ; Mutation ; Phenotype ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; *Signal Transduction ; Smad2 Protein ; Smad3 Protein ; Smad4 Protein ; Spectrin/genetics/*metabolism ; Trans-Activators/metabolism ; Transcriptional Activation ; Transforming Growth Factor beta/*metabolism/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2003-01-11
    Description: Proteins of the ARGONAUTE family are important in diverse posttranscriptional RNA-mediated gene-silencing systems as well as in transcriptional gene silencing in Drosophila and fission yeast and in programmed DNA elimination in Tetrahymena. We cloned ARGONAUTE4 (AGO4) from a screen for mutants that suppress silencing of the Arabidopsis SUPERMAN (SUP) gene. The ago4-1 mutant reactivated silent SUP alleles and decreased CpNpG and asymmetric DNA methylation as well as histone H3 lysine-9 methylation. In addition, ago4-1 blocked histone and DNA methylation and the accumulation of 25-nucleotide small interfering RNAs (siRNAs) that correspond to the retroelement AtSN1. These results suggest that AGO4 and long siRNAs direct chromatin modifications, including histone methylation and non-CpG DNA methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zilberman, Daniel -- Cao, Xiaofeng -- Jacobsen, Steven E -- GM07185/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):716-9. Epub 2003 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1606.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522258" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Argonaute Proteins ; Cloning, Molecular ; *DNA Methylation ; DNA, Plant/metabolism ; DNA-Cytosine Methylases/genetics/metabolism ; Dinucleoside Phosphates/metabolism ; Gene Silencing ; Genes, Plant ; Genes, Suppressor ; Histone-Lysine N-Methyltransferase ; Histones/*metabolism ; Methylation ; Methyltransferases/genetics/metabolism ; Mutation ; RNA, Plant/metabolism ; RNA, Small Interfering/*metabolism ; Retroelements ; Suppression, Genetic ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1998-03-21
    Description: The T cell receptor (TCR) inherently has dual specificity. T cells must recognize self-antigens in the thymus during maturation and then discriminate between foreign pathogens in the periphery. A molecular basis for this cross-reactivity is elucidated by the crystal structure of the alloreactive 2C TCR bound to self peptide-major histocompatibility complex (pMHC) antigen H-2Kb-dEV8 refined against anisotropic 3.0 angstrom resolution x-ray data. The interface between peptide and TCR exhibits extremely poor shape complementarity, and the TCR beta chain complementarity-determining region 3 (CDR3) has minimal interaction with the dEV8 peptide. Large conformational changes in three of the TCR CDR loops are induced upon binding, providing a mechanism of structural plasticity to accommodate a variety of different peptide antigens. Extensive TCR interaction with the pMHC alpha helices suggests a generalized orientation that is mediated by the Valpha domain of the TCR and rationalizes how TCRs can effectively "scan" different peptides bound within a large, low-affinity MHC structural framework for those that provide the slight additional kinetic stabilization required for signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, K C -- Degano, M -- Pease, L R -- Huang, M -- Peterson, P A -- Teyton, L -- Wilson, I A -- AI42266/AI/NIAID NIH HHS/ -- AI42267/AI/NIAID NIH HHS/ -- R01 CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1166-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallization ; Crystallography, X-Ray ; H-2 Antigens/*chemistry/*immunology/metabolism ; Ligands ; Mice ; Mice, Transgenic ; Models, Molecular ; Mutation ; Oligopeptides/*chemistry/immunology/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/*immunology/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...