ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects  (7)
  • 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques  (6)
  • Istituto Nazionale di Geofisica e Vulcanologia  (8)
  • Copernicus  (4)
  • AMER GEOPHYSICAL UNION
  • Institute of Electrical and Electronics Engineers (IEEE)
Collection
Publisher
Years
  • 1
    Publication Date: 2021-06-07
    Description: The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy) is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d—1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d—1.
    Description: Published
    Description: 301-308
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: SO2 ; Differential optical absorption spectroscopy ; Vulcano Island ; Network for Observation of Volcanic and Atmospheric Change ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In the period 2-6 April 2007 a seismic survey was carried out at Solfatara Volcano, with the aim of inferring the shallow structure and evaluating local site effects. Seismic noise was recorded by five circular seismic arrays deployed in different areas of the crater. The geometry was designed in order to obtain also a sub-configuration consisting of two profiles oriented in the NS and E-W directions. An other seismic station was installed on the eastern rim of the crater, for a hardrock reference. A preliminary spectral analysis was performed on some samples of seismic noise recorded during the experiment. As future development, surface wave dispersion will be obtained by using array techniques, such as the Spatial Autocorrelation method (SPAC) of Aki (1957) and its recent modifications (MSPAC, Bettig et al, 2001; CCA, Cho et al., 2004). The shear-wave velocity models will be inferred for each array from the inversion of the dispersion curves. Moreover experimental site transfer functions will be evaluated for each station, using both Nakamura’s technique and the reference-site spectral ratio method. The high density of the deployment and the large number of the sampled sites will allow to obtain a detailed shallow velocity structure and to map resonance frequencies and amplification values in different areas of the crater.
    Description: Published
    Description: 1-22
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: N/A or not JCR
    Description: open
    Keywords: Solfatara ; velocity model ; site effects ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from –48 to 29,000 (38 sites) and from –20 to 1100 mg/mˆ2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 mˆ2. At Nisyros measurements covered the Stephanos and Kaminakia areas, which represent only a part of the entire degassing area. The two areas show very different methane degassing pattern with latter showing much higher flux values. Methane output can be estimated in about 0.25 t/a from an area of about 30,000 mˆ2 at Stephanos and about 1 t/a from an area of about 20,000 mˆ2 at Kaminakia. The total output from the entire geothermal system of Nisyros probably should not exceed 2 t/a.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: methane output ; diffuse degassing ; volcanic/hydrothermal systems ; Greece ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10,000 μg/m3 at 0.1 km from Etna’s vents down to ~7 _μg/m3 at ~10km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.
    Description: Published
    Description: 1441-1450
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; volcanic gas plumes ; tropospheric processing ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: L’uso del rumore ambientale nella valutazione della risposta sismica locale sta diventando molto frequente data la sua facile applicabilità e sensibilità alla variazione spaziale della geologia superficiale. Ciò lo rende particolarmente adatto nelle aree urbane, dove la natura delle unità geologiche affioranti è mascherata dagli interventi antropici. Il lavoro descrive i metodi di acquisizione e di trattamento dei dati, utilizzati durante una campagna svoltasi nell'area urbana di Catania.
    Description: Published
    Description: 1-30
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: N/A or not JCR
    Description: open
    Keywords: NOISE ; ACQUISIZIONE ; URBANA ; CATANIA ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: La rete sismica MedNet (Mediterranean Network) nasce alla fine degli anni ’80 con due obiettivi principali: migliorare la conoscenza della struttura tettonica del Mediterraneo attraverso lo studio della sorgente di terremoti forti e moderati e applicare queste conoscenze per la mitigazione del rischio sismico nella regione mediterranea. A questi obiettivi se ne aggiunge uno di carattere più generale ma non per questo meno importante, la diffusione della cultura sismologica a larga banda nella regione. Il progetto MedNet si proponeva inizialmente di installare 12-15 stazioni a larga banda con una spaziatura di circa 1000 km. Nel 1988 il progetto è stato incorporato all’interno del World Laboratory di Losanna (Svizzera), un’organizzazione che aveva come scopo quello di promuovere la scienza nei paesi in via di sviluppo. Il supporto del World-Lab portò ad una rapida crescita della rete MedNet con la realizzazione di accordi scientifici con i paesi nord-africani e l’apertura di stazioni in Marocco, Algeria, Tunisia ed Egitto. Negli ultimi 15 anni il cambiamento delle condizioni politiche, e l’impressionante sviluppo tecnologico ha portato ad un ampliamento delle prospettive del progetto MedNet, che, pur mantenendo invariati i due obbiettivi iniziali, ha espanso l’area di interesse alla regione balcanica, un’area interessata da una forte sismicità e con una tradizione sismologica importante ma povera di stazioni sismiche a larga-banda. Fin dall’inizio particolare enfasi è stata posta sulla scelta dei siti, ricercando miniere, gallerie abbandonate o siti in luoghi molto remoti per esaltare le qualità del sismometro scelto, lo Streckeisen STS-1, il miglior sismometro a larghissima banda mai prodotto. Fino all’avvento dei sistemi di trasmissione in tempo reale per i dati sismici, i dati erano esclusivamente registrati in sito su nastri magnetici e spediti via posta. Questo ha avuto il non trascurabile effetto collaterale di rendere difficile la manutenzione della stazione, sia per la difficoltà (logistica ed economica) di raggiungimento del sito, sia perché spesso passavano mesi tra il guasto, il ricevimento del nastro magnetico e l’identificazione del guasto stesso. Una connessione telefonica con la maggior parte dei siti garantiva la possibilità di scaricare dati “on demand” in caso di terremoto e la procedura automatica Muscles fornì nel 1997 una stima rapida della magnitudo del terremoto di Colfiorito dopo pochi minuti. Oggi la trasmissione dati è assicurata da un robusto sistema in “real time” basato sul protocollo SeedLink, uno standard de-facto per la trasmissione dati sviluppato nell’ambito del progetto europeo Meredian. Tale protocollo garantisce la fruibilità dei dati in tempo reale, la continuità del dato archiviato e il monitoraggio in tempo reale delle stazioni. Il Progetto MedNet fin dagli albori si è integrato nella Federazione di reti digitali a larga banda (FDSN), è partner di IRIS ed Orfeus e, distribuendo i dati alla comunità internazionale in modo rapido e automatico, ha contribuito e contribuisce allo studio della sismologia sia a scala globale che regionale e locale. Particolare enfasi si è cercato di dare fin dall’inizio e con continuità alla fruibilità dei dati da parte dei partner stranieri ospitanti la stazione al fine di contribuire con la stazione MedNet alla loro rete sismica locale e fornire così uno strumento in più per il monitoraggio e lo studio della sismicità del loro paese. Oggi la rete MedNet conta 28 stazioni installate, di cui 25 funzionanti, in 14 paesi. Le stazioni contribuiscono al monitoraggio in tempo reale dell’Italia e di tutti i paesi ospitanti
    Description: Published
    Description: 1-15
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: mednet ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In this paper are shown the results obtained from Geometric High Precision Levelling survey performed at Ischia Island in June 2010. The measures have been carried out on the whole network of the island further expanded by increasing of the benchmarks and the establishment of new lines. The compensated height for each benchmark (Bm) are referred to Bm 1 located at Ischia harbour, were compared to those obtained in previous Levelling survey of 2003. The results show significant ground subsidence of different entities affecting various areas of the island. In addition, a further comparison with the measurements performed in 1987 confirms the existence of such differential movements characterised by subsidence velocity constant over time. At last, we found a good agreement between levelling and GPS velocities, calculated in time span 1997-2003.
    Description: Published
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: N/A or not JCR
    Description: open
    Keywords: Leveling, Ischia Island, Epomeo ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: A seguito dei tre eventi sismici di magnitudo ≥ 4.0, che tra il 10 e il 12 gennaio 2010 hanno colpito la zona del Fermano-Maceratese (Italia centrale), sono state installate due stazioni della rete sismica temporanea dell’INGV ad integrazione delle reti permanenti, nazionale e regionale, già presenti nell’area.
Questa zona ha una sismicità particolare confinata in uno strato sismogenetico fragile ad una profondità compresa tra 15 e 25 km meritevole di un’analisi dettagliata. Le stazioni sono state collegate in tempo reale al centro di acquisizione della Rete Sismica Nazionale dell’INGV utilizzando dei router UMTS. Questa soluzione si è rivelata estremamente rapida e conveniente. Solo una delle stazioni ha infatti risentito della debolezza del segnale UMTS, ma in generale i dati raccolti hanno contribuito a migliorare le localizzazioni ipocentrali prodotte in tempo reale presso la sala di sorveglianza sismica di Roma. L’integrazione dei dati acquisiti dalle stazioni temporanee ai dati prodotti dalle reti permanenti, ha fornito un dataset di buona qualità già rielaborato per degli studi di dettaglio dell’area.
    Description: Published
    Description: 1-30
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: Emergency ; Seismic Monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2020-02-24
    Description: In 2005, thanks to the 3-year agreement between Dipartimento Nazionale della Protezione Civile (DPC) and Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Centro Nazionale Terremoti (CNT), the project of the first Italian “Ocean Bottom Seismometer with Hydrophone” (OBS/H) for long-term deployment was developed at the OBS Lab of the Gibilmanna Observatory (Sicily). The drawing of the instrument started in January 2005 and, after 18 months, the prototype was ready for test in laboratory, in shallow and deep water. Afterwards, the first OBS/H was tested during an oceanographic campaign on the Marsili submarine volcano, from the 10th to the 21st of July 2006.More than 1000 events of several kinds were recorded: 817 VTB (Volcano Tectonic events, B-type), 159 HF (High Frequency events), 53 SDE (Short Duration Event), 8 regional events localized by INGV land network, 10 not localized events, 1 teleseismic event an 2 rockfall events. The INGV OBS/H are equipped with: - Nanometrics Trillium 120p seismometers (theoretical flat response between 120s and 175 Hz) installed in a 17 inches glass sphere on a Nautilus gimbal for the leveling or Guralp CMG40T-OBS (flat response between 60s and 100 Hz); - Cox-Webb Differential Pressure Gauge (bandwidth 500s-2Hz) or OAS E-2PD hydrophone (0-5kHz); - 21 bits, 4 channels SEND Geolon-MLS digitizer with sampling frequency up to 200 Hz.
    Description: Published
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: open
    Keywords: OBS OBS/H Marsili Ocean Bottom Seismometer ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: In the framework of ground-motion amplification analysis for southern Italy, the main target of this study is to provide new constraints on onedimensional, shallow-velocity profiles for a site in the San Fele area near the city of Potenza (southern Italy) where a permanent Irpinia Seismic Network (ISNet) seismic station is installed. Ambient noise vibrations were recorded during a seismic survey in San Fele, and the data acquired were used to define the shallow shear-wave velocity profiles and thicknesses of the shallow soil layers, through analysis of the dispersion characteristics of the surface waves. Single station and array techniques were used to obtain robust results, which show relatively flat curves of the H/V spectral ratios and variations in shearwave velocities confined to the first 50 m in depth. On the basis of these results for the San Fele site, the present study aims to delineate a standard procedure that can be systematically applied to all of the other ISNet stations to improve site characterization. This will allow more accurate evaluation of peak ground-motion quantities (e.g. peak ground acceleration, peak ground velocity) at rock sites for use in shakemap analysis.
    Description: AMRA S.c. a r.l.
    Description: Published
    Description: 59-68
    Description: 3.1. Fisica dei terremoti
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Site effects ; seismic noise ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: We develop a model to describe ash aggregates in a volcanic plume. The model is based on a solution of the classical Smoluchowski equation, obtained by introducing a similarity variable and a fractal relationship for the number of primary particles in an aggregate. The considered collision frequency function accounts for different mechanisms of aggregation, such as Brownian motion, ambient fluid shear, and differential sedimentation. Although model formulation is general, here only sticking efficiency related to the presence of water is considered. However, the different binding effect of liquid water and ice is discerned. The proposed approach represents a first compromise between the full description of the aggregation process and the need to decrease the computational time necessary for solving the full Smoluchowski equation. We also perform a parametric study on the main model parameters and estimate coagulation kernels and timescales of the aggregation process under simplified conditions of interest in volcanology. Further analyses and applications to real eruptions are presented in the companion paper by Folch et al.
    Description: Published
    Description: B09201
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic ; Theoretical formulation ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...