ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (39)
  • 1995-1999  (39)
  • Mineralogy  (39)
Collection
  • Books  (39)
Language
Years
Year
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Chichester [u.a.] : Wiley & Sons
    Call number: M 98.0219
    Type of Medium: Monograph available for loan
    Pages: xv, 512 S.
    Edition: 3., rev. and enlarged ed.
    ISBN: 047193819X
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: M 98.0488
    Type of Medium: Monograph available for loan
    Pages: xii, 676 S.
    ISBN: 0521465168
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    London [u.a.] : Chapman & Hall
    Associated volumes
    Call number: 11/M 97.0326
    In: The Mineralogical Society series
    Type of Medium: Monograph available for loan
    Pages: viii, 369 S.
    ISBN: 0412563401
    Series Statement: Mineralogical Society series 5
    Classification:
    Mineralogy
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    London : The Geological Society
    Associated volumes
    Call number: 11/M 98.0373 ; M 98.0299
    In: Rock-forming minerals
    Type of Medium: Monograph available for loan
    Pages: XII, 764 S.
    Edition: 2nd ed
    ISBN: 1897799772
    Classification:
    Mineralogy
    Language: English
    Location: Reading room
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Karlsruhe : FIZ [u.a.]
    Associated volumes
    Call number: NBM 97.001
    In: Inorganic crystal structure database [Computerdatei]
    Pages: CD-ROM
    Classification:
    Mineralogy
    Language: English
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0480
    In: Reviews in mineralogy
    Description / Table of Contents: At the time of the first printing (1996), interest in the element boron was growing rapidly. We felt that it was an opportune moment to ask investigators active in research on boron to review developments in their respective fields so that readers could learn what was-and wasn't-known about boron and its minerals, geochemistry and petrology. Since 1996, interest in boron has, if anything, increased, and continued demand for the Reviews in Mineralogy "boron bible" has motivated the Mineralogical Society of America to reprint the volume. Demand is reflected in citations, and according to ISI's Science Citation Index, the number of citations since publication to the volume is about 380, with some individual chapters having been cited as many as 44 times. In preparation for this printing, authors of 15 of the 19 original chapters have updated, corrected or added to their chapters within the constraints that no pages be added. Most addenda are bibliographies of literature published since 1996; a few also include summaries of significant findings. Addenda for each chapter follow the chapter, except for those for Chapters 1 and 2, which are merged onto pages 115-116 and 385. A table of new B-minerals since 1996 is given on p. 28, and many modifications were made to the table (p. 7-27) of B-minerals known prior to 1996 (corrections to formulae, mineral names, localities, etc.). Similar up-datings of Table 1 (p. 223) in Chapter 5 and numerous tables in Chapter 9 (p. 387) were undertaken, and Figure 15 in Chapter 11 (p. 619), which-embarrassingly-was missing from the first printing, has been supplied. Addenda to Chapter 13 are introduced on p. 744 and completed on p. 863 and 864. The following salient developments in research related to B are mentioned in the addenda: New minerals. Twenty-two boron minerals have been or are about to be described, and four more have been approved by the International Mineralogical Association, representing an increase of 10%, comparable to the increase in the number of all new minerals described during the same period (Anovitz and Grew, Chapter 1) Tourmaline group. In addition to four new tourmaline species, a new classification has been proposed. Another tourmaline, olenite, has been shown to contain substantial amounts of excess B in tetrahedral coordination, a finding that has revolutionized our view of tourmaline crystal chemistry (Werding and Schreyer, Chapter 3; references in addendum to Henry and Dutrow, Chapter 10). Boron isotopes. New techniques for measuring isotope ratios using secondary ion mass spectroscopy (SIMS) with the ion microprobe open up new opportunities for in situ analyses of individual grains and fluid inclusions (Hervig, Chapter 16). Boron isotopes have found applications in paleoceanography and thus add to the tools available for the study of past climates (Palmer and Swihart, Chapter 13). One of the major questions facing the use of hydrogeochemical models is whether or not they can be used with confidence to predict future evolution of groundwater systems. There is much controversy concerning the validity and uncertainties of non-reactive fluid flow systems. Adding chemical interaction to these flow models only confounds the problem. Although such models may accurately integrate the governing physical and chemical equations, many uncertainties are inherent in characterizing the natural system itself. These systems are inherently heterogeneous on a variety of scales rendering it impossible to know precisely the many details of the flow system and chemical composition of the host rock. Other properties of natural systems such as permeability and mineral surface area, to name just two, may never be known with any great precision, and in fact may be unknowable. Because of these uncertainties, it remains an open question as to what extent numerical models of groundwater flow and reactive transport wilI be useful in making accurate quantitative predictions. Nevertheless, reactive transport models should be able to predict the outcome for the particular representation of the porous medium used in the model. Finally, it should be mentioned that numerical models are often our only recourse to analyze such environmental problems as safe disposal of nuclear waste where predictions must be carried out over geologic time spans. Without such models it would be impossible to analyze such systems, because they involve times too long to perform laboratory experiments. The results of model calculations may affect important political decisions that must be made. Therefore, it is all the more important that models be applied and tested in diverse environments so that confidence and understanding of the limitations and strengths of model predictions are understood before irreversible decisions are made that could adversely affect generations to come.
    Type of Medium: Monograph available for loan
    Pages: xx, 862 S.
    ISBN: 0-939950-41-3 , 978-0-939950-41-6
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 33
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Mineralogy, Petrology and Geochemistry of Boron: An Introduction by Lawrence M. Anovitz and Edward S. Grew, p. 1 - 40 Chapter 2. The Crystal Chemistry of Boron by Frank C. Hawthorne, Peter C. Burns, and Joel D. Grice, p. 41 - 116 Chapter 3. Experimental Studies on Borosilicates and Selected Borates by G. Werding and Werner Schreyer, p. 117 - 164 Chapter 4. Thermochemistry of Borosilicate Melts and Glasses - from Pyrex to Pegmatites by Alexandra Navrotsky, p. 165 - 180 Chapter 5. Thermodynamics of Boron Minerals: Summary of Structural, Volumetric and Thermochemical Data by Lawrence M. Anovitz and Bruce S. Hemingway, p. 181 - 262 Chapter 6. Continental Borate Deposits of Cenozoic Age by George I. Smith and Marjorie D. Medrano, p. 263 - 298 Chapter 7. Boron in Granitic Rocks and Their Contact Aureoles by David London, George B. Morgan, VI, and Michael B. Wolf, p. 299 - 330 Chapter 8. Experimental Studies of Boron in Granitic Melts by Donald B. Dingwell, Michel Pichavant, and François Holtz, p. 331 - 386 Chapter 9. Borosilicates (Exclusive of Tourmaline) and Boron in Rock-forming Minerals in Metamorphic Environments by Edward S. Grew, p. 387 - 502 Chapter 10. Metamorphic Tourmaline and Its Petrologic Applications by Darrell J. Henry and Barbara L. Dutrow, p. 503 - 558 Chapter 11. Tourmaline Associations with Hydrothermal Ore Deposits by John F. Slack, p. 559 - 644 Chapter 12. Geochemistry of Boron and Its Implications for Crustal and Mantle Processes by William P. Leeman and Virginia B. Sisson, p. 645 - 708 Chapter 13. Boron Isotope Geochemistry: An Overview by Martin R. Palmer and George H. Swihart, p. 709 - 744 Chapter 14. Similarities and Contrasts in Lunar and Terrestrial Boron Geochemistry by Denis M. Shaw, p. 745 - 770 Chapter 15. Electron Probe Microanalysis of Geologic Materials for Boron by James J. McGee and Lawrence M. Anovitz, p. 771 - 788 Chapter 16. Analyses of Geological Materials for Boron by Secondary Ion Mass Spectrometry by Richard L. Hervig, p. 789 - 804 Chapter 17. Nuclear Methods for Analysis of Boron in Minerals by J. David Robertson and M. Darby Dyar, p. 805 - 820 Chapter 18. Parallel Electron Energy-loss Spectroscopy of Boron in Minerals by Laurence A. J. Garvie and Peter R. Buseck, p. 821 - 844 Chapter 19. Instrumental Techniques for Boron Isotope Analysis by George H. Swihart, p. 845 - 862
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0543
    In: Reviews in mineralogy
    Description / Table of Contents: This volume contains the contributions presented at a short course held in Golden, Colorado, October 25-27, 1996 in conjunction with the Mineralogical Society of America's (MSA) Annual Meeting with the Geological Society of America in Denver, Colorado. The field of reactive transport within the Earth Sciences is a highly multidisciplinary area of research. The field encompasses a number of diverse disciplines including geochemistry, geology, physics, chemistry, hydrology, and engineering. The literature on the subject is similarly spread out as can be seen by a perusal of the bibliographies at the end of the chapters in this volume. Because these distinct disciplines have evolved largely independently of one another, their respective treatments of reactive transport in the Earth Sciences are based on different terminologies, assumptions, and levels of mathematical rigor. This volume and the short course which accompanies it, is an attempt to some extent bridge the gap between these different disciplines by bringing together authors and students from different backgrounds. A wide variety of geochemical processes including such diverse phenomena as the transport of radiogenic and toxic waste products, diagenesis, hydrothermal ore deposit formation, and metamorphism are the result of reactive transport in the subsurface. Such systems can be viewed as open bio-geochemical reactors where chemical change is driven by the interactions between migrating fluids, solid phases, and organisms. The evolution of these systems involves diverse processes including fluid flow, chemical reaction, and solute transport, each with differing characteristic time scales. This volume focuses on methods to describe the extent and consequences of reactive flow and transport in natural subsurface systems. Our ability to quantify reactive transport in natural systems has advanced dramatically over the past decade. Much of this advance is due to the exponential increase in computer computational power over the past generation-geochemical calculations that took years to perform in 1970 can be performed in seconds in 1996. Taking advantage of this increase of computational power, numerous comprehensive reactive transport models have been developed and applied to natural phenomena. These models can be used either qualitatively or qualitatively to provide insight into natural phenomena. Quantitative models force the investigator to validate or invalidate ideas by putting real numbers into an often vague hypothesis and thereby starting the thought process along a path that may result in acceptance, rejection, or modification of the original hypothesis. Used qualitatively, models provide. insight into the general features of a particular phenomenon, rather than specific details. One of the major questions facing the use of hydrogeochemical models is whether or not they can be used with confidence to predict future evolution of groundwater systems. There is much controversy concerning the validity and uncertainties of non-reactive fluid flow systems. Adding chemical interaction to these flow models only confounds the problem. Although such models may accurately integrate the governing physical and chemical equations, many uncertainties are inherent in characterizing the natural system itself. These systems are inherently heterogeneous on a variety of scales rendering it impossible to know precisely the many details of the flow system and chemical composition of the host rock. Other properties of natural systems such as permeability and mineral surface area, to name just two, may never be known with any great precision, and in fact may be unknowable. Because of these uncertainties, it remains an open question as to what extent numerical models of groundwater flow and reactive transport wilI be useful in making accurate quantitative predictions. Nevertheless, reactive transport models should be able to predict the outcome for the particular representation of the porous medium used in the model. Finally, it should be mentioned that numerical models are often our only recourse to analyze such environmental problems as safe disposal of nuclear waste where predictions must be carried out over geologic time spans. Without such models it would be impossible to analyze such systems, because they involve times too long to perform laboratory experiments. The results of model calculations may affect important political decisions that must be made. Therefore, it is all the more important that models be applied and tested in diverse environments so that confidence and understanding of the limitations and strengths of model predictions are understood before irreversible decisions are made that could adversely affect generations to come.
    Type of Medium: Monograph available for loan
    Pages: xiii, 438 S.
    ISBN: 0939950421 , 0-939950-45-6 , 978-0-939950-45-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 34
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Continuum Formulation of Multicomponent-Multiphase Reactive Transport by Peter C. Lichtner, p. 1 - 82 Chapter 2. Approaches to Modeling of Reactive Transport in Porous Media by Carl I. Steefel and Kerry T. B. MacQuarrie, p. 83 - 130 Chapter 3. Physical and Chemical Properties of Rocks and Fluids for Chemical Mass Transport Calculations by Eric H. Oelkers, p. 131 - 192 Chapter 4. Multicomponent Ion Exchange and Chromatography in Natural Systems by C. A. J. Appelo, p. 193 - 228 Chapter 5. Solute Transport Modeling Under Variably Saturated Water Flow Conditions by Donald L. Suarez and J. Simunek, p. 229 - 268 Chapter 6. Reactive Transport in Heterogeneous Systems: An Overview by Andrew F. B. Tompson and Kenneth J. Jackson, p. 269 - 310 Chapter 7. Microbiological Processes in Reactive Modeling by Bruce E. Rittmann and Jeanne M. VanBriesen, p. 311 - 334 Chapter 8. Biogeochemical Dynamics in Aquatic Sediments by Philippe Van Cappellen and Jean-Francois Gaillard, p. 335 - 376 Chapter 9. Reactive Transport Modeling of Acidic Metal-Contaminated Ground Water at a Site with Sparse Spatial Information by Pierre Glynn and James Brown, p. 377 - 438
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: M 96.0332
    Type of Medium: Monograph available for loan
    Pages: iv, 260 S.
    Classification:
    Mineralogy
    Language: German
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: M 99.0148
    Type of Medium: Monograph available for loan
    Pages: 164 S.
    ISSN: 0947-8620
    Series Statement: Wissenschaftliche Berichte / Forschungszentrum Karlsruhe 6291
    Classification:
    Mineralogy
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge Univ. Press
    Call number: 11/M 99.0472
    Type of Medium: Monograph available for loan
    Pages: 457 S.
    Edition: Reprinted 1995
    ISBN: 0521429471
    Classification:
    Mineralogy
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 99.0430 ; 11/M 00.0102 ; 11/M 99.0037
    In: Reviews in mineralogy
    Description / Table of Contents: This volume was prepared for a short course by the same title, organized by Russell J. Hemley and Ho-kwang Mao and sponsored by the Mineralogical Society of America, December 4-6, 1998 on the campus of the University of California at Davis. High-pressure mineralogy has historically been a vital part of the geosciences, but it is only in the last few years that the field has emerged as a distinct discipline as a result of extraordinary recent developments in high-pressure techniques. The domain of mineralogy is now no less than the whole Earth, from the deep crust to the inner core-the entire range of pressures and temperatures under which the planet's constituents were formed or now exist. The primary goal of this field is to determine the physical and chemical properties of materials that underlie and control the structural and thermal state, processes, and evolution of the planet. New techniques that have come 'online' within the last couple of years make it possible to determine such properties under extreme pressures and temperatures with an accuracy and precision that rival measurements under ambient conditions. These investigations of the behavior of minerals under extreme conditions link the scale of electrons and nuclei with global processes of the Earth and other planets in the solar system. It is in this broad sense that the term 'Ultrahigh-Pressure Mineralogy' is used for the title of this volume of Reviews in Mineralogy. This volume sets out to summarize, in a tutorial fashion, knowledge in this rapidly developing area of physical science, the tools for obtaining that knowledge, and the prospects for future research. The book, divided into three sections, begins with an overview (Chapter 1) of the remarkable advances in the ability to subject minerals-not only as pristine single-crystal samples but also complex, natural mineral assemblages-to extreme pressure-temperature conditions in the laboratory. These advances parallel the development of an arsenal of analytical methods for measuring mineral behavior under those conditions. This sets the stage for section two (Chapters 2-8) which focuses on high-pressure minerals in their geological setting as a function of depth. This top-down approach begins with what we know from direct sampling of high-pressure minerals and rocks brought to the surface to detailed geophysical observations of the vast interior. The third section (Chapters 9-19) presents the material fundamentals, starting from properties of a chemical nature, such as crystal chemistry, thermochemistry, element partitioning, and melting, and moving toward the domain of mineral physics such as melt properties, equations of state, elasticity, rheology, vibrational dynamics, bonding, electronic structure, and magnetism. The Review thus moves from the complexity of rocks to their mineral components and finally to fundamental properties arising directly from the play of electrons and nuclei. The following themes crosscut its chapters. Composition of the mantle and core Our knowledge of the composition of the Earth in part is rooted in information on cosmochemical abundances of the elements and observations from the geological record. But an additional and essential part of this enterprise is the utilization of the growing information supplied by mineral physics and chemistry in detailed comparison with geophysical (e.g. seismological) observations for the bulk of the planet. There is now detailed information from a variety of sources concerning crust-mantle interactions in subduction (Liou et aI., Chapter 2; Mysen et aI., Chapter 3). Petrological, geochemical, and isotope studies indicate a mantle having significant lateral variability (McDonough and Rudnick, Chapter 4). The extent of chemical homogeneity versus layering with depth in the mantle, a question as old as the recognition of the mantle itself, is a first-order issue that threads its way throughout the book. Agee (Chapter 5) analyzes competing models in terms of mineral physics, focusing on the origin of seismic discontinuities in the upper mantle. Bina (Chapter 6) examines the constraints for the lower mantle, with particular emphasis given to the variation of the density and bulk sound velocity with depth through to the core-mantle boundary region (Jeanloz and Williams, Chapter 7). Stixrude and Brown (Chapter 8) examine bounds on the composition of the core. Mineral elasticity and the link to seismology The advent of new techniques is raising questions of the mineralogy and composition of the deep Interior to a new level. As a result of recent advances in seismology, the depth-dependence of seismic velocities and acoustic discontinuities have been determined with high precision, lateral heterogeneities in the planet have been resolved, and directional anisotropy has been determined (Chapters 6 and 7). The first-order problem of constraining the composition and temperature as a function of depth alone is being redefined by high-resolution velocity determinations that define lateral chemical or thermal variations. As discussed by Liebermann and Li (Chapter 15), measurements of acoustic velocities can now be carried out simultaneously at pressures that are an order of magnitude higher, and at temperatures that are a factor of two higher, than those possible just a few years ago. The tools are in hand to extend such studies to related properties of silicate melts (Dingwell, Chapter 13). Remarkably, the solid inner core is elastically anisotropic (Chapter 8); with developments in computational methods, condensed-matter theory now provides robust and surprising predictions for this effect (Stixrude et aI., Chapter 19), and with very recent experimental advances, elasticity measurements of core material at core pressures can be performed directly (Chapters 1 and 15). Mantle dynamics The Earth is a dynamic planet: the rheological properties of minerals define the dynamic flow and texture of material within the Earth. Measurement of rheological properties at mantle pressures is a significant challenge that can now be addressed (Weidner, Chapter 16). Deviatoric stresses down to 0.1 GPa to pressures approaching 300 GPa can be quantified in high-pressure cells using synchrotron radiation (Chapter 1). The stress levels are an appropriate scale for understanding earthquake genesis, including the nature of earthquakes that occur at great depth in subducted slabs (deep-focus earthquakes) as these slabs travel through the Earth's mantle. Newly developed high-pressure, high-precision x-ray tools such as monochromatic radiation with modern detectors with short time resolution and employing long duration times are now possible with third-generation synchrotron sources to study the rheology of deep Earth materials under pressure (Chapter 1). Fate of subducting slabs One of the principal interactions between the Earth's interior and surface is subduction of lithosphere into the mantle, resulting in arc volcanoes, chemical heterogeneity in the mantle, as well as deep-focus earthquakes (Chapters 2 and 3). Among the key chemical processes associated with subduction is the role of water in the recycling process (Prewitt and Downs, Chapter 9), which at shallower levels is essential for understanding arc volcanism. Mass and energy transport processes govern global recycling of organic and inorganic materials, integration of these constituents in the Earth's interior, the evolution (chemically and physically) of descending slabs near convergent plate boundaries, and the fate of materials below and above the descending slab. Chapters 5 and 6 discuss the evidence for entrainment and passage of slabs through the 670 km discontinuity, and the possibility of remnant slabs in the anomalous D" region near the core-mantle boundary (Chapter 7). The ultimate fate of the materials cycled to such depths may affect interactions at the core-mantle boundary and may also hold clues to the initiation of diapiric rise. The evolution and fate of a subducting slab can now be addressed by experimental simulation of slab conditions, including in situ monitoring of a simulated slab in high-pressure apparatus in situ x-ray and spectroscopic techniques. The chemistry of volatiles changes appreciably under deep Earth conditions: they can be structurally bound under pressure (Prewitt and Downs, Chapter 9). Melting Understanding pressure-induced changes in viscosity and other physical properties of melts is crucial for chemical differentiation processes ranging from models of the magma ocean in the Earth's early history to the formation of magmatic ore deposits. (Chapter 13). Recent evidence suggests that melting may take place at great depth in the mantle. Seismic observations of a low-velocity zone and seismic anisotropy at the base of the mantle have given rise to debate about the existence of regions of partial melt deep in the mantle (Chapter 7). Deep melting is also important for mantle convection from subduction of the lithosphere to the rising of hot mantle plumes. Very recent advances in determination of melting relations of mantle and core materials with laser-heating techniques are beginning to provide accurate constraints (Shen and Heinz, Chapter 12). Sometimes lost in the debate on melting curves is the fact that a decade ago, there simply were no data for most Earth materials, only guesses and (at best) approximate models. Moreover, it is now possible to carry out in situ melting studies on multi-component systems, including natural assemblages, to deep mantle conditions. These results address whether or not partial melting is responsible for the observed seismic anomalies at the base of the mantle and provide constraints for mantle convection models (Chapter 7). The enigma of the Earth's core The composition, structure, formation, evolution, and current dynamic state of the Earth's core is an area of tremendous excitement (Chapter 8). The keys to understanding the available geophysical data are the material properties of liquid and crystalline iron under core conditions. New synchrotron-based methods and new developments in theory are being applied to determine all of the pertinent physical properties, and in conjunction with seismological and geodynamic data, to develop a full understanding of the core and its interactions with the mantle (Chapter 7). There has been considerable progress in determining the melting and phase relations of iron into the megabar range with new techniques (Chapter 12). Constraints are also obtained from theory (Chapter 19). These results feed into geophysical models for the outer and inner core flow, structural state, evolution, and the geodynamo. Moreover, there is remarkable evidence that the Earth's inner core rotates at a different rate than the rest of the Earth. This evidence in turn rests on the observation that the inner core is elastically anisotropic, a subject of current experimental and theoretical study from the standpoint of mineral physics, as described above. The thermodynamic framework Whole Earth processes must be grounded in accurate thermodynamic descriptions of phase equilibria in multi-component systems, as discussed by Navrotsky (Chapter 10). New developments in this area include increasingly accurate equations of state (Duffy and Wang, Chapter 14) required for modeling of phase equilibria as well as for direct comparison with seismic density profiles through the planet. Recent developments in in situ vibrational spectroscopy and theoretical models provide a means for independently testing available thermochemical data and a means for extending those data to high pressures and temperatures (Gillet et aI., Chapter 17). Accurate determinations of crystal structures provide a basis for understanding thermochemical trends (Chapter 9). Systematics for understanding solid-solution behavior and element partitioning are now available, at least to the uppermost regions of the lower mantle (Fei, Chapter 11). New measurements for dense hydrous phases are beginning to provide answers to fundamental questions regarding their stability of hydrous phases in the mantle (Chapters 3 and 9) and the partitioning of hydrogen and oxygen between the mantle and core (Chapter 8). Novel physical phenomena at ultrahigh pressures One of the key recent findings in high-pressure research is the remarkable effect of pressure on the chemistry of the elements, at conditions ranging from deep metamorphism of crustal minerals (Chapter 2) to "contact metamorphism" at the core-mantle boundary (Chapter 7). Pressure-induced changes in Earth materials represent forefront problems in condensed-matter physics. New crystal structures appear and the chemistry of volatiles changes (Chapter 9). Pressure-induced electronic transitions and magnetic collapse in transition metal ions strongly affect mineral properties and partitioning of major, minor, and trace elements (Chapter 11). Evidence for these transitions from experiment (Chapter 18) and theory (Chapter 19) is important for developing models for Earth formation and chemical differentiation. The conventional view of structurally and chemically complex minerals of the crust giving way to simple, close-packed structures of the deep mantle and a simple iron core is being replaced by a new chemical picture wherein dense silicates, oxides, and metals exhibit unusual electronic and magnetic properties and chemistry. In the end, this framework must dovetail with seismological observations indicating an interior of considerable regional variability, both radially and laterally depending on depth (e.g. Chapters 6 and 7). New classes of global models Information concerning the chemical and physical properties of Earth materials at high pressures and temperatures is being integrated with geophysical and geochemical data to create a more comprehensive global view of the state, processes, and history of the Earth. In particular, models of the Earth's interior are being developed that reflect the details contained in the seismic record but are bounded by laboratory information on the physics and chemistry of the constituent materials. Such "Reference Earth Models" includes the development of reference data sets and modeling codes. Tools that produce seismological profiles from hypothesized mineralogies (Chapters 4 and 5) are now possible, as are tools for testing these models against 'reference' seismological data sets (Chapter 6). These models incorporate the known properties of the Earth, such as crust and lithosphere structure, and thus have both an Earth-materials and seismological orientation. Other planets The Earth cannot be understood without considering the rest of the solar system. The terrestrial planets of our solar system share a common origin, and our understanding of the formation of the Earth is tied to our understanding of the formation of its terrestrial neighbors, particularly with respect to evaluating the roles of homogeneous and heterogeneous processes during accretion. As a result of recent developments in space exploration, as well as in the scope of future planetary missions, we have new geophysical and geochemical data for the other terrestrial planets. Models for the accretion history of the Earth can now be reevaluated in relation to this new data. Experiments on known Earth materials provide the thermodynamic data necessary to calculate the high-pressure mineralogy of model compositions for the interior of Mars and Venus. Notably, the outer planets have the same volatile components as the Earth, just different abundances. Studies of the outer planets provide both an additional perspective on our own planet as well as a vast area of opportunity for application of these newly developed experimental techniques (Chapter 1 and 17). New techniques in the geosciences The utility of synchrotron radiation techniques in mineralogy has exceeded the expectations of even the most optimistic. New spectroscopic methods developed for high-pressure mineralogy are now available for characterizing small samples from other types of experiments. For example, the same techniques developed for in situ studies at high pressures and temperatures are being used to investigate microscopic inclusions such as coesite in high-pressure metamorphic rocks (Chapter 2) and deep-mantle samples as inclusions in diamond (Chapter 3). With the availability of a new generation of synchrotron radiation sources (Chapter 1) and spectroscopic techniques (Chapter 17), a systematic application of new methods, including micro tomographic x-ray analysis of whole rock samples, is now becoming routinely possible. Contributions in technology. Finally, there are implications beyond the geosciences. Mineralogy has historically has led many to conceptual and technical developments used in other fields, including metallurgy and materials science, and the new area of ultrahigh pressure mineralogy continues this tradition. As pointed out in Chapter 1, many highpressure techniques have their origins in geoscience laboratories, and in many respects, geoscience leads development of high-pressure techniques in physics, chemistry, and materials science. New developments include the application of synthetic diamond for new classes of 'large-volume' high-pressure cells. Interestingly, information on diamond stability, including its metastable growth, feeds back directly on efforts to grow large diamonds for the next generation of such high-pressure devices (Chapter 1). Microanalytical techniques, such as micro-spectroscopy and x-ray diffraction, developed for high-pressure research are now used outside of this field of research as well. The study of minerals and mineral analogs under pressure is leading to new materials. As in the synthesis of diamond itself, these same scientific approaches promise the development of novel, technological materials.
    Type of Medium: Monograph available for loan
    Pages: xvi, 671 S.
    ISBN: 0-939950-48-0 , 978-0-939950-48-5
    ISSN: 1529-6466
    Series Statement: Reviews in Mineralogy 37
    Classification:
    Mineralogy
    Language: English
    Note: I. Overview Chapter 1. New Windows on the Earth's Deep Interior by Ho-kwang Mao and Russell J. Hemley, p. 1 - 32 II. Minerals in Context: The Earth's Deep Interior Chapter 2. High-pressure minerals from deeply subducted metamorphic rocks by J.G. Liou, R.Y. Zhang, W.G. Ernst, Douglas Rumble III, and Shigenori Maruyama, p. 33 - 96 Chapter 3. The Upper Mantle Near Convergent Plate Boundaries by Bjorn O. Mysen, Peter Ulmer, Juergen Konzett, and Max W. Schmidt, p. 97 - 138 Chapter 4. Mineralogy and Composition of the Upper Mantle by William F. McDonough and Roberta L. Rudnick, p. 139 - 164 Chapter 5. Phase Transformations and Siesmic Structure in the Upper Mantle and Transition Zone by Carl B. Agee, p. 165 - 204 Chapter 6. Lower Mantle Mineralogy and the Geophysical Perspective by Craig R. Bina, p. 205 - 240 Chapter 7. The Core-Mantle Boundary Region by Raymond Jeanloz and Quentin Williams, p. 241 - 260 Chapter 8. The Earth's Core by Lars Stixrude and J. Michael Brown, p. 261 - 282 Chapter 9. High-Pressure Crystal Chemistry by Charles T. Prewitt and Robert T. Downs, p. 283 - 318 III. Mineral Fundamentals: Physics and Chemistry Chapter 10. Thermodynamics of High-Pressure Phases by Alexandra Navrotsky, p. 319 - 342 Chapter 11. Solid Solutions and Element Partitioning at High Pressures and Temperatures by Yingwei Fei, p. 343 - 368 Chapter 12. High-Pressure Melting of Deep Mantle and Core Materials by Guoyin Shen and Dion L. Heinz, p. 369 - 396 in the 2002-02-07 print version, the first page of Chapter 12 (page 369) was switched with the first page of Chapter 13 (p. 397) Chapter 13. Melt Viscosity and Diffusion under Elevated Pressures by Donalds B. Dingwell, p. 397 - 424 in the 2002-02-07 print version, the first page of Chapter 12 (page 369) was switched with the first page of Chapter 13 (p. 397) Chapter 14. Pressure-Volume-Temperature Equations of State by Thomas S. Duffy and Yanbin Wang, p. 425 - 458 Chapter 15. Elasticity at High Pressures and Temperatures by Robert C. Liebermann and Baosheng Li, p. 459 - 492 Chapter 16. Rheological Studies at High Pressure by Donald J. Weidner, p. 493 - 524 Chapter 17. Vibrational Properties at High Pressures and Temperatures by Philippe Gillet, Russell J. Hemley, and Paul F. McMillan, p. 525 - 590 Chapter 18. High-Pressure Electronic and Magnetic Properties by Russell J. Hemley, Ho-kwang Mao, and Ronald E. Cohen, p. 591 - 538 Chapter 19. Theory of Minerals at High Pressure by Lars Stixrude, Ronald E. Cohen, and Russell J. Hemley, p. 639 - 671
    Location: Reading room
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 99.0429 ; 11/M 98.0500 ; 11/M 00.0101
    In: Reviews in mineralogy
    Description / Table of Contents: We seek to understand the timing and processes by which our solar system formed and evolved. There are many ways to gain this understanding including theoretical calculations and remotely sensing planetary bodies with a number of techniques. However, there are a number of measurements that can only be made with planetary samples in hand. These samples can be studied in laboratories on Earth with the full range of high-precision analytical instruments available now or available in the future. The precisions and accuracies for analytical measurements in modern Earth-based laboratories are phenomenal. However, despite the fact that certain types of measurements can only be done with samples in hand, these samples will always be small in number and not necessarily representative of an entire planetary surface. Therefore, it is necessary that the planetary material scientists work hand-in-hand with the remote sensing community to combine both types of data sets. This exercise is in fact now taking place through an initiative of NASA's Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM). This initiative is named "New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets." As preliminary results of the Lunar Prospector mission become available, and with the important results of the Galileo and Clementine missions now providing new global data sets of the Moon, it is imperative that the lunar science community synthesize these new data and integrate them with one another and with the lunar-sample database. Integrated approaches drawing upon multiple data sets can be used to address key problems of lunar origin, evolution, and resource definition and utilization. The idea to produce this Reviews in Mineralogy (RIM) volume was inspired by the realization that many types of planetary scientists and, for that matter, Earth scientists will need access to data on the planetary sample suite. Therefore, we have attempted to put together, under one cover, a comprehensive coverage of the mineralogy and petrology of planetary materials. The book is organized with an introductory chapter that introduces the reader to the nature of the planetary sample suite and provides some insights into the diverse environments from which they come. Chapter 2 on Interplanetary Dust Particles (IDPs) and Chapter 3 on Chondritic Meteorites deal with the most primitive and unevolved materials we have to work with. It is these materials that hold the clues to the nature of the solar nebula and the processes that led to the initial stages of planetary formation. Chapter 4, 5, and 6 consider samples from evolved asteroids, the Moon and Mars respectively. Chapter 7 is a brief summary chapter that compares aspects of melt-derived minerals from differing planetary environments.
    Type of Medium: Monograph available for loan
    Pages: xv, 864 S.
    ISBN: 0-939950-46-4 , 978-0-939950-46-1
    ISSN: 1529-6466
    Series Statement: Reviews in Mineralogy 36
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. The Planetary Sample Suite and Environments of Origin by Charles K. Shearer, James J. Papike., and Frans J.M. Rietmeijer, p. 1-01 - 1-28 Chapter 2. Interplanetary Dust Particles by Frans J.M. Rietmeijer, p. 2-01 - 2-96 Chapter 3. Chondritic Meteorites by Adrian J. Brearley and Rhian H. Jones, p. 3-001 - 3-398 Chapter 4. Non-Chondritic Meteorites from Asteroidal Bodies by David Wayne Mittlefehldt, Timothy J. McCoy, Cyrena Anne Goodrich, and Alfred Kracher, p.4-001 - 4-196 Chapter 5. Lunar Samples by James J. Papike, G. Ryder, and Charles K. Shearer, p. 5-001 - 5-234 Chapter 6. Martian Meteorites by Harry Y. McSween, Jr. and Allan H. Treiman, p. 6-01 - 6-54 Chapter 7. Comparative Planetary Mineralogy: Chemistry of Melt- Derived Pyroxene, Feldspar, and Olivine by James J. Papike, p. 7-01 - 7-12
    Location: Reading room
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Series available for loan
    Series available for loan
    Washinton, DC : United States Gov. Print. Off.
    Associated volumes
    Call number: S 90.0003(1142)
    In: U.S. Geological Survey circular
    Type of Medium: Series available for loan
    Pages: VII, 70 S.
    Series Statement: U.S. Geological Survey circular 1142
    Classification:
    Mineralogy
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Monograph available for loan
    Monograph available for loan
    Dordrecht [u.a.] : Kluwer Acad. Publ.
    Call number: M 99.0454
    Type of Medium: Monograph available for loan
    Pages: xviii, 409 S.
    ISBN: 0412832402
    Classification:
    Mineralogy
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Call number: 11/M 00.0416
    In: Modern crystallography
    Type of Medium: Monograph available for loan
    Pages: XXI, 482 S.
    Edition: 2nd, enlarged ed., corr. printing
    ISBN: 3540565582
    Series Statement: Modern crystallography 1
    Classification:
    Mineralogy
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Call number: M 01.0083
    In: Asociación Geológica Argentina
    Type of Medium: Monograph available for loan
    Pages: IV, 124 S.
    Series Statement: Asociación Geológica Argentina : Serie B, Didáctica y complementaria 23
    Classification:
    Mineralogy
    Language: Spanish
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 99.0611
    In: Reviews in mineralogy
    Description / Table of Contents: This volume was written in preparation for a short course by the same title, sponsored by the Mineralogical Society of America, October 22 and 23, 1999 in Golden, Colorado, prior to MSA's joint annual meeting with the Geological Society of America. Research emphasis in traditional mineralogy has often focused on detailed studies of a few hundred common rock-forming minerals. However, scanning the contents of a current issue of American Mineralogist or Canadian Mineralogist, or the titles of recent Reviews in Mineralogy volumes reveals that the emphasis of mineralogical research has undergone considerable change recently. Less-common, low-temperature minerals are receiving ever increasing attention, often owing to their importance to the environment. A tremendous challenge lies ahead for mineralogists and geochemists: the occurrences, structures, stabilities, and paragenesis of perhaps a thousand low-temperature minerals require detailed study if geoscientists are to be properly equipped to tackle environmental problems today and in the future. In many low-temperature environments mineral assemblages are extremely complex, with more than 10 species common in many em-size samples. This Reviews in Mineralogy volume provides detailed reviews of various aspects of the mineralogy and geochemistry of uranium; hopefully the reader will benefit from this presentation, and perhaps more importantly, the reader may develop a sense of the tremendous amount of work that remains to be done, not only concerning uranium in natural systems, but for low-temperature mineralogy and geochemistry in general. The low crustal abundance of uranium belies its mineralogical and geochemical significance: more than five percent of minerals known today contain uranium as an essential constituent. Uranium is a geochemical and geochronological indicator, and the U-Pb decay series has long been one of the most important systems for dating rocks and minerals. Uranium is an important energy source, and the uranium nuclear fuel cycle has generated a great deal of interest in uranium mineralogy and geochemistry since the first controlled nuclear fission reaction nearly sixty years ago. Current interest in uranium mineralogy and geochemistry stems in large part from the utilization of uranium as a natural resource. Environmental issues such as coping with uranium mine and mill tailings and other uranium-contaminated sites, as well as permanent disposal of highly radioactive uranium-based nuclear fuels in deep geologic repositories, have all refocused attention on uranium. More than twenty years have passed since the 1978 Mineralogical Association of Canada's Short Course on Uranium Deposits. A realignment of research focus has clearly occurred since then, from exploration and exploitation to environmental remediation and geological "forecasting" of potential future impacts of decisions made today. The past decades have produced numerous remarkable advances in our understanding of uranium mineralogy and geochemistry, as well as technological and theoretical advances in analytical techniques which have revolutionized research of trace-elements, including uranium. It was these advances that provided us the impetus to develop this volume. We have attempted to produce a volume that incorporates most important aspects of uranium in natural systems, while providing some insight into important applications of uranium mineralogy and geochemistry to environmental problems. The result is a blend of perspectives and themes: historical (Chapter 1), crystal structures (Chapter 2), systematic mineralogy and paragenesis (Chapters 3 and 7), the genesis of uranium ore deposits (Chapters 4 and 6), the geochemical behavior of uranium and other actinides in natural fluids (Chapter 5), environmental aspects of uranium such as microbial effects, groundwater contamination and disposal of nuclear waste (Chapters 8, 9 and 10), and various analytical techniques applied to uranium-bearing phases (Chapters 11-14).
    Type of Medium: Monograph available for loan
    Pages: 679 S.
    ISBN: 0-939950-50-2 , 978-0-939950-50-8
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 38
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Radioactivity and the 20th Century by Rodney C. Ewing, p. 1 - 22 Chapter 2. The Crystal Chemistry of Uranium by Peter C. Burns, p. 23 - 90 Chapter 3. Systematics and Paragenesis of Uranium Minerals by Robert Finch and Takaski Murakami, p. 91 - 180 Chapter 4. Stable Isotope Geochemistry of Uranium Deposits by Mostafa Fayek and T. Kurtis Kyser, p. 181 - 220 Chapter 5. Environmental Aqueous Geochemistry of Actinides by William M. Murphy and Everett. L. Shock, p. 221 - 254 Chapter 6. Uranium Ore Deposits: Products of the Radioactive Earth by Jane Plant, Peter R. Simpson, Barry Smith, and Brian F. Windley, p. 255 - 320 Chapter 7. Mineralogy and Geochemistry of Natural Fission Reactors in Gabon by Janusz Janeczek, p. 321 - 392 Chapter 8. Geomicrobiology of Uranium by Yohey Suzuki and Jillian F. Banfield, p. 393 - 432 Chapter 9. Uranium Contamination in the Subsurface: Characterization and Remediation by Abdessalam Abdelouas, Werner Lutze, and H. Eric Nuttall, p. 433 - 474 Chapter 10. Uranium Mineralogy and the Geologic Disposal of Spent Nuclear Fuel by David Wronkiewicz and Edgar Buck, p. 475 - 498 Chapter 11. Spectroscopic Techniques Applied to Uranium in Minerals by John M. Hanchar, p. 499 - 520 Chapter 12. Infrared Spectroscopy and Thermal Analysis of the Uranyl Minerals by Jiri Cejka, p. 521- 622 Chapter 13. Analytical Methods for the Determination of Uranium in Geological and Environmental Materials by Stephen F. Wolf, p. 623 - 652 Chapter 14. Identification of Uranium-bearing Minerals and Inorganic Phases by X-ray Powder Diffraction by Frances C. Hill , p. 653 - 680
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Monograph available for loan
    Monograph available for loan
    Aleksandrov : VNIISIMS
    Call number: M 00.0469
    Type of Medium: Monograph available for loan
    Pages: 235 S.
    Classification:
    Mineralogy
    Language: Undetermined
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Monograph available for loan
    Monograph available for loan
    Heidelberg
    Associated volumes
    Call number: M 99.0586
    In: Heidelberger geowissenschaftliche Abhandlungen
    Type of Medium: Monograph available for loan
    Pages: III, 323 S.
    ISBN: 3931161153
    Series Statement: Heidelberger geowissenschaftliche Abhandlungen 89
    Classification:
    Mineralogy
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Dekker
    Call number: M 00.0213
    Type of Medium: Monograph available for loan
    Pages: xii, 705 S. + 1 Disk.
    Edition: 2nd., rev. and expanded
    ISBN: 0824799372
    Classification:
    Mineralogy
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Series available for loan
    Series available for loan
    Leiden : Nationaal Natuurhistorisch Museum Naturalis
    Associated volumes
    Call number: S 93.0422(118)
    In: Scripta geologica
    Type of Medium: Series available for loan
    Pages: 46 S.
    Series Statement: Scripta Geologica 118
    Classification:
    Mineralogy
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Call number: S 99.0056(99/6)
    In: Terra nostra
    Type of Medium: Series available for loan
    Pages: VII, 334 S.
    Series Statement: Terra nostra 99/6
    Classification:
    Mineralogy
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Call number: 11/M 99.0029
    In: Rock-forming minerals
    Type of Medium: Monograph available for loan
    Pages: 383 S.
    Edition: 2nd ed. 1996, repr.
    ISBN: 189779990X
    Classification:
    Mineralogy
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Monograph available for loan
    Monograph available for loan
    Washington, DC : American Geophysical Union
    Associated volumes
    Call number: 5/M 98.0287
    In: Geophysical monograph
    Type of Medium: Monograph available for loan
    Pages: xii, 562 S.
    ISBN: 0875900836
    Series Statement: Geophysical monograph 101
    Classification:
    Mineralogy
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Oxford Univ. Press.
    Associated volumes
    Call number: M 95.0084
    In: International Union of Crystallography monographs on crystallography
    Type of Medium: Monograph available for loan
    Pages: VIII, 298 S.
    Edition: [1st publ. in paperback]
    ISBN: 0198559127
    Series Statement: International Union of Crystallography monographs on crystallography 5
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Monograph available for loan
    Monograph available for loan
    Chichester [u.a.] : Wiley
    Associated volumes
    Call number: M 95.0039/2
    In: Intermetallic compounds
    Type of Medium: Monograph available for loan
    Pages: xxvi, 752 S.
    ISBN: 0471934542
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Monograph available for loan
    Monograph available for loan
    Chichester [u.a.] : Wiley
    Associated volumes
    Call number: M 95.0039/1
    In: Intermetallic compounds
    Type of Medium: Monograph available for loan
    Pages: xxviii, 1126 S.
    ISBN: 0471942197
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Call number: M 95.0184
    In: Advanced mineralogy
    Type of Medium: Monograph available for loan
    Pages: XXI, 441 S.
    ISBN: 3540572554
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Monograph available for loan
    Monograph available for loan
    London [u.a.] : Chapman & Hall
    Associated volumes
    Call number: 11/M 95.0458 ; M 95.0459 ; M 95.0453
    In: The Mineralogical Society series
    Type of Medium: Monograph available for loan
    Pages: xi, 419 S.
    ISBN: 0412551004
    Series Statement: Mineralogical Society series 6
    Classification:
    Mineralogy
    Language: English
    Location: Reading room
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0028 ; 11/M 96.0038
    In: Reviews in mineralogy
    Description / Table of Contents: The Mineralogical Society of America sponsored a short course for which this was the text at Stanford University December 9 and 10, 1995, preceding the Fall Meeting of the American Geophysical Union and MSA in San Fransisco, with about 100 professionals and graduate students in attendance. A silicate melt phase is the essential component of nearly all igneous processes, with dramatic consequences for the properties of the Earth's interior. Throughout Earth history and continuing to the present day, silicate melts have acted as transport agents in the chemical and physical differentiation of the Earth into core, mantle and crust. The occurrence of such magmatic processes leads to the definition of our planet as "active," and the resulting volcanism has a profound impact on the Earth's atmosphere, hydrosphere and biosphere. Although near-surface melts are observed directly during volcanic eruptions, the properties of magmas deep within the Earth must be characterized and constrained by laboratory experiments. Many of these experiments are designed to aid in developing an atomic level understanding of the structure and dynamics of silicate melts under the P- T conditions of the Earth's crust and mantle, which will make extrapolation from the laboratory results to the behavior of natural magmas as reliable as possible. Silicate melts are also the archetypal glass-forming materials. Because of the ready availability of raw materials, and the ease with which molten silicates can be vitrified, commercial "glass" has necessarily implied a silicate composition, over most of the history of glass technology. The properties of the melt, or "slag" in metallurgical extractions, determine the nature of the glass formed, and the needs of the glass industry have provided much of the impetus for understanding the structure-property relations of molten silicates as well as for the glasses themselves. It is now recognized that any liquid might become glassy, if cooled rapidly enough, and understanding the thermodynamic and kinetic aspects of the glass transition, or passage between the liquid and glassy states of matter, has become a subject of intense interest in fundamental physics and chemistry. Glasses have also been studied in many geochemical investigations, often as substitutes for the high temperature melts, with the results being extrapolated to the liquid state. In many cases, in situ techniques for direct investigation of these refractory systems have only recently become available. Much valuable information concerning the melt structure has been gleaned from such studies. Nevertheless, there are fundamental differences between the liquid and glassy states. In liquids, the structure becomes progressively more disordered with increasing temperature, which usually gives rise to major changes in all thermodynamic properties and processes. These changes must, in general, be investigated directly by in situ studies at high temperature. Studies of glass only represent a starting point, which reflect a frozen image of the melt "structure" at the glass transition temperature. This is generally hundreds of degrees below the near-liquidus temperatures of greatest interest to petrologists. Since the early 1980s, a much deeper understanding of the structure, dynamics, and properties of molten silicates has been developed within the geochemical community, applying techniques and concepts developed within glass science, extractive metallurgy and liquid state physics. Some of these developments have far-reaching implications for igneous petrology. The purpose of this Short Course and volume is to introduce the basic concepts of melt physics and relaxation theory as applied to silicate melts, then to describe the current state of experimental and computer simulation techniques for exploring the detailed atomic structure and dynamic processes which occur at high temperature, and finally to consider the relationships between melt structure, thermodynamic properties and rheology within these liquids. These fundamental relations serve to bridge the extrapolation from often highly simplified melt compositions studied in the laboratory to the multicomponent systems found in nature. This volume focuses on the properties of simple model silicate systems, which are usually volatile-free. The behavior of natural magmas has been summarized in a previous Short Course volume (Nicholls and Russell, editors, 1990: Reviews in Mineralogy, Vol. 24), and the effect of volatiles on magmatic properties in yet another (Carroll and Holloway, editors, 1994: Vol. 30). In the chapters by Moynihan, by Webb and Dingwell, and by Richet and Bottinga, the concepts of relaxation and the glass transition are introduced, along with techniques for studying the rheology of silicate liquids, and theories for understanding the transport and relaxation behavior in terms of the structure and thermodynamic properties of the liquid. The chapter by Dingwell presents applications of relaxation-based studies of melts in the characterization of their properties. Chapters by Stebbins, by Brown, Farges and Calas, and by McMillan and Wolf present the principal techniques for studying the melt structure and atomic scale dynamics by a variety of spectroscopic and diffraction methods. Wolf and McMillan summarize our current understanding of the effects of pressure on silicate glass and melt structure. Chapters by Navrotsky and by Hess consider the thermodynamic properties and mixing relations in simple and multicomponent aluminosilicate melts, both from a fundamental structural point of view and empirical chemical models which can be conveniently extrapolated to natural systems. The chapter by Chakraborty describes the diffusivity of chemical species in silicate melts and glasses, and the chapter by Poole, McMillan and Wolf discusses the application of computer simulation methods to understanding the structure and dynamics of molten silicates. The emphasis in this volume is on reviewing the current state of knowledge of the structure, dynamics and physical properties of silicate melts, along with present capabilities for studying the molten state under conditions relevant to melting within the Earth, with the intention that these techniques and results can then be applied to understanding and modeling both the nature of silicate melts and the role of silicate melts in nature.
    Type of Medium: Monograph available for loan
    Pages: xv, 616 S.
    ISBN: 0-939950-39-1 , 978-0-939950-39-3
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 32
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Structural Relaxation and the Glass Transition by Cornelius T. Moynihan, p. 1 - 20 Chapter 2. Relaxation in Silicate Melts: Some Applications by Donald B. Dingwell, p. 21 - 66 Chapter 3. Rheology and Configurational Entropy of Silicate Melts by P. Richet & Y. Bottinga, p. 67 - 94 Chapter 4. Viscoelasticity by Sharon L. Webb and Donald B. Dingwell, p. 95 - 120 Chapter 5. Energetics of Silicate Melts by Alexandra Navrotsky, p. 121 - 144 Chapter 6. Thermodynamic Mixing Properties and the Structure of Silicate Melts by Paul C. Hess, p. 145 - 190 Chapter 7. Dynamics and Structure of Silicate and Oxide Melts: Nuclear Magnetic Resonance Studies by Jonathan F. Stebbins, p. 191 - 246 Chapter 8. Vibrational Spectroscopy of Silicate Liquids by Paul F. McMillan and George H. Wolf, p. 247 - 316 Chapter 9. X-ray Scattering and X-ray Spectroscopy Studies of Silicate Melts by Gordon E. Brown, Jr., François Farges, and G. Calas, p. 317 - 410 Chapter 10. Diffusion in Silicate Melts by Sumit Chakraborty, p. 411 - 504 Chapter 11. Pressure Effects on Silicate Melt Structure and Properties by G. H. Wolf and Paul F. McMillan, p. 505 - 562 Chapter 12. Computer Simulations of Silicate Melts by Peter H. Poole, Paul F. McMillan, and George H. Wolf, p. 563 - 616
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 95.0709
    Type of Medium: Monograph available for loan
    Pages: XIX, 466 S.
    ISBN: 3540505644
    Uniform Title: Difraktsiia rentgenovskikh luchei i neitronov v neidealnykh kristallakh
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Monograph available for loan
    Monograph available for loan
    Oxford [u.a.] : Pergamon Press
    Call number: M 96.0083
    Type of Medium: Monograph available for loan
    Pages: xxi, 497 S.
    Edition: [1st ed.]
    ISBN: 0080418848
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Monograph available for loan
    Monograph available for loan
    London [u.a.] : Chapman & Hall
    Associated volumes
    Call number: 11/M 96.0355 ; M 96.0087
    In: The Mineralogical Society series
    Type of Medium: Monograph available for loan
    Pages: xiv, 372 S.
    ISBN: 0412610302
    Series Statement: Mineralogical Society series 7
    Classification:
    Mineralogy
    Language: English
    Location: Reading room
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0037
    In: Reviews in mineralogy
    Description / Table of Contents: This book reviews current thinking on the fundamental processes that control chemical weathering of silicates, including the physical chemistry of reactions at mineral surfaces, the role of experimental design in isolating and quantifying these reactions, and the complex roles that water chemistry, hydrology, biology, and climate play in weathering of natural systems. The chapters in this volume are arranged to parallel this order of development from theoretical considerations to experimental studies to characterization of natural systems. Secondly, the book is meant to serve as a reference from which researchers can readily retrieve quantitative weathering rate data for specific minerals under detailed experimental controls or for natural weathering conditions. Toward this objective, the authors were encouraged to tabulate available weathering rate data for their specific topics. Finally this volume serves as a forum in which suggestions and speculations concerning the direction of future weathering research are discussed. The comprehensive nature of the volume provides opportunities to address important temporal and spacial issues that often separate the work and thinking of investigators working on specific aspects of chemical weathering. As has become apparent in assembling this volume, a number of important issues related to chemical weathering are unresolved. No effort was made to reach a consensus on these issues. Divergences in opinion were accepted between various authors and are apparent in the chapters of this volume.
    Type of Medium: Monograph available for loan
    Pages: xv, 583 S.
    ISBN: 0-939950-38-3 , 978-0-939950-38-6
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 31
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Chemical Weathering Rates of Silicate Minerals: An Overview by Arthur F. White and Susan L. Brantley, p. 1 - 22 Chapter 2. Fundamental Approaches in Describing Mineral Dissolution and Precipitation Rates by Antonio C. Lasaga, p. 23 - 86 Chapter 3. Silicate Mineral Dissolution as a Ligand-Exchange Reaction by William H. Casey and Christian Ludwig, p. 87 - 118 Chapter 4. Chemical Weathering Rates of Pyroxenes and Amphiboles by Susan L. Brantley and Y. Chen, p. 119 - 172 Chapter 5. Dissolution and Precipitation Kinetics of Sheet Silicates by Kathryn L. Nagy, p. 173 - 234 Chapter 6. Kinetic and Thermodynamic Controls on Silica Reactivity in Weathering Environments by Patricia M. Dove, p. 235 - 290 Chapter 7. Feldspar Dissolution Kinetics by Alex E. Blum and Lisa L. Stillings, p. 291 - 352 Chapter 8. Chemical Weathering of Silicates in Nature: A Microscopic Perspective with Theoretical Considerations by Michael F. Hochella, Jr. and Jillian F. Banfield, p. 353 - 406 Chapter 9. Chemical Weathering Rates of Silicate Minerals in Soils by Arthur F. White, p. 407 - 462 Chapter 10. Weathering Rates in Catchments by James I. Drever and D. W. Clow, p. 463 - 484 Chapter 11. Estimating Field Weathering Rates using Laboratory Kinetics by Harald Sverdrup and Per Warfvinge, p. 585 - 542 Chapter 12. Relating Chemical and Physical Erosion by Robert F. Stallard, p. 543 - 564 Chapter 13. Chemical Weathering and Its Effect on Atmospheric CO2 and Climate by Robert A. Berner, p. 565 - 583
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Monograph available for loan
    Monograph available for loan
    Oxford : Clarendon Press
    Associated volumes
    Call number: M 97.0035
    In: Monographs on the physics and chemistry of materials
    Type of Medium: Monograph available for loan
    Pages: xxxii, 819 S.
    Edition: 1st publ. (with corr.).
    ISBN: 0198500610
    Series Statement: Monographs on the physics and chemistry of materials 51
    Classification:
    Mineralogy
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Monograph available for loan
    Monograph available for loan
    Oxford : Clarendon Press
    Associated volumes
    Call number: M 95.0558
    In: Monographs on the physics and chemistry of materials
    Type of Medium: Monograph available for loan
    Pages: xxxii, 819 S.
    ISBN: 0198513852
    Series Statement: Monographs on the physics and chemistry of materials 51
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Call number: 11/M 96.0367
    In: Rock-forming minerals
    Type of Medium: Monograph available for loan
    Pages: 383 S.
    Edition: 2nd ed.
    ISBN: 0582300932
    Classification:
    Mineralogy
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Monograph available for loan
    Monograph available for loan
    Dordrecht [u.a.] : Kluwer Acad. Publishers
    Associated volumes
    Call number: 11/M 95.0325
    In: International tables for crystallography
    Type of Medium: Monograph available for loan
    Edition: 4th, revised ed
    ISBN: 0792329503
    Classification:
    Mineralogy
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Monograph available for loan
    Monograph available for loan
    Associated volumes
    Call number: M 04.0606/1
    In: Inorganic library of FTIR spectra
    Type of Medium: Monograph available for loan
    Pages: 300 Bl.
    Classification:
    Mineralogy
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...