ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,239,737)
  • Data  (141)
  • 2020-2022  (1,239,878)
Collection
Keywords
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-04-05
    Description: An Plattengrenzen befinden sich hydrothermale Quellen, aus denen heißes mit Sulfiden angereichertes Wasser heraus strömt. Aufgrund der dunklen Färbung des Wassers spricht man von schwarzen Rauchern. Beim Kontakt mit dem kalten Meerwasser kühlt die Lösung ab und die Sulfide werden abgeschieden. Mit der Zeit entstehen im Bereich der schwarzen Raucher Lagerstätten aus marinen Massivsulfiden (Okrusch & Matthes, 2014). Da diese für eine zukünftige Rohstoffgewinnung von Interesse sind, werden die Lagerstätten mit geophysikalischen Methoden untersucht. Aus diesem Grund wurde in einer früheren Arbeit von Spagnoli et al. (2016) ein Probensatz aus 40 zylindrischen Proben mit Spektraler Induzierter Polarisation (SIP) vermessen. Die Zylinder wurden dazu aus diversen Handstücken gebohrt, die uns vom GEOMAR in Kiel zur Verfügung gestellt worden sind. Im Rahmen dieser Arbeit soll nun untersucht werden, wie vorgegangen werden kann, wenn keine Zylinder gebohrt werden können. Dies kann zum einen der Fall sein, wenn die wertvollen Handstücke nicht beschädigt werden sollen. Zum anderen sind Sulfidproben teilweise sehr spröde, sodass es gegebenenfalls rein technisch nicht möglich ist, passende Proben zu fertigen. Aus dem Grund soll eine Methode untersucht werden, auch irregulär geformte Proben impedanzelektrisch zu vermessen.
    Language: German
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-06
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-17
    Description: This dataset and code are related to artificial light emissions in the arctic area. They are a supplement to the report "Capabilities and limitations of advanced optical satellite missions for snow, vegetation, and artificial light source applications in Arctic areas".
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-05
    Description: The South Hangai fault system, located between the uplifted Hangai Dome and the Gobi-Altai Mountains in central Mongolia, represents an ancient suture zone and terrane boundary, which is possibly an extension of the Mongol–Okhotsk suture that resulted from the closure of the Mongol–Okhotsk Ocean. The adjacent obducted Bayankhongor Ophiolite Belt is possibly the longest continuous ophiolite belt in the world. This area is important because it is associated with the Bayankhongor Metal Belt, which is an economically significant zone for ore extraction in Mongolia, including important sources of gold and copper. Electrical resistivity is a key parameter for mineral exploration. Because faults and suture zones are regions of fractured, weakened crust they often have circulating fluids that act to increase their electrical conductivity. Additionally, economic mineralization is commonly associated with a conductive signature from associated sulfide minerology. We present magnetotelluric data acquired in an array across the southern Hangai region, Valley of Lakes, Mongolia. The magnetotelluric data were used to generate 3-D electrical resistivity models of the shallow crustal structure. Because the cratonic upper crust is highly resistive (〉 1000 Ωm), the low- resistivity (〈 30 Ωm) South Hangai fault system is easily detected. It is revealed to be a major crustal-scale structure. A clear transition in crustal electrical properties was observed across the suture zone and may reflect both the rheological and petrological differences across accreted terranes. Furthermore, anomalous, low-resistivity zones in the crust are spatially associated with the surface expressions of known mineralization and resource extraction projects. By combining our electrical resistivity results with other geological and petrological data we attempt to gain insights into the potential mineral resources of this unique region, and their origin.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-04-09
    Description: AROSICS is a python package to perform automatic subpixel co-registration of two satellite image datasets based on an image matching approach working in the frequency domain, combined with a multistage workflow for effective detection of false-positives. It detects and corrects local as well as global misregistrations between two input images in the subpixel scale, that are often present in satellite imagery. The algorithm is robust against the typical difficulties of multi-sensoral / multi-temporal images. Clouds are automatically handled by the implemented outlier detection algorithms. The user may provide user-defined masks to exclude certain image areas from tie point creation. The image overlap area is automatically detected. AROSICS supports a wide range of input data formats and can be used from the command line (without any Python experience) or as a normal Python package.
    Language: English
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-04-09
    Description: The EnPT Python package is an automated pre-processing pipeline for the new EnMAP hyperspectral satellite data. It provides free and open-source features to transform EnMAP Level-1B data to Level-2A. The package has been developed at the German Research Centre for Geosciences Potsdam (GFZ) as an alternative to the processing chain of the EnMAP Ground Segment.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-09
    Description: Forest ecosystems, their products and services play an important role in achieving ambitious climate change mitigation objectives at the same time requiring profound adaptation to climate change. Forest management schemes to support climate action have to be developed within their regional context but also have to be aligned with national or EU-level climate, forest and sustainability policies. The conference on “Managing forests in the 21st century” is the final conference of the FORMASAM, REFORCE and FOREXCLIM research projects. The conference brings together scientific experts on forest management from all over Europe facing very specific management challenges. The aim is to discuss and improve the understanding the role of forests and forest management in the context of climate change. The conference addresses climate change impacts, as well as needs for mitigation and adaptation especially with regard to the following scientific questions: 1. What are the impacts of climate extremes and disturbances? 2. What are the management challenges (and options) for resilient forests? 3. What can we do to increase the contribution of forest management to climate change mitigation?
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-04-05
    Description: Electromagnetic (EM) method, especially Controlled Source Electromagnetic (CSEM) are a unique way of observing fluid movement at depth from the surface. The depth range of interest for hydrocarbon and geothermal applications is from about 500m to 5-7 km. For hydrocarbon reservoirs monitoring we focus to improve the recovery factors and understand fluid movement resulting in lower carbon footprint per produced barrel of oil. For geothermal applications, we can observe magma movements as aid for volcano eruption prediction or monitor producing geothermal field to improve production efficiency and to observe (in correlation with microseismic) reservoir damage and potential induced seismicity. To see percentage level variations, more detailed attention is required at all data handling stages. During acquisition, more effort is required to obtain long term stable transmitter and receiver sites including not only daily monitoring of contact resistance but also controlling them during the acquisition process to better than 1% variations. Because of the large dynamic range of the signal, a highly accurate reference level with active adjustment before the transmitted signal is necessary. While processing the data, a feedback loop between filter selection and noise suppression in the reservoir signal band allows you to optimize the filter and to reduce their effect on the anomaly itself. For a sedimentary environment, anisotropy is the biggest cause for error and misinterpretation. It is derived before the survey from existing logs using end members derived from the resistivity log based on the interaction of the layers on reservoir scale. Another serious issue is the image focus. In principle, we assume the information comes from underneath the receiver but for different measurements it comes from various volume between transmitter and receiver. As with focusing of laterologs, we use a focusing method either by differential measurements or additional borehole receivers. We are using real field measurements as example for potential misinterpretation to illustrate the severance of these issues.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-03
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-03-19
    Description: These data are supplementary material to Ziegler & Heidbach (2020) and present the results of a 3D geomechanical-numerical model of the stress state with quantified uncertainties. The average modelled stress state is provided for each of the six components of the full stress tensor. In addition, the associated standard deviation for each component is provided. The modelling approach uses a published lithological model and the used data is described in the publication Ziegler & Heidbach (2020). The reduced stress tensor is derived using the Tecplot Addon GeoStress (Stromeyer & Heidbach, 2017).The model results are provided in a comma-separated ascii file. Each line in the file represents one of the approx. 3 million finite elements that comprise the model.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Alliance of Science Organisations in Germany
    Publication Date: 2020-03-19
    Description: The digital transformation is one of the greatest challenges currently facing science, business and society. The lack of digitally qualified staff affects all Alliance organizations both acutely and equally. Rapid action is essential if this challenge is to be met. By pooling the strengths of the Alliance organizations it should be possible to find short or long-term solutions aimed at improving the situation for the whole academic system within a reasonable time-frame. Such cooperative solutions would impact the transition from school to university and beyond to include the time spent studying and acquiring qualifications, and continuing through to higher research training. The range of solutions could extend from the exchange of “good practice” examples through to the collective development of a range of offers, formats and strategies. There follows a description of the various challenges facing the academic system, together with details of the skills required to meet them, and the key features involved in the implementation process.
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-04-05
    Description: Volcanic research using seismic or magnetotelluric investigations is limited to a broad scale length resolving rather big structures at depths of a few kilometres while, e.g., DC resistivity images are limited to shallow subsurface features. Thus, volcanic structures at depths of a few hundred meters are poorly imaged and few evidence of magmatic pathways and hydrothermal systems is found. Understanding details of magma rising in a volcanic conduit is the key to understand vent near eruption dynamics. Here, we want to explore the applicability of the transient electromagnetic method (TEM), a medium-range electromagnetic method, in volcanic environments on the example of Stromboli volcano, Italy. For constraining and evaluating field measurements conducted in June 2019, we use 3D finite element simulations to understand the behaviour of electromagnetic fields in topographically demanding locations. Here, we present the simulation routine and preliminary results.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2020-04-08
    Description: This dataset contains catchment average time series of five meteorological or hydrological parameters for 3872 hydrometric stations across Europe from 1960-2010. The parameters are: rainfall, soil moisture saturation, snowmelt, snow cover and convective conditions. All parameters have a daily resolution and were derived from a 0.11x0.11° reanalysis dataset. Daily averages were calculated from the pixels within each catchment, weighted by the fraction of pixel area that lies within the respective catchment. This dataset was originally created for the classification of floods by their generating process, but is also suitable for different hydrological studies.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-04-08
    Description: During the Egyptian 18th dynasty (c. 1550–1292 BC), cobalt ore was mined, processed and used as a colourant for glass, faience and blue-painted pottery. Co-coloured glass objects have a mid- to dark blue colour and were produced in order to imitate the semi-precious stone lapis lazuli. During this period, the glass objects were manufactured predominantly at two sites: Malqata (25°42'51.2"N 32°35'33.4"E) and Amarna (27°38'40.3"N 30°53'55.0"E). Major, minor and trace element concentration data from 38 blue glass objects from Amarna in the collection of Egyptian Museum and Papyrus Collection in Berlin are reported in this data publication. For comparison, glass objects from the same period and location, but of different colours (one red, two each of colourless, green and turquoise-blue glass) were analysed with the same method. These objects were originally brought to Berlin subsequent to the 1911–1914 excavations at Amarna carried out under the direction of Ludwig Borchardt on behalf of the Deutsche Orient-Gesellschaft. Unfortunately, most of these have by now lost their specific finds location. In addition, two recent samples of cobalt ore from the region of Ain Asil, near the Dakhla oasis (25°30'59.6"N 29°09'59.8"E), were included in the analysis.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-04-08
    Description: The dataset presents the electron density derived using the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm (Zhelavskaya et al., 2016) from plasma wave measurements made with the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) (Kletzing et al., 2013). The method employs feedforward neural networks to derive the upper hybrid resonance frequency from the electric field measurements, and hence electron density, in an automated fashion. The dataset contains electron density for the period from October 1, 2012 to January 14, 2018 for RBSP-A and from October 1, 2012 to July 1, 2016 for RBSP-B (RBSP = Radiation Belt Storm Probes). For convenience, the density data are organized in two ways: in terms of orbits and in terms of days. Directories ../../Orbits_organization/ and ../../Days_organization/ contain files with densities per orbit and per day, respectively. Data are provided in .txt and .cdf formats. Data in .mat format are available at ftp://ftp.gfz-potsdam.de/home/rbm/NURD/. For more information on directory organization and files description, please refer to the associated data description and Zhelaskaya et al. (2016).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-06-19
    Language: German
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-07-03
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-07-08
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-07-08
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-07-08
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-05-27
    Description: The dataset is composed of AisaEAGLE airborne hyperspectral imagery data acquired during the AIRMETH2016 campaign on August 27th, 2016 within the Toolik Lake Natural Research Area on the Alaskan North Slope. The Toolik Lake Research Natural Area is representative of the North Slope physiographic province of the Southern Arctic Foothills (Walker et al., 1989). Dominant vegetation types are dictated by soil moisture and geology and include moist tussock tundra, wet sedge meadows, and dry upland heaths. The dataset includes three flight lines with 130 spectral bands ranging from VIS to NIR (451.7 – 897 nm) wavelength regions. The dataset also includes Level 2A EnMAP simulated imagery using the end-to-end Simulation tool (EeteS) with 78 bands from VIS to NIR (423 – 903 mn). The overall goal of the campaign was to acquire airborne imagery over the Toolik Vegetation grid encompassing 94 permanent 1 x 1 m vegetation plots where corresponding, comprehensive multi-seasonal spectral reflectance, photosynthetic pigment, and detailed species composition data exists. The remote sensing data are highly novel and can be used for vegetation mapping of species composition, plant biomass, and photosynthetic activity.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-05-22
    Description: The precise knowledge of aircraft position, velocity, and acceleration is a mandatory prerequisite for airborne gravimetry. For the determination of these quantities the Global Navigation Satellite System (GNSS) plays an important role. However, kinematic positioning over Antarctica is a challenging task which is different from positioning in low-latitude regions. The main reason is the sparse distribution of International GNSS Service (IGS) ground stations which is also difficult or impractical to be densified by setting up dedicated reference stations because of its hostile environment. Therefore, traditional double-differenced (DD) positioning using Global Positioning System (GPS) may be difficult to be applied. Precise Point Positioning (PPP) using a stand-alone receiver is recognized as a helpful tool for obtaining reliable and accurate trajectories of moving platforms based on precise orbit and clock products derived from a global reference network. Therefore, it is necessary to study the special characteristics of positioning over Antarctica and to exploit innovative and reliable approaches for precise position, velocity and acceleration determination. An extended precise positioning method called Precise Orbit Positioning (POP), which was originally developed in Salazar et al. (2009), is further developed towards application with multi-GNSS data. This approach takes advantage of a widely spaced network of ground stations to estimate satellite clock offsets and drifts and only relies on precise orbit information. It is illustrated that POP has the potential to achieve centimeter-level accuracy for the vertical component with sparse distributed reference stations. The aforesaid POP method is extended further to derive reliable and high accurate velocity and acceleration which are more important than position for airborne gravimetry. A GPS+GLONASS+Galileo+BDS four-system model is presented and proper weighting of different types of observations is investigated. The PPP solutions are also calculated with multi-GNSS observations for comparison. During static tests over Antarctica, it was found that POP derived velocity and acceleration tend to have much lower noise than the PPP solutions. Moreover, the addition of GLONASS, Galileo and BDS data can increase the accuracy of velocity and acceleration estimates by 32% and 43% with POP compared to a GPS-only solution when using data of 30-second sampling interval and the improvements are 28% and 31% with respect to the PPP solutions.
    Description: Die genaue Kenntnis der Flugzeugposition, -geschwindigkeit und -beschleunigung ist eine zwingende Voraussetzung für die gravimetrische Vermessung aus der Luft. Für die Bestimmung dieser Größen spielt das Global Navigation Satellite System (GNSS) eine wichtige Rolle. Die kinematische Positionierung über der Antarktis ist jedoch eine anspruchsvolle Aufgabe, die sich von der Positionierung in Regionen mit niedriger Breite unterscheidet. Der Hauptgrund ist die spärliche Verteilung der Bodenstationen des Internationalen GNSS-Dienstes (IGS), die zudem aufgrund der widrigen Bedingungen in der Antarktis nur sehr schwierig durch die Einrichtung spezieller Referenzstationen verdichtet werden kann. Daher ist es schwierig, die traditionelle Doppeldifferenzmessung (DD) mit dem Global Positioning System (GPS) anzuwenden. Die präzise Punktpositionierung (PPP) mit einem eigenständigen Empfänger ist als hilfreiche Methode zur Erzielung zuverlässiger und genauer Trajektorien von bewegten Plattformen auf der Grundlage von präzisen Orbit- und Uhrenprodukten aus einem globalen Referenznetzwerk anerkannt. Einerseits kann die Genauigkeit von Echtzeitprodukten die Anforderung an die Trajektoriengewinnung für die luftgestützte Gravimetrie noch nicht erfüllen, andererseits weisen die IGS-Endprodukte noch eine tagesgebundene Diskontinuität auf. Zudem wurden bei Produkten neuerer GNSS-Systeme regionale Verzerrungen nachgewiesen, die die ganzzahlige Mehrdeutigkeitsauflösung der PPP erheblich verschlechtern können. Daher ist es notwendig, die besonderen Eigenschaften der Positionierung über der Antarktis zu untersuchen und innovative und zuverlässige Ansätze zur präzisen Positions-, Geschwindigkeits- und Beschleunigungsbestimmung zu entwickeln. Eine erweiterte präzise Positionierungsmethode namens Precise Orbit Positioning (POP), die ursprünglich in Salazar et al. (2009) entwickelt wurde, wurde in Richtung der Anwendung mit Multi-GNSS-Daten weiterentwickelt. Dieser Ansatz nutzt ein weit verzweigtes Netz von Bodenstationen, um Versatz und Drift der Satellitenuhren zu schätzen und stützt sich nur auf präzise Orbitinformationen. Die vorgenannte POP-Methode wurde weiter ausgebaut, um zuverlässige und hochpräzise Geschwindigkeit und Beschleunigung abzuleiten, die für die luftgestützte Gravimetrie wichtiger sind als die Position. Ein GPS+GLONASS+Galileo+BeiDou Viersystemmodell wird vorgestellt und die richtige Gewichtung verschiedener Arten von Beobachtungen untersucht. Die PPP-Lösungen werden auch mit Multi-GNSS-Beobachtungen zum Vergleich berechnet. Bei statischen Tests über der Antarktis wurde festgestellt, dass die von POP abgeleitete Geschwindigkeit und Beschleunigung tendenziell viel weniger verrauscht sind als die PPP-Lösungen. Darüber hinaus kann die Hinzufügung von GLONASS-, Galileo- und BDS-Daten die Genauigkeit der Geschwindigkeits- und Beschleunigungsschätzungen um 32% bzw. 43% gegenüber einer reinen GPS-Lösung bei Verwendung von Daten mit einem Abtastintervall von 30 Sekunden erhöht werden. Die Verbesserungen liegen dann bei 28% bzw. 31% gegenüber den PPP-Lösungen.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-05-27
    Description: Seismological agencies play an important role in seismological research and seismic hazard mitigation by providing source parameters of seismic events (location, magnitude, mechanism), and keeping these data accessible in the long term. The availability of catalogues of seismic source parameters is an important requirement for the evaluation and mitigation of seismic hazards, and the catalogues are particularly valuable to the research community as they provide fundamental long-term data in the geophysical sciences. This work is well motivated by the rising demand for developing more robust and efficient methods for routine source parameter estimation, and ultimately generation of reliable catalogues of seismic source parameters. Specifically, the aim of this work is to develop some methods to determine hypocentre location and temporal evolution of seismic sources based on regional and teleseismic observations more accurately, and investigate the potential of these methods to be integrated in near real-time processing. To achieve this, a location method that considers several events simultaneously and improves the relative location accuracy among nearby events has been provided. This method tries to reduce the biasing effects of the lateral velocity heterogeneities (or equivalently to compensate for limitations and inaccuracies in the assumed velocity model) by calculating a set of timing corrections for each seismic station. The systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure can be corrected without explicitly solving for a velocity model. Application to sets of multiple earthquakes in complex tectonic environments with strongly heterogeneous structure such as subduction zones and plate boundary region demonstrate that this relocation process significantly improves the hypocentre locations compared to standard locations. To meet the computational demands of this location process, a new open-source software package has been developed that allows for efficient relocation of large-scale multiple seismic events using arrival time data. Upon that, a flexible location framework is provided which can be tailored to various application cases on local, regional, and global scales. The latest version of the software distribution including source codes, a user guide, an example data set, and a change history, is freely available to the community. The developed relocation algorithm has been modified slightly and then its performance in a simulated near real-time processing has been evaluated. It has been demonstrated that applying the proposed technique significantly reduces the bias in routine locations and enhance the ability to locate the lower magnitude events using only regional arrival data. Finally, to return to emphasis on global seismic monitoring, an inversion framework has been developed to determine the seismic source time function through direct waveform fitting of teleseismic recordings. The inversion technique can be systematically applied to moderate- size seismic events and has the potential to be performed in near real-time applications. It is exemplified by application to an abnormal seismic event; the 2017 North Korean nuclear explosion. The presented work and application case studies in this dissertation represent the first step in an effort to establish a framework for automatic, routine generation of reliable catalogues of seismic event locations and source time functions.
    Description: Seismologische Dienste spielen eine wichtige Rolle in der seismologischen Forschung und Gefährdungsanalyse, indem sie Quellparameter für seismische Ereignisse (Lokalisierung, Stärke, Mechanismus) bereitstellen und diese Daten langfristig verfügbar machen. Die Verfügbarkeit von Katalogen seismischer Quellparameter ist eine wichtige Voraussetzung für die Bewertung der seismischen Gefährdung und Minderung der Auswirkungen von Erdbeben. Die seismischen Kataloge sind für die Forschungsgemeinschaft besonders wertvoll, da sie grundlegende Hintergrundsdaten über lange Zeiträume liefern. Die vorliegende Arbeit ist motiviert durch die steigende Nachfrage nach der Entwicklung robusterer und effizienterer Methoden für die routinemäßige Schätzung von Quellparametern und schließlich die Verbesserung der Qualität und Quantität der seismischen Kataloge. Ziel dieser Arbeit ist es insbesondere Methoden zu entwickeln, um die Lokalisierung von Hypozentren und die zeitliche Entwicklung der Momentfreisetzung bei einem Erdbeben auf der Grundlage regionaler und teleseismischer Beobachtungen genauer zu bestimmen, und das Potenzial dieser Methoden für eine zeitnahe Verarbeitung zu untersuchen. Um dies zu erreichen, wurde eine Lokalisierungsmethode bereitgestellt, die mehrere Ereignisse gleichzeitig berücksichtigt und die relative Genauigkeit der Hypozentren zwischen benachbarten Ereignissen verbessert. Dieses Verfahren versucht, die Verzerrungen durch Geschwindigkeits-heterogenitäten zu reduzieren, oder äquivalent Einschränkungen und Ungenauigkeiten in dem angenommenen Geschwindigkeitsmodell auszugleichen, indem richtungsabhängige Zeitkorrekturen für jede seismische Station berechnet werden. Die systematischen Fehler, die durch die Ungenauigkeiten in der angenommenen Geschwindigkeitsstruktur in die Lokalisierung projiziert werden, können korrigiert werden, ohne explizit nach einem Geschwindigkeitsmodell zu lösen. Die Anwendung auf Ensemble von Erdbeben in tektonischen Situationen mit stark heterogener, komplexer Struktur wie Subduktionszonen und Plattengrenzregionen zeigt, dass diese Relokalisierung die Hypozentren im Vergleich zu Standardlokalisierungen signifikant verbessert. Um den rechnerischen Anforderungen der Lokalisierung gerecht zu werden, wurde ein neues Open-Source-Softwarepaket entwickelt, das eine effiziente Relokalisierung einer großen Anzahl von Erdbeben unter Verwendung von Ankunftszeitdaten ermöglicht. Daraufhin wird ein flexibler Lokalisierungsrahmen bereitgestellt, der an verschiedene Fälle auf lokaler, regionaler und globaler Ebene angepasst werden kann. Die neueste Version der Software einschließlich Quellcodes, Benutzerhandbuch, Beispieldatensatz und Änderungsverlauf ist für die Öffentlichkeit frei verfügbar. Der entwickelte Relokalisierungs-Algorithmus wurde geringfügig verändert und anschließend seine Leistung in einem simulierten Echtzeit Prozess bewertet. Es zeigte sich, dass die Anwendung der vorgeschlagenen Technik die Verzerrung der Hypozentren der Routineauswertung erheblich verringert und die Fähigkeit zum Lokalisieren der Ereignisse mit niedriger Magnitude unter Verwendung nur regionaler Ankunftsdaten verbessert. Um sich wieder auf die globale seismische Überwachung zu konzentrieren, wurde schließlich ein Inversionssystem entwickelt, um die Zeitfunktion der seismischen Quelle durch direkte Wellenformanpassung von teleseismischen Aufzeichnungen zu bestimmen. Die Inversionstechnik kann systematisch auf seismische Ereignisse mittlerer Größe angewendet werden und hat das Potenzial, in nahezu Echtzeitanwendungen ausgeführt zu werden. Dies wird beispielhaft durch die Anwendung auf ein abnormales seismisches Ereignis veranschaulicht: die nordkoreanische Atomexplosion 2017. Die in dieser Dissertation vorgestellten Arbeits- und Anwendungsfallstudien stellen den ersten Schritt dar, um einen Rahmen für die automatische, routinemäßige Erzeugung zuverlässiger Kataloge von seismischen Ereignisorten und Quellzeitfunktion zu schaffen.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-07-19
    Description: This interactive webpage contains supplementary information for the publication by Kühn et al. 2020: "Probabilistic moment tensor inversion for hydrocarbon-induced seismicity in the Groningen gas field, the Netherlands, part 1: testing". It allows for an easy comparison between the various tests of inversion parameters and velocity models described for the analysis of the 11th of March 2017 Zeerijp ML 2.1 earthquake on the event induced in the Groningen gas field (Netherlands). Inversion runs collected here comprise the parameters employed for inversion (Problem Config), the inversion results and error estimates (Parameter Results) as well as a multitude of figures.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  DUZ Magazin
    Publication Date: 2020-07-20
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-07-19
    Description: Decades of photogrammetric records at Bezymianny, one of the most active volcanoes on Earth, allow unveiling morphological changes, eruption and intrusion dynamics, erosion, lava and tephra deposition processes. This data publication releases an almost 7-decade long record, retrieved from airborne, satellite, and UAV platforms. The Kamchatkan Institute of Volcanology and Seismology released archives of high-resolution aerial images acquired in 1967-2013. We complemented the aerial datasets with 2017 Pleiades tri-stereo satellite and UAV images. The images were processed using Erdas Imagine and Photomod software. Here we publish nine quality-controlled point clouds in LAS format referenced to the WGS84 (UTM zone 57N). By comparing the point clouds we were able to describe topographic changes and calculate volumetric differences, details of which were further analyzed in Shevchenko et al. (2020, https://doi.org/...). The ~5-decade-long photogrammetric record was achieved by 8 aerial and 1 satellite-UAV datasets. The 8 sets of near nadir aerial photographs acquired in 1967, 1968, 1976, 1977, 1982, 1994, 2006, and 2013 were taken with various photogrammetry cameras dedicated for topographic analysis, specifically the AFA 41-10 camera (1967, 1968, 1976, and 1977; focal length = 99.086 mm), the TAFA 10 camera (1982 and 1994; focal length = 99.120 mm), and the AFA TE-140 camera (2006 and 2013; focal length = 139.536 mm). These analog cameras have all an 18×18 cm frame size. The acquisition flight altitude above the mean surface of Bezymianny varied from 1,500-2,500 m above mean surface elevation, translating up to 〉5,000 m above sea level. For photogrammetric processing, we used 3-4 consecutive shots that provided a 60-70% forward overlap. The analog photo negatives were digitized by scanning with Epson Perfection V750 Pro scanner in a resolution of 2,400 pixels/inch (approx. pixel (px) size = 0.01 mm). The mean scale within a single photograph depends on the distance to the surface and corresponds on average to 1:10,000-1:20,000. Thus, each px in the scanned image represents about 10-20 cm resolution on the ground. The coordinates of 12 ground control points were derived from a Theo 010B theodolite dataset collected at geodetic benchmarks during a 1977 fieldwork. These benchmarks were established on the slopes of Bezymianny before the 1977 aerial survey and then captured with the AFA 41-10 aerial camera. The most recent was a satellite dataset acquired on 2017-09-09 by the PHR 1B sensor aboard the Pleiades satellite (AIRBUS Defence & Space) operated by the French space agency (CNES). The forward, nadir and backward camera configuration allows revisiting any point on earth and was tasked for the acquisition of Bezymianny to provide a 0.5 m resolution panchromatic imagery dataset. In order to improve the Pleiades data, we complemented them with UAV data collected on 2017-07-29 with DJI Mavic Pro during fieldwork at Bezymianny. This data publication includes a description of the data (in pdf format) and the nine processed and controlled three-dimensional point clouds (in LAS format). The point clouds can be easily interpolated and imported into most open and commercially available geographic information system (GIS) software. Further details on data and data handling are provided in Shevchenko et al. (2020).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-07-22
    Description: Iran is located in a semi-arid to arid environment and is highly dependent on its groundwater resources for development in its agricultural and industrial sectors. In many aquifers across the country, unsustainable groundwater extraction in the past few decades caused severe groundwater level decline, at locations exceeding 20 m. The country is divided into six major basins. However, neither the water consumption nor renewable water resources are distributed evenly. Quantitative assessment of the groundwater situation in different basins is a piece of crucial information for improving management practices. In this study, we use satellite observations to assess the groundwater situation across Iran. We observe the terrestrial water storage (TWS) from Satellite gravimetry measurements of Gravity Recovery And Climate Experiment (GRACE). These observations provide a country-scale picture of groundwater variations at a coarse spatial resolution of 500 km. In all six basins, TWS declines during the 15 year lifetime of GRACE from 2002 until 2017. In total, the Equivalent Water Height (EWH) declines as much as approximately 10 cm during this period. Although part of this decline is caused by other components such as surface water or soil moisture, groundwater decline is responsible for the major part. The compaction of aquifers resulted from the over-extraction of groundwater can be observed as land subsidence on the surface. We analyze ground subsidence for the whole Iran using Interferometric Synthetic Aperture Radar (InSAR) observations of the Copernicus Sentinel-1 satellite and present the first detailed map of compacting aquifers across the country at a high spatial resolution of 100 m. The average rate of displacement, exceeding 30 cm/yr in some areas, reveals hundreds of aquifers across the country are suffering unsustainable groundwater consumption. The distribution of subsidence basins is significantly correlated with the distribution of agricultural regions. To obtain information on the sustainability of groundwater consumption, we separate the time series of land subsidence into two parts: the short term part as elastic/recoverable component and the long-term part as inelastic/irrecoverable. The ratio between elastic and inelastic elements provides quantitative measurements of aquifer health. Combining the Sentinel-1 subsidence measurements with GRACE observations of groundwater variations gives us new details on how the groundwater is consumed across different basins in the country. The results can have essential implications on the more sustainable management of groundwater resources.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-07-22
    Description: Between mid-March and the beginning of April 2019, extremely high precipitation affected the whole Iran, leading to widespread flash flooding and landslides. Approximately 10 million people were affected, among them 2 million were in humanitarian needs. The event caused 78 fatalities, more than 1000 injuries and widespread damage in 25 out of the 31 provinces. In this work, we use both high resolution – spatial and temporal – optical and radar satellite remote sensing to characterize spatiotemporal pattern of landslide occurrence related to the main hydro-meteorological triggering events in Golestan province, North Iran. Large-area landslide detection has been performed in a semi-automated way using time series of optical Planet Scope and Sentinel-2A/B data. The obtained satellite remote sensing based results were evaluated by field surveys conducted in September 2019 in cooperation between the GFZ Potsdam and the Forest, Range and Watershed Management Organization of Iran (FRWM) being responsible for landslide hazard and risk assessment as well as the design and implementation of mitigation measures. Moreover, we report on our deformation monitoring using Sentinel-1/B based differential interferometric synthetic aperture radar (DInSAR) on hot-spots areas to investigate whether any of the catastrophic landslides that happened in spring of 2019 have shown precursory signs in form of preparatory deformation. In particular, we present our detailed investigation for Hossein Abad Kalpush landslide, located at the border between Golestan and Semnan provinces. In April 2019, this slide slipped at an unprecedented scale, causing total destruction of one part of the village nearby with complete destruction of 250 houses. Using an integrated approach exploring satellite imagery, in-situ measurements and field survey, we perform detailed time-series analysis of the evolution of Hossein Abad Kalpush landslide and examine the role of meteorological and anthropogenic influencing factors in controlling the behaviour of this landslide.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-07-22
    Description: The densely populated neighborhoods of Pinheiro, Bebedouro, Mutange, Bom Parto and Levada in the Municipality of Maceió (Brazil) are suffering serious geological instability. Fractures, on both buildings and roads, have intensified since the beginning of 2018 and some of the areas were evacuated, due to safety reasons, by the local authorities during the second half of 2019. The preliminary investigation conducted by the Brazilian Geological Service (Serviço Geologico do Brazil - CPRM), suggested that the direct cause of the instability is connected to the salt mining activities carried out on near the cost of the Mundaú Lagoon. In this study we use radar interferomtery (InSAR) and 2D geomechanical modelling to characterize almost 16 years of continuous deformation in Municipality of Maceió (Brazil). We exploited the full potential of the well-known Multi Temporal Interferometry techniques (MTI) based on Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) and processed all available historical and currently operational SAR missions: the C-band ASAR ENVISAT, the L-band ALOS-1 POLSAR, L-band ALOS-2 POLSAR and C-band Sentinel-1 missions. The results show clear main deformation field over the neighborhood of Pinheiro with concentric pattern to the shore and increasing deformation intensity up to 25cm per year from 2003 to 2019. A minor deformation area is detected also south of the lagoon corresponding to the neighborhood of Bom Parto and Levada. A 2D geomechanical modelling of salt-cavern stability using Distinct Elements is developed to derive the relationship between the detected deformations and the salt mining activities. As a general conclusion, our study shows how MTI analysis is very efficient and reliable tool for emergency management purposes. Especially after the launch of the Sentinel-1 mission, which provides an acquisition in single pass every 12 days, we are able to detect when a surface displacement commence and monitor the deformation progress and status in time.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-07-23
    Description: The Central Rift in Kenya (CRK) comprises the lakes Naivasha, Elementaita and Nakuru and the Longonot, Eburru and Menengai volcanos. The alkaline magmas, produced by the volcanoes within the CRK, lead to solid rocks likes trachytes, phonolites, and fewer basalts and accompanied soft rocks like ashes, tuffs, pumices and ignimbrites (e.g. Macdonald et al., 1987; Macdonald, 2014). Lacustrine sediments and beds of diatoms are remnants of former lake level variations caused by climate variability and topographic changes (e.g. Stoof-Leichsenring et al., 2011). The samples have been taken within the frame of a VW-Foundation funded project that tries to detect, map and monitor groundwater pollution from anthropogenic and natural sources. For a previous VW-Foundation funded project (grant 85465), also the groundwater fluoride enrichment in the CRK have been studied (Olaka et al., 2016).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-07-22
    Description: Measurements of surface displacement have been used in order to learn about seismic cycles, volcanoes, and other tectonic and non-tectonic processes. Ideally, the requirements to obtain useful measurements associated with seismic cycles are related to having a good spatial and temporal resolution, as surface deformation can occur in expected and unexpected faults, and in time intervals which vary from seconds (e.g. earthquake) to hundreds of years or even more (interseismic deformation). Nowadays, satellite imagery provided by Synthetic Aperture Radar (SAR) or optical satellites fulfills those two aspects. Satellite images can cover large areas so that the fault rupture can be partially or totally visible. The problem of the radar technique is that for large earthquakes with surface rupture it cannot provide displacement maps in the near-field of the fault due to the large displacement gradient which causes phase decorrelation. Moreover, it is less sensitive to the horizontal displacement than vertical displacement. On the other hand, the main advantage of radar observing technique over the optical one is that the waves, emitted from a pulse-generating device, propagate through the atmosphere with almost no signal loss. This means that radar techniques operate under all weather conditions. Additionally, radar sensors are active, providing their own energy source, while optical are passive sensors that depend on external energy sources. Considering the benefits and the drawbacks of both sensing techniques, the opportunity of combining them helps the determination of a three-dimensional displacement field, illustrating a complete map of a seismic event. In consequence, the objective of this study is to provide a methodology, using radar (Sentinel-1) and optical (Sentinel-2) data, that leads to the determination of the three-dimensional displacement field associated with the 7th of July 2019, Mw 7.1 Ridgecrest earthquake. The interferometric and offset tracking processing were computed using SNAP and GAMMA software, respectively, and for ascending and descending tracks products. For the optical data, cross-correlation using MicMac software was applied so that the displacement in the same area of interest was also derived. After obtaining the displacement for radar and optical data independently, a Least Square Adjustment (LSA) allowed to properly combine them considering the associated weight of each observation and finally compute the three-dimensional decomposition. Finally, it was possible to have a fully covered ground displacement measured from radar and optical sensors, and to better analyze the behavior of the tectonics in the area of study.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-07-23
    Description: This data set includes digital image correlation data from thirteen analogue earthquakes generated by means of an analogue seismotectonic scale model approach. The data consists of grids of 3D static coseismic surface displacements. The data have been derived using a stereo camera setup and processed with LaVision Davis 8 software. Detailed descriptions of the experiments and results regarding the control of geodetic coverage on the slip inversion problem can be found in Kosari et al. (in review) to which this data set is supplementary material. We use an analogue seismotectonic scale model approach (Rosenau et al., 2017) to generate a catalogue of analogue megathrust earthquakes (Table 1). The presented experimental setup is modified from the 3D setup used in Rosenau et al. (2019). To monitor surface deformation of the wedge analogue model a stereoscopic set of two CCD cameras (LaVision Imager pro X 11MPx, 14 bit) monitors images the wedge surface continuously at 2.5 Hz. To derive observational data similar to those from geodetic techniques, i.e. velocities at the location on the surface, we use digital image correlation (DIC, Adam et al., 2005) to derive the 3D incremental surface displacement (or velocity) at high spatial resolution (〈 0.1 mm). The time series of incremental surface displacement data was calculated using LaVision Davis 8 software. The result is an evenly spaced grid of vectors per time step, oriented parallel with respect to the principal dimensions of the box.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-07-30
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-09-02
    Description: Strokkur_1yr is a one year seismological experiment realized at the most active geyser on Iceland by Eva Eibl (University of Potsdam) in collaboration with Thomas R. Walter, Phillippe Jousset, Torsten Dahm, Masoud Allahbakhshi, Daniel Müller from GFZ Potsdam and Gylfi P. Hersir from ISOR Iceland. The geyser is part of the Haukadalur geothermal area in south Iceland, which contains numerous geothermal anomalies, hot springs, and basins (Walter et al., 2018). Strokkur is a pool geyser and has a silica sinter edifice with a water basin on top, which is about 12 m in diameter with a central tube of more than 20 m depth. The aim of the seismic experiment is to monitor eruptions of Strokkur geyser from June 2017 to June 2018 using four broadband seismic stations (Nanometrics Trillium Compact Posthole 20 s). Sensors were buried 30–40 cm deep in the ground at distances of 38.8 m (G4, SE), 47.3 m (G3, SW), 42.5 m (G2, N), and 95.5 m (G1, NE) from Strokkur center. Data gaps represent 15–44 % of the records as during the winter period maintenance intervals were longer and battery drainage was high. However, at any given time, at least one station recorded the eruptions. From this dataset, converted to MSEED using Pyrocko, a catalogue of 70,000 eruptions was determined and further investigated in Eibl et al. (2020). Waveform data are available from the GEOFON data centre, under network code 7L.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    GFZ Data Services
    In:  EnMAP Flight Campaigns Technical Report
    Publication Date: 2020-08-14
    Description: The dataset contains hyperspectral imagery acquired during airplane overflights on 8th September 2016 consisting of 242 spectral bands, ranging from VIS to SWIR (423 - 2438 nm) wavelength regions. It covers an area of about 78 km² which is dominated by beech and oak forests. The flight campaign was part of several flight campaigns within the EnMAP project and focused on hyperspectral analysis of plant physiology in deciduous and coniferous forests in the Gerolstein region in Rhineland-Palatinate, Germany.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-12-10
    Description: The utilization of geothermal reservoirs as alternative energy source is becoming increasingly important worldwide. Through close-range aerial photogrammetry realized by unmanned aircraft systems (UAS), this study investigates the surface expression of a leaking warm water reservoir in Waiwera, New Zealand, that has been known for many centuries but remained little explored. Due to overproduction during the 1960s and 1970s the reservoir has suffered significant pressure reduction, which resulted in the loss of artesian conditions and led to the desiccation of the hot springs in close succession. However, shortly after the recent shutdown of the primary user (Waiwera Thermal Resort & Spa) renewed artesian activity was reported by locals but no hot spring activity has been observed so far. Therefore, this study was carried out in October 2019 to assess the actual conditions of thermal activity in the area of the former hot springs. UAS with coupled thermal infrared cameras were used for thermal mapping and the obtained data show renewed activity of the hot springs on the beachfront of Waiwera. Faults and fractures were identified as important fluid pathways, as well as individual fluid conducting lithologies.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-12-10
    Description: The fields of eco-hydrological modelling and extreme flow prediction and management demand detailed information of streamflow intermittency and its corresponding landscape controls. Innovative sensing technology for monitoring of streamflow intermittency in perennial rivers and intermittent reaches improves data availability, but reliable maps of streamflow intermittency are still rare. We used a large dataset of streamflow intermittency observations and a set of spatial predictors to create logistic regression models to predict the probability of streamflow intermittency for a full year as well as wet and dry periods for the entire 247 km2 Attert catchment in Luxembourg. Similar climatic conditions across the catchment permit a direct comparison of the streamflow intermittency among different geological and pedological regions. We used 15 spatial predictors describing land cover, track (road) density, terrain metrics, soil and geological properties. Predictors were included as local-scale information, represented by the local value at the catchment outlet and as integral catchment information calculated as the mean catchment value over all pixels upslope of the catchment outlet. The terrain metrics catchment area and profile curvature were identified in all models as the most important predictors, and the model for the wet period was based solely on these two predictors. However, the model for the dry period additionally comprises soil hydraulic conductivity and bedrock permeability. The annual model with the most complex predictor set contains the predictors of the dry-period model plus the presence of tracks. Classifying the spatially distributed streamflow intermittency probabilities into ephemeral, intermittent and perennial reaches allows the estimation of stream network extent under various conditions. This approach, based on extensive monitoring and statistical modelling, is a first step to provide detailed spatial information for hydrological modelling as well as management practice.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-12-08
    Description: The Caribbean and South American tectonic plates bound the north-eastwards expulsion of the North Andean Block in western Venezuela. This complex geodynamic setting resulted in the formation of major strike-slip fault systems and sizeable mountain chains. The 100-km-wide Mérida Andes extend from the Colombian/Venezuelan border to the Caribbean coast. To the north and south, the Mérida Andes are bound by hydrocarbon-rich sedimentary basins. Knowledge of lithospheric structures, related to the formation of the Mérida Andes, is limited though, due to a lack of deep geophysical data. In this study, we present results of the first broad-band magnetotelluric profile crossing the Mérida Andes and the Maracaibo and Barinas–Apure foreland basins on a length of 240 km. Geoelectrical strike and dimensionality analysis are consistent with 1-D or 2-D subsurface structures for the sedimentary basins but also indicate a strong 3-D setting for the Mérida Andes. Using a combination of 2-D and 3-D modelling we systematically examined the influence of 3-D structures on 2-D inversions. Synthetic data sets derived from 3-D modelling allow identification and quantification of spurious off-profile features as well as smoothing artefact due to limited areal station coverage of data collected along a profile. The 2-D inversion models show electrically conductive basins with depths of 2–5 km for the Barinas-Apure and 2–7 km for the Maracaibo basins. A number of resistive bodies within the Maracaibo basin could be related to active deformation causing juxtaposition of older geological formations and younger basin sediments. The most important fault systems of the area, the Boconó and Valera Faults, cross-cut the Mérida Andes in NE–SW direction along its strike on a length 400 km and N–S direction at its centre on a length 60 km, respectively. Both faults are associated with subvertical zones of high electrical conductivity and sensitivity tests suggest that they reach depths of up to 12 km. A sizeable conductor at 50 km depth, which appears consistently in the 2-D sections, could be identified as an inversion artefact caused by a conductor east of the profile. We speculate the high conductivity associated with the off-profile conductor may be related to the detachment of the Trujillo Block. Our results partially support the ‘floating orogen hypothesis’ developed to explain the geodynamic evolution of western Venezuela and they highlight the relevance of the Trujillo Block in this process.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-09-22
    Description: Gases encountered in different salt beds from evacuated and packer-sealed borehole sections in a potash mine were sampled and characterized for their chemical and isotopic composition so as to conclude on their origin and evolution in the salt rocks. These gases were either generated autochthonally or originate from fluid influx from the surrounding rocks outside the salt formation. Fixation in the salt rocks can take place laminar on mineral grain boundaries, disrupter and fracture zones or trapped in inclusions inside or between mineral grains. In situ flow tests with pure argon between several boreholes at distances ranging from decimeter to meter suggest that formation gas is stripped from the intermediate salt packet. This gas must have been trapped on grain boundaries along the pathways of the flowing argon. The stripped formation gas comprises mainly CO2 with traces of CH4 and H2. The CO2 isotopic composition matches well with gases originating from a mantle source, whereas CH4 is classified to be of thermogenic origin formed in a marine environment. Plausible explanations for the H2 generation are the radiolysis of water, reaction of FeII with water or microbial processes. We conclude that these trapped gases are of allochthonous origin migrating from the surrounding rocks into the salt formation where they were fixated mainly along fracture surfaces and fissures.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-09-22
    Description: Satellite remote sensing offers the possibility to monitor the Earth's surface at high temporal and spatial resolutions. An important methodological field is the detection and interpretation of changes on the Earth’s surface. A robust and widely utilized family of approaches is post-classification change-detection (PCCD). In our research, we address an important challenge to using PCCD from a user’s perspective. Users often face difficulties finding changes in the result sets of PCCD that are relevant to their application scenarios. We propose a Visual Analytics approach that supports users in terms of exploring the temporal dynamics and the spatial distribution of automatically-detected changes generated via PCCD.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-09-22
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-06-09
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-06-09
    Language: German
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-06-07
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-06-10
    Description: Radio-Magnetotelluric (RMT) method is based on measurements of the electromagnetic (EM) field of remote radio transmitters in a frequency range of 10 – 1000 kHz where CSRMT measures the EM field from a controlled-source in a wider frequency range of 1 – 1000 kHz. This, results to a higher signal to noise ratio compare to RMT method. Two perpendicular transmitters with 800 meters long, are used in this experiment. Therefore, the full impedance tensor and the tipper elements will be observed. In order to increase the data coverage, RMT measurements also carried out when the transmitter was off . These, also used to test the near-field condition. In this study, near-field is also been considered as well as far-field.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-06-09
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-06-10
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung : Haltern am See, 23.-27. September 2019
    Publication Date: 2020-06-09
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-05-20
    Description: Das Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung ist nun bereits seit 1962 fester Bestandteil des wissenschaftlichen Austausches für Wissenschaftlerinnen und Wissenschaftler aus dem Bereich der Geophysik mit Schwerpunkt Elektromagnetik (EM) in Deutschland. Alle zwei Jahre bietet das Kolloquium einen besonderen Rahmen, aktuelle Arbeiten vorzustellen und neue Aspekte der Erforschung des Untergrundes mit elektromagnetischen Methoden zu diskutieren. Das 28. Kolloquium fand vom 23. bis 27. September 2019 in Haltern am See statt. Es wurde von der Arbeits- gruppe „Elektromagnetik“ der Westfälischen Wilhelms-Universität Münster unter der Leitung von Prof. Michael Becken ausgerichtet.
    Language: German , English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-09-20
    Description: This report compiles observations made within a time frame of two months on 24 representative thin-section samples representing the periods before and after 4- and 9-years of injection of CO2 into the reservoir. Given this short period of time until completion of this report, some observations and conclusions drawn have to be judged preliminary. Further analytical work and in-depth interpretation of the results are underway. Information provided for the period 0–4 years after CO2 injection include observations made by S. Bock in the framework of her not yet finished Ph.D. thesis.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-12-10
    Description: Abstract Back to top Although the knowledge of the gravity of the Earth has improved considerably with CHAMP, GRACE, and GOCE (see appendices for a list of abbreviations) satellite missions, the geophysical community has identified the need for the continued monitoring of the time-variable component with the purpose of estimating the hydrological and glaciological yearly cycles and long-term trends. Currently, the GRACE-FO satellites are the sole dedicated provider of these data, while previously the GRACE mission fulfilled that role for 15 years. There is a data gap spanning from July 2017 to May 2018 between the end of the GRACE mission and start the of GRACE-FO, while the Swarm satellites have collected gravimetric data with their GPS receivers since December 2013. We present high-quality gravity field models (GFMs) from Swarm data that constitute an alternative and independent source of gravimetric data, which could help alleviate the consequences of the 10-month gap between GRACE and GRACE-FO, as well as the short gaps in the existing GRACE and GRACE-FO monthly time series. The geodetic community has realized that the combination of different gravity field solutions is superior to any individual model and set up the Combination Service of Time-variable Gravity Fields (COST-G) under the umbrella of the International Gravity Field Service (IGFS), part of the International Association of Geodesy (IAG). We exploit this fact and deliver the highest-quality monthly GFMs, resulting from the combination of four different gravity field estimation approaches. All solutions are unconstrained and estimated independently from month to month. We tested the added value of including kinematic baselines (KBs) in our estimation of GFMs and conclude that there is no significant improvement. The non-gravitational accelerations measured by the accelerometer on board Swarm C were also included in our processing to determine if this would improve the quality of the GFMs, but we observed that is only the case when the amplitude of the non-gravitational accelerations is higher than during the current quiet period in solar activity. Using GRACE data for comparison, we demonstrate that the geophysical signal in the Swarm GFMs is largely restricted to spherical harmonic degrees below 12. A 750 km smoothing radius is suitable to retrieve the temporal variations in Earth's gravity field over land areas since mid-2015 with roughly 4 cm equivalent water height (EWH) agreement with respect to GRACE. Over ocean areas, we illustrate that a more intense smoothing with 3000 km radius is necessary to resolve large-scale gravity variations, which agree with GRACE roughly at the level of 1 cm EWH, while at these spatial scales the GRACE observes variations with amplitudes between 0.3 and 1 cm EWH. The agreement with GRACE and GRACE-FO over nine selected large basins under analysis is 0.91 cm, 0.76 cm yr−1, and 0.79 in terms of temporal mean, trend, and correlation coefficient, respectively.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Freie Universität
    Publication Date: 2020-08-11
    Description: Elevated levels of arsenic (As) in soils and groundwaters remain a pressing global challenge due to its widespread occurrence and distribution, high toxicity and mobility. In oxygen-limited subsurface conditions, redox-active mineral phases can be important substrates in controlling the fate and mobility of As in the environment. Among these redox-active minerals, green rust (GR) phases, an Fe(II)-Fe(III)-bearing layered double hydroxide, have been shown to be able to sequester a wide range of toxic metals and metalloids, including As. However, very little is known regarding how GR phases interact with As species and what is the fate of the immobilized As under dynamic geochemical conditions. GR phases are suggested to form through the transformation of metastable iron mineral phases in non-sulfidic, reducing environments. However, the exact mechanism and pathway of this transformation, as well as the fate of mineral-associated As (i.e. whether it is re-released back into the groundwater by desorption, dissolution or redox transformation) is not yet known but critically needed for modelling As cycling in contaminated environments. To address these knowledge gaps, I conducted a series of experimental geochemical studies and combined them with various laboratory- and synchrotron-based solid and liquid phase characterization methods to examine the interaction between GR sulfate (GRSO4) and As species [As(III) and As(V)]. Specifically, I performed several batch experiments under anoxic and near-neutral pH conditions to determine As-GR interaction mechanisms during GR formation and transformation. Moreover, I also quantified how these transformation reactions affect the toxicity and mobility of As species in contaminated environments. From the batch adsorption experiments, I showed that synthetic GRSO4 can adsorb up to 160 and 105 mg of As(III) and As(V) per g of solid, respectively. These adsorption capacities are among the highest reported for iron (oxyhydr)oxides that form in soils and groundwaters. Results from this study also show that As removal by GRSO4 can be inhibited by several geochemical parameters such as pH, high ionic strength, presence of co-existing inorganic ions (e.g., Mg2+, PO43-, Si) and low temperature. I also employed an integrated nano-scale solid-state characterization approach to elucidate As-GRSO4 interactions. Specifically, I combined scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray (EDX) spectroscopy together with bulk synchrotron-based X-ray techniques including high energy X-ray total scattering, pair distribution function (PDF) analysis and X-ray absorption spectroscopy (XAS). With these, I was able to directly visualize and pinpoint As binding sites at the GR surface sites and to identify the binding mechanism for both As(III) and As(V). In the case of As(III)-reacted GR, STEM-EDX maps showed that As(III) were preferentially adsorbed at the GR crystal edges, primarily as bidentate binuclear (2C) inner-sphere surface complexes based from the differential PDF and As K-edge XAS data. For the As(V)-reacted GR, As(V) was sequestered as a newly-formed As-bearing mineral phase parasymplesite and as adsorbed As(V) species at the GR edges (in 2C geometry). To assess the fate of As in subsurface environments, I studied As during GR formation and transformation to quantify As uptake and/or its potential release back into solution and the stability of GR and other Fe (oxhydr)oxide phases in this process. During the Fe2+-induced transformation of As(V)-bearing ferrihydrite, I followed the changes in aqueous behavior and speciation of As, as well as the changes in composition of the Fe mineral phases, as a function of varying Fe2+(aq)/Fe(III)solid ratios (0.5, 1 ,2). In all the ratios tested, GRSO4, goethite and lepidocrocite formed in the early stages of transformation (≤ 2h). However, at low ratios (〈2), the initially formed GRSo4 and/or lepidocrocite disappeared as the reaction progressed, leaving goethite and unreacted ferrihydrite after 24 h. At an Fe2+(aq)/Fe(III)solid ratio of 2, GRSO4 was formed and remained in the solids until the end of the 24-h transformation, with goethite and unreacted ferrihydrite. The initial As(V) was partially reduced to As(III) by the surface-associated Fe2+-GT redox couple, and extent of reduction increased from 34 to 44% as Fe2+(aq)/Fe(III)solid ratios increased. Despite this reduction to the more mobile and more toxic As(III) species, no significant As release was observed during the mineral transformation reactions. Finally, I tested the long-term stability and reactivity of GR by aging synthetic GRSO4 in pristine and As-spiked natural groundwater at ambient (25 °C) and low (4 °C) temperatures. The spiked As in the groundwater was completely removed after 120 days at 25 °C while the removal rate was ~2 times slower at 4 °C with only ~66% As removal after 120 days. On the other hand, the stability of synthetic GRSO4 in groundwater was strongly affected by the presence of adsorbed As species and temperature. At ambient temperature, the initial GRSO4 aged in As-free groundwater was converted to GRCO3 by ion exchange within a few days and both GR phases eventually transformed to magnetite after 120 days. Remarkably, both the addition of As species in groundwater and lowering the temperature increased long-term GRSO4 stability through the inhibition of (a) ion exchange in the GRSO4 interlayer (i.e., slower conversion to GRCO3) and (b) transformation of GR to magnetite. Moreover, a synergistic stabilization effect was observed with both As addition and low temperature, significantly enhancing GR stability up to a year. Overall, the work presented in this thesis clearly emphasizes the potential role of GR phases in controlling the mobility and toxicity of As species in subsurface environments. Specifically, I contributed to the fundamental understanding of the reactions involving As(III) and As(V) at GR surfaces, elucidating the relevant binding mechanisms and visualizing specific binding sites of immobilized As species. This work also identified critical geochemical factors that affect As removal and GR formation and transformation under anoxic and circum-neutral pH conditions. More importantly, I was able to show the enhanced long-term stability of GR in natural groundwaters and its prolonged reactivity for As sequestration.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-08-18
    Description: The West Bohemian Massif as part of the geodynamically active European Cenozoic Rift System is characterised by ongoing magmatic processes in the intra-continental lithospheric mantle. A series of phenomena such as massive degassing of CO2 and repeated earthquake swarms make the Eger Rift a unique target area for European intra-continental geo-scientific research. The ICDP project "Drilling the Eger Rift" was funded to study the field of earthquake-fluid-rock-biosphere interaction. In the framework of this ICDP project, magnetotelluric (MT) experiments have been conducted to image the subsurface distribution of the electrical conductivity down to depths of several tens of kilometres as the electrical conductivity is particularly sensitive to the presence of high-conductive phases such as aqueous fluids, partial melts or metallic compounds. Based on recent MT experiments in 2015/2016, Munoz et al. (2018) presented 2D images of the electrical conductivity structure along a NS profile across the Eger Rift. It reveals a conductive channel at the earthquake swarm region that extend from the lower crust to the surface forming a pathway for fluids up to the region of the mofettes. A second conductive channel is present in the south of the model. Due to the given station setup along a profile, the resulting 2D inversion allows ambiguous interpretations of this feature. As 3D inversion is required to distinguish between the different interpretations, we conducted another MT field experiment at the end of 2018. This data publication (10.5880/GIPP-MT. 201810 .1) encompasses a detailed report in pdf format with a description of the project, information on the experimental setup, data collection, instrumentation used, recording configuration and data quality. The folder structure and content of the data repository are described in detail in Ritter et al. (2019). Time-series data are provided in EMERALD format (Ritter et al., 2015).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-10-19
    Description: The potential of polar compound compositions from electrospray ionization ultra-high resolution mass spectrometry (FT-ICR-MS) to characterize petroleum fluids as well as petroleum system processes is shown in the example of the Eagle Ford Formation in Texas, USA. A set of six black oil and nine source-rock bitumen samples is investigated with respect to its organic nitrogen-, sulphur- and oxygen-compound inventory in order to assess maturity, depositional environment, lithofacies and retention and migration behaviour. Compared to conventional geochemical tools based on molecular parameters from gas chromatographic analyses, FT-ICR-MS enables a maturity assessment from immature to late mature stage, which is barely influenced by source or depositional environment. Due to the increased molecular mass and polarity range of its target compounds, FT-ICR-MS is the most convincing tool to describe the retention and fractionation of polar compounds in a petroleum system.
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-10-24
    Description: The dataset presented here is an earthquake catalog for the Central Sea of Marmara (Turkey) obtained by applying a matched-fliter technic to continuous waveforms. The magnitude of completeness of this catalog is Mc=1.1. We use as templates events published by national agencies (KOERI and AFAD). The matched-fliter technic is described in Bentz et al. (2020). The column of the data file are: event ID, Year, Month, Day, Hour, Minute, Seconds, Matlab time (serial time), Latitude (dec.degrees), Longitude (dec.degrees), Depth (km), Magnitude, Cross-correlation coefficient (CC), Template ID, MAD(ratio between CC and median absolution of daily correlogram), Quality flag The ZIP files contains configuration files for ph2dt and HypoDD applications together with input phase and seismic network data.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-09-16
    Description: This cumulative thesis is concerned with the evolution of geomagnetic activity since the beginning of the 20th century, that is, the time-dependent response of the geomagnetic field to solar forcing. The focus lies on the description of the magnetospheric response field at ground level, which is particularly sensitive to the ring current system, and an interpretation of its variability in terms of the solar wind driving. Thereby, this work contributes to a comprehensive understanding of long-term solar-terrestrial interactions. The common basis of the presented publications is formed by a reanalysis of vector magnetic field measurements from geomagnetic observatories located at low and middle geomagnetic latitudes. In the first two studies, new ring current targeting geomagnetic activity indices are derived, the Annual and Hourly Magnetospheric Currents indices (A/HMC). Compared to existing indices (e.g., the Dst index), they do not only extend the covered period by at least three solar cycles but also constitute a qualitative improvement concerning the absolute index level and the ~11-year solar cycle variability. The analysis of A/HMC shows that (a) the annual geomagnetic activity experiences an interval-dependent trend with an overall linear decline during 1900–2010 of ~5 % (b) the average trend-free activity level amounts to ~28 nT (c) the solar cycle related variability shows amplitudes of ~15–45 nT (d) the activity level for geomagnetically quiet conditions (Kp〈2) lies slightly below 20 nT. The plausibility of the last three points is ensured by comparison to independent estimations either based on magnetic field measurements from LEO satellite missions (since the 1990s) or the modeling of geomagnetic activity from solar wind input (since the 1960s). An independent validation of the longterm trend is problematic mainly because the sensitivity of the locally measured geomagnetic activity depends on geomagnetic latitude. Consequently, A/HMC is neither directly comparable to global geomagnetic activity indices (e.g., the aa index) nor to the partly reconstructed open solar magnetic flux, which requires a homogeneous response of the ground-based measurements to the interplanetary magnetic field and the solar wind speed. The last study combines a consistent, HMC-based identification of geomagnetic storms from 1930–2015 with an analysis of the corresponding spatial (magnetic local time-dependent) disturbance patterns. Amongst others, the disturbances at dawn and dusk, particularly their evolution during the storm recovery phases, are shown to be indicative of the solar wind driving structure (Interplanetary Coronal Mass Ejections vs. Stream or Co-rotating Interaction Regions), which enables a backward-prediction of the storm driver classes. The results indicate that ICME-driven geomagnetic storms have decreased since 1930 which is consistent with the concurrent decrease of HMC. Out of the collection of compiled follow-up studies the inclusion of measurements from high-latitude geomagnetic observatories into the third study’s framework seems most promising at this point.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-09-21
    Description: The Cheb Basin (CZ) is a shallow Neogene intracontinental basin located in the western Eger Rift. The Cheb Basin is characterized by active seismicity and diffuse degassing of mantle-derived CO2 in mofette fields. Within the Cheb Basin, the Hartoušov mofette field shows a daily CO2 flux of 23–97 tons. More than 99% of CO2 released over an area of 0.35 km2. Seismic active periods have been observed in 2000 and 2014 in the Hartoušov mofette field. Due to the active geodynamic processes, the Cheb Basin is considered to be an ideal region for the continental deep biosphere research focussing on the interaction of biological processes with geological processes. To study the influence of CO2 degassing on microbial community in the surface and subsurface environments, two 3-m shallow drillings and a 108.5-m deep scientific drilling were conducted in 2015 and 2016 respectively. Additionally, the fluid retrieved from the deep drilling borehole was also recovered. The different ecosystems were compared regarding their geochemical properties, microbial abundances, and microbial community structures. The geochemistry of the mofette is characterized by low pH, high TOC, and sulfate contents while the subsurface environment shows a neutral pH, and various TOC and sulfate contents in different lithological settings. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and high saline groundwater on microbial processes. In general, the microorganisms had low abundance in the deep subsurface sediment compared with the shallow mofette. However, within the mofette and the deep subsurface sediment, the abundance of microbes does not show a typical decrease with depth, indicating that the uprising CO2-rich groundwater has a strong influence on the microbial communities via providing sufficient substrate for anaerobic chemolithoautotrophic microorganisms. Illumina MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences the microbial community composition in the mofette, while the subsurface microbial community is significantly influenced by the groundwater which motivated by the degassing CO2. Acidophilic microorganisms show a much higher relative abundance in the mofette. Meanwhile, the OTUs assigned to family Comamonadaceae are the dominant taxa which characterize the subsurface communities. Additionally, taxa involved in sulfur cycling characterizing the microbial communities in both mofette and CO2 dominated subsurface environments. Another investigated important geo–bio interaction is the influence of the seismic activity. During seismic events, released H2 may serve as the electron donor for microbial hydrogenotrophic processes, such as methanogenesis. To determine whether the seismic events can potentially trigger methanogenesis by the elevated geogenic H2 concentration, we performed laboratory simulation experiments with sediments retrieved from the drillings. The simulation results indicate that after the addition of hydrogen, substantial amounts of methane were produced in incubated mofette sediments and deep subsurface sediments. The methanogenic hydrogenotrophic genera Methanobacterium was highly enriched during the incubation. The modeling of the in-situ observation of the earthquake swarm period in 2000 at the Novy Kostel focal area/Czech Republic and our laboratory simulation experiments reveals a close relation between seismic activities and microbial methane production via earthquake-induced H2 release. We thus conclude that H2 – which is released during seismic activity – can potentially trigger methanogenic activity in the deep subsurface. Based on this conclusion, we further hypothesize that the hydrogenotrophic early life on Earth was boosted by the Late Heavy Bombardment induced seismic activity in approximately 4.2 to 3.8 Ga.
    Description: Das Eger-Becken (CZ) ist ein flaches, intrakontinentales neogenes Becken im westlichen Eger-Graben. Das Eger-Becken zeichnet sich durch aktive Seismizität und die diffuse Entgasung von aus dem Mantel stammenden CO2 in Mofettenfeldern aus. Das Mofettenfeld von Hartoušov weist einen täglichen CO2-Fluss von 23-97 Tonnen auf. Mehr als 99% des CO2 werden auf einer Fläche von 0,35 km2 freigesetzt. Im Untersuchungsgebiet wurden in den Jahren 2000 und 2014 seismisch aktive Perioden beobachtet. Aufgrund der aktiven geodynamischen Prozesse gilt das Egerer Becken als ideale Region für die kontinentale Tiefenbiosphärenforschung, die sich auf die Wechselwirkung von biologischen Prozessen mit geologischen Prozessen konzentriert. Zur Untersuchung des Einflusses der CO2-Entgasung auf die mikrobielle Gemeinschaft in der ober- und unterirdischen Umwelt wurden 2015 und 2016 zwei 3 m tiefe Flachbohrungen und eine 108,5 m tiefe wissenschaftliche Bohrung durchgeführt. Zusätzlich wurde auch aus dem Tiefbohrloch Flüssigkeit gewonnen. Die verschiedenen Ökosysteme wurden hinsichtlich ihrer geochemischen Eigenschaften, der mikrobiellen Abundanzen und der mikrobiellen Gemeinschaftsstrukturen verglichen. Die Geochemie der Mofetten zeichnet sich durch einen niedrigen pH-Wert und hohe TOC- und Sulfatgehalte aus, während das unterirdische Milieu einen neutralen pH-Wert und verschiedene TOC- und Sulfatgehalte in unterschiedlichen lithologischen Umgebungen aufweist. Auffällige Unterschiede in der mikrobiellen Gemeinschaft unterstreichen den erheblichen Einfluss erhöhter CO2-Konzentrationen und stark salzhaltigen Grundwassers auf mikrobielle Prozesse. Generell waren die mikrobiellen Abundanzen in dem tiefen Untergrundsediment im Vergleich zur flachen Mofette gering. Innerhalb der Mofette und des tiefen unterirdischen Sediments zeigt die Häufigkeit der Mikroorganismen jedoch keine typische Abnahme mit der Tiefe, was darauf hinweist, dass das aufsteigende CO2-reiche Grundwasser einen starken Einfluss auf die mikrobiellen Gemeinschaften hat, indem es genügend Substrat für anaerobe chemolithoautotrophe Mikroorganismen bietet. Die Illumina-MiSeq-Sequenzierung der 16S rRNA-Gene und die multivariate Statistik zeigen, dass der pH-Wert die Zusammensetzung der mikrobiellen Gemeinschaft in der Mofette signifikant bestimmt, während die unterirdische mikrobielle Gemeinschaft signifikant vom Grundwasser beeinflusst wird, das durch das ausgasende CO2 geprägt ist. Azidophile Mikroorganismen zeigen eine viel höhere relative Abundanz in der Mofette, wohingegen die der Familie Comamonadaceae zugeordneten OTUs die dominierenden Taxa der unterirdischen Gemeinschaften darstellen. Zusätzlich charakterisieren Taxa, die am Schwefelzyklus beteiligt sind, die mikrobiellen Gemeinschaften sowohl in der Mofette als auch in der CO2-dominierten unterirdischen Umwelt. Eine weitere wichtige Untersuchung der Geo-Bio-Interaktion ist der Einfluss der seismischen Aktivität. Während seismischer Ereignisse kann freigesetztes H2 als Elektronendonator für mikrobielle hydrogenotrophe Prozesse, wie z.B. die Methanogenese, dienen. Um zu bestimmen, ob die seismischen Ereignisse durch die erhöhten geogenen H2-Konzentrationen möglicherweise methanogene Prozesse auslösen können, führten wir Laborsimulationsexperimente mit Sedimenten durch, die aus den Bohrungen gewonnen wurden. Die Simulationsexperimente weisen darauf hin, dass nach der Zugabe von Wasserstoff beträchtliche Mengen an Methan in inkubierten Mofettensedimenten und tiefen unterirdischen Sedimenten produziert wurden. Die methanogene hydrogenotrophe Gattung Methanobacterium wurde während der Inkubation stark angereichert. Die Modellierung der in-situ-Beobachtung der Erdbeben-Schwarmzeit im Jahr 2000 im Schwerpunktgebiet Novy Kostel/Tschechische Republik und unsere Laborsimulationsexperimente zeigen einen engen Zusammenhang zwischen seismischen Aktivitäten und der biotischen Methanproduktion durch erdbebeninduzierte H2-Freisetzung. Wir kommen daher zu dem Schluss, dass H2 - dass bei seismischer Aktivität freigesetzt wird - möglicherweise methanogene Aktivität im tiefen Untergrund auslösen kann. Basierend auf dieser Schlussfolgerung gehen wir weiter davon aus, dass das frühe hydrogenotrophe Leben, durch die durch Late Heavy Bombardment induzierte seismische Aktivität in etwa 4,2 bis 3,8 Ga verstärkt wurde.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-12-10
    Description: In this study, the dead carbon fraction (DCF) variations in stalagmite M1-5 from Socotra Island in the western Arabian Sea were investigated through a new set of high-precision U-series and radiocarbon (14C) dates. The data reveal an extreme case of very high and also climate-dependent DCF. For M1-5, an average DCF of 56.2±3.4 % is observed between 27 and 18 kyr BP. Such high DCF values indicate a high influence of aged soil organic matter (SOM) and nearly completely closed-system carbonate dissolution conditions. Towards the end of the last glacial period, decreasing Mg∕Ca ratios suggest an increase in precipitation which caused a marked change in the soil carbon cycling as indicated by sharply decreasing DCF. This is in contrast to the relation of soil infiltration and DCF as seen in stalagmites from temperate zones. For Socotra Island, which is influenced by the East African–Indian monsoon, we propose that more humid conditions and enhanced net infiltration after the Last Glacial Maximum (LGM) led to dense vegetation and thus lowered the DCF by increasing 14CO2 input into the soil zone. At the onset of the Younger Dryas (YD) a sudden change in DCF towards much higher, and extremely variable, values is observed. Our study highlights the dramatic variability of soil carbon cycling processes and vegetation feedback on Socotra Island manifested in stalagmite DCF on both long-term trends and sub-centennial timescales, thus providing evidence for climate influence on stalagmite radiocarbon. This is of particular relevance for speleothem studies that aim to reconstruct past atmospheric 14C (e.g., for the purposes of 14C calibration), as these would rely on largely climate-independent soil carbon cycling above the cave.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-12-10
    Description: Vulcanian explosions are hazardous and are often spontaneous and direct observations are therefore challenging. Ebeko is an active volcano on Paramushir Island, northern Kuril Islands, showing characteristic Vulcanian-type activity. In 2019, we started a comprehensive survey using a combination of field station records and repeated unoccupied aircraft system (UAS) surveys to describe the geomorphological features of the edifice and its evolution during ongoing activity. Seismic data revealed the activity of the volcano and were complemented by monitoring cameras, showing a mean explosion interval of 34 min. Digital terrain data generated from UAS quadcopter photographs allowed for the identification of the dimensions of the craters, a structural architecture and the tephra deposition at cm-scale resolution. The UAS was equipped with a thermal camera, which in combination with the terrain data, allowed it to identify fumaroles, volcano-tectonic structures and vents and generate a catalog of 282 thermal spots. The data provide details on a nested crater complex, aligned NNE-SSW, erupting on the northern rim of the former North Crater. Our catalog of thermal spots also follows a similar alignment on the edifice-scale and is also affected by topography on a local scale. This paper provides rare observations at Ebeko volcano and shows details on its Vulcanian eruption style, highlighting the relevance of structural and morphologic control for the geometry of craters and tephra fallout as well as for structurally controlled geothermal activity.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-12-10
    Description: The night has historically been neglected in both disciplinary and interdisciplinary research. To some extent, this is not surprising, given the diurnal bias of human researchers and the difficulty of performing work at night. The night is, however, a critical element of biological, chemical, physical, and social systems on Earth. Moreover, research into social issues such as inequality, demographic changes, and the transition to a sustainable economy will be compromised if the night is not considered. Recent years, however, have seen a surge in research into the night. We argue that “night studies” is on the cusp of coming into its own as an interdisciplinary field, and that when it does, the field will consider questions that disciplinary researchers have not yet thought to ask.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-12-10
    Description: Goethite-cemented duricrusts, also known as canga, commonly occur as a capping rock protecting underlying iron ore deposits. The processes that govern canga formation are still unclear but include recurrent partial dissolution and recrystallisation of goethite through biogeochemical cycling of iron, hypothesised to be catalysed by plants and bacteria. In the present study, the effect of plant exudates on mobilisation of iron in canga was examined using model plants grown on crushed canga in RHIZOtest devices, which separate roots from substrate by a semi-permeable membrane. Moderate plant-induced acidification of the canga was detected, however the primary driver of mineral dissolution was the synergistic effect of reductive and ligand-promoted dissolution, identified by an increase in organic acids concentration and the presence of low concentrations of free ferrous iron. Whilst organic acids exudation lasted, iron cations were stabilised in solution; once the organic acids were degraded by microorganisms, the free cations precipitated as iron oxy-hydroxides. Mineralogical analysis and high-resolution microscopy confirmed our hypothesis that plants that grow in this iron-rich substrate contribute to iron dissolution indirectly (e.g., during phosphate solubilisation), and that the resulting surplus iron not taken up by the plants is redeposited, promoting the cementation of the residual minerals. Understanding the contribution of plants to the iron cycling in canga is crucial when formulating post-mining rehabilitation strategies for iron ore sites.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-12-10
    Description: Previous studies have suggested that the Late Glacial period (LG; ∼14 600–11 700 cal BP) was characterised by abrupt and extreme climate variability over the European sector of the North Atlantic. The limited number of precisely dated, high-resolution proxy records, however, restricts our understanding of climate dynamics through the LG. Here, we present the first annually-resolved tree-cellulose stable oxygen and carbon isotope chronology (δ18Otree, δ13Ctree) covering the LG between ∼14 050 and 12 795 cal BP, generated from a Swiss pine trees (P. sylvestris; 27 trees, 1255 years). Comparisons of δ18Otree with regional lake and ice core δ18O records reveal that LG climatic changes over the North Atlantic (as recorded by Greenland Stadials and Inter-Stadials) were not all experienced to the same degree in the Swiss trees. Possible explanations include: (1) LG climate oscillations may be less extreme during the summer in Switzerland, (2) tree-ring δ18O may capture local precipitation and humidity changes and/or (3) decayed cellulose and various micro-site conditions may overprint large-scale temperature trends found in other δ18O records. Despite these challenges, our study emphasises the potential to investigate hydroclimate conditions using subfossil pine stable isotopes.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-12-10
    Description: Microfacies analysis of a sediment record from Chatyr Kol lake (Kyrgyz Republic) reveals the presence of seasonal laminae (varves) from the sediment base dated at 11 619±603 BP (years Before Present) up to ∼360±40 BP. The Chatvd19 floating varve chronology relies on replicate varve counts on overlapping petrographic thin sections with an uncertainty of ±5 %. The uppermost non-varved interval was chronologically constrained by 210Pb and 137Cs gamma spectrometry and interpolation based on varve thickness measurements of adjacent varved intervals with an assumed maximum uncertainty of 10 %. Six varve types were distinguished, are described in detail, and show a changing predominance of clastic-organic, clastic-calcitic or clastic-aragonitic, calcitic-clastic, organic-clastic, and clastic-diatom varves throughout the Holocene. Variations in varve thickness and the number and composition of seasonal sublayers are attributed to (1) changes in the amount of summer or winter/spring precipitation affecting local runoff and erosion and/or to (2) evaporative conditions during summer. Radiocarbon dating of bulk organic matter, daphnia remains, aquatic plant remains, and Ruppia maritima seeds reveals reservoir ages with a clear decreasing trend up core from ∼6150 years in the early Holocene, to ∼3000 years in the mid-Holocene, to ∼1000 years and less in the late Holocene and modern times. In contrast, two radiocarbon dates from terrestrial plant remains are in good agreement with the varve-based chronology.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-12-10
    Description: Central Asia is characterized by a continental climate and a pronounced inter-annual variability of precipitation and discharge. In the past, hydro-climatological droughts led to serious water shortages, resulting in crop shortfalls, significant economic loss and inter-state political tensions. Robust forecasts of anomalous climatic and hydrological conditions may reduce regional vulnerability to hydro-climatic extremes and thus can serve as a scientific basis for national and trans-national water management. Based on a synthesis of international literature and on our decadal-long experience in the region, we systematically review the scientific progress in seasonal forecasting and evaluate the potential for a scientifically-informed water management. Additionally, we discuss to what extent the scientific progress meets the requirements of stakeholders and reveal major obstacles for a sustainable knowledge transfer. Our review shows that exceptionally skillful discharge forecasts for the agricultural relevant vegetation season can be derived by means of statistical models taking remote-sensing based estimations of the snow coverage in the Central Asian mountain regions as independent covariates. The consideration of global climate indices, in particular El Niño, allows to extend the forecast lead-times. However, decision makers are often not aware of the scientific progress and its implications for improved water management. Despite the continuous international effort with regard to knowledge transfer and capacity development, modernization at Central Asian water management institutions is proceeding slowly. A continuous engagement in the field of capacity development and knowledge dissemination at various institutional levels (including academia, forecast centers and water management institutions) appears necessary in order to stimulate a multi-disciplinary network and to support a sustainable regional collaboration in the water sector.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-12-10
    Description: Hydrological extremes, in particular floods and droughts, impact all regions across planet Earth. They are mainly controlled by the temporal evolution of key hydrological variables like precipitation, evaporation, soil moisture, groundwater storage, surface water storage and discharge. Precise knowledge of the spatial and temporal evolution of these variables at the scale of river basins is essential to better understand and forecast floods and droughts. In this article, we present recent advances on the capability of Earth observation (EO) satellites to provide global monitoring of floods and droughts. The local scale monitoring of these events which is traditionally done using high-resolution optical or SAR (synthetic aperture radar) EO and in situ data will not be addressed. We discuss the applications of moderate- to low-spatial-resolution space-based observations, e.g., satellite gravimetry (GRACE and GRACE-FO), passive microwaves (i.e. SMOS) and satellite altimetry (i.e. the JASON series and the Copernicus Sentinel missions), with supporting examples. We examine the benefits and drawbacks of integrating these EO datasets to better monitor and understand the processes at work and eventually to help in early warning and management of flood and drought events. Their main advantage is their large monitoring scale that provides a “big picture” or synoptic view of the event that cannot be achieved with often sparse in situ measurements. Finally, we present upcoming and future EO missions related to this topic including the SWOT mission.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-12-10
    Description: Using Fracture Seismic methods to map fluid-conducting fracture zones makes it important to understand fracture connectivity over distances greater 10–20 m in the Earth’s upper crust. The principles required for this understanding are developed here from the observations that (1) the spatial variations in crustal porosity are commonly associated with spatial variations in the magnitude of the natural logarithm of crustal permeability, and (2) many parameters, including permeability have a scale-invariant power law distribution in the crust. The first observation means that crustal permeability has a lognormal distribution that can be described as κ≈κ0exp(α(φ−φ0)) , where α is the ratio of the standard deviation of ln permeability from its mean to the standard deviation of porosity from its mean. The scale invariance of permeability indicates that αϕο = 3 to 4 and that the natural log of permeability has a 1/k pink noise spatial distribution. Combined, these conclusions mean that channelized flow in the upper crust is expected as the distance traversed by flow increases. Locating the most permeable channels using Seismic Fracture methods, while filling in the less permeable parts of the modeled volume with the correct pink noise spatial distribution of permeability, will produce much more realistic models of subsurface flow.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-12-10
    Description: Atmospheric climate monitoring requires observations of high quality that conform to the criteria of the Global Climate Observing System (GCOS). Radio occultation (RO) data based on Global Positioning System (GPS) signals are available since 2001 from several satellite missions with global coverage, high accuracy, and high vertical resolution in the troposphere and lower stratosphere. We assess the consistency and long-term stability of multi-satellite RO observations for use as climate data records. As a measure of long-term stability, we quantify the structural uncertainty of RO data products arising from different processing schemes. We analyze atmospheric variables from bending angle to temperature for four RO missions, CHAMP, Formosat-3/COSMIC, GRACE, and Metop, provided by five data centers. The comparisons are based on profile-to-profile differences aggregated to monthly medians. Structural uncertainty in trends is found to be lowest from 8 to 25 km of altitude globally for all inspected RO variables and missions. For temperature, it is 〈 0.05 K per decade in the global mean and 〈 0.1 K per decade at all latitudes. Above 25 km, the uncertainty increases for CHAMP, while data from the other missions – based on advanced receivers – are usable to higher altitudes for climate trend studies: dry temperature to 35 km, refractivity to 40 km, and bending angle to 50 km. Larger differences in RO data at high altitudes and latitudes are mainly due to different implementation choices in the retrievals. The intercomparison helped to further enhance the maturity of the RO record and confirms the climate quality of multi-satellite RO observations towards establishing a GCOS climate data record.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-12-10
    Description: Landscape evolution models can be used to assess the impact of rainfall variability on bedrock river incision over millennial timescales. However, isolating the role of rainfall variability remains difficult in natural environments, in part because environmental controls on river incision such as lithological heterogeneity are poorly constrained. In this study, we explore spatial differences in the rate of bedrock river incision in the Ecuadorian Andes using three different stream power models. A pronounced rainfall gradient due to orographic precipitation and high lithological heterogeneity enable us to explore the relative roles of these controls. First, we use an area-based stream power model to scrutinize the role of lithological heterogeneity in river incision rates. We show that lithological heterogeneity is key to predicting the spatial patterns of incision rates. Accounting for lithological heterogeneity reveals a nonlinear relationship between river steepness, a proxy for river incision, and denudation rates derived from cosmogenic radionuclide (CRNs). Second, we explore this nonlinearity using runoff-based and stochastic-threshold stream power models, combined with a hydrological dataset, to calculate spatial and temporal runoff variability. Statistical modeling suggests that the nonlinear relationship between river steepness and denudation rates can be attributed to a spatial runoff gradient and incision thresholds. Our findings have two main implications for the overall interpretation of CRN-derived denudation rates and the use of river incision models: (i) applying sophisticated stream power models to explain denudation rates at the landscape scale is only relevant when accounting for the confounding role of environmental factors such as lithology, and (ii) spatial patterns in runoff due to orographic precipitation in combination with incision thresholds explain part of the nonlinearity between river steepness and CRN-derived denudation rates. Our methodology can be used as a framework to study the coupling between river incision, lithological heterogeneity and climate at regional to continental scales.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Natural Hazards and Earth System Sciences (NHESS)
    Publication Date: 2020-12-10
    Description: The Flood Damage Database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. The main purpose of development of HOWAS 21 was to support forensic flood analysis and the derivation of flood damage models. HOWAS 21 was first developed for Germany and currently almost exclusively contains datasets from Germany. However, its scope has recently been enlarged with the aim to serve as an international flood damage database; e.g. its web application is now available in German and English. This paper presents the recent advancements of HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data. The data applications indicate a large potential of the database for fostering a better understanding and estimation of the consequences of flooding.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-10-27
    Description: We study the crustal structure of Sri Lanka by analyzing data from a temporary seismic network deployed in 2016-2017 (Seneviratne et al., 2016) to shed light on the amalgamation process from the geophysical perspective. Rayleigh wave phase dispersion from ambient noise cross-correlation and receiver functions were jointly inverted using a transdimensional Bayesian approach (Bodin et al., 2012, Dreiling et al., 2019).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-11-18
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-11-03
    Description: In this study, a series of hydraulic fracturing tests under different injecting conditions was performed on Pocheon granite rock to account for the evolution of hydro-mechanical behavior during the fracturing process. We investigated the effect of the fluid viscosity and pressurization rate on the fracturing process of granite. Two different type of injection fluids, water and oil, were used under different pressurization rate. Visual inspection techniques such as X-ray computed tomography and thin section imaging were employed to capture the fracture pattern together with AE monitoring. As a result, the water injection case has larger saturation zone into the formation at breakdown while the oil infiltrates only vicinity of main fracture. The AE monitoring results show that the oil injection cases have a big sudden rise in the cumulative AE hit energy during fracture propagation which is more manifest under high pressurization rate. The induced fractures are observed to be larger in aperture and less tortuous for the higher fluid viscosity and higher pressurization rate cases through thin section images. On the other hand, the sleeve testing cases yield relatively very small aperture of induced fractures.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-11-05
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The Geodetic Observatory Pecný (GOPE) is located in the Czech Republic, about 40 km south-east of Prague, in the Central Bohemian hilly land at the elevation of about 500 m. It is surrounded by a mixed wood. Except for one local road the next nearest local road is about 1 km apart, the nearest railway is 5.2 km, the nearest village 1 km (Ondřejov). The bigger river (Sázava) flows through the valley at a distance of 5 km from the observatory at the height of about 300 m. No construction or other technological works (mines, industrial plants etc.) run either in the close surroundings or at longer distance. The hill Pecný is in the old metamorphic paleozoic synclinal zone of the Čerčany Chlum neighbouring with the Central Bohemian granitic massif and the perm massif of Černý Kostelec. From the geological point of view, GOPE was established in very stable region. GOPE is operated by the Research Institute of Geodesy, Topography and Cartography (RIGTC) and was established in 1957. GOPE has been involved in tidal observations with spring gravimeters since the early seventies of the last century, cooperation with the International Center for Earth Tides (ICET) has been dated since 1990. GOPE belongs to the core stations of ECGN - European Combined Geodetic Network, established by the EUREF IAG Subcommission. Since February 2007, the observatory type of one sphere superconducting gravimeter OSG-050 was running in the old gravimetric laboratory (OGL) of GOPE located in the cellar of the main building of GOPE (Latitude: 49.9137 N, Longitude: 14.7856 E, Elevation: 534.58 m), about 1.8 m under the ground of the surrounding relief. Almost uninterrupted 10-year time series of gravity record with OSG-050 has been carried out till October 2017, when the OSG-050 has been moved to the new gravimetric laboratory (NGL) situated in the top of the hill Pecný, less than 100 m from OGL. NGL (Latitude: 49.9141 N, Longitude: 14.7868 E, Elevation: 545.10 m) provides 3 concrete pillars in the ground level, which are founded to the bedrock (4 m below the ground). Two pillars are used for repeated observations with absolute gravimeters (AG) and in the third pillar, located in a separate room, the OSG-050 is running continuously. All rooms are thermally stabilized by air-conditioning systems. Due to the excellent stability of the station and the facilities to inter-compare different AGs, the GOPE was developed as a regional comparison site which serves as a reference for the Czech Gravimetric Network. Since 2001, repeated absolute measurements with interval of one month have been carried out in OGL and later in NGL to achieve continuous drift-free gravity time series by combination of absolute and superconducting data. At the area of the station, meteorological (precipitation, air temperature, humidity, air pressure) and hydrological (ground water and soil moisture) parameters are measured by different sensors. These data are available through auxiliary data in the IGETS database. Raw gravity and local atmospheric pressure records sampled at second and the same records decimated at 1‐minute samples are provided as Level 1 products of the IGETS network.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-11-06
    Description: Rivers have always flooded their floodplains. Over 2.5 billion people worldwide have been affected by flooding in recent decades. The economic damage is also considerable, averaging 100 billion US dollars per year. There is no doubt that damage and other negative effects of floods can be avoided. However, this has a price: financially and politically. Costs and benefits can be estimated through risk assessments. Questions about the location and frequency of floods, about the objects that could be affected and their vulnerability are of importance for flood risk managers, insurance companies and politicians. Thus, both variables and factors from the fields of hydrology and sociol-economics play a role with multi-layered connections. One example are dikes along a river, which on the one hand contain floods, but on the other hand, by narrowing the natural floodplains, accelerate the flood discharge and increase the danger of flooding for the residents downstream. Such larger connections must be included in the assessment of flood risk.
    Description: Flüsse haben seit jeher ihre Auen überflutet. In den vergangenen Jahrzehnten waren weltweit über 2,5 Milliarden Menschen durch Hochwasser betroffen. Auch der ökonomische Schaden ist mit durchschnittlich 100 Milliarden US Dollar pro Jahr erheblich. Zweifelsohne können Schäden und andere negative Auswirkungen von Hochwasser vermieden werden. Allerdings hat dies einen Preis: finanziell und politisch. Kosten und Nutzen lassen sich durch Risikobewertungen abschätzen. Dabei werden in der Wasserwirtschaft, von Versicherungen und der Politik Fragen nach dem Ort und der Häufigkeit von Überflutungen, nach den Dingen, die betroffen sein könnten und deren Anfälligkeit untersucht. Somit spielen sowohl Größen und Faktoren aus den Bereichen der Hydrologie und Sozioökonmie mit vielschichtigen Zusammenhängen eine Rolle. Ein anschauliches Beispiel sind Deiche entlang eines Flusses, die einerseits in ihrem Abschnitt Überflutungen eindämmen, andererseits aber durch die Einengung der natürlichen Vorländer den Hochwasserabfluss beschleunigen und die Gefährdung für die Anlieger flussab verschärfen. Solche größeren Zusammenhänge müssen in der Bewertung des Hochwasserrisikos einbezogen werden. In derzeit gängigen Verfahren geht dies mit vereinfachenden Annahmen einher. Risikoabschätzungen sind daher unscharf und mit Unsicherheiten verbunden. Diese Arbeit untersucht den Nutzen und die Möglichkeiten neuer Datensätze für eine Verbesserung der Hochwasserrisikoabschätzung. Es werden neue Methoden und Modelle entwickelt, die die angesprochenen Zusammenhänge stärker berücksichtigen und auch die bestehenden Unsicherheiten der Modellergebnisse beziffern und somit die Verlässlichkeit der getroffenen Aussagen einordnen lassen. Dafür werden Daten zu Hochwasserereignissen aus verschiedenen Quellen erfasst und ausgewertet. Dazu zählen neben Niederschlags-und Durchflussaufzeichnungen an Messstationen beispielsweise auch Bilder aus sozialen Medien, die mit Ortsangaben und Bildinhalten helfen können, die Überflutungsflächen abzugrenzen und Hochwasserschäden zu schätzen. Verfahren des Maschinellen Lernens wurden erfolgreich eingesetzt, um aus vielfältigen Daten, Zusammenhänge zwischen Hochwasser und Auswirkungen zu erkennen, besser zu verstehen und verbesserte Modelle zu entwickeln. Solche Risikomodelle helfen bei der Entwicklung und Bewertung von Strategien zur Minderung des Hochwasserrisikos. Diese Werkzeuge ermöglichen darüber hinaus Einblicke in das Zusammenspiel verschiedener Faktoren sowie Aussagen zu den zu erwartenden Folgen auch von Hochwassern, die das bisher bekannte Ausmaß übersteigen. Diese Arbeit verzeichnet Fortschritte in Bezug auf eine verbesserte Bewertung von Hochwasserrisiken durch die Nutzung vielfältiger Daten aus unterschiedlichen Quellen mit innovativen Verfahren sowie der Weiterentwicklung von Modellen. Das Hochwasserrisiko unterliegt durch wirtschaftliche Entwicklungen und klimatische Veränderungen einem steten Wandel. Um das Wissen über Risiken aktuell zu halten sind robuste, leistungs- und anpassungsfähige Verfahren wie sie in dieser Arbeit vorgestellt werden von zunehmender Bedeutung.
    Language: English
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-11-13
    Description: The Central Andean orogeny is caused by the subduction of the Nazca oceanic plate beneath the South-American continental plate. In Particular, the Southern Central Andes (SCA, 27°-40°S) are characterized by a strong N-S and E-W variation in the crustal deformation style and intensity. Despite being the surface geology relatively well known, the information on the deep structure of the upper plate in terms of its thickness and density configurations is still scarcely constrained. Previous seismic studies have focused on the crustal structure of the northern part of the SCA (~27°-33°S) based upon 2D cross-sections, while 3D crustal models centred on the South-American or the Nazca Plate have been published with lower resolution. To gain insight into the present-day state of the lithosphere in the area, we derived a 3D model that is consistent with both the available geological and seismic data and with the observed gravity field. The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen, the forearc and the forelands.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-11-13
    Description: The Atacama Fault System (AFS) in N-Chile is a complex fault system with a variety of fault segments showing different degrees of activity. Initiated as a trench-linked fault system during the Jurassic it is now exposed in the Coastal Cordillera in the forearc of the Nazca-South America convergent plate margin. Fault scarps and surface ruptures indicate varying degrees of reactivation of this fault system that most likely roots into the subduction zone interface at the downdip end of coupling. Therefore, the interaction of these two systems is evident though not well understood. The active fault database for the northernmost segment of the Atacama Fault System (AFS) is the result of creating a comprehensive catalogue of active faults in the forearc to investigate activity patterns of the forearc in relation with megathrust segmentation and upper plate seismicity in the Coastal Cordillera of N-Chile (19°12’S - 25°12’S). The dataset has been compiled in Arc-GIS and is available as .mpk as well as .kmz formats to be visualised in Google Earth. The activity patterns are mapped according to a well-defined set of criteria (see below). The database for activity starts out from a thorough literature review and is supplemented by new evidences combining interpretation of remote sensing data, field work and upper plate seismicity from the Integrated Plate Boundary Observatory in Chile (IPOC) (Sippl et al., 2018) and a local seismic catalogues covering the area of the Salar Grande segment (Bloch et al., 2014). It also includes the available age data of offset geological units as references to bracket the chronology of fault activity. Fault activity for this study has been defined according to the Quaternary fault and fold database of the United States (https://www.usgs.gov/natural-hazards/earthquake-hazards/faults?qt-science_support_page_related_con=4#qt-science_support_page_related_con), but is subject to significant error due to slow slip rates (〈 0.2mm/yr), few chronologically constrained fault offsets and lack of historically or instrumentally observed earthquakes along the fault segments. Therefore, this database does not have the aim to serve as active fault database for seismic hazard assessment. It has been created with the clear aim to serve as database for general aspects of upper plate fault reactivation in relation with the megathrust seismic cycle and megathrust segmentation. This publication is part of an ongoing study investigating the interaction of megathrust segmentation with activity patterns in the overriding forearc.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-11-16
    Description: Active continental margins are potentially exposed to geohazards of different nature, including earthquakes and gas hydrate destabilisation, which may result in submarine landslides and devastating tsunamis. The northern margin of the South American plate is characterised by two flat-slab subductions: the Nazca plate from the west, and the Caribbean plate from the north. This defines a complex and poorly understood tectonic setting which poses a risk for the inhabitants of the region. Gaining insight into the physical conditions (such as rock strength and temperature) at which earthquakes nucleate in this region requires building an improved lithospheric model, and determining the thermal and rheological states of the tectonic plates involved in this subduction system. Combining 3D lithospheric-scale thermal and rheological modelling is a novel approach to establish the spatial variation of seismogenic zones, both at shallow and intermediate depths, thus providing crucial information about the range of conditions at which earthquakes may occur. This method is especially useful in regions like the South Caribbean where more classical approaches are limited because seismic records do not extend far back in time and the frequency of megathrust earthquakes is low. Furthermore, in river-dominated continental margins, such as the South Caribbean, the destabilisation of gas hydrates deposits has been recently recognised as one of the most important triggering factors of submarine landslides. Gas hydrates are stable in low-temperature and high-pressure environments, normally found in marine sediments within continental slopes, with dominant temperatures ranging from 5°C to 10°C, at depths greater than 400 m. However, the gas hydrate stability zone is mainly controlled by the local geothermal gradient and the bottom water temperature, being both parameters influenced by the particular setting of each region. Our research aims to evaluate the physical state of the seismogenic zones in the northern margin of the South American plate and Panama microplate, and to identify the locations of potential gas hydrates accumulation in the South Caribbean margin. Here we present the complete workflow of this analysis, starting from the definition of an up-to-date 3D lithospheric-scale model which has been validated with the forward modelling of gravity anomalies. This model is the main input for calculating the 3D steady-state thermal field and the 3D pressure field, using the software LYNX. Based on our modelled results, we evaluate the rheological behaviour of the present-day lithospheric configuration, considering the locations of the earthquakes from the Bulletin of the International Seismological Centre. Finally, by modelling the temperature and pressure within the marine sediments, we constrain the spatial distribution of the potential gas hydrate stability zone. With this work we exemplify how 3D lithospheric-scale thermal and rheological models may contribute to the assessment of geohazards in a region such as the Caribbean Sea, where hundreds of thousands of coastal inhabitants, tourists and infrastructures are potentially at risk.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-11-18
    Description: Response Spectrum Analysis (RSA), one of the most popular methods to carry out the seismic design of multi-degree-offreedom (MDOF) structures, is based on the concept of modal superposition, by which the uncoupled equations of motion that represent each mode of vibration of the system can be solved independently and the resulting responses superimposed by assuming linear elastic behaviour. Each mode is represented by a single-degree-of-freedom (SDOF) system, whose peak response is retrieved from response spectra deemed suitable for design. However, while modal superposition allows for the total response of a MDOF system to be determined by simple addition of the individual modal responses at each time step, combination of spectral values needs to take into account the fact that peak modal responses do not necessarily occur at the same time or along the same horizontal directions. These considerations give rise to the use of modal and spatial combination rules that aim to calculate the likely peak response of a MDOF system instead of conservatively carrying out an algebraic sum of maxima. Current design codes prescribe methodologies that were defined in the 1970s and 1980s, such as the Complete Quadratic Combination (CQC) [1], its three-dimensional extension CQC3 [2], the Square Root of the Sum of the Squares (SRSS) [3], or the 30% rules [4], based mostly on random vibration theory. However, access to large numbers of ground motion records at the present time allow us to revisit these approaches from a data-driven perspective, and investigate the relationship across the peaks of SDOF responses to seismic excitation at different orientations and at different points in time, with the ultimate goal of characterising this relationship in a fully probabilistic way. This paper presents results of a study of SDOF demands obtained considering 1,218 accelerograms from the RESORCE database [5], whose two horizontal perpendicular components were rotated around all non-redundant angles every 2° and applied to SDOF systems with periods of vibration of 0.2, 1.0 and 3.0 seconds, and sets of secondary systems with periods ranging from 0.5 through 0.95 times the three aforementioned periods. The concept of peak response was extended to include all peaks with amplitudes above two alternative thresholds of 80% and 95% of the maximum absolute response. Two main kinds of parameters were studied and are presented: (i) time differences between peaks of the same component and across perpendicular components, and (ii) ratios of instantaneous displacement demands between perpendicular components and the same component for different oscillator periods, as one of the components reaches a peak in the oscillator’s response. While results for the latter resemble the idea of the 0.3 coefficient from the 30% rule in average terms, the dispersion associated with all these parameters is large and should not be neglected.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-11-17
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-11-18
    Description: The relation between the response of an elastic single degree of freedom oscillator subject to seismic shaking and the seismological characteristics of the input waveforms represented in terms of the Fourier amplitude spectrum (FAS) has become a topic of growing interest in the engineering seismological community in recent years. As simulations of ground motions assume a greater prominence in engineering design and databases of both strong and weak motion records expand exponentially, the need to reconcile the influence of the controlling seismological properties of the motions with their potential impacts on structural response is becoming ever more important. Prediction of ground motion in the Fourier amplitude domain has several key advantages when compared to that of the response spectrum, namely a closer relationship to the physical seismological properties of the source, path and site that can be inferred from more abundant small magnitude and weak motion data, as well as maintained linearity of site response at all frequencies. Recognising this, new empirical ground motion models have been developed in terms of FAS [1, 2], in addition to an inter-frequency correlation model that can facilitate the definition of conditional spectrum compatible empirical and simulated ground motion records for design [3]. In spite of these advantages, the usage of FAS in seismic hazard and risk analysis remains limited to the scaling of simulated ground motions in the development of median ground motion models using random vibration theory (RVT). One major factor behind this is that translation from FAS to response spectra via RVT requires joint characterization not only of ground motions across a range of frequencies but also of strong motion duration. However, this limitation could potentially be overcome if fragility functions were to be derived directly in terms of FAS. It is for this purpose that a comparison is made in this paper between the efficiency of intensity measures based on the FAS and those based on conventional response spectra for a set of simple building fragility models of the type commonly used in seismic risk analysis. The feasibility of achieving end-to-end loss estimation exclusively in the Fourier amplitude domain is subsequently explored. While its full range of benefits and limitations will require further study, the potential for embedding seismological theory and data more deeply into engineering applications is appealing for the future practice of seismic design and risk analysis.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-11-18
    Description: Any strategy to change Carbon (C) pool would have a substantial effect on functionality of numerous ecosystem functions, detachment of Soil Organic Carbon (SOC), atmospheric carbon dioxide (CO2) concentration, and climate change mitigation. As the largest amount of the world’s C is stored in forests soils, the importance of forest SOC management is highlighted. Total SOC in forest varies not only laterally but also vertically with depth; however, the SOC storage of lower soil horizons have not been investigated enough despite their potential to frame our understanding of soil functioning. Visible–Near Infrared (vis–NIR) reflectance spectroscopy enables rapid examinations of the horizontal distribution of forest SOC, overcoming limitations of traditional soil assessment. This study aims to evaluate the potential of vis–NIR spectroscopy for characterizing the SOC contents of organic and mineral horizons in forests. We investigated 1080 forested sites across the Czech Republic at five individual soil layers, representing the Litter (L), Fragmented (F), and Humus (H) organic horizons, and the A1 (depth of 2–10 cm) and A2 (depth of 10–40 cm) mineral horizons (total 5400 samples). We then used Support Vector Machine (SVM) to model the SOC contents of (i) the profile (all organic and mineral horizons together), (ii) the combined organic horizons, (iii) the combined mineral horizons, and (iv) each individual horizon separately. The models were validated using 10-repeated 10-fold cross validation. Results showed that there was at least more than seven times as much SOC in the combined organic horizons compared to the combined mineral horizons with more variation in deeper layers. All individual horizons’ SOC was successfully predicted with low error and R2 values higher than 0.63; however, the prediction accuracy of F and A1 was greater compared to others (R2 〉 0.70 and very low-biased spatial estimates). We have shown that modelling of SOC with vis–NIR spectra in different soil horizons of highly heterogeneous forests of the Czech Republic is practical.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-11-18
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-12-10
    Description: Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne multitemporal multispectral optical data combined with spectral endmembers to document spatial distribution of surface crust types over time on the Omongwa pan located in the Namibian Kalahari. For this purpose, 49 surface samples were collected for spectral and mineralogical characterization during three field campaigns (2014–2016) reflecting different seasons and surface conditions of the salt pan. An approach was developed to allow the spatiotemporal analysis of the salt pan crust dynamics in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 2014 and 2017, covering at least three major wet–dry cycles. The established spectral analysis technique Sequential Maximum Angle Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data allowed the differentiation of four endmembers associated with mineralogical mixtures of the crust’s composition in dry conditions and three endmembers associated with flooded or muddy pan conditions. The dry crust endmember spectra have been identified in relation to visible, near infrared, and short-wave infrared (VNIR–SWIR) spectroscopy and X-ray diffraction (XRD) analyses of the collected surface samples. According these results, the spectral endmembers are interpreted as efflorescent halite crust, mixed halite–gypsum crust, mixed calcite quartz sepiolite crust, and gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with the Spectral Angle Mapper (SAM) method and significant spatiotemporal dynamics of the major surface crust types were observed. Further, the surface crust dynamics were analyzed in comparison with the pan’s moisture regime and other climatic parameters. The results show that the crust dynamics are mainly driven by flooding events in the wet season, but are also influenced by temperature and aeolian activity in the dry season. The approach utilized in this study combines the advantages of multitemporal satellite data for temporal event characterization with advantages from hyperspectral methods for the image and ground data analyses that allow improved mineralogical differentiation and characterization.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-12-10
    Description: The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project “iCUPE – integrative and Comprehensive Understanding on Polar Environments” to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-12-04
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-12-04
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-12-10
    Description: Skarn-hosted deposits can be important high-grade resources for a variety of metals, but Sn skarns are still of subordinate importance for global mining because of their complex mineralogy and evolution. As part of recent exploration efforts, the economic potential of the Sn–Zn–In mineralization at the Hämmerlein skarn-hosted deposit is currently being re-evaluated. The temporal and spatial evolution of the ore-forming hydrothermal system is still debated.We analyzed fluid inclusion assemblages (FIA) in ore and gangue minerals using conventional and infrared microthermometry and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We further estimated alteration temperatures with chlorite thermometry and compared the fluid inclusion (FI) record at Hämmerleinwith amineralized greisen sample of the nearby Eibenstock granite. Cassiterite in skarn forms the major mineralization at Hämmerlein during stage I and hosts FIs showing homogenization temperatures of up to 500 °C and salinities between 30 and 47 wt% NaCl eq. Cassiterite from schists and the additional greisen sample from the Eibenstock granite of the later stage II show lower homogenization temperatures (350–400 °C) and considerably lower salinities varying from 1.9 to 6 wt%NaCl eq. Despite the different homogenization temperatures and salinities, the chemical compositions of FIs hosted in both generations of cassiterite show that both (cassiterite in skarn and in schist and greisen) are similar, which points to a common source. The gangue minerals mainly contain low-temperature FIA (max. 330 °C and 2–9 wt% NaCl eq.) and are interpreted to form during further cooling of the system in stage III. Intergrown chlorite has compositions indicating similar temperatures of around 260 °C and is thus also related to stage III. FIA in sphalerite homogenize around 200 °C with salinities between 2 and 6.7 wt% NaCl eq. and show decreasing trace element contents despite having the same salinity range as the gangue minerals, indicating dilution of the ore-fluid during stage IV as a possible precipitation mechanism. Stage I inclusions are solely hosted in cassiterite from skarn, which shows the importance of fluid inclusion analyses in ore minerals, and record remarkable high mineralization temperatures, exceeding the typically temperature range reported in other studies by at least 100 °C. Our results suggest that thismain ore stage is related to the early expulsion of a high-salinity brine phase froman underlying magmatic intrusion at depths greater than 3 km, which likely is a relatively short-lived event within the evolution of the hydrothermal system.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-12-10
    Description: A coherence-based earthquake detection technique was applied to continuous (1 year) waveform data recorded along the Irpinia fault system (Southern Italy). The earthquake detection was performed using coherent P- and S-wave arrivals recorded by the dense seismic network operating in Irpinia and assuming a local velocity model. We applied a strategy to simultaneously detect and locate earthquakes and to discriminate among true and false detections using an automated and fast procedure, able to process 1 year of data in ~ 1.75 days. The final catalogue of automatically retrieved earthquakes shows a performance improvement with respect to the standard monitoring practices, with an increase in the number of detected small events of about a factor three with respect to the automatic Earth-worm Binder implemented in ISNet and decreases in completeness magnitude of almost half unit magnitude.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-12-10
    Description: Tilkerodeite, ideally Pd2HgSe3, is a new platinum-group selenide from the Eskaborner Stollen (Adit Eskaborn) at Tilkerode, Harz Mountains, Germany. Tilkerodeite crystals occur as euhedral inclusions in tiemannite or as extremely fine-grained lamellar aggregates (grain-size up to 3 μm) in a dolomite–ankerite matrix, together with clausthalite, tiemannite, jacutingaite, stibiopalladinite, and native gold. Neighbouring Se-bearing minerals include tischendorfite and chrisstanleyite. Tilkerodeite is opaque with a metallic luster, and is flexible in blade-like crystals, with perfect basal cleavage {001}. In plane-polarized light, tilkerodeite is brownish-grey. It is weakly bireflectant, and weakly pleochroic in shades of light-brown and grey. The anisotropy is weak, with rotation tints in weak shades of greenish-brown and grey-brown. The range of reflectance is estimated in comparison to clausthalite with 45–50%. Electron-microprobe analyses yield the mean composition (wt. %) Se 32.68, Hg 26.33, Pt 20.62, Pd 15.89, Pb 2.72, Cu 0.66, S 0.27, total 99.17 wt. %. The empirical formula (based on six atoms pfu) is (Pd1.08Pt0.76Pb0.09Cu0.07)Σ2.00Hg0.95(Se2.98S0.07)Σ3.05. The ideal formula is Pd2HgSe3. Tilkerodeite is trigonal, with Pt4Tl2Te6-type structure, space group P3–m1, a = 7.325(9) Å, c = 5.288(6) Å, V = 245.7(9) Å3, and Z = 2. It is the Pd-analogue of jacutingaite. Tilkerodeite formed hydrothermally, possibly involving the alteration of tiemannite by low-temperature oxidizing fluids. The new species has been approved by the IMA-CNMNC (2019-111) and is named after the locality. Tilkerode is the most important selenide-bearing occurrence in Germany and type locality of naumannite, eskebornite, and tischendorfite.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-12-10
    Description: Interest in small-to-medium magnitude earthquakes and their potential consequences has increased significantly in recent years, mostly due to the occurrence of some unusually damaging small events, the development of seismic risk assessment methodologies for existing building stock, and the recognition of the potential risk of induced seismicity. As part of a clear ongoing effort of the earthquake engineering community to develop knowledge on the risk posed by smaller events, a global database of earthquakes with moment magnitudes in the range from 4.0 to 5.5 for which damage and/or casualties have been reported has been compiled and is made publicly available. The two main purposes were to facilitate studies on the potential for earthquakes in this magnitude range to cause material damage and to carry out a statistical study to characterise the frequency with which earthquakes of this size cause damage and/or casualties (published separately). The present paper describes the data sources and process followed for the compilation of the database, while providing critical discussions on the challenges encountered and decisions made, which are of relevance for its interpretation and use. The geographic, temporal, and magnitude distributions of the 1958 earthquakes that make up the database are presented alongside the general statistics on damage and casualties, noting that these stem from a variety of sources of differing reliability. Despite its inherent limitations, we believe it is an important contribution to the understanding of the extent of the consequences that may arise from earthquakes in the magnitude range of study.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-12-10
    Description: The Spermonde Archipelago, off the coast of southwest Sulawesi, consists of more than 100 small islands and hundreds of shallow-water reef areas. Most of the islands are bordered by coral reefs that grew in the past in response to paleo relative sea-level changes. Remnants of these reefs are preserved today in the form of fossil microatolls. In this study, we report the elevation, age, and paleo relative sea-level estimates derived from fossil microatolls surveyed in five islands of the Spermonde Archipelago. We describe 24 new sea-level index points, and we compare our dataset with both previously published proxies and with relative sea-level predictions from a set of 54 glacial isostatic adjustment (GIA) models, using different assumptions on both ice melting histories and mantle structure and viscosity. We use our new data and models to discuss Late Holocene (0–6 ka) relative sea-level changes in our study area and their implications in terms of modern relative sea-level estimates in the broader South and Southeast Asia region.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-12-10
    Description: In the semiarid Southwestern USA, wildfires are commonly followed by runoff-generated debris flows because wildfires remove vegetation and ground cover, which reduces soil infiltration capacity and increases soil erodibility. At a study site in Southern California, we initially observed runoff-generated debris flows in the first year following fire. However, at the same site three years after the fire, the mass-wasting response to a long-duration rainstorm with high rainfall intensity peaks was shallow landsliding rather than runoff-generated debris flows. Moreover, the same storm caused landslides on unburned hillslopes as well as on slopes burned 5 years prior to the storm and areas burned by successive wildfires, 10 years and 3 years before the rainstorm. The landslide density was the highest on the hillslopes that had burned 3 years beforehand, and the hillslopes burned 5 years prior to the storm had low landslide densities, similar to unburned areas. We also found that reburning (i.e., two wildfires within the past 10 years) had little influence on landslide density. Our results indicate that landscape susceptibility to shallow landslides might return to that of unburned conditions after as little as 5 years of vegetation recovery. Moreover, most of the landslide activity was on steep, equatorial-facing slopes that receive higher solar radiation and had slower rates of vegetation regrowth, which further implicates vegetation as a controlling factor on post-fire landslide susceptibility. Finally, the total volume of sediment mobilized by the year 3 landslides was much smaller than the year 1 runoff-generated debris flows, and the landslides were orders of magnitude less mobile than the runoff-generated debris flows.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-12-10
    Description: Concerning the significant increase in the negative effects of flash-floods worldwide, the main goal of this research is to evaluate the power of the Analytical Hierarchy Process (AHP), fi (kNN), K-Star (KS) algorithms and their ensembles in flash-flood susceptibility mapping. To train the two stand-alone models and their ensembles, for the first stage, the areas affected in the past by torrential phenomena are identified using remote sensing techniques. Approximately 70% of these areas are used as a training data set along with 10 flash-flood predictors. It should be remarked that the remote sensing techniques play a crucial role in obtaining eight out of 10 flash-flood conditioning factors. The predictive capability of predictors is evaluated through the Information Gain Ratio (IGR) method. As expected, the slope angle results in the factor with the highest predictive capability. The application of the AHP model implies the construction of ten pair-wise comparison matrices for calculating the normalized weights of each flash-flood predictor. The computed weights are used as input data in kNN–AHP and KS–AHP ensemble models for calculating the Flash-Flood Potential Index (FFPI). The FFPI also is determined through kNN and KS stand-alone models. The performance of the models is evaluated using statistical metrics (i.e., sensitivity, specificity and accuracy) while the validation of the results is done by constructing the Receiver Operating Characteristics (ROC) Curve and Area Under Curve (AUC) values and by calculating the density of torrential pixels within FFPI classes. Overall, the best performance is obtained by the kNN–AHP ensemble model.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-12-10
    Description: Over the last 15 years, the Gravity Recovery and Climate Experiment (GRACE) mission has provided measurements of temporal changes in mass redistribution at and within the Earth that affect polar motion. The newest generation of GRACE temporal models, are evaluated by conversion into the equatorial components of hydrological polar motion excitation and compared with the residuals of observed polar motion excitation derived from geodetic measurements of the pole coordinates. We analyze temporal variations of hydrological excitation series and decompose them into linear trends and seasonal and non-seasonal changes, with a particular focus on the spectral bands with periods of 1000–3000, 450–1000, 100–450, and 60–100 days. Hydrological and reduced geodetic excitation series are also analyzed in four separated time periods which are characterized by different accuracy of GRACE measurements. The level of agreement between hydrological and reduced geodetic excitation depends on the frequency band considered and is highest for interannual changes with periods of 1000–3000 days. We find that the CSR RL06, ITSG 2018 and CNES RL04 GRACE solutions provide the best agreement with reduced geodetic excitation for most of the oscillations investigated.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Helmholtz Open Science Office
    In:  Helmholtz Open Science Briefing
    Publication Date: 2020-12-08
    Description: Open Access, Open Research Data und Open Research Software: Diese Themen prägen die aktuellen Diskussionen zu Open Science in der Helmholtz-Gemeinschaft. Doch an welchen Indikatoren lässt sich der Kulturwandel hin zu Open Science ausmachen? Und welche Anreize setzen Indikatoren für die Entwicklung von Open Access? Diesen und weiteren Fragen widmet sich das virtuelle Helmholtz Open Science Forum unter dem Motto „Indikatoren für Open Science“ am 20. Januar 2021. In Vorbereitung auf diese Veranstaltung legt das Helmholtz Open Science Office dieses Diskussionspapier zum Thema vor. Anliegen ist es, eine Übersicht über den Stand der aktuellen Debatte zur Indikatorik im Bereich Open Science zu liefern und Impulse für deren Weiterentwicklung zu geben. Das vorliegende Papier führt in das Thema ein und thematisiert Kernfragen zur Behandlung des Themas in der Helmholtz-Gemeinschaft.
    Language: German
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  Earth and Planetary Science Letters
    Publication Date: 2020-12-08
    Description: Temporal water storage is a fundamental component of the terrestrial water cycle. Methods of estimating water storage variations are often limited to specific, well-monitored locations, and/or system scales. Thus, measures of storage from small systems can be difficult to compare to large systems. Here we compare three independent methods of estimating water storage variations for systems spanning over three orders of magnitude in basin area: 1) remote satellite observations (GRACE), 2) hydrograph recession curve analysis, and 3) quantifying precipitation-discharge hysteresis loops. We measured storage using all three methods for 242 watersheds in Asia (103 to 106 km2) and find that GRACE-derived storage correlates well with quantification of hysteresis terms but recession curve derived dynamic storage does not correlate with hysteresis terms or GRACE-derived storage. Thus, we argue that precipitation-discharge hysteresis may be able to be scaled to GRACE-derived storage as an independent estimate of storage for basins as small as 103 km2. Hysteresis-derived storage correlates well with mean monsoon rainfall in the upstream watershed while recession-derived dynamic storage does not. This suggests that hysteresis- and GRACE-derived storage may be input limited. In contrast, recession-derived dynamic storage does not correlate with topographic, climatic, or land cover metrics, suggesting that it may be limited by the rate at which water infiltrates into deep groundwater and then enters the river system. In addition, we find that recession-derived dynamic storage is a factor of seven lower than hysteresis-derived storage. We infer that hysteresis-derived storage includes recession curve-derived storage in addition to other storage units, such as snowpack, lakes, and soil moisture. Recession-derived dynamic storage in turn represents the annual variability in deep groundwater storage, a “leaky bucket” that is recharged from the top and “leaks” into rivers from deeper storage. These data may be able to be used to better quantify storage terms in hydrologic modeling.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-12-10
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-12-10
    Description: Basin modeling in structurally complex areas involves several difficulties associated with its geometric and thermal history approaches. There have been multiple developments concerning the structural geometry in doing three-dimensional (3-D) basin modeling in these settings. However, their applicability is limited because most of these improvements require 3-D structural restorations, which is an input that is not always available at basin scale. Although a traditional basin model using backstripping could give a faster overview of the petroleum system elements, it is an alternative method that may distort the structural evolution and, consequently, the petroleum potential evaluation. Equally important are the thermal history uncertainties in these environments, where several factors disturb the thermal regime. Despite these difficulties, traditional 3-D basin modeling could be a reliable tool when we are able to understand the geometric and thermal histories and implement the proper adjustments. We propose alternative methods to tackle common problems when building 3-D basin models, and we demonstrate their validity with an example in the Middle Magdalena Valley, Colombia. This hydrocarbon province located in the northern Andes corresponds to an intermountain basin that has undergone a complex evolution. Its structural configuration represents a modeling challenge by means of the backstripping method. Additionally, a high variability exists in the present-day basal heat flow related to its structural evolution. The result of our model not only fits the calibration data, but also reflects the geological processes better. The proposed methodology intends to aid basin modelers in providing additional options when modeling in structurally deformed basins.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-12-10
    Description: The largest Key Science Program of the RadioAstron space VLBI mission is a survey of active galactic nuclei (AGN). The main goal of the survey is to measure and study the brightness of AGN cores in order to better understand the physics of their emission while taking interstellar scattering into consideration. In this paper we present detection statistics for observations on ground-space baselines of a complete sample of radio-strong AGN at the wavelengths of 18, 6, and 1.3 cm. Two-thirds of them are indeed detected by RadioAstron and are found to contain extremely compact, tens to hundreds of as structures within their cores.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-12-10
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...