ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (3,867)
  • SOLAR PHYSICS
  • 1990-1994  (5,157)
Collection
Years
Year
  • 1
    Publication Date: 2004-12-03
    Description: Helmet streamers on the sun were observed to be the site of coronal mass ejections, dynamic events that eject coronal plasma and magnetic fields into the solar wind. A two dimensional (azimuthally symmetric) helmet streamer configuration was developed by computing solutions of the time dependent magnetohydrodynamic (MHD) equations, for a specified magnetic flux distribution on the sun. The helmet streamer is not symmetric about the equator. The evolution of the configuration, when differential rotation is applied, was investigated. It was found that after many rotations the configuration does not reach a steady state, but disrupts recurrently with the ejection of a plasmoid. These results suggest that differential rotation may be one of the mechanisms by which mass ejections are initiated.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 249-252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The ground-based observing facilities of the National Solar Observatory (NSO) are reviewed from the perspective of joint observations with SOHO. A specific proposal is presented for observations of the HE-I 1083.0 nm line with the NASA/NSO spectromagnetograph and He 10830 video filtergraph/magnetograph in coordination with ultraviolet sensitive instruments on SOHO. The first task will be to look for associations of low-temperature transition-region lines with He 1083 nm absorption to investigate Andretta's conjecture, i.e. that the He 1083 nm line is formed in two layers where extreme ultraviolet radiation produced both in the low-temperature transition region (the upper layer) and in the surrounding corona products - a lower layer of absorption in the upper chromosphere.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 345-354
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The white light coronograph (WLC) on Skylab provided an opportunity to study the corona at high spatial and temporal resolution. The spatial resolution of the instrument was approximately 25 cm with images taken approximately one per min. One set of images taken over a 10 min period was digitized, providing ten high spatial resolution images for analysis. The progress in data processing techniques available at the time was not sufficient to permit a reliable study of the fine structure in these images. Using current techniques an investigation of the sizes and lifetimes of the smallest scale features in the data was carried out. A preliminary analysis of an area between 2 and 3 Ro was completed. The results show that very narrow rays extend from at least 2 to 3 Ro. The narrowest of these rays has a thickness of approximately 75 cm. The contrast is so low that they are very close to the noise limit of the data. Most of the rays observed become unrecognizable after 10 min, although some remain visible over the entire time. Some notion seems to be detectable in the fine structure rays, but analysis of more frames will be needed to quantify these results.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 227-230
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Filaments, flare sprays, prominences and 'post-flare' loops are familiar to H alpha observers in their frequent appearances 'in absorption', dark against the chromospheric background or plages. Observations of the X-ray corona are generally interpreted as due to emission via optically thin thermal bremsstrahlung. Several cases of X-ray coronal structures in Yohkoh images, due to high opacity, absorbing matter in coronograph loops, are presented. The presence of the absorbing matter, mixed with emitting matter, complicates inference of physical parameters such as emission measures in X-ray sources. In the case of well defined features, absorption provides an opportunity to infer density. Quantitative estimates of the attenuation due to the absorption in example features are presented.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 203-206
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The causal association of major solar particle events seen at earth with coronal mass ejections (CME's), and not with solar flares, is discussed. Evidence that led to the demise of the flare dominated paradigm for major solar energetic particle events are described. The possibility of distinguishing particles from impulsive and gradual events using only observations is described. Particle acceleration at the CME level is discussed. Multi-spacecraft observations of CME events are described. Concerning the interplanetary CME, bidirectional proton events are discussed. Conclusions from progress in understanding the characteristics of solar energetic particles and their relation to the physical mechanisms of acceleration are given.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 107-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 291-296
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: Since radio propagation measurements using either natural or spacecraft radio signals are used for probing the solar wind in the vicinity of the sun, they represent a key tool for studying the interplanetary consequences of solar structure and dynamic phenomena. New information on the near sun consequences was obtained from radio scintillation observations of coherent spacecraft signals. The results covering density fluctuations, fractional density fluctuations, coronal streamers, heliospheric current sheets, coronal mass ejections and interplanetary shocks are reviewed. A joint ICE S-band (13 cm wavelength) Doppler scintillation measurement with the SOHO white-light coronograph (LASCO) is described.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 239-248
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The Galileo Ultravilet Spectrometer Experiment (UVS) obtained a partial celestial sphere map of interplanetary Lyman-alpha (IP L alpha) on 13-14 December 1990 during the first Earth encounter. The Galileo spacecraft was near the downwind axis of the local interstellar medium flow. These UVS measurements sampled the downwind, anti-sunward hemisphere. The data were modeled using a hot model of the interplanetary hydrogen density distribution with the goal of studying multiple scattering effects in the inner solar system. The derived ratio in the downwind direction of the observed brightness and a single scattering model brightness, both normalized to unity in the upwind direction, is 1.82 +/- 0.2. This brightness ratio requires a multiple scattering correction which is 36% larger than can be accounted for by theoretical calculations. The hot model may require: (1) a temperature perturbation of the interstellar wind velocity distribution or (2) an additional downstream source of interplanetary hydrogen. However, a more likely exlanation which affects the hot model is the latitude dependence of the radiation pressure. This dependence, based on the known solar L alpha flux latitude variation at solar maximum, causes a downwind brightness enhancement by preferential focusing of H-atoms with trajectory planes containing the solar poles. This result implies that radiation pressure near the solar poles is nearly independent of solar cycle and is insufficient to lead to a net repulsion of hydrogen atoms by the sun, as can occur near the ecliptic plane during the solar maximum. In addition, the UVS performed 13 observations of IP L alpha while in cruise between Venus and the Earth in 3 directions fixed in ecliptic coordinates.
    Keywords: SOLAR PHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 289; 1; p. 283-303
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The 3.0-micrometers water of hydration absorption feature observed in the IR photometry of many low-albedo and some medium-albedo asteroids strongly correlates with the 0.7-micrometers Fe(+2) to Fe(+3) oxidized iron absorption feature observed in narrowband spectrophotometry of these asteroids. Using this relationship, an empirical algorithm for predicting the presence of water of hydration in the surface material of a Solar System body using photometry obtained through the Eight-Color Asteroid Survey nu (0.550 micrometers), w (0.701 micrometers), and x (0.853 micrometers) filters was developed and applied to the ECAS photometry of asteroids and outer planet satellites. The percentage of objects in low-albedo, outer main-belt asteroid classes that test positively for water of hydration increases from P to B to C to G class and correlates linearly with the increasing mean albedos of those objects testing positively. The medium-albedo M-class asteroids do not test positively in large number using this algorithm. Aqueously altered asteroids dominate the Solar System population between heliocentric distances of 2.6 to 3.5 AU, bracketing the Solar System region where the aqueous alteration mechanism operated most strongly. One jovian satellite, J VI Himalia, and one saturnian satellite. Phoebe, tested positively for water of hydration, supporting the hypothesis that these may be captured C-class asteroids from a postaccretional dispersion. The proposed testing technique could be applied to an Earth-based survey of asteroids or a space-probe study of an asteroid's surface characteristic in order to identify a potential water source.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 111; 2; p. 456-467
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: In this paper we generalize earlier gasdynamic analyses of the motion of the heliospheric termination shock in response to upstream disturbances (Barnes, 1993, 1994; Naidu and Barnes, 1994), to include magnetohydrodynamic (MHD) phenomena. We assume that the termination shock is a strong, perpendicular shock and that the initial upstream disturbance is a tangential discontinuity. The resulting configuration after the interaction is very similar to that in the gasdynamic models after an interaction with a contact discontinuity or interplanetary shock, and for an increase (decrease) in dynamic pressure consists of an outward (inward) propagating termination shock and an outward propagating shock (MHD rarefraction wave) that carries the signal of the disturbance into the far downstream plasma. The plasma immediately behind the new termination shock is separated from the downstream signal by a tangential discontinuity. The results of the model show that the speed of the new termination shock depends mainly on the magnitude of the change in dynamic pressure and are typically of order approximately 100 km/s, comparable to the results of the gasdynamic models.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,673-17,679
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton ad Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450/cm (2.25 microns) and extends to lower frequencies, may be due to alkanes (C(n)H(2n+2)) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemstry of N2: CH4 and N2: CH4: CO ices was explored demonsrtrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 111; 1; p. 151-173
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: This report presents the most recent spherical harmonic topography model of Venus developed at Jet Propulsion Laboratory. It was produced by a spherical harmonic analysis of the most complete set of Magellan altimetry data, augmented by Pioneer Venus and Venera data. The harmonic coefficients of the topography were computed to degree and order 360. Compared to previous topography models, this one has the highest correlation with the gravity field of Venus.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 112; 1; p. 27-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: The 500-Myr average crater retention age for Venus has raised questions about the present-day level of tectonic activity. In this study we examine the relationship between the gravity and topography of four large volcanic swells, Beta, Atla, Bell, and Western Eistla Regiones, for clues about their stage evolution. The Magellan line-of-sight gravity data are inverted using a point mass model of the anomalous mass to solve for the local vertical gravity field. Spectral admittance calculated from both the local gravity inversions and a spherical harmonic model is compared to three models of compensation: local compensation, a 'flexural' model with local and regional compensation of surface and subsurface loads, and a 'hotspot' model of compensation that includes top loading by volcanoes and subsurface loading due to a deep, low density mass anomaly. The coherence is also calculated in each region, but yields an elastic thickness estimate only at Bell Regio. In all models, the long wavelengths are compensated locally. Our results may indicate a relatively old, possibly inactive plume.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 112; 1; p. 2-26
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The term 'magnetic hole' has been used to denote isolated intervals when the magnitude of the interplanetary magnetic field drops to a few tenths, or less, of its ambient value for a time that corresponds to a linear dimension of tens to a few hundreds of proton gyro-radii. Data obtained by the Ulysses magnetometer and solar wind anlayzer have been combined to study the properties of such magnetic holes in the solar wind between 1 AU and 5.4 AU and to 23 deg south latitude. In order to avoid confusion with decreases in field strength at interplanetary discontinuities, the study has focused on linear holes across which the field direction changed by less than 5 deg. The holes occurred preferentially, but not without exception, in the interaction regions on the leading edges of high-speed solar wind streams. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror-mode structures created upstream of the points of observation. Those indications include the following: (1) For the few holes for which proton of alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion beta (ratio of thermal to magnetic pressure) than did the average solar wind. (5) Near the holes, T(sub perp)/T(sub parallel) tended to be either greater than 1 or larger than in the average wind. (6) The proton and alpha-particle distribution functions measured inside the holes occasionally exhibited the flattened phase-space-density contoures in nu(sub perp)/nu(sub parallel) space found in some numerical simulations of the mirror instability.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A12; p. 23,371-23,381
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Recent mapping studies west of Elysium Mons, Mars, have pinpointed subice features that suggest the existence of a frozen paleolake in Utopia Planitia as recently as 1.8 billion years ago. The subice features are interpreted to be hyaloclastic ridges and hills, table moutains, associated joekulhalaup deposits, and fluvial channels. Photoclinometric studies of these features and of a basal scarp around the northwest flank of Elysium Mons interpreted to have been an ice-sheet boundary indicate that the maximum thickness of ice within the basin may have been about 180 m. This thickness of ice during a relatively late stage of Martian geologic history would have important implications concerning the atmospheric, the climatic, and possibly the exobiologic history of the planet.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 109; 2; p. 393-406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: The ion and electron momentum equations, along with Ampere's law, are solved for the ion and electron drift velocities and the electric field in the subsolar Venus ionosphere, assuming a partially ionized gas and a single ion species having the ion mean mass. All collision terms among the ions, electrons and neutral particles are retained in the equations. A general expression for the evolution of the magnetic field is derived and compared with earlier expressions. Subsolar region data in the altitude range 150-300 km from the Pioneer Venus Orbiter are used to calculate altitude profiles of the components of the current due to the electric field, gradients of pressure, and gravity. Altitude profiles of the ion and electron velocities as well as the electric field, electrodynamic heating, and the energy density are determined. Only orbits having a complete set of measured plasma temperatures and densities, neutral densities, and magnetic field were considered for analysis; the results are shown only for orbit 202. The vertical velocity at altitudes above 220 km is upgoing for orbit 202. This result is consistent with observations of molecular ions at high altitudes and of plasma flow to the nightside, both of which require upward velocity of ions from the dayside ionosphere. Above about 230 km the momentum equations are extremely sensitive to the altitude profiles of density, temperature, and magnetic field.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 8791-8800
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: We report here analyses of olivines and pyroxenes, and petrofabrics of 27 chondritic interplanetary dust particles (IDPs), comparing those from anhydrous and hydrous types. Approximately 40% of the hydrous particles contain diopside, a probable indicator of parent body thermal metamorphism, while this mineral is rarely present in the anhydrous particles. Based on this evidence, we find that hydrous and anhydrous IDPs are, in general, not directly related, and we conclude that olivine and pyroxene major-element compositions can be used to help discriminate between IDPs that are (1) predominantly nebular condensates, and lately resided in anhydrous or icy (no liquids) primitive parent bodies, and (2) those originating from more geochemically active parent bodies (probably hydrous and anhydrous asteroids).
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 29; 5; p. 616-620
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: This paper reports on a magnetic field phenomenon, hereafter referred to as null fields, which were discovered during the inbound pass of the recent flyby of Jupiter by the Ulysses spacecraft. These null fields which were observed in the outer dayside magnetosphere are characterised by brief but sharp decreases of the field magnitude to values less than 1 nT. The nulls are distinguished from the current sheet signatures characteristic of the middle magnetosphere by the fact that the field does not reverse across the event. A field configuration is suggested that accounts for the observed features of the events.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 6; p. 405-408
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: During the international campaign of June 1991, the active region AR 6659 produced six very large, long-duration flares (X10/12) during its passage across the solar disk. We present the characteristics of four of them (June 4, 6, 9, 15). Precise measurements of the spot motions from Debrecen and Tokyo white-light pictures are used to understand the fragmentation of the main sunspot group with time. This fragmentation leads to a continuous restructuring of the magnetic field pattern while rapid changes are evidenced due to fast new flux emergence (magnetograms of Marshall Space Flight Center (MSFC), Huairou). The first process leads to a shearing of the field lines along which there is energy storage; the second one is the trigger which causes the release of energy by creating a complex topology. We conjecture that these two processes with different time scales are relevant to the production of flares.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 150; 1-2; p. 199-219
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: Geochemical profiles of surface units, impact, and volcanic features are studied in detail to determine the underlying structure in an area of extensive mare/highland interface, Sinus Amoris. This study region includes and surrounds the northeastern embayment of Mare Tranquillitatis. The concentrations of two major rock-forming elements (Mg and Al), which were derived from the Apollo 15 orbital geochemical measurements, were used in this study. Mapped units and deposits associated with craters in the northwestern part of the region tend to have correlated low Mg and Al concentrations, indicating the presence of Potassium (K)-Rare Earth Elements (REE)-Phosphorus (P) (KREEP)-enriched basalt. Found along the northeastern rim of Tranquillitatis were areas with correlated high Mg and Al concentration, indicating the presence of troctolite. Distinctive west/east and north/south trends were observed in the concentrations of Mg and Al, and, by implication, in the distribution of major rock components on the surface. Evidence for a systematic geochemical transition in highland or basin-forming units may be observed here in the form of distinctive differences in chemistry in otherwise similar units in the western and eastern portions of the study region.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Earth, Moon, and Planets (ISSN 0167-9295); 64; 2; p. 165-185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The aerobraking orbital activities of Magelland during the gravity mapping of Venus are discussed. The goal of aerobraking was to circularize Magellan's orbit. By aerobraking the spacecraft into a nearly circula orbit, the Magellan team was able to provide scientists with a different data set to deepen their understanding of what is going on beneath Venus' surface. Before undertaking its gravity-mapping mission, Magellan completed three cycles of radar mapping. This repeated coverage allowed the spacecraft to see some of Venus' geologic features from different viewing angles. Various aspects of the mission are discussed, and maps of Venus are presented.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Planetary Report (ISSN 0736-3680); 14; 2; p. 6-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: During the late declining phase of the solar cycle, the tilt of the solar magnetic dipole with respect to the Sun's rotation axis leads to large-scale organization of the solar wind, such that alternating regions of high- and low-speed solar wind are observed in the ecliptic plane. In this paper, we use Doppler scintillation measurements to investigate mass flux of these two types of solar wind in the ecliptic plane and inside 0.3 AU, where in situ measurements have not been possible. To the extent that Doppler scintillation reflects mass flux, we find that mass flux in high-speed streams: (1) is lower (by a factor of approximately 2.2) than the mass flux of the average solar wind in the heliocentric distance range of 0.3-0.5 AU; (2) is lower still (by as much as a factor of about 4) than the mass flux of the slow solar wind associated with the streamer belt; and (3) appears to grow with heliocentric distance. These Doppler scintillation results are consistent with the equator to pole decrease in mass flux observed in earlier spectral broadening measurements, and with trends and differences between high- and low-speed solar wind observed by in situ measurements in the range of 0.3-0.1 AU. The mass flux results suggest that the solar wind flow in high-speed streams is convergent towards the ecliptic near the Sun, becoming less convergent and approaching radial with increasing heliocentric distance beyond 0.3 AU. The variability of mass flux observed within equatorial and polar high-speed streams close to the Sun is strikingly low. This low variability implies that, as Ulysses currently ascends to higher latitudes and spends more time in the south polar high-speed stream after crossing the heliocentric current sheet, it can expect to observe a marked decrease in variations of both mass flux and solar wind speed, a trend that appears to have started already.
    Keywords: SOLAR PHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 12; p. 1101-1104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: Highly structured Langmuir waves, also known as electron plasma oscillations, have been observed in the foreshock of Venus using the plasma wave experiment on the Galileo spacecraft during the gravity assist flyby on February 10, 1990. The Galileo wideband sampling system provides digital electric field waveform measurements at sampling rates up to 201,600 samples per second, much higher than any previous instrument of this type. The main Langmuir wave emission band occurs near the local electron plasma frequency, which was approximately 43 kHz. The Langmuir waves are observed to shift above and below the plasma frequency, sometimes by as much as 20 kHz. The shifts in frequency are closely correlated with the downstream distance from the tangent field line, implying that the shifts are controlled by the electron beam velocity. Considerable fine structure is also evident, with timescales as short as 0.15 ms, corresponding to spatial scales of a few tens of Debye lengths. The frequency spectrum often consists of beat-type waveforms, with beat frequencies ranging from 0.2 to 7 kHz, and in a few cases, isolated wave packets. The peak electric field strengths are approximately 1 mV/m. These field strengths are too small for strongly nonlinear processes to be important. The beat-type waveforms are suggestive of a parametric decay process.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A7; p. 13,363-13,371
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: Spatial correlation among densely packed particles can substantially change their single-scattering properties, thus making questionable the applicability of the independent scattering approximation in calculations of light scattering by planetary regoliths. The same problem arises in geophysics in light scattering computations for snow, frosts, and bare soil. In this paper, we use a dense-medium light-scattering theory based on the introduction of the static structure factor to calculate asymmetry parameters of the phase function for densely packed particles with real refractive indices 1.31 and 1.66, approximating water ice and soil particles, respectively, and imaginary refractive indices 0, 0.01, and 0.3. For sparsely distributed, independently scattering grains, the calculated asymmetry parameters are always positive and always larger than those for densely packed particles. For densely packed grains, the asymmetry parameters may be negative but only for radius-to-wavelength ratios from about 0.1 to about 0.4. With decreasing particle size, the calculated asymmetry parameters tend to zero independently of the compaction state. In the geometrical optics regime, the asymmetry parameters for densely packed scatterers are positive and very close to those for independently scattering grains. These results may have important implications for remote sensing of the Earth and solid planetary surfaces. In particular, it is demonstrated that negative asymmetry parameters derived with some approximate multiple-scattering theories may be physically irrelevant and can be the result of using an inaccurate bidirectional reflection function combined with the ill-conditionally of the inverse scattering problem.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 1; p. 95-110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
    Keywords: SOLAR PHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 282; 1; p. 252-261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: Dual-frequency ranging and Doppler measurements were conducted in support of the Ulysses Solar Corona Experiment (SCE) at and around the spacecraft's first solar conjunction in 1991 August. The differential group delay time between range codes on the two downlink carrier signals at the wavelengths 13.1 and 3.6 cm, a direct measure of the total electron content between spacecraft and ground station, was used to derive the electron density distribution in the solar corona. Linear power-law representations of the coronal electron density were derived for the range of solar distances from 4 solar radii to 40 solar radii on both sides of the Sun. The corona was found to be very nearly symmetric; the radial falloff exponent being 2.54 +/- 0.05 for occultation ingress (east solar limb) and 2.42 +/- 0.05 for egress (west limb), respectively. The departure of these exponents from the inverse equare relation implies that significant solar wind acceleration is occurring within the radial range of the observations. The electron density level was found to be considerably lower than that observed during the 1988 December solar occultation of Voyager 2. Although the smoothed sunspot number R(sub z) (a standard indicator of solar activity) was almost the same in 1988 December and 1991 August, the mean electron density at 20 solar radii was found to be 1.7 +/- 0.1 x 10(exp 3)/cu cm during the Ulysses conjunction, a decline by almost a factor of 4 from the value obtained during the Voyager conjunction.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 426; 1; p. 373-381
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: The first comprehensive discussion of the south seasonal polar cap spectra obtained by the Mariner 7 infrared spectrometer in the short-wavelength region (2-4 microns) is presented. The infrared spectra is correlated with images acquired by the wide-angle camera. Significant spectral variation is noted in the cap interior and regions of varying water frost abundance, CO2 ice/frost cover, and CO2-ice path length can be distinguished. Many of these spectral variations correlate with heterogeneity noted in the camera images, but certain significant infrared spectral variations are not discernible in the visible. Simple reflectance models are used to classify the observed spectral variations into four regions. Region I is at the cap edge, where there is enhanced absorption beyond 3 microns inferred to be caused by an increased abundance of water frost. The increase in water abundance over that in the interior is on the level of a few parts per thousand or less. Region II is the typical cap interior characterized by spectral features of CO2 ice at grain sizes of several millimeters to centimeters. These spectra also indicate the presence of water frost at the parts per thousand level. A third, unusual region (III), is defined by three spectra in which weak CO2 absorption features are as much as twice as strong as in the average cap spectra and are assumed to be caused by an increased path length in the CO2. Such large paths are inconsistent with the high reflectance in the visible and at 2.2 microns and suggest layered structures or deposition conditions that are not accounted for in current reflectance models. The final region (IV) is an area of thinning frost coverage or transparent ice well in the interior of the seasonal cap. These spectra are a combination of CO2 and ground signatures.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E10; p. 21,143-21,152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: We report new measurements of the sodium emission intensity seen in a line of sight just above the surface of the Moon. These data show a strong dependence on lunar phase. The emission intensity decreases from a maximum around first quarter (phase angle 90 deg) to very small values near full Moon (phase angle 0 deg). This suggests that the rate of sodium vapor production from the lunar surface is largest at the subsolar point and becomes small near the terminator. However, the sodium emission near full Moon falls below that which would be expected for solar photon-driven processes. Since the solar wind flux decreases substantially when the Moon enters the Earth's magnetotail near full Moon, while the global solar photon flux is undiminished, we suggest that solar wind sputtering is the dominant process for sodium production.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 21; p. 2263-2266
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: One of the long-standing uncertainties in the wave-resonance theory of coronal heating is the stability of the resonance layer. The wave motions in the resonance layer produce highly localized shear flows which vary sinusoidally in time with the resonance period. This configuration is potentially susceptible to the Kelvin-Helmholtz instability (KHI), which can enhance small-scale structure and turbulent broadening of shear layers on relatively rapid ideal timescales. We have investigated numerically the response of a characteristic velocity profile, derived from resonance absorption models, to finite fluid perturbations comparable to photospheric fluctuations. We find that the KHI primarily should affect long (approximately greater than 6 x 10(exp 4) km) loops where higher velocity flows (M approximately greater than 0.2) exist in resonance layers of order 100 km wide. There, the Kelvin-Helmholtz growth time is comparable to or less than the resonance quarter-period, and the potentially stabilizing magnetic effects are not felt until the instability is well past the linear growth stage. Not only is the resonance layer broadened by the KHI, but also the convective energy transport out of the resonance layer is increased, thus adding to the efficiency of the wave-resonance heating process. In shorter loops, e.g., those in bright points and compact flares, the stabilization due to the magnetic field and the high resonance frequency inhibit the growth of the Kelvin-Helmholtz instability beyond a minimal level.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 421; 1; p. 372-380
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: Infrared diffuse reflectance spectra (2.53-25 microns) of some carbonaceous (C) chondrites were measured. The integrated intensity of the absorption bands near 3 microns caused by hydrous minerals were compared with the modal content of hydrous minerals for the meteorites. The CM and CI chondrites show larger values of the intergated intensity than those of the unique C chondrites Y82162, Y86720 and B7904, suggesting that the amount of hydrous minerals in the CM and CI chondrites is larger, which supports the contention that hydrous minerals were dehydrated by thermal metamorphism in the unique chondrites. Orgueil (CI) has the largest value of the integrated intensity among the C chondrites we measured and shows a sharp absorption band at 3685/cm (2.71 microns) that is not seen in the spectra of the CM chondrites. There is an excellent correlation between the observed hydrogen content in C chondrites and the integrated intensity. The CM chondrites show a wide variation in the strength of absorption bands at 1470/cm (6.8 microns), despite the similarity in absorption features near 3 micron for all CM chondites. The 1470/cm band could be due to the presence of some hydrocarbons but may also be a result of terrestrial alteration processes.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 29; 6; p. 849-853
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: The solar flare and coronal mass ejection (CME) events associated with the large and complex March 1989 active region are discussed. This active region gave us a chance to study the relation of CME with truly major solar flares. The work concentrates on questions of the relation of CMEs and flares to one another and to other types of activity on the Sun. As expected, some major (X-3B class) flares had associated CMEs. However, an unexpected finding is that others did not. In fact, there is strong evidence that the X4-4B flare of March 9th had no CME. This lack of a CME for such an outstanding flare event has important implications to theories of CME causation.Apparently, not all major flares cause CMEs or are caused by CMEs. The relations between CMEs and other types of solar activity are also discussed. No filament disappearances are reported for major CMEs studied here. Comparing these results with other studies, CMEs occur in association with flares and with erupting prominences, but neither are required for a CME. The relation between solar structures showing flaring without filament eruptions and structures showing filament eruptions without flares becomes important. The evolutionary relation between an active flaring sunspot region and extensive filaments without sunspots is reviewed, and the concept of an 'evolving magnetic structure' (EMS) is introduced. It is suggested that all CMEs arise in EMSs and that CMEs provide a major path through which azimuthal magnetic fields escape form the Sun during the solar cycle.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 8451-8464
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: The large gradual solar-energetic-particle (SEP) events, where abundances are commonly measured, are produced when coronal mass ejections (CMEs) drive shock waves through the corona and the interplanetary medium. The shock accelerates particles from the highly-ionized, approximately 1.5 MK, plasma in a manner that depends only weakly upon the Q/A of the ion, except at very high energies. Averaging the approximately 1 MeV/amu abundances over many events compensates for the acceleration effects to produce abundances that appear to correspond directly to those in the coronal source for all observed elements, including H. The resulting abundances reflect the 4 x enhancement of ions with low values of first ionization potential (FIP) arising from ion-neutral fractionation that occurs as the atoms are transported up from the photosphere. A different pattern of fractionation is found for ions that are shock-accelerated from the high speed solar wind emerging from coronal holes.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 4; p. (4)177-(4)180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: Oxygen production from a lunar rock has been experimentally demonstrated for the first time. A 10 g sample of high-Ti basalt 70035 was reduced with hydrogen in seven experiments at temperatures of 900-1050 C and pressures of 14.7-150 psia. In all experiments, water evolution began almost immediately and was essentially complete in tens of minutes. Oxygen yields ranged from 2.93 to 4.61% of the starting sample weight, and showed weak dependence on temperature and pressure. Analysis of the solid samples demonstrated total reduction of Fe(2+) in ilmenite and small degrees of reduction in olivine and pyroxene. Ti O2 was also partially reduced to one or more suboxides. Data from these experiments provide a basis for predicting the yield of oxygen from lunar basalt as well as new constraints on natural reduction in the lunar regolith.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E5; p. 10,887-10,897
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NPO-16671
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: We present speed observations from the Ulysses solar wind plasma experiment through 50 deg south latitude. The pronounced speed modulation arising from solar rotation and the tilt of the heliomagnetic current sheet has nearly disappeared. Ulysses is now observing wind speeds in the 700 to 800 km/s range, with a magnetic polarity indicating an origin in the large south polar coronal hole. The strong compressions, rarefractions, and shock waves previously seen have weakened or disappeared. Occasional coronal mass ejections characterized by low plasma density caused by radial expansion have been observed. The coronal configuration was simple and stable in 1993, indicating that the observed solar wind changes were caused by increasing spacecraft latitude. Trends in prevailing speed with increasing latitude support previous findings. A decrease in peak speed southward of 40 deg latitude may indicate that the fastest solar wind comes from the equatorial extensions of the polar coronal holes.
    Keywords: SOLAR PHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 12; p. 1105-1108
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: We report the discovery of a series of infrared absorption bands between 3600 and 3100/cm (2.8-3.2 micrometers) in the spectrum of Io. Individual narrow bands are detected at 3553, 3514.5, 3438, 3423, 3411.5, and 3401/cm (2.815, 2.845, 2.909, 2.921, 2.931, and 2.940 micrometers, respectively). The positions and relative strengths of these bands, and the difference of their absolute strengths between the leading and trailing faces of Io, indicate that they are due to SO2. The band at 3438/cm (2.909 micrometers) could potentially have a contribution from an additional molecular species. The existence of these bands in the spectrum of Io indicates that a substantial fraction of the SO2 on Io must reside in transparent ices having relatively large crystal sizes. The decrease in the continuum observed at the high frequency ends of the spectra is probably due to the low frequency side of the recently detected, strong 3590/cm (2.79 micrometer) feature. This band is likely due to the combination of a moderately strong SO2 band and an additional absorption from another molecular species, perhaps H2O isolated in SO2 at low concentrations. A broad (FWHM approximately = 40-60/cm), weak band is seen near 3160/cm (3.16 micrometers) and is consistent with the presence of small quantities of H2O isolated in SO2-rich ices. There is no evidence in the spectra for the presence of H2O vapor on Io. Thus, the spectra presented here neither provide unequivocal evidence for the presence of H2O on Io nor preclude it at the low concentrations suggested by past studies.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 110; 2; p. 292-302
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: This paper presents a statistical comparison of the solar total irradiance measured from the Nimbus-7, the Solar Maximum Mission (SMM), the Earth Radiation Budget Satellite (ERBS), and the Upper Atmosphere Research Satellite (UARS) spacecraft platforms, for the period 1985-1992. The mean irradiance, standard deviation, and the correlation among the daily irradiance remained high during periods of high solar activity. Linear regression models are established to estimate the irradiance measurements from one platform by the others. The results are consistent with the observations. However, the Nimbus-7 ERB responses show a drift during 1989-1992. The absolute irradiance observed by each instrument varies within the uncertainty associated with the corresponding radiometer.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 155; 2; p. 211-221
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: We recently proposed that a magnetohydrodynamic (MHD) turbulent cascade produces the bulk energization of electrons to approximately 25 keV in the impulsive phase of solar flares (LaRosa & Moore 1993). In that scenario, (1) the cascading MHD turbulence is fed by shear-unstable Alfvenic outflows from sites of strongly driven reconnection in the low corona, and (2) the electrons are energized by absorbing the energy that flows down through the cascade. We did not specify the physical mechanism by which the cascading energy is ultimately transferred to the electrons. Here we propose that Fermi acceleration is this mechanism, the process by which the electrons are energized and by which the cascading MHD turbulence is dissipated. We point out that in the expected cascade MHD fluctuations of scale 1 km can Fermi-accelerate electrons from 0.1 keV to approximately 25 keV on the subsecond timescales observed in impulsive flares, provided there is sufficient trapping and scattering of electrons in the MHD turbulence. We show that these same fluctuations provide the required trapping; they confine the electrons within the turbulent region until the turbulence eis dissipated. This results in the energization of all of the lectrons in each large-scale (5 x 10(exp 7)cm) turbulent eddy to 25 keV. The Fermi process also requires efficient scattering so that the pitch-angle distribution of the accelerating electrons remains isotropic. We propose that the electrons undergo resonant scattering by high-frequency plasma R-waves that, as suggested by others (Hamilton & Petrosian 1992), are generated by the reconnection. Ions are not scattered by R-waves. Provided that there is negligible generation of ion-scattering plasma turbulence (e.g., L-waves) by the reconnection or the MHD turbulence, the ions will not Fermi-accelerate and the cascading energy is transferred only to the electrons. We conclude that, given this situation, electron Fermi acceleration can plausibly account for the electron bulk energization in impulsive solar flares.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 425; 2; p. 856-860
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: A search for shocks observed by Voyager 2 from 1986.0 to day 233, 1989, in the region between 18.9 AU and 30.2 AU revealed only five candidate fast forward shocks and no reverse shocks. No shock was observed during 1987 (near solar minimum). Only one candidate shock was observed during 1986, when the heliospheric current sheet (HCS) was still close to the equator. This, the weakest of the shocks, was associated with a weak corotating merged interaction region (CMIR). Only two shocks were observed during 1988, when solar activity and the inclination of the HCS were increasing. One of these shocks was associated with a CMIR, the other with a local merged interaction region (MIR) (a transient MIR localized in space). The shocks observed between 18.9 AU and 28.2 AU from 1986 through 1988 were relatively weak, the estimated magnetoacoustic Mach number being less than or equal to 1.5 for each of the three shocks. Since the shocks observed between 20 AU and 29 AU during the 3-year period centered around solar minimum were weak and few in number, shocks were not important in determining the structure, dynamics, and thermodynamics of the equatorial solar wind. The strongest shock in this study was observed during 1989 at the front of a global merged interaction region (GMIR) (a MIR that extends around the Sun and is presumably formed by the coalescence of several transient ejecta and other interaction regions). A weak shock was also observed inside this GMIR.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A3; p. 4161-4171
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: A formalism is developed for analyzing high-resolution hard X-ray spectra, incorporating the coexistence of thermal and nonthermal bremsstrahlung. The two processes are physically linked by the presence of electric currents, which both heat the surrounding plasma via Joule dissipation and accelerate electrons via the runaway process. We use this formalism to analyze the flare of 1980 June 27 and find that both the gradual and spike components of the hard X-ray emission are consistent with runaway acceleration. We also find that significant heating is observed only in the gradual component. The electric field is always sub-Dreicer, the maximum total potential drop in the acceleration region is found to be approximately 100 kV in two of the spikes, and the average accelerated electron flux is approximately 10(exp 34) electrons/s. We argue that classical resistivity is a valid assumption for this event and find the density in the current channels (approximately 10(exp 11)/cc) and a lower limit on the volume of the heated plasma. We find that the ratio of the electric field to the Dreicer field (epsilon = E/E(sub D) varies systematically, whereas the value of E alone does not. We also find that the acceleration region fragmented into many current/return current pairs, and that the fragmentation varied systematically. We also discuss further implications of this model.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 435; 1; p. 469-481
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: The magnetic field configuration-states of the magnetotails of the planets Uranus and Neptune are compared. Earth's case is also briefly treated, as well as some related aspects of the other three magnetic planets. In Uranus' case, due to the large tilt (59 deg) of the planet's magnetic dipole with respect to its spin axis and the unusual obliquity of that axis, the angle of attack (alpha) of the solar wind with respect to dipole alignment goes through all possible angles, 0 deg to 180 deg, yielding a very broad spectrum of configuration-states of its tail. Cases are discussed where the planetary magnetic dipole is either aligned with the Sun-planet-line ('pole-on' state) or perpendicular to it and some intermediate states, for both Uranus and Neptune. Only Uranus experiences the pole-on state, which next occurs in November 1999 (+/- 2 months); last year (1993.2) it had the first 'perpendicular' state since Voyager encounter which resembles Earth's case. Neptune never has a pole-on configuration, but it gets as close as alpha = 14 deg from it; the next occurrence is early in 2003. At Voyager encounter Neptune's magnetotail apparently rapidly migrated through a broad spectrum of field structures with near extreme states resembling an Earth-like case on the one hand and a cylindrically symmetric one on the other. Magnetopause 'openness' should dramatically change in terms of the rapidly changing angle of attack throughout a planetary day for these two planets, and this has important implications for their magnetotails. Any future manetospheric mission plans for Uranus or Neptune should take in to consideration the allowed range of values for alpha for the epoch of interest; this is especially of concern for Uranus which has a pole-on state, and all possible alphas, around the middle of 2014, 20 years from now.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Planetary and Space Science (ISSN 0032-0633); 42; 10; p. 847-857
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: We studied five new Antartic achondrites, MacAlpine Hills (MAC) 88177, Yamato (Y)74357, Y75274, Y791491 and Elephant Moraine (EET)84302 by mineralogical techniques to gain a better understanding of the mineral assemblages of a group of meteorites with an affinity to Lodran (stony-iron meteorite) and their formation processes. This group is being called lodranites. These meteorites contain major coarse-grained orthopyroxene (Opx) and olivine as in Lodran and variable amounts of FeNi metal and troilite etc. MAC88177 has more augite and less FeNi than Lodran; Y74357 has more olivine and contains minor augite; Y791491 contains in addition plagioclase. EET84302 has an Acapulco-like chondritic mineral assembladge and is enriched in FeNi metal and plagioclase, but one part is enriched in Opx and chromite. The EET84302 and MAC88177 Opx crystals have dusty cores as in Acapulco. EET84302 and Y75274 are more Mg-rich than other members of the lodranite group, and Y74357 is intermediate. Since these meteorites all have coarse-grained textures, similar major mineral assemblages, variable amounts of augite, plagioclase, FeNi metal, chromite and olivine, we suggest that they are related and are linked to a parent body with modified chondritic compositions. The variability of the abundances of these minerals are in line with a proposed model of the surface mineral assemblages of the S asteroids. The mineral assemblages can best be explained by differing degrees of loss or movements of lower temperature partial melts and recrystallization, and reduction. A portion of EET84302 rich in metal and plagioclase may represent a type of component removed from the lodranite group meteorites. Y791058 and Caddo County, which were studied for comparison, are plagioclase-rich silicate inclusions in IAB iron meteorites and may have been derived by similar process but in a different body.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 29; 6; p. 830-842
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: We have reduced high-titanium lunar mare soil and iron-rich lunar volcanic glass with hydrogen at temperatures of 900-1100 C. Ilmenite is the most reactive phase in the soil, exhibiting rapid and complete reduction at all temperatures. Ferrous iron in the glass is extensively reduced concurrent with partial crystallization. In both samples pyroxene and olivine undergo partial reduction along with chemical and mineralogical modifications. High-temperature reduction provides insight into the optical and chemical effects of lunar soil maturation, and places constraints on models of that process. Mare soil and volcanic glass are attractive feedstocks for lunar oxygen production, with achievable yields of 2-5 wt%.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E11; p. 23,173-23,185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: Recently Brown et al. (1991) showed that Triton's internal heat source could amount to 5-20% of the absorbed insolation on Triton, thus significantly affecting volatile transport and atmospheric pressure. Subsequently, Kirk and Brown (1991a) used simple analytical models of the effect of internal heat on the distribution of volatiles on Triton's surface, confirming the speculation of Brown et al. that Triton's internal heat flow could strongly couple to the surface volatile distribution. To further explore this idea, we present numerical models of the permanent distribution of nitrogen ice on Triton that include the effects of sunlight, the two-dimensional distribution of internal heat flow, the coupling of internal heat flow to the surface distribution of nitrogen ice, and the finite viscosity of nitrogen ice. From these models we conclude that: (1) The strong vertical thermal gradient induced in Triton's polar caps by internal heat-flow facilitates viscous spreading to lower latitudes, thus opposing the poleward transport of volatiles by sunlight, and, for plausible viscosities and nitrogen inventories, producing permanent caps of considerable latitudinal extent; (2) It is probable that there is a strong coupling between the surface distribution of nitrogen ice on Triton and internal heat flow; (3) Asymmetries in the spatial distribution of Triton's heat flow, possibly driven by large-scale, volcanic activity or convection in Triton's interior, can result in permanent polar caps of unequal latitudinal extent, including the case of only one permanent polar cap; (4) Melting at the base of a permanent polar cap on Triton caused by internal heat flow can significantly enhance viscous spreading, and, as an alternative to the solid-state greenhouse mechanism proposed by Brown et al. (1990), could provide the necessary energy, fluids, and/or gases to drive Triton's geyser-like plumes; (5) The atmospheric collapse predicted to occur on Triton in the next 20 years (Spencer, 1990) may be plausibly avoided because of the large latitudinal extent expected for permanent polar caps on Triton.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E1; p. 1695-1981
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: In early 1994, the US will once again place a spacecraft in lunar orbit. Popularly called Clementine, this spacecraft will spend about two months mapping the Moon and then will travel on to encounter the near-Earth asteroid, 1620 Geographos. A brief description of the historical development of the mission; the lunar survey; Clementine's payload, equipment, and capabilties; and the encounter with Geographos is presented.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Sky and Telescope (ISSN 0037-6604); 87; 4; p. 38-39
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: An improved method has been developed to evaluate element abundances from emission line intensities of thin plasmas, depending on the differential emission measure (DEM) of the source. Observations made by the Solar EUV Rocket Telescope and Spectrograph (SERTS) Rocket EUV Spectrograph are used to perform a detailed analysis of the DEM distribution for temperatures larger than 10(exp 5) K in a solar active region. Comparison of the DEM distributions obtained by means of lines from different elements allows the verification of relative abundances for the most common elements of the solar corona, and gives an abundance estimates for the minor components, such as Na, Al, Ar, Cr, Mn and Zn.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 4; p. (4)163-(4)166
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: In this paper we characterize the temperature and the density structure of the corona utilizing co-spatial spectrophotometric observations during the descending phase of cycle 21 through the ascending phase of cycle 22. The data include ground-based intensity observations of the green (5303A Fe XIV) and red (6374A Fe X) coronal forbidden lines from Sacramento Peak and synoptic maps of white-light K-coronal polarized brightness, pB from the High Altitude Observatory, and photospheric magnetographs from the National Solar Observatory, Sacramento Peak. A determination of plasma temperature T can be derived unambiguously from the intensity ratio Fe X/Fe XIV, since both emission lines come from ionized states of Fe, and the ratios are only weakly dependent on density. The latitudinal variation of the temperature and the density within the descending and the ascending phases of solar cycle 21 and 22 are presented. There is a large-scale organization of the inferred coronal temperature distribution; these structures tend to persist through most of the magnetic activity cycle. This distribution differs in spatial and temporal characterization from the traditional picture of sunspot and active region evolution over the range of sunspot cycle.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 4; p. (4)49-(4)52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-12-03
    Description: New level population calculations for Fe-XIII are presented, and line intensities predicted. The extreme ultraviolet (EUV) lines are compared with the recent observations of the solar extreme ultraviolet rocket telescope and spectrograph (SERTS), and density estimates for the active region are given. Uses of the Fe-XIII lines are suggested, both for the sun and other stars, and the possibility of coordinating SOHO studies of EUV lines with ground based observations of Fe-XIII infrared lines is discussed.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 417-420
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-12-03
    Description: The preliminary results concerning the fine scale structure analysis of the streamers on the east limb and the region between these streamers, as well as their morphological and physical characteristics are presented. The results were obtained using white light polarized brightness data. The solar corona was observed with an externally occulted white light coronagraph carried on the SPARTAN 201-01 spacecraft for a 47 h period beginning on DOY 101, 1993. At this phase of the solar magnetic activity cycle there were well developed coronal helmet streamers located over both the east and west limbs of the sun. The photometric properties of one streamer found near the south east limb of the sun are similar to those measured of helmet streamers at the time of the 1973 total eclipse by both the ground based white light coronal camera and the Skylab externally occulted coronagraph.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 447-452
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The SOHO on-line catalogs will contain information about the observations from several made or planned campaigns, that must be available to scientists who wish to use SOHO data. The World Wide Web (WWW) was chosen as the interface to the SOHO on-line catalogs, because it is easy to use, well suited to a geographically distributed user community, and freely available. Through the use of a forms-capable WWW client such as Mosaic or Lynx, a scientist will be able to browse through the catalogs of observations in a very simple, self explanatory way. Data files can then be selected from the returned lists for either immediate transferring or sending on tape by mail, with appropriate checks for whether data is in the public domain or not.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 3rd SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences; p 429-432
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: Jovis Tholus, Ulysses Patera, and Biblis Patera, three small volcanoes in the Tharsis area of Mars, provide important insight into the evolution of volcanism on Mars. All three are interpreted to be shield volcanoes, indicating that shield volcansim was present from the outset in Tharsis. Jovis Tholus is the least complex with simple repeated outpouring of lavas and caldera-forming events. Ulysses Patera is dominated by a giant caldera within which is a line of cinder cones or domes suggesting terminal stages of volcanism in which the magma had either significant volatiles or increased viscosity. Biblis Patera is characterized by nested calderas which have expanded by block faulting of the flank; it also exhibits lava flows erupted onto the flanks from events along concentric fractures. These shields are different from the younger Tharsis Montes shields only in terms of the volume of erupted material. The limited shield volume suggests that the magma source which fed the shields was rapidly depleted. The relatively large size ofthe calderas probably results from relatively large, shallow magma bodies rather than significant burial of the flanks by younger lavas. Eruption rates consistent with typical terrestrial basaltic eruptiuon rates suggest that these volcanoes were probably built over time spans of 10(exp 4) to 10(exp 5) years. Stratigraphic ages range from Early to Upper Hesperian; absolute ages range from 1.9 to 3.4 Ga.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 111; 1; p. 246-269
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: Carbonate samples from the 8.9-Mt nuclear (near-surface explosion) crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance (EPR). Samples from below the OAK apparent crater floor were obtained from six boreholes, as well as ejecta recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to the spectra of Solenhofen and Kaibab limestone, which had been skocked to known pressures. Analysis of the OAK Crater borehole samples has identified a thin zone of allocthonous highly shocked (10-13 GPa) carbonate material underneath the apparent crater floor. This approx. 5- to 15-m-thick zone occurs at a maximum depth of approx. 125 m below current seafloor at the borehole, sited at the initial position of the OAK explosive, and decreases in depth towards the apparent crater edge. Because this zone of allocthonous shocked rock delineates deformed rock below, and a breccia of mobilized sand and collapse debris above, it appears to outline the transient crater. The transient crater volume inferred in this way is found to by 3.2 +/- 0.2 times 10(exp 6)cu m, which is in good agreement with a volume of 5.3 times 10(exp 6)cu m inferred from gravity scaling of laboratory experiments. A layer of highly shocked material is also found near the surface outside the crater. The latter material could represent a fallout ejecta layer. The ejecta boulders recovered from the present crater floor experienced a range of shock pressures from approx. 0 to 15 GPa with the more heavily shocked samples all occurring between radii of 360 and approx. 600 m. Moreover, the fossil content, lithology and Sr isotopic composition all demonstrate that the initial position of the bulk of the heavily shocked rock ejecta sampled was originally near surface rock at initial depths in the 32 to 45-m depth (below sea level) range. The EPR technique is also sensitive to prehistoric shock damage. This is demonstrated by our study of shocked Kaibab limestone from the 49,000-year-old Meteor (Barringer) Crater Arizona.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E3; p. 5,621-5,638
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: A search through cycle 1, 2, and 3 Magellan radar data covering 98% of the surface of Venus revealed very few dunes. Only two possible dune fields and several areas that may contain microdunes smaller than the resolution of the images (75 m) were identified. The Aglaonice dune field was identified in the cycle 1 images by the specular returns characteristic of dune faces oriented perpendicular to the radar illumination. Cycle 1 and 2 data of the Fortuna-Meshkenet dune field indicate that there has been no noticeable movement of the dunes over an 8-month period. The dunes, which are oriented both parallel and perpendicular to the radar illumination, appear to be dark features on a brighter substrate. Bright and dark patches that were visible in either cycle 1 or 2 data, but not both, allowed identification of several regions in the southern part of Venus that may contain microdunes. The microdunes are associated with several parabolic crater deposits in the region and are probably similar to those formed in wind tunnel experiments under Venus-like conditions. Bragg scattering and/or subpixel relfections from the near-normal face on asymmetric microdunes may account for these bright and dark patches. Look-angle effects and the lack of sufficient sand-size particles seem to be most likely reasons so few dunes were identified in Magellan data. Insufficient wind speeds, thinness of sand cover, and difficulty in identifying isolated dunes may also be contributors to the scarcity of dunes.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 112; 1; p. 282-295
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 112; 1; p. 42-54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The joule dissipation inside flux ropes in Venus' ionosphere is so great that they must be formed near, and maintained at, the place where they are observed. Thus ropes are not formed by a Kelvin-Helmholtz instability of the ionopause. The hypothesis that ropes may be formed by the dynamo action of internal gravity waves in Venus' thermosphere (Luhmann and Elphic, 1985; Cole, 1993) is strengthened by discussion of a magnetic evolution equation which includes neutral air motion. However, the dynamo process would work only at altitudes at which v(sub in) is greater than or equal to omega(sub i). At altitudes or parts of a rope where v(sub in) is much less than omega(sub i), the process does not work. A solar wind dynamo is therefore examined to account for the ropes. Thereby a major new heat source for ions of the Venus ionosphere associated with the ropes is uncovered.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A8; p. 14,951-14,958
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: Farrugia et al (1993) have recently studied substorm activity driven by the passage of an interplanetary magnetic cloud during which the interplanetary magnetic field turned southward for approximately 18 hours. It was shown that both the epsilon and the VB(sub s) parameters varied slowly on the timescale of a substorm but changed considerably over the interval as a whole. The substorm occurrence rate did not reflect the variation in magnetospheric energy loading rate as measured by these parameters but, rather, remained roughly constant with a 50-min average period. Klimas et al. (1992) showed that the Faraday loop analog model of geomagnetic activity predicts this single unloading rate under various constant loading rates. However, various model parameters were adjusted to yield a 1-hour unloading period in agreement with the Bargatze et al. (1985) linear prediction filters and in approximate agreement with the Farrugia et al. (1993) results. It has since been found necessary to add a slow relaxation mechanism to the Faraday loop model to allow for its approach to a ground state during long periods of inactivity. It is proposed that the relaxation mechanism is provided by slow convection of magnetic flux out of the magnetotail to the dayside magnetosphere. In addition, a rudimentary representation of magnetotail-ionosphere coupling has been added to enable comparison of model output to measured AL. The present study is of the modified Faraday loop model response to solar wind input from the Bargatze et al. data set with comparison of its output to concurrent AL. This study has removed the degree of freedom in parameter choice that had earlier allowed adjustments toward the 1-hour unloading period and has, instead, yielded the 1-hour unloading period under various constant loading rates. It is demonstrated that the second peak of the bimodal Bargatze et al. linear prediction filters at approximately equal 1-hour lag and the approximately constant substorm recurrence rate observed by Farrugia et al. can be interpreted as both being due to the existence of a normal unloading recurrence period in the dynamics of the magnetosphere.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A8; p. 18,855-18,861
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-08-24
    Description: The properties of the large-scale global merged interaction region (GMIR) generated by the intense solar events of March and June 1991 are studied using the available solar wind, interplanetary magnetic field, and energetic particle data from the observing network of Pioneer 10 and Voyagers 1 and 2 in the outer heliosphere. At heliocentric distances extending to 55 AU the delayed effects of this enhanced solar activity are observed in the form of large inceases in the solar wind velocity and interplanetary magnetic field and significant decreases in the galactic cosmic ray intensity. For low-energy ions (5-MeV protons) there was a single long-lived event extending over a period of some 6 months. Near the strongest interplanetary disturbances the H and He spectra are best represented by similar exponentials in momentum/nucleon (i.e., particle velocity at these at these energies). Over the rest of the event the characteristic momentum for He, (P(sub 0))(sub He) is generally approximately 0.66 for hydrogen. These spectra and the consistently low H/He ratio (25.3) at 2 MeV/nucleon closely resemble that observed in corrotating interaction regions events. Despite the strong north/south asymmetry in the solar activity, the interplanetary disturbances produced the same net decrease in the galactic cosmic ray intensity of ions greater than 70 MeV at the three widely separated spacecraft when the effects of the long-term recovery are taken into account. A comparison of the relative intensity of MeV ions at these three spacecraft suggest that the most intense solar events occurred on the back side of the Sun in time periods adjacent to the March and June episodes of solar activity. It is argued that this GMIR as a system is responsible for the low-frequency radio emission observed by the Voyager Plasma Wave experiment some 1.46 years after the onset of the March 1991 activity.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A8; p. 14,705-14,715
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-24
    Description: We present observations of energetic ions (E approximately 1 MeV) from the Ulysses spacecraft during its first pass from the ecliptic plane to the southern high-latitude regions of the heliosphere. At latitudes less than approximately 13 deg S Ulysses was completely immersed in the heliomagnetic streamer belt, and observed a approximately 1 MeV proton intensity which showed little evidence of a periodic structure. Between approximately 13 deg S and approximately 29 deg S Ulysses observed one dominant recurrent co-rotating interaction region, its reverse shocks being mainly responsible for accelerating the approximately 1 MeV protons. At approximately 29 deg S the spacecraft left this region and entered the solar wind flow from the polar coronal hole. From approximately 29 deg up to approximately 45 deg S, reverse shocks from this and other interaction regions were still being observed. Accelerated energetic ions, with proton-to-alpha ratio signatures consistent with having been accelerated by the reverse shocks of these co-rotating interacting regions, were still being observed up to latitudes of approximately 50 deg S.
    Keywords: SOLAR PHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 12; p. 1113-1116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-24
    Description: Analysis of CCD images of Triton obtained with the 1.5-m telescope on Palomar Mountain shows that in the time period surrounding the Voyager 2 encounter with the satellite (1985-1990), no changes in the satellite's visual albedo or color occurred. The published observations of Triton in the 0.35- to 0.60-micrometer spectral region obtained between 1950 and 1990 were reanalyzed to detect historical variability in both its albedo and visual color. Analysis of the photometry indicates that there is little, if any, change in Triton's visual geometric albedo. This result is consistent with the albedo pattern observed by Voyager and the change in sub-Earth latitude. Two distinct types of color changes are evident: a significant secular increase in the blue region of the visual spectrum since at least the 1950s, and the reported dramatic reddening of Triton's spectrum in the late 1970s. The latter change can be explained only by a short-lived geological phenomenon. Triton's changing pole orientation with respect to a terrestrial observer cannot explain the secular color changes. These changes imply volatile transport on a global scale on Triton's surface during the past 4 decades. We present two models which show that either removal of a red volatile from Triton's polar cap or deposition of a blue volatile in the equatorial regions can explain the secular color changes. A third possibility is that the changes are the result of the alpha-beta phase transition of nitrogen and subsequent fracturing of the polar cap region (N. S. Duxbury and R. H. Brown (1993).
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 110; 2; p. 303-314
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-24
    Description: Solar wind electrons are observed often to consist of two components: a core and a halo. The anisotropics and relative average speeds of these components correspond to a heat flux that has the potential to excite several different electromagetic instabilities; wave-particle scattering by the resulting enhanced fluctuations can limit this heat flux. This manuscript describes theoretical studies using the linear Vlasco dispersion equation for drifting bi-Maxwellian component distributions in a homogeneous plasma to examine the threshold of the whistler heat flux instability. Expressions for this threshold are obtained from two different parametric baselines: a local model that yields scalings as functions of local dimensionless plasma paramaters, and a global model based on average electron properties observed during the in-eliptic phase of the Ulysses mission. The latter model yields an expression for the heat flux at threshold of the whistler instability as a function of helisopheric radius that scales in the same way as the average heat flux observed form Ulysses and that provides an approximate upper bound for that same quantity. This theoretical scaling is combined with the observational results to yield a semi-empirical closure relation for the average electron heat flux in the solar wind between 1 and 5 AU.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A12; p. 23,391-23,399
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The first published three-dimensional images of the solar X-ray corona obtained by means of solar rotational parallax, are presented in stereographic form. Image pairs approximately 12 hours apart during times of stable coronal conditions were selected from the digitized images obtained with the Skylab X-ray Spectrographic Telescope. The image resolution limit is approximately 10 arc sec. Many coronal structures not visible in the separate images are clearly observed when the image pairs are viewed stereoscopically. This method gives a preview of the potential resources for solar research and forecasting of solar-geomagnetic interactions that could be provided by stereoscopic observations of the Sun using a small group of spacecraft. The method is also applicable to other X-ray, ultraviolet, or other wavebands in which the corona has extended, transparent structure.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 155; p. 57-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-08-24
    Description: The combined laboratory and solar analysis of the highly excited subconfigurations 3d(sup 6)4s((sup 6)D)4f and 3d(sup 6)4s((sup 6)D)5g of Fe I has allowed us to classify 87 lines of the 4f-5g supermultiplet in the spectral region 2545-2585 per cm. The level structure of these JK-coupled configurations is predicted by semiempirical calculations and the quardrupolic approximation. Semiempirical gf-values have been calculated and are compared to gf-values derived from the solar spectrum. The solar analysis has shown that these lines, which should be much less sensitive than lower excitation lines to departures from Local Thermal Equilibrium (LTE) and to temperature uncertanties, lead to a solar abundance of iron which is consistent with the meteoritic value (A(sub Fe) = 7.51).
    Keywords: SOLAR PHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 429; 1; p. 419-426
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-24
    Description: The evolution of differential streaming between protons and alpha particles in the solar wind was observed with the solar wind plasma experiment on the Ulysses spacecraft over the solar range of 1.15 to 5.40 AU between November 18, 1990, and May 5, 1992. The correlation of the difference in ion speeds, Delta V = the absolute value of V(sub alpha) - the absolute value of V(sub p), with the proton speed V(sub p) observed by other spacecraft at solar distances less than or equal to 1 AU disappeared at approximately 2 AU. At solar distances greater than or equal to 2.85 AU, the largest values of both V(sub alpha p) = the absolute value of V(sub alpha p) = the absolute value of V(sub alpha) - V(sub p) and the absolute value of Delta V were found in the interaction regions on the leading edges of high-speed streams. The differential streaming was typically enhanced just downstream of strong forward and reverse shocks, and large negative values of Delta V were frequently encountered in the interaction regions. A correlation between V(sub alpha p) and the ratio tau(sub zero)/tau(sub e) of Coulomb collision time to expansion time was observed at all distances, but it is suggested that at the larger values of tau(sub zero)/tau(sub e) observed correlation may arise from enhanced production of differential streaming by processes that also increase the entropy of the solar wind protons.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A2; p. 2505-2511
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-08-24
    Description: Neodymium, stontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain approximately 8% of its Sm and Nd inventory. A conventional Sm-147-Nd-143 isochron yielded an age of 4.53 +/- 0.04 Ga (2 sigma and Epsilon(sub Nd sup 143)) = 0.45 +/- 1.1. An Sm-146-Nd-142 isochron gives initial Sm-146/Sm-144 = 0.0076 +/- 0.0009 and Epsilon (sub Nd sup 142) = -2.5 +/- 0.4. The Rb-Sr analyses give initial Sr-87/Sr-86 Iota(sub Sr sup 87) = 0.698972 +/- 8 and 0.698970 +/- 18 for LEW and ADOR, respectively, relative to Sr-87/Sr-86 = 0.71025 for NBS987. The difference, Delta Iota(sub Sr Sup 87), between Iota (sub sr sup 87) for the angrites and literature values for Allende CAIs, corresponds to approximately Ma of growth in a solar nebula with a CI chondrite value of Rb-87/Sr-86 = 0.91, or approximately 5 Ma in a nebula with solar photospheric Rb-87/Sr-86 = 1.51. Excess Cr-53 from extinct Mn-53(t(sub 1/2) = 3.7 Ma)in LEW86010 corresponds to initial Mn-53/Mn-55 = 4.4 +/- 1.0 x 10(exp -5) for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The Sm-146/Sm-144 value found for LEW86010 corresponds to solar system initial (Sm-146/Sm-144) = 0.0080 +/- 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 +/- 0.0009 for crystallation 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated 'chondritic' parent body formed from the solar nebula approximately Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, approximately 2.6 Ma after the CAIs, to satisfy the Sr and CR isotopic systematics.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 29; 6; p. 872-885
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-24
    Description: We report on the abundances of energetic particles from impulsive solar flares, including those from a survey of 228 He-3 rich events, with He-3/He-4 is greater than 0.1, observed by the International Sun Earth Explorer (ISEE) 3 spacecraft from 1978 August through 1991 April. The rate of occurrence of these events corresponds to approximately 1000 events/yr on the solar disk at solar maximum. Thus the resonant plasma processes that enhance He-3 and heavy elements are a common occurrence in impulsive solar flares. To supply the observed fluence of He-3 in large events, the acceleration must be highly efficient and the source region must be relatively deep in the atmosphere at a density of more than 10(exp 10) atoms/cu cm. He-3/He-4 may decrease in very large impulsive events because of depletion of He-3 in the source region. The event-to-event variations in He-3/He-4, H/He-4, e/p, and Fe/C are uncorrelated in our event sample. Abundances of the elements show a pattern in which, relative to coronal composition, He-4, C, N, and O have normal abundance ratios, while Ne, Mg, and Si are enhanced by a factor approximately 2.5 and Fe by a factor approximately 7. This pattern suggests that elements are accelerated from a region of the corona with an electron temperature of approximately 3-5 MK, where elements in the first group are fully ionized (Q/A = 0.5), those in the second group have two orbital electrons (Q/A approximately 0.43), and Fe has Q/A approximately 0.28. Ions with the same gyrofrequency absorb waves of that frequency and are similarly accelerated and enhanced. Further stripping may occur after acceleration as the ions begin to interact with the streaming electrons that generated the plasma waves.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal Supplement Series (ISSN 0067-0049); 90; 2; p. 649-667
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-08-24
    Description: The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 51; 5; p. 694-702
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-08-24
    Description: McIntosh active-region classifications reported during a five-year period were examined to determine similarities among the classes. Two methods were used extensively to determine these similarities. The number of transitions among classes were used to determine the most frequent transitions out of each class, and the alternative classes reported for the same region by different sites were used to establish which classes were neighboring classes. These transition frequencies and neighboring classes were used to identify classes that could be eliminated or merged with other classes. Class similarities were used to investigate the relative importance of several pairs of decisions that occur within a single McIntosh parameter. In particular, the redundancy of parameters in some classes was examined, and the class similarities were used to identify which of these parameters could be eliminated. Infrequently reported classes were also considered, and suggestions for mergers were made when similarities between classes could be identified.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 150; 1-2; p. 147-164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-08-24
    Description: Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.
    Keywords: SOLAR PHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 2; p. 85-88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-08-24
    Description: We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and Ar-39-Ar-40 age dating. The ropy glasses have potassium rare earth elements phosphorous (KREEP)-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component. Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a Ar-39-Ar-40 degassing age of 800 +/- 15 Ma. Measurements of 39-Ar-40-Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact. Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus site, a part of the Moon that has not been sampled directly.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 29; 3; p. 323-333
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-08-24
    Description: On 1992 August 14 at 12:40 UTC, an ordinary chondrite of type L5/6 entered the atmosphere over Mbale, Uganda, broke up, and caused a strewn field of size 3 x 7 km. Shortly after the fall, an expedition gathered eye witness accounts and located the position of 48 impacts of masses between 0.19 and 27.4 kg. Short-lived radionuclide data were measured for two specimens, one of which was only 12 days after the fall. Subsequent recoveries of fragements has resulted in a total of 863 mass estimates by 1993 October. The surfaces of all fragments contain fusion crust. The meteorite shower caused some minor inconveniences. Most remarkably, a young boy was hit on the head by a small specimen. The data interpreted as to indicate that the meteorite had an initial mass between 400-1000 kg (most likely approximately 1000 kg) and approached Mbale from AZ = 185 +/- 15, H = 55 +/- 15, and V(sub infinity) = 13.5 +/- 1.5/s. Orbital elements are given. Fragmentation of the initial mass started probably above 25 km altitude, but the final catastrophic breakup occurred at an altitude of 10-14 km. An estimated 190 +/- 40 kg reached the Earth's surface minutes after the final breakup of which 150 kg of material has been recovered.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 29; 2; p. 246-254
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-08-24
    Description: Recently, it has been proposed that there exists a highly statistically significant (at greater than or equal to 98% level of confidence) relationship between Ar-37 production rate (namely, solar neutrinos) and the Ap geomagnetic index (namely, solar particles), based on the chi-square goodness-of-fit test and correlation analysis, for the interval 1970-1990. While a relationship between the two parameters, indeed, seems to be discernible, the strength of the relationship has been overstated. Instead of being significant at the afore-mentioned level of confidence, the relationship is found to be significant at only greater than or equal to 95% level of confidence, based on Yates' modification to the chi-square test for 2 x 2 contingency tables. Likewise, while correlation analysis yields a value of r = 0.2691, it is important to note that such a value suggests that only about 7% of the variance can be 'explained' by the inferred correlation and that the remaining 93% of the variance must be attributed to other sources.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 149; 2; p. 391-394
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-08-24
    Description: We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 149; 2; p. 395-403
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-08-24
    Description: Observations of molten mid-ocean ridge basalt (MORB)-molybdenum (Mo) interactions produced by shock experiments provide insight into impact and differentiation processes involving metal-silicate partitioning. Analysis of fragments recovered from experiments (achieving MORB liquid shock pressures from 0.8 to 6 GPa) revealed significant changes in the composition of the MORB and Mo due to reaction of the silicate and metal liquids on a short time scale (less than 13 s). The FeO concentration of the shocked liquid decreases systematically with increasing pressure. In fact, the most highly shocked liquid (6 GPa) contains only 0.1 wt% FeO compared to an initial concentration of 9 wt% in the MORB. We infer from the presence of micrometer-sized Fe-, Si- and Mo-rich metallic spheres in the shocked glass that the Fe and Si oxides in the MORB were reduced in an estimated oxygen fugacity of 10(exp -17) bar and subsequently alloyed with the Mo. The in-situ reduction of FeO in the shocked molten basalt implies that shock-induced reduction of impact melt should be considered a viable mechanism for the formation of metallic phases. Similar metallic phases may form during impact accretion of planets and in impacted material found on the lunar surface and near terrestrial impact craters. In particular, the minute, isolated Fe particles found in lunar soils may have formed by such a process. Furthermore, the metallic spheres within the shocked glass have a globular texture similar to the textures of metallic spheroids from lunar samples and the estimated, slow cooling rate of less than or equal to 140 C/s for our spheres is consistent with the interpretation that the lunar spheroids formed by slow cooling within a melted target.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Earth and Planetary Science Letters (ISSN 0012-821X); 122; 1/2; p. 71-88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-24
    Description: The temporal behavior of a sunspot cycle, as described by the International sunspot numbers, can be represented by a simple function with four parameters: starting time, amplitude, rise time, and asymmetry. Of these, the parameter that governs the asymmetry between the rise to maximum and the fall to minimum is found to vary little from cycle to cycle and can be fixed at a single value for all cycles. A close relationship is found between rise time and amplitude which allows for a representation of each cycle by a function containing only two parameters: the starting time and the amplitude. These parameters are determined for the previous 22 sunspot cycles and examined for any predictable behavior. A weak correlation is found between the amplitude accurate to within about 30% right at the start of the cycle. As the cycle progresses, the amplitude can be better determined to within 20% at 30 months and to within 10% at 42 months into the cycle, thereby providing a good prediction both for the timing and size of sunspot maximum and for the behavior of the remaining 7-12 years of the cycle.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 151; 1; p. 177-190
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-08-24
    Description: We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 14; 6; p. (6)137
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-08-24
    Description: The ultimate imaging resolution in the UV and photometric precision achievable with a small (less than 1-meter) telescope located on the Moon is considered. The imaging resolution and photometric precision that might be practically achieved when the effects of the Lunar environment and equipment limitations are accounted for is then suggested. Finally, the practicality of soft landing such a telescope on the moon is considered, along with suggestions of how it might be directly controlled by using astronomers without any significant permanent staff.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 14; 6; p. (6)115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The 21st century is likely to see the start of the manned exploration and settlement of the inner solar system. NASA's plans for this endeavor are focused upon the Space Exploration Initiative which calls for a return to the Moon, to stay, followed by manned missions to Mars. To execute these missions safely provides solar physics with both a challenge and an opportunity. As the past solar maximum has clearly demonstrated, the Sun, through the solar flare process, is capable of generating and accelerating to high energies large fluxes of protons whose cumulative dose to unprotected astronauts can be fatal. It will be the responsibility of solar physicists to develop an accurate physical description of the mechanisms of flare energy storage and release, and of particle acceleration and propagation through interplanetary space upon which to base a sound method of flare and energetic particle prediction.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 14; 6; p. (6)33-(6)42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Space Exploration Initiative presents an opportunity to construct astronomical telescopes on the Moon using the infrastructure provided by the lunar outpost. Small automatically deployed telescopes can be carried on the survey missions, be deployed on the lunar surface and be operated remotely from the Earth. Possibilities for early, small optical telescopes are a zenith pointed transit telescope, a student telescope, and a 0.5 to 1 meter automatic, fully steerable telescope. After the lunar outpost is established the lunar interferometers will be constructed in an evolutionary fashion. There are three lunar interferometers which have been studied. The most ambitious is the optical interferometer with a 1 to 2 -km baseline and seven 1.5 aperture elements arranged in a 'Y' configuration with a central beam combiner. The Submillimeter interferometer would use seven, 5-m reflectors in a 'Y' or circular configuration with a 1-km baseline. The Very Low Frequency (VLF) array would operate below 30 mHz with as many as 100 elements and a 200-km baseline.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 14; 6; p. (6)123-(6)127
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-24
    Description: An observational approach to Planetary Sciences and exploration from Earth applies to a quite limited number of targets, but most of these are spatially complex, and exhibit variability and evolution on a number of temporal scales which lie within the scope of possible observations. Advancing our understanding of the underlying physics requires the study of interactions between the various elements of such systems, and also requires study of the comparative response of both a given object to various conditions and of comparable objects to similar conditions. These studies are best conducted in 'campaigns', i.e. comprehensive programs combining simultaneous coherent observations of every interacting piece of the puzzle. The requirements include both imaging and spectroscopy over a wide spectral range, from UV to IR. While temporal simultaneity of operation in various modes is a key feature, these observations are also conducted over extended periods of time. The moon is a prime site offering long unbroken observation times and high positional stability, observations at small angular separation from the sun, comparative studies of planet Earth, and valuable technical advantages. A lunar observatory should become a central piece of any coherent set of planetary missions, supplying in-situ explorations with the synoptic and comparative data necessary for proper advance planning, correlative observations during the active exploratory phase, and follow-up studies of the target body or of related objects.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 14; 6; p. (6)143-(6)158
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-08-31
    Description: Knowledge of the gravitation field, in combination with surface topography, provides one of the principal means of inferring the internal structure of a planetary body. Previous analyses of the lunar gravitational field have been based on data from the Lunar Orbiters, the Apollo subsatellites, and the low altitude passes of the Apollo spacecraft. Recently, Konopliv et al. have reanalyzed all available Lunar Orbiter and Apollo subsatellite tracking data, producing a 60th degree and order solution. In preparation for the Clementine Mission to the Moon, we have also initiated a reanalysis of the Lunar Orbiter and Apollo subsatellite data. Our reanalysis takes advantage of advanced force and measurement modeling techniques as well as modern computational facilities. We applied the least squares collocation technique which stabilizes the behavior of the solution and high degree and order. The extension of the size of the field reduces the aliasing coming from the omitted portion of the gravitational field. This is especially important for the analysis of the tracking data from the Lunar Orbiters, as the periapse heights frequently ranged from 50 to 100 km.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 791-792
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-31
    Description: The 108 photons of the Martian He 584 A airglow detected by the Extreme Ultraviolet Explorer satellite during a two-day exposure (22-23 Jan. 1993) correspond to the effective disk average intensity of 43 (+/-) 10 Rayleigh. Radiative transfer calculations, using a model atmosphere appropriate to the conditions of the observation and having an exospheric temperature of 210 (+/-) 20 K, result in an He mixing ratio of 1.1 (+/-) 0.4 ppm in the lower atmosphere. Nonthermal escape of helium is due to the following: electron impact ionization and pickup of He(+) by the solar wind; collisions with hot oxygen atoms; and charge exchange with molecular species with corresponding column loss rates of 1.4 x 10(exp 5), 3 x 10(exp 4), and 7 x 10(exp 3) cm(exp -2)s(exp -1), respectively. The lifetime of helium on Mars is 5 x 10(exp 4) yr. The He outgassing rate, coupled with the Ar-40 atmospheric abundance and with the K:U:Th ratio measured in the surface rocks, is used as input to a simple two-reservoir degassing model which presumes the loss of all argon accumulated in the atmosphere during the first Byr by large-scale impacts. The model results in total planet mass ratios of 10(exp -5) g/g for K, 2.3 x 10(exp -9) g/g for U, 8.5 x 10(exp -9) g/g for Th, 4 x 10(exp -10) g/g for He, and 1.5 x 10(exp -9) g/g for Ar-40. The predicted radiogenic heat flux is 2 erg cm(exp -2)s(exp -1). Similar modeling for Venus results in total plant mass ratios of 4.7 x 10(exp -5) g/g for K, 6.7 x 10(exp -9) g/g for U, 2.2 x 10(exp -8) g/g for Th, 1.3 x 10(exp -9) for He, 6.7 x 10(exp -9) g/g for Ar-40, and a radiogenic heat flux of 15 erg cm(exp -2)s(exp -1). The implications of these results are discussed. The modeling shows that the radioactive elements were not distributed uniformly in the protoplanetary nebula, and their relative abundances differ very much in the terrestrial planets.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 749-750
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-08-31
    Description: Very small variations in Nd-142 abundance in SNC meteorites lunar basalts, and a terrestrial supracrustal rock, have been attributed to the decay of 103 Ma Sm-146 initially present in basalt source regions in varying abundances as a result of planetary differentiation. We previously interpreted variations in Nd-142 abundances in two Apollo 17 high-Ti basalts, three Apollo 12 low-Ti basalts, and two KREEP basalts as defining an isochron giving a formation interval of approximately 94 Ma for the lunar mantle. Here we report new data for a third Apollo 17 high-Ti basalt, two Apollo 15 low-Ti basalts, the VLT basaltic lunar meteorite A881757 (formerly Asuka 31), basalt-like KREEP impact melt rocks 14310 and 14078, and three terrestrial rock standards. Those lunar samples which were not exposed to large lunar surface thermal neutron fluences yield a revised mantle formation interval of 237 +/- 64 Ma.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 1017-1018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-08-31
    Description: Agglutinitic glass contains much of the reduced Fe in lunar soils, and it contributes to the modification of reflectance spectra from lunar soils. Previous work has shown that agglutinitic glass can be compositionally heterogeneous, but the scale of these heterogeneities is not well known. In addition, few data are available on the characteristics of the inclusions in agglutinitic glass. Here we report on our preliminary transmission electron microscope (TEM) examination of agglutinitic glass fragments from the Apollo 11 soil 10084.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 685-686
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-31
    Description: Periodic Comet Shoemaker/Levy 9 will impact Jupiter in late July 1994. The comet, which broke into more than 20 telescopically detectable fragments when it passed with the Roche lobe of Jupiter on July 8, 1992, is captured in a highly eccentric orbit about Jupiter. The 21 recognized nuclei will be spread out in a train of the order 7 x 10(exp 6) km long at the time of impact, and the impacts will be spread in time over about 5 1/2 days centered on about July 21.2 UT. In addition to the train of recognized bright nuclei, the comet consists of 'wings' of unresolved bodies that are the source of a very broad composite dust tail. The linear extent of the wings is about an order of magnitude greater than that of the train of recognized discrete nuclei. Collision of the wings will be spread in time over several months. Thus the impact of P/S-L 9 with Jupiter will be an event of appreciable duration.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Houston Univ., New Developments Regarding the KT Event and Other Catastrophes in Earth History; p 113-114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-31
    Description: Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Houston Univ., New Developments Regarding the KT Event and Other Catastrophes in Earth History; p 81-82
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-31
    Description: We propose sending a balloon-borne UV photometer sensor package to measure atmospheric ozone on Mars, and this package could be a Discovery Program sensor candidate. Past measurements of ozone on Mars are highly uncertain, perhaps a factor of 3 or so uncertain, due primarily to interference and masking by cloud and dust. In-situ balloon measurements would avoid these problems, and would provide 'ground truth' which remote sensing techniques cannot. We have explored this approach to measure ozone abundance in the terrestrial stratosphere with a balloon-borne UV absorption photometer. Atmospheric pressures and temperatures and ozone concentrations near the surface of Mars are similar to those in the terrestrial stratosphere.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Reanalysis of Mariner 9 UV Spectrometer Data for Ozone, Cloud, and Dust Abundances, and Their Interaction Over Climate Timescales; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-31
    Description: An integrated moon program has often been proposed as a logical next step for today's space efforts. In the context of preparing for the possibility of launching a moon program, the European Space Agency is currently conducting an internal study effort which is focusing on the assessment of key technologies. Current thinking has this moon program organized into four phases. Phase 1 will deal with lunar resource exploration. The goal would be to produce a complete chemical inventory of the moon, including oxygen, water, other volatiles, carbon, silicon, and other resources. Phase 2 will establish a permanent robotic presence on the moon via a number of landers and surface rovers. Phase 3 will extend the second phase and concentrate on the use and exploitation of local lunar resources. Phase 4 will be the establishment of a first human outpost. Some preliminary work such as the building of the outpost and the installation of scientific equipment will be done by unmanned systems before a human crew is sent to the moon.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 269-273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-31
    Description: This paper describes a path planning method for planetary rovers to search for paths on planetary surfaces. The planetary rover is required to travel safely over a long distance for many days over unfamiliar terrain. Hence it is very important how planetary rovers process sensory information in order to understand the planetary environment and to make decisions based on that information. As a new data structure for informational mapping, an extended elevation map (EEM) has been introduced, which includes the effect of the size of the rover. The proposed path planning can be conducted in such a way as if the rover were a point while the size of the rover is automatically taken into account. The validity of the proposed methods is verified by computer simulations.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 87-90
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-31
    Description: The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 993-994
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-31
    Description: A coupled problem of diffusion and condensation is solved for the H2SO4-H2O system in Venus' cloud layer. The position of the lower cloud boundary, profiles of the H2O and H2SO vapor mixing ratios, and of the H2O/H2SO4 ratio of sulfuric acid aerosol and its flux are calculated as functions of the column photochemical production rate of sulfuric acid. Variations of the lower cloud boundary are considered. Our basic model, which is constrained to yield f(sub H2O)(30km) = 30 ppm, predicts the position of the lower cloud boundary at 48.4 km coinciding with the mean Pioneer Venus value, the peak H2SO4 mixing ratio of 5.4 ppm, and the H2SO4 production rate phi(sub H2SO4) = 2.2 x 10(exp 12) cm(exp -2)s(exp -1).
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 747-748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-31
    Description: Based on the conservation of chemical elements in chemical reactions, a rule is proved that the number of boundary conditions given by densities and/or non-zero velocities should not be less than the number of chemical elements in the system, and the components given by densities and velocities should include all elements in the system. Applications of this rule to Mars are considered. It is proved that a problem of CO2-H2O chemistry in the lower and middle atmosphere of Mars, say, in the range of 0-80 km does not have an unique solution, if only CO2 and H2O densities are given at the lower boundary, while all other boundary conditions are fluxes. Two models of this type are discussed. These models fit the same boundary conditions, are balanced with a relative uncertainty of 10(exp -4) for H2, and predict the O2, CO, and H2 mixing ratios which differ by order of magnitude. One more species density, e.g. that of O2, should be specified at the boundary to obtain the unique solution. The situation is better if the upper boundary is extended to the exobase where thermal escape velocities of H and H2 can be specified. However, in this case, either oxygen nonthermal escape rate or the O2 density at the surface should be given as the boundary condition. Two models of Mars' photochemistry, with and without nitrogen chemistry, are considered. The oxygen nonthermal escape rate of 1.2 x 10(exp 8) cm(exp -2) s(exp -1) is given at 240 km and is balanced with the total hydrogen escape rate within uncertainty of 1 percent for both models. Both models fit the measured O2 and CO mixing ratios, the O3 line absorption at 9.6 microns, and the O2 1.27 microns dayglow within the uncertainties of the measured values; although, the model without nitrogen chemistry fits better.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 745
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-31
    Description: Mid-infrared spectroscopic observations of the surface of Mercury are reported for the wavelength range 7.3 to 13.5 microns. The observed spectral radiance emanated from equatorial and low latitude regions between 110-130 deg Mercurian longitude. The area is primarily an intercrater plain. The spectra show distinct and recognizable features, the principal Christiansen emission peak being the most prominent. The Christiansen feature strongly suggests the presence of plagioclase (Ca,Na)(Al,Si)AlSi2O8, (in particular labradorite: Ab(50) - Ab(30)). In addition we have studied the effects of thermal gradients to gain insight into the effects of thermal conditions on the spectral radiance of rock samples. This simulates the thermophysical effects as the rotating surface of Mercury is alternately heated and cooled. The spectral features of the samples are retained; however, the relative and absolute amplitudes vary as illustrated by laboratory reflectance and emittance spectra from quartzite.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 739-740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-31
    Description: Given the absence of ground truth information on seismic structure, heat flow, and rock strength, or short wavelength gravity or magnetic data for Venus, information on the thermal, mechanical and compositional nature of the shallow interior must be obtained by indirect methods. Using pre-Magellan data, theoretical models constrained by the depths of impact craters and the length scales of tectonic features yielded estimates on the thickness of Venus' brittle-elastic lithosphere and the allowable range of crustal thickness and surface thermal gradient. The purpose of this study is to revisit the question of the shallow structure of Venus based on Magellan observations of the surface and recent experiments that address Venus' crustal rheology.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1575-1576
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-31
    Description: An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1577-1578
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-31
    Description: The Clementine spacecraft is to be launched into Earth orbit in late January for subsequent insertion into lunar orbit in late February, 1994. There, its primary mission is to produce -- over a period of about two months -- a new photographic map of the entire surface of the Moon; this will be done, in a variety of wavelengths and spatial resolutions, in a manner greatly superior to that previously accomplished for the whole Moon. It will then go on to fly by and photograph the asteroid Geographos. A secondary goal that has been accepted for this mission is to take a series of photographs designed to capture images of, and determine the brightness and extent of, the Lunar Horizon Glow (LHG). One form of LHG is caused by the solar stimulation of emission from Na and K atoms in the lunar exosphere. The scale height of this exosphere is of the order of 100 km. There are also brighter LHG components, with much smaller scale heights, that appear to be caused by scattered off of an exospheric lunar dust cloud.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1573-1574
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-31
    Description: The Martian regolith is the most substantial volatile reservoir on the planet; it holds CO2 as adsorbate, and can exchange that CO2 with the atmosphere-cap system over timescales of 10(exp 5) to 10(exp 6) years. The climatic response to insolation changes caused by obliquity and eccentricity variations depends in part on the total reservoir of adsorbed CO2. Previous estimates of the adsorbate inventory have been made by measuring the adsorptive behavior of one or more Mars-analyog materials, and deriving an empirical equation that described that adsorption as a function of the partial pressure of CO2 and the temperature of the regolith. The current CO2 inventory is that which satisfies adsorptive equilibrium, observed atmospheric pressure, and no permanent CO2 caps. There is laboratory evidence that H2O poisons the CO2 adsorptive capacity of most materials. No consideration of CO2 - H2O co-adsorption was given in previous estimates of the Martian CO2 inventory, although H2O is present in the vapor phase, and so as adsorbate, throughout the regolith.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1543-1544
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-31
    Description: The rate at which the wind can redistribute sedimentary material is an important part of any planet's sedimentologic cycle, particularly for Mars, where the competing effects of other gradational processes are less than on Earth. The aeolian drift potential (DP) is a measure of the amount of material capable of being moved through a unit length by the wind for a given period of time. DP is a useful measure of the potential redistribution rate of windblown material on regional scales. The Martian aeolian DP was calculated from laboratory studies of sand movement conducted at Martian atmospheric densities and from surface stress, temperature, and pressure values for that region as determined from the Mars General (Atmospheric) Circulation Model (GCM) developed at the NASA/Ames Research Center. In our simulations for Mars, DP changes in both magnitude (as expected) and direction if the saltation threshold is altered.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1521-1522
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-31
    Description: Gravitational wave astronomy continues to be one of the exploration concepts under consideration in NASA's strategy for conducting physics and astrophysics from the lunar surface. As with other proposals for new concepts in science and astronomy from the Moon, this one has a number of very interesting features which need to be developed further in order to assess them adequately. The possibility of robotic deployment of a gravitational wave antenna on the Moon in a triangular configuration and the question of closure on the third interferometer leg are discussed here.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1499-1500
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-31
    Description: With Hapke scattering theory and absorption coefficients derived from our laboratory measurements of solid N2 we have modeled the spectrum of Triton. By comparing a Hapke scattering model to the measured spectrum from Triton, we determined the temperature of the N2 on the satellite's surface to be 38 (+2, -1) K which is in accord with the measurements of Voyager 2. Applying this technique to Pluto we find that the temperature of N2 on that body is 40 +/- 2 K. Other aspects of this investigation are discussed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1419-1420
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-31
    Description: The two-dimensional chemical mapping analysis (CMA) techniques of EPMA and XRF were applied to a new polished thin section (PTS) of EET84302,28, Acapulco and a 5x3 cm slice of Caddo County to find heterogeneous regional distribution of low temperature fractions in the lodranite-acapulcoite groups and silicate inclusions in the IAB irons. A region richer in metal-plagioclase was found in EET84302,28 and Caddo County. The mineralogy of EET84302,28 is not much different from coarse-grained, metal-rich acapulcoite-like mineral assemblage in EET84302,19, which has chromite-orthopyroxene segregation. Nearly uniform Mg/Fe ratios of silicates modified by reduction at regional oxygen fugacity and large difference in modal abundances of minerals in this meteorite group can be explained by regional concentration of materials when the source materials were partly melted.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1375-1376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...