ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-12-01
    Description: Context. The surface reflectance of planetary regoliths may increase dramatically towards zero phase angle, a phenomenon known as the opposition effect (OE). Two physical processes that are thought to be the dominant contributors to the brightness surge are shadow hiding (SH) and coherent backscatter (CB). The occurrence of shadow hiding in planetary regoliths is self-evident, but it has proved difficult to unambiguously demonstrate CB from remote sensing observations. One prediction of CB theory is the wavelength dependence of the OE angular width. Aims. The Dawn spacecraft observed the OE on the surface of dwarf planet Ceres. We aim to characterize the OE over the resolved surface, including the bright Cerealia Facula, and to find evidence for SH and/or CB. It is presently not clear if the latter can contribute substantially to the OE for surfaces as dark as that of Ceres. Methods. We analyze images of the Dawn framing camera by means of photometric modeling of the phase curve. Results. We find that the OE of most of the investigated surface has very similar characteristics, with an enhancement factor of 1.4 and a full width at half maximum of 3° (“broad OE”). A notable exception are the fresh ejecta of the Azacca crater, which display a very narrow brightness enhancement that is restricted to phase angles
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 1990-09-01
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Carbonate samples from the 8.9-Mt nuclear (near-surface explosion) crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance (EPR). Samples from below the OAK apparent crater floor were obtained from six boreholes, as well as ejecta recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to the spectra of Solenhofen and Kaibab limestone, which had been skocked to known pressures. Analysis of the OAK Crater borehole samples has identified a thin zone of allocthonous highly shocked (10-13 GPa) carbonate material underneath the apparent crater floor. This approx. 5- to 15-m-thick zone occurs at a maximum depth of approx. 125 m below current seafloor at the borehole, sited at the initial position of the OAK explosive, and decreases in depth towards the apparent crater edge. Because this zone of allocthonous shocked rock delineates deformed rock below, and a breccia of mobilized sand and collapse debris above, it appears to outline the transient crater. The transient crater volume inferred in this way is found to by 3.2 +/- 0.2 times 10(exp 6)cu m, which is in good agreement with a volume of 5.3 times 10(exp 6)cu m inferred from gravity scaling of laboratory experiments. A layer of highly shocked material is also found near the surface outside the crater. The latter material could represent a fallout ejecta layer. The ejecta boulders recovered from the present crater floor experienced a range of shock pressures from approx. 0 to 15 GPa with the more heavily shocked samples all occurring between radii of 360 and approx. 600 m. Moreover, the fossil content, lithology and Sr isotopic composition all demonstrate that the initial position of the bulk of the heavily shocked rock ejecta sampled was originally near surface rock at initial depths in the 32 to 45-m depth (below sea level) range. The EPR technique is also sensitive to prehistoric shock damage. This is demonstrated by our study of shocked Kaibab limestone from the 49,000-year-old Meteor (Barringer) Crater Arizona.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E3; p. 5,621-5,638
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.
    Keywords: GEOPHYSICS
    Type: NASA-CR-185364 , NAS 1.26:185364
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: SOA allows scientists to plan spacecraft observations. It facilitates the identification of geometrically interesting times in a spacecraft s orbit that a user can use to plan observations or instrument-driven spacecraft maneuvers. These observations can then be visualized multiple ways in both two- and three-dimensional views. When observations have been optimized within a spacecraft's flight rules, the resulting plans can be output for use by other JPL uplink tools. Now in its eighth major version, SOA improves on these capabilities in a modern and integrated fashion. SOA consists of five major functions: Opportunity Search, Visualization, Observation Design, Constraint Checking, and Data Output. Opportunity Search is a GUI-driven interface to existing search engines that can be used to identify times when a spacecraft is in a specific geometrical relationship with other bodies in the solar system. This function can be used for advanced mission planning as well as for making last-minute adjustments to mission sequences in response to trajectory modifications. Visualization is a key aspect of SOA. The user can view observation opportunities in either a 3D representation or as a 2D map projection. Observation Design allows the user to orient the spacecraft and visualize the projection of the instrument field of view for that orientation using the same views as Opportunity Search. Constraint Checking is provided to validate various geometrical and physical aspects of an observation design. The user has the ability to easily create custom rules or to use official project-generated flight rules. This capability may also allow scientists to easily assess the cost to science if flight rule changes occur. Data Output allows the user to compute ancillary data related to an observation or to a given position of the spacecraft along its trajectory. The data can be saved as a tab-delimited text file or viewed as a graph. SOA combines science planning functionality unique to both JPL and the sponsoring spacecraft. SOA is able to ingest JPL SPICE Kernels that are used to drive the tool and its computations. A Percy search engine is then included that identifies interesting time periods for the user to build observations. When observations are then built, flight-like orientation algorithms replicate spacecraft dynamics to closely simulate the flight spacecraft s dynamics. SOA v8 represents large steps forward from SOA v7 in terms of quality, reliability, maintainability, efficiency, and user experience. A tailored agile development environment has been built around SOA that provides automated unit testing, continuous build and integration, a consolidated Web-based code and documentation storage environment, modern Java enhancements, and a focus on usability
    Keywords: Man/System Technology and Life Support
    Type: NPO-48529 , NASA Tech Briefs, July 2013; 29-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Type: The Fifth International Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations (RCSGSO); Jul 08, 2003; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: .For the first time at JPL, the Cassini mission to Saturn is using distributed science operations for developing their experiments. Remote scientists needed the ability to: a) Identify observation opportunities; b) Create accurate, detailed designs for their observations; c) Verify that their designs meet their objectives; d) Check their observations against project flight rules and constraints; e) Communicate their observations to other scientists. Many existing tools provide one or more of these functions, but Science Opportunity Analyzer (SOA) has been built to unify these tasks into a single application. Accurate: Utilizes JPL Navigation and Ancillary Information Facility (NAIF) SPICE* software tool kit - Provides high fidelity modeling. - Facilitates rapid adaptation to other flight projects. Portable: Available in Unix, Windows and Linux. Adaptable: Designed to be a multi-mission tool so it can be readily adapted to other flight projects. Implemented in Java, Java 3D and other innovative technologies. Conclusion: SOA is easy to use. It only requires 6 simple steps. SOA's ability to show the same accurate information in multiple ways (multiple visualization formats, data plots, listings and file output) is essential to meet the needs of a diverse, distributed science operations environment.
    Keywords: Space Sciences (General)
    Type: Core Technologies for Space Systems; Nov 08, 2004; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Type: IEEE Aerospace Conference; Mar 04, 2003 - Mar 11, 2003; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...