ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (239)
  • AGU (American Geophysical Union)  (227)
  • Copernicus Publications (EGU)
  • GEOMAR
  • Kraatz, Berlin
  • 2000-2004  (238)
  • 1900-1904
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 106 (B3). pp. 3977-3997.
    Publication Date: 2019-04-08
    Description: The morphology and structure of the submarine flanks of the Canary Islands were mapped using the GLORIA long-range side-scan sonar system, bathymetric multibeam systems, and sediment echosounders. Twelve young (〈2 Ma) giant landslides have been identified on the submarine flanks of the Canary Islands up to now. Older landslide events are long buried under a thick sediment cover due to high sedimentation rates around the Canary Islands. Most slides were found on the flanks of the youngest and most active islands of La Palma, El Hierro, and Tenerife, but young giant landslides were also identified on the flanks of the older (15–20 Ma) but still active eastern islands. Large-scale mass wasting is an important process during all periods of major magmatic activity. The long-lived volcanic constructive history of the islands of the Canary Archipelago is balanced by a correspondingly long history of destruction, resulting in a higher landslide frequency for the Canary Islands compared to the Hawaiian Islands, where giant landslides only occur late in the period of active shield growth. The lower stability of the flanks of the Canaries is probably due to the much steeper slopes of the islands, a result of the abundance of highly evolved intrusive and extrusive rocks. Another reason for the enhanced slope instability is the abundance of pyroclastic deposits on Canary Islands resulting from frequent explosive eruptions due to the elevated volatile contents in the highly alkalic magmas. Dike-induced rifting is most likely the main trigger mechanism for destabilization of the flanks. Flank collapses are a major geological hazard for the Canary Islands due to the sector collapses themselves as well as triggering of tsunamis. In at least one case, a giant lateral blast occurred when an active magmatic or hydrothermal system became unroofed during flank collapse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 108 (B4). p. 2182.
    Publication Date: 2018-04-11
    Description: Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high‐purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, σ), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 × 10−8 ≤ equation image ≤ 4.3 × 10−4 s−1, temperature 260 ≤ T ≤ 287 K, and internal methane pressure 10 ≤ PCH4 ≤ 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high‐temperature creep law, equation image = Aσne−(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa−n s−1, n = 2.2, E* = 90,000 J mol−1, and V* = 19 cm3 mol−1. For comparison, at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate‐bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100‐km‐thick near‐surface layer of high‐strength, low‐thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Inside the Subduction Factory. , ed. by Eiler, J. Geophysical Monograph, 138 . AGU (American Geophysical Union), Boulder, pp. 153-174.
    Publication Date: 2017-03-01
    Description: Most Central American volcanoes occur in an impressive volcanic front that trends parallel to the strike of the subducting Cocos Plate. The volcanic front is a chain, made of right-stepping, linear segments, 100 to 300 Km in length. Volcanoes cluster into centers, whose spacing is random but averages about 27 Km. These closely spaced, easily accessible volcanic centers allow mapping of geochemical variations along the volcanic front. Abundant back-arc volcanoes in southeast Guatemala and central Honduras allow two cross-arc transects. Several element and isotope ratios (e.g. BalLa, Uffh, B/La, IOBe/9Be, 87Sr/86Sr) that are thought to signal subducted marine sediments or altered MORB consistently define a chevron pattern along the arc, with its maximum in Nicaragua. BalLa, a particularly sensitive signal, is 130 at the maximum in Nicaragua but decreases out on the limbs to 40 in Guatemala and 20 in Costa Rica, which is just above the nominal mantle value of 15. This high amplitude regional variation, roughly symmetrical about Nicaragua, contrasts with the near constancy, or small gradient, in several plate tectonic parameters such as convergence rate, age of the subducting Cocos Plate, and thickness and type of subducted sediment. The large geochemical changes over relatively short distances make Central America an important margin for seeking the tectonic causes of geochemical variations; the regional variation has both a high amplitude and structure, including flat areas and gradients. The geochemical database continues to improve and is already adequate to compare to tectonic models with length scales of 100 Km or longer.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  , ed. by Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. Geophysical Monograph Series, 134 . AGU (American Geophysical Union), Washington, DC, 279 pp.
    Publication Date: 2012-03-13
    Type: Book , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 109 . B06102.
    Publication Date: 2018-04-25
    Description: We report measurements made with an ocean bottom array which was operated for 10 days on the Mid-Atlantic Ridge just south of the 5°S transform fault/fracture zone. A total of 148 locatable earthquakes with magnitudes ∼0.5–2.8 were recorded; seismic activity appears to be concentrated within the western half of the median valley. The median valley seismic zone is bounded in along-axis direction by the transform fault to the north and the tip of the axial volcanic ridge to the south. A few scattered events occurred within the inside corner high, on the transform fault, and in the western sidewall close to the segment center. Earthquakes reach a maximum depth of 8 km below the median valley floor and appear to be predominantly in the mantle, although a few crustal earthquakes also occurred. The presence of earthquakes in the mantle indicates that it is not strongly serpentinized. We infer the median valley seismic activity to primarily arise from normal faulting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 5 (1). Q06004.
    Publication Date: 2019-09-23
    Description: [1] A new model is developed and applied to simulate the Phanerozoic evolution of seawater composition (dissolved Ca, Sr, dissolved inorganic carbon, alkalinity, pH, δ18O), marine carbonates (Sr/Ca, 87Sr/86Sr, δ13C, δ18O), atmospheric CO2 and surface temperature. The marine carbonate records (Sr/Ca, 87Sr/86Sr, δ13C) are used to reconstruct changes in volcanic/tectonic activity and organic carbon burial over the Phanerozoic. Seawater pH is calculated assuming saturation with respect to calcite and considering the changing concentration of dissolved Ca documented by brine inclusion data. The depth of calcite saturation is allowed to vary through time and the effects of changing temperature and pressure on the stability constants of the carbonate system are considered. Surface temperatures are calculated using the GEOCARB III approach considering also the changing flux of galactic cosmic radiation (GCR). It is assumed that GCR cools the surface of the Earth via enhanced cloud formation at low altitudes. The δ18O of marine carbonates is calculated considering the changing isotopic composition of seawater, the prevailing surface temperatures and seawater pH. Repeated model runs showed that the trends observed in the marine δ18O record can only be reproduced by the model if GCR is allowed to have a strong effect on surface temperature. The climate evolution predicted by the model is consistent with the geological record. Warm periods (Cambrian, Devonian, Triassic, Cretaceous) are characterized by low GCR levels. Cold periods during the late Carboniferous to early Permian and the late Cenozoic are marked by high GCR fluxes and low pCO2 values. The major glaciations occurring during these periods are the result of carbon cycling processes causing a draw-down of atmospheric CO2 and a coevally prevailing dense cloud cover at low-altitudes induced by strong GCR fluxes. The two moderately cool periods during the Ordovician - Silurian and Jurassic - early Cretaceous are characterized by both high pCO2 and GCR levels so that greenhouse warming compensated for the cooling effect of low-altitude clouds. The very high Jurassic δ18O values observed in the geological record are caused by low pH values in surface waters rather than cold surface conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-15
    Description: High-resolution sediment cores from the Vøring Plateau, the North Iceland shelf, and the East Greenland shelf have been studied to investigate the stability of major surface currents in the Nordic Seas during the Holocene. Results from diatom assemblages and reconstructed sea-surface temperatures (SSTs) indicate a division of the Holocene into three periods: the Holocene Climate Optimum (9500–6500 calendar (cal) years BP), the Holocene Transition Period (6500–3000 cal years BP) and the Cool Late Holocene Period (3000–0 cal years BP). The overall climate development is in step with the decreasing insolation on the Northern Hemisphere, but regional differences occur regarding both timing and magnitude of SST changes. Sites under the direct influence of the Norwegian Atlantic Current and the Irminger Current indicate SST cooling of 4–5°C from early Holocene to present, compared to 2°C recorded under the East Greenland Current. Superimposed on the general Holocene cooling trend, there is a high-frequency SST variability, which is in the order of 1–1.5°C for the Vøring Plateau and the East Greenland shelf and 2.5–3°C on the North Iceland shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-03-19
    Description: In our analysis [Rahmstorf et al., 2004], we arrived at two main conclusions: the data of Shaviv and Veizer [2003] do not show a significant correlation of cosmic ray flux (CRF) and climate, and the authors' estimate of climate sensitivity to CO2 based on a simple regression analysis is questionable. After careful consideration of Shaviv and Veizer's comment, we want to uphold and reaffirm these conclusions. Concerning the question of correlation, we pointed out that a correlation arose only after several adjustments to the data, including shifting one of the four CRF peaks and stretching the time scale. To calculate statistical significance, we first need to compute the number of independent data points in the CRF and temperature curves being correlated, accounting for their autocorrelation. A standard estimate [Quenouille, 1952] of the number of effective data points is urn:x-wiley:00963941:media:eost14930:eost14930-math-0001 where N is the total number of data points and r1, r2 are the autocorrelations of the two series. For the curves of Shaviv and Veizer [2003], the result is NEFF = 4.8. This is consistent with the fact that these are smooth curves with four humps, and with the fact that for CRF the position of the four peaks is determined by four spiral arm crossings or four meteorite clusters, respectively; that is, by four independent data points. The number of points that enter the calculation of statistical significance of a linear correlation is (NEFF− 2), since any curves based on only two points show perfect correlation; at least three independent points are needed for a meaningful result.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Nonlinear Processes in Geophysics, 11 (4). pp. 505-514.
    Publication Date: 2017-02-15
    Description: In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 85 (4). pp. 38-41.
    Publication Date: 2017-02-10
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Nonlinear Processes in Geophysics, 11 (4). pp. 495-503.
    Publication Date: 2017-02-15
    Description: We study the inference of long-range correlations by means of Detrended Fluctuation Analysis (DFA) and argue that power-law scaling of the fluctuation function and thus long-memory may not be assumed a priori but have to be established. This requires the investigation of the local slopes. We account for the variability characteristic for stochastic processes by calculating empirical confidence regions. Comparing a long-memory with a short-memory model shows that the inference of long-range correlations from a finite amount of data by means of DFA is not specific. We remark that scaling cannot be concluded from a straight line fit to the fluctuation function in a log-log representation. Furthermore, we show that a local slope larger than α=0.5 for large scales does not necessarily imply long-memory. We also demonstrate, that it is not valid to conclude from a finite scaling region of the fluctuation function to an equivalent scaling region of the autocorrelation function. Finally, we review DFA results for the Prague temperature data set and show that long-range correlations cannot not be concluded unambiguously.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 18 (2). GB2012.
    Publication Date: 2018-03-16
    Description: The physical, chemical/biological processes that control the methane dynamics in the Weddell Sea are revealed by the distributions of methane (CH4), its stable carbon isotope ratio, δ13C-CH4, and the conservative transient tracer, chlorofluorocarbon-11 (CFC-11, CCl3F). In general, a nearly linear correlation between CH4 and CFC-11 concentrations was observed. Air-sea exchange is the major source of methane to this region, and the distribution of methane is controlled mainly by mixing between surface water and methane-poor Warm Deep Water. A significant influence of methane oxidation over the predominant two end-member mixing was only found in the Weddell Sea Bottom Water (WSBW) of the deep central Weddell Basin, where the turnover time of methane appears to be about 20 years. Mixing also controls most of the δ13C-CH4 distribution, but lighter than expected carbon isotopic ratios occur in the deep WSBW of the basin. From box model simulations, it appears that this “anomaly” is due to methane oxidation with a low kinetic isotope fractionation of about 1.004. The surface waters in the Weddell Sea and the Antarctic Circumpolar Current showed a general methane undersaturation of 6 to 25% with respect to the atmospheric mixing ratio. From this undersaturation and model-derived air-sea exchange rates, we estimate a net uptake of CH4 of roughly −0.5 μmol m−2 d−1 during austral autumn.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 2 (7).
    Publication Date: 2018-01-30
    Description: [1] The structural and chemical evolution of palagonite was studied as a function of glass composition, alteration environment, and time by applying a range of analytical methods (electron microprobe, infrared photometry, atomic force microscopy, X-ray fluorescence, and X-ray diffraction). Palagonitization of volcanic glass is a continuous process of glass dissolution, palagonite formation, and palagonite evolution, which can be subdivided into two different reaction stages with changing element mobilities. The first stage is characterized by congruent dissolution of glass and contemporaneous precipitation of “fresh,” gel-like, amorphous, optically isotropic, mainly yellowish palagonite. This stage is accompanied by loss of Si, Al, Mg, Ca, Na, and K, active enrichment of H2O, and the passive enrichment of Ti and Fe. The second stage is an aging process during which the thermodynamically unstable palagonite reacts with the surrounding fluid and crystallizes to smectite. This stage is accompanied by uptake of Si, Al, Mg, and K from solution and the loss of Ti and H2O. Ca and Na are still showing losses, whereas Fe reacts less consistently, remaining either unchanged or showing losses. The degree and direction of element mobility during palagonitization was found to vary mainly with palagonite aging, as soon as the first precipitation of palagonite occurs. This is indicated by the contrasting major element signatures of palagonites of different aging steps, by the changes in the direction of element mobility with palagonite aging, and by the general decrease of element loss with increasing formation of crystalline substances in the palagonite. Considering the overall element budget of a water-rock system, the conversion of glass to palagonite is accompanied by much larger element losses than the overall alteration process, which includes the formation of secondary phases and palagonite aging. The least evolved palagonitized mafic glass studied has undergone as much as 65 wt% loss of elements during palagonite formation, compared to ∼28 wt% element loss during bulk alteration. ABout 33 wt% element loss was calculated for one of the more evolved, in terms of the aging degree, rocks studied, compared to almost no loss for bulk alteration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-02-14
    Description: The southern central Chilean margin at the site of the largest historically recorded earthquake in the Valdivia region, in 1960 (Mw = 9.5), is part of the 5000-km-long active subduction system whose geodynamic evolution is controversially debated and poorly understood. Covering the area between 36° and 40°S, the oceanic crust is segmented by prominent fracture zones. The offshore forearc and its onshore continuation show a complex image with segments of varying geophysical character, and several fault systems active during the past 24 m.y. In autumn 2001, the project SPOC was organized to study the Subduction Processes Off Chile, with a focus on the seismogenic coupling zone and the forearc. The acquired seismic data crossing the Chilean subduction system were gathered in a combined offshore-onshore survey and provide new insights into the lithospheric structure and evolution of active margins with insignificant frontal accretion.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 105 (C6). pp. 14197-14213.
    Publication Date: 2018-04-17
    Description: From October 1995 to April 1996, three mooring lines were deployed at the eastern entrance of the Strait of Gibraltar. The spatial coverage of the mooring array allows for a good description of the tides. They exhibit a dominant semidiurnal nature and a noticeable baroclinic structure that matches the one of the mean exchange. Tidal currents in the upper layer are irregular and usually too weak to reverse the mean upper layer how that keeps on flowing east. Lower layer flow reverses with semidiurnal periodicity because of the smallness of the mean flow and the appreciable amplitude of the regular semidiurnal oscillation of tidal currents in this layer. Tidal transports can be satisfactorily compared with previous estimates of Bryden et al. [1994] if we allow for strong internal divergences associated with the internal tide. No significant eddy flux of water transport (tidal rectification) is observed at the eastern section, contrary to the almost 50% of the total layer transport found by Bryden et al. [1994] in Camarinal Sill section. Time-dependent hydraulic theory provides a good scenario for interpreting these two independent sets of observations despite the fact that the composite Froude number does not reach the critical values predicted in the hydraulic models most of the time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 105 (C3). pp. 6307-6326.
    Publication Date: 2017-06-06
    Description: We investigate the seasonal sea surface height (SSH) variability on large spatial scales in the North Atlantic by using both a numerical simulation and in situ data. First, an ocean general circulation model is run with daily forcing from the European Centre for Medium-Range Weather Forecasts reanalysis. We evaluate the different contributions to the seasonal SSH variability resulting from the surface heat fluxes, advection, salt content variability, deep ocean steric changes, and bottom pressure variability. These terms are compared with estimates from in situ data. North of 20°N, there is an approximate balance between hQ, the air-sea heat flux induced changes in steric height, and SSH variability. The next important component is the advection (its contribution to the annual amplitude is of the order of 1 cm except near the western boundary); other contributions are found to be smaller. Between 10°N and 10°S the advection variability induced by the seasonal wind stress cycle is the primary source of SSH variability. We then compare the sea surface height annual harmonic from TOPEX/Poseidon altimetry with the steric effect from the heat flux and with model and/or in situ estimates of the other terms. In many areas north of 20°N the balance between hQ and the altimetric SSH seasonal cycle is closed within the uncertainty limit of each of the terms of the SSH budget. However, hQ and the SSH do not balance each other in the eastern North Atlantic, and the results are sensitive to the choice of the heat flux product, suggesting that significant errors, typically 20–40 W m−2 for the seasonal cycle amplitude, are present in the meteorological model heat fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-01-31
    Description: [1] Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89–90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This “wedge serpentinite” presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (∼110 km above slab) and the outer forearc serpentinite seamounts (∼25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-01-26
    Description: The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, “Nova,” 7219 m water depth) and southwest Pacific deep water (63KD, “Tasman,” 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 (23). L23S05.
    Publication Date: 2018-02-27
    Description: Oceanic bromoform (CHBr3) is the major source of organic Br to the atmosphere and may be significant for ozone depletion through the contribution of reactive bromine to the upper troposphere and lower stratosphere of the midlatitudes and tropics. We report the first analyses of boundary layer air, surface and deep ocean waters from the tropical Atlantic. The data provide evidence of a source of CHBr3 throughout the tropical open ocean associated with the deep chlorophyll maximum within the tropical thermocline. Equatorial upwelling carries the CHBr3 to the surface, adding to increased concentrations in the equatorial mixed layer and driving oceanic emissions that support locally elevated atmospheric concentrations. In air masses that had crossed the coastal upwelling region off NW Africa even higher atmospheric mixing ratios were measured. The observations suggest a link between climate, wind-driven upwelling, and the supply of Br to the upper atmosphere of the tropics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 . L15308.
    Publication Date: 2018-03-21
    Description: The Galápagos Islands provide a topographic barrier for the Southern Equatorial Current (SEC) and the Equatorial Undercurrent (EUC). An island wake effect can be diagnosed from the difference of an ocean general circulation model simulation which includes the Galápagos Islands and one which ignores their presence. Cold thermocline water upwells on the western side of the islands, and only during boreal winter season these cold waters can linger around the Islands at a depth of about 80 m and affect the far eastern equatorial Pacific surface waters. This effect is partly offset by the westward transport of cold surface waters by the SEC which creates a wake on the western side of the Islands. It is furthermore shown that changes in horizontal current shear, induced by the presence of the Galápagos Islands modify the generation of tropical instability waves and lead to a basin scale SST anomaly pattern.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-01-18
    Description: The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 . pp. 2064-2066.
    Publication Date: 2018-02-14
    Description: Based on a Coupled General Circulation Model (CGCM) simulation we study the influence of anthropogenic greenhouse warming on the stability of the El Niño-Southern Oscillation phenomenon (ENSO). The linear stability of such a complex model cannot be assessed directly, hence we will derive empirical low order models for ENSO from the CGCM simulation under consideration. These models capture essential features of ENSO and are sensitive also to temporal changes in ENSO statistics. An eigenvalue analysis of these reduced models reveals that as greenhouse warming progresses a transition takes place from a stable oscillatory behavior to an unstable oscillation. This transition coincides with an abrupt change in simulated ENSO activity and can be explained in terms of changing ocean dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 107 (C1). 10.1029-10.1040.
    Publication Date: 2018-04-18
    Description: Three deep anticyclonic eddies of a species only reported once before [ Gordon and Greengrove, 1986 ] were intersected by hydrographic lines of the World Ocean Circulation Experiment (WOCE) and South Atlantic Ventilation Experiment (SAVE) programs in the Argentine Basin. The vortices are centered near 3500 m depth at the interface between North Atlantic Deep Water and Bottom Water. They have ∼1500-m-thick cores containing Lower Circumpolar Deep Water and a dynamic influence that may span up to two thirds of the water column. As one eddy was observed just downstream of the western termination of the Falkland Escarpment, a destabilization of the deep boundary current by the sudden slope relaxation is suggested as a potential cause of eddy formation. Besides isopycnal interleaving at the eddy perimeters, strongly eroded core properties in the upper parts of the lenses, associated with low density ratios, hint at double diffusion at the top of the structures as another major decay mechanism. The presence of an eddy in the northern Argentine Basin shows the possibility for a northward drift of the vortices, in this basin at least. Deep events in recent current measurements from the Vema Channel are presented that raise the question of further equatorward motion to the Brazil Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Tectonics, 22 (6). p. 1072.
    Publication Date: 2017-06-28
    Description: The convergent Sunda margin off Indonesia displays all geological features characteristic of an accretion-dominated subduction zone. A combined interpretation of prestack depth-migrated seismic reflection data and velocity information gained from refraction studies is supplemented by high-resolution bathymetric data and for the first time allows the exact mapping of backstop regimes. Initially, the outer high evolved as material was pushed against a static rigid arc framework backstop underlying a forearc basin. Increasing material strength of the outer high due to lithification formed a dynamic backstop, which controls accretion today. An out-of-sequence thrust marks the transition from the recent active frontal accretionary prism to the outer high and may be traced in the seismic and bathymetric data over the whole extent of the study area. The existence of a static as well as a dynamic backstop controls the forearc geometry and is associated with the segmentation of the forearc, which is observed in regimes of frontal as well as of oblique subduction. Mass balance calculations, which account for porosity changes and metamorphism, indicate a subduction history dominated by accretionary processes since the late Eocene. Accretion is associated with the low values of basal friction inferred for the Sunda margin. Structural investigations of conjugate fault planes indicate a very weak basal detachment. Effective stress analyses reveal that intrinsically weak material causes the high strength ratio of the detachment to the overlying sediments, whereas overpressuring within the frontal accretionary prism is negligible.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 108 (D19). Art.No. 4599.
    Publication Date: 2018-02-06
    Description: Simplified representations of spatially inhomogeneous (three-dimensional (3-D)) clouds in radiative transfer models provide systematic errors when calculating solar broadband radiative fluxes. An example is the neglect of horizontal photon transports as it is the case for the independent column approximation (ICA). The present work tries to quantify and interpret these errors on the basis of a large set of 3-D mixed phase cloud scenarios with 3-D varying extinction coefficients, scattering phase functions, and single-scattering albedos. The cloud cases result from a mesoscale atmospheric circulation model with detailed cloud microphysics. Domain-averaged cloud radiative fluxes are calculated by means of a Monte Carlo radiative transfer model. Depending on cloud type and solar zenith angle (SZA) the differences between 3-D and ICA results range from +20 W m−2 to −30 W m−2 for the upward reflected fluxes and from +10 W m−2 to −7 W m−2 for the absorbed fluxes. The mean (averaged over all cloud realizations) errors of the ICA-based upward fluxes vary between 5 W m−2 overestimation at 15°SZA and 6 W m−2 underestimation at 75°SZA. The ICA underestimates the absorbed flux by ∼1–2 W m−2 for most SZA except for 75°. It is found that neglecting the horizontal variability of the absorption and scattering properties of the cloud hydrometeors leads to a general underestimation of solar broadband absorption by as much as 15 W m−2 with average values between 4 W m−2 at small SZA and 1 W m−2 at large SZA.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-01-31
    Description: Between 1996 and 1998, a concerted effort was made to study the deep open ocean convection in the Labrador Sea. Both in situ observations and numerical models were employed with close collaboration between the researchers in the fields of physical oceanography, boundary layer meteorology, and climate. A multitude of different methods were used to observe the state of ocean and atmosphere and determine the exchange between them over the experiment's period. The Labrador Sea Deep Convection Experiment data collection aims to assemble the observational data sets in order to facilitate the exchange and collaboration between the various projects and new projects for an overall synthesis. A common file format and a browsable inventory have been used so as to simplify the access to the data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 . 26,899-26,916.
    Publication Date: 2018-04-18
    Description: Aspects of the dynamics of internal solitary waves evolving in a three-layer ocean are investigated using a new numerical multilayer model that solves the nonlinear, weakly nonhydrostatic Boussinesq equations and uses high-resolution in situ data. The model applications refer to two different phenomena frequently observed in the real ocean, which can be described using a three-layer model rather than a two-layer model. In the first application the influence of the strength of a shallow seasonal thermocline superimposed on a two-layer permanent stratification on the structure of internal solitary waves is studied. It is found that while for small to medium wave amplitudes a decrease in the strength of the thermocline yields an increase in the simulated wavelengths, for large wave amplitudes this dependence is no longer monotonic. In particular, in the limiting case of a vanishing thermocline, first-mode internal solitary wave solutions of the three-layer numerical model tend to the analytical internal solitary wave solutions of the Miyata equations, a two-layer model, in which the full nonlinearity of the shallow-water theory up to first-order phase dispersion is retained. In the second application that refers particularly to high-resolution observations made north and south of the Strait of Messina in the Eurafrican Mediterranean basin the generation of internal solitary waves by the evolution of surface and subsurface water jets is investigated. The analysis of the in situ data shows in fact that from very energetic surface and subsurface jet-like disturbances subject to strong turbulent mixing internal solitary waves emerge as robust, quasi-nondissipative oceanic features. Idealized flow conditions aimed at approximating possible initial stages of the observed water jets are imposed to force our numerical model. In general, good agreement is found between characteristics of observed and simulated wave fields. Our investigation identifies the observed water jets as peculiar features of the complex ocean dynamics and suggests that layered numerical models can represent helpful tools in understanding fundamental processes inherent in their intricate dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (3). p. 1081.
    Publication Date: 2018-03-15
    Description: Methane in surface waters and marine air off Oregon (44°24′N–44°54′N, 124°36′W–125°24′W) was continuously surveyed in July 1999. During a high-resolution survey after a period of steady winds from the north, CH4 concentrations were high in the northeastern region, near the shelf edge. The highest CH4 concentrations were 2.5 times higher than equilibrium with the atmospheric partial pressure. In contrast, concentrations were near equilibrium in the western part of the survey area, the Hydrate Ridge. The increase in CH4 from southwest to northeast correlates with a drop in sea surface temperature (SST), from 16.5°C to 〈13.5°C, toward the shelf edge. The observed SST pattern was caused by summer upwelling off Oregon. The results suggest that CH4 derived from bottom sources near the shelf/slope break and methane found in connection with shallow (100–300 m) turbidity layers is transported to the surface by coastal upwelling, which causes an enhanced net flux of CH4 to the atmosphere. Vertical profiles of the methane distribution on the shelf in October demonstrate the accumulation of methane introduced by shelf sources. Surface concentrations at these stations in October (during nonupwelling conditions) were lower than in July (during upwelling) and were only slightly oversaturated with respect to the atmosphere. An acoustic Doppler current profiler survey indicates that the observed trend cannot be attributed to a surface flow reversal in the area. The low-salinity waters in the core of the Columbia River plume (S 〈 31) showed no enhanced CH4 concentrations. The trend of higher CH4 concentrations at lower temperatures existed over the whole 17-day survey, but large spatial and temporal variations existed. The presence of methane sources in regions of coastal upwelling worldwide, such as shallow seeps, gas hydrates, and intermediate nepheloid layers, suggests that the enhancement of CH4 fluxes to the atmosphere by coastal upwelling occurs on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-02-10
    Description: Deep marine currents are strongly influenced by climatic changes. They also deposit, rework, and sort sediment, and can generate kilometer-scale sedimentary bodies (drifts). These drifts are made of thoroughly bioturbated, stacked sedimentary sequences called contourites [Gonthier et al., 1984]. As a consequence, change in the direction or intensity of currents can be recorded in the sediments
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 (C12). 31,033-31,044.
    Publication Date: 2018-04-18
    Description: To estimate the volume transport through the Strait of Gibraltar and to study the spatial structure of the time-variable flow, a varying number of current meter moorings were maintained at the eastern entrance of the strait between October 1994 and April 1998, and was complemented with intensive shipboard measurements during the European Union project Canary Island Azores Gibraltar Experiment (CANIGO). A tidal inverse model is used to merge these data sets in order to investigate the flow at the eastern entrance of the strait. The two-dimensional structure of the tidal flow was described by simple analytical functions. Harmonics with the seven most important tidal frequencies were used as temporal functions. With this model, the tidal currents can be predicted for any time and location at the eastern entrance of the strait, and more than 92% of the variance of the lower layer flow is explained. It was used to remove the tidal currents from the individual measurements and to calculate the mean flow through the strait from the residuals. Combined with a similar inverse model for determining the depth of the interface between Mediterranean and Atlantic water, the volume transport was estimated to be 0.81 ± 0.07 Sv for the upper layer and −0.76 ± 0.07 Sv for the lower layer. The correlation of the tidal currents and the fluctuations of the interface accounts for ∼7% of the transport at the eastern entrance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 (7). p. 1314.
    Publication Date: 2018-02-20
    Description: Current hydrographic data can provide snapshots but no continuous timeseries of the meridional overturning circulation (MOC). Using output from two eddy-permitting numerical ocean models we test the feasibility of a monitoring system for the MOC in the North Atlantic. The results suggest that a relatively simple arrangement, using moorings placed across a longitude-depth section and the zonal wind stress, is able to capture most of the MOC strength and vertical structure as a function of time. Being closely related to the transport of energy to the North Atlantic, measuring the MOC would open the prospect of having continuous information about a key element of northern hemisphere climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-03-16
    Description: The contribution of the marine biota to air-sea fluxes of CO2 and O2 is often described in terms of biological production concepts, such as new production, export production, and net community production. We evaluate these three quantities using a basin-scale ecosystem-circulation model of the North Atlantic Ocean based on Redfield stoichiometry into which we introduce an artificial tracer which records the biotic contribution to air-sea exchange of gases like O2 and CO2. It is found that on average the biological production rates overestimate the biotically effected air-sea flux by some 20% and, in some regions, even predict the wrong direction. With primary production restricted to the euphotic zone, but respiration extending to farther below, the discrepancy can largely be attributed to the different integration depths used in the different concepts (euphotic zone, surface mixed layer), and on annual and longer timescales, all rates converge when using the base of the winter mixed layer rather than that of the euphotic zone as the reference depth. For the surface carbon budget, which ultimately controls air-sea exchange of CO2, it is irrelevant whether carbon atoms cross this boundary in organic or inorganic speciation. Hence the transports of biotically generated surpluses or deficits of dissolved inorganic matter must also be accounted for. While their contribution amounts to only a few percent on the basin scale, the subduction of newly remineralized inorganic matter can locally account for about half of the biotically effected air-sea flux, for example, in regions of mode-water formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 . pp. 9005-9017.
    Publication Date: 2018-04-18
    Description: An extensive set of conductivity-temperature-depth (CTD)/lowered acoustic Doppler current profiler (LADCP) data obtained within the northwestern Weddell Sea in August 1997 characterizes the dense water outflow from the Weddell Sea and overflow into the Scotia Sea. Along the outer rim of the Weddell Gyre, there is a stream of relatively low salinity, high oxygen Weddell Sea Deep Water (defined as water between 0° and −0.7°C), constituting a more ventilated form of this water mass than that found farther within the gyre. Its enhanced ventilation is due to injection of relatively low salinity shelf water found near the northern extreme of Antarctic Peninsula's Weddell Sea shelf, shelf water too buoyant to descend to the deep-sea floor. The more ventilated form of Weddell Sea Deep Water flows northward along the eastern side of the South Orkney Plateau, passing into the Scotia Sea rather than continuing along an eastward path in the northern Weddell Sea. Weddell Sea Bottom Water also exhibits two forms: a low-salinity, better oxygenated component confined to the outer rim of the Weddell Gyre, and a more saline, less oxygenated component observed farther into the gyre. The more saline Weddell Sea Bottom Water is derived from the southwestern Weddell Sea, where high-salinity shelf water is abundant. The less saline Weddell Sea Bottom Water, like the more ventilated Weddell Sea Deep Water, is derived from lower-salinity shelf water at a point farther north along the Antarctic Peninsula. Transports of Weddell Sea Deep and Bottom Water masses crossing 44°W estimated from one LADCP survey are 25 × 106 and 5 × 106 m3 s−1, respectively. The low-salinity, better ventilated forms of Weddell Sea Deep and Bottom Water flowing along the outer rim of the Weddell Gyre have the position and depth range that would lead to overflow of the topographic confines of the Weddell Basin, whereas the more saline forms may be forced to recirculate within the Weddell Gyre.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-04-25
    Description: New seismic and geodetic data from Costa Rica provide insight into seismogenic zone processes in Central America, where the Cocos and Caribbean plates converge. Seismic data are from combined land and ocean bottom deployments in the Nicoya peninsula in northern Costa Rica and near the Osa peninsula in southern Costa Rica. In Nicoya, inversion of GPS data suggests two locked patches centered at 14 ± 2 and 39 ± 6 km depth. Interplate microseismicity is concentrated in the more freely slipping intermediate zone, suggesting that small interseismic earthquakes may not accurately outline the updip limit of the seismogenic zone, the rupture zone for future large earthquakes, at least over the short (∼1 year) observation period. We also estimate northwest motion of a coastal “sliver block” at 8 ± 3 mm/yr, probably related to oblique convergence. In the Osa region to the south, convergence is orthogonal to the trench. Cocos-Caribbean relative motion is partitioned here, with ∼8 cm/yr on the Cocos-Panama block boundary (including a component of permanent shortening across the Fila Costeña fold and thrust belt) and ∼1 cm/yr on the Panama block–Caribbean boundary. The GPS data suggest that the Cocos plate–Panama block boundary is completely locked from ∼10–50 km depth. This large locked zone, as well as associated forearc and back-arc deformation, may be related to subduction of the shallow Cocos Ridge and/or younger lithosphere compared to Nicoya, with consequent higher coupling and compressive stress in the direction of plate convergence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-05-10
    Description: GLAMAP 2000 presents new reconstructions of the Atlantic's sea surface temperatures (SST) at the Last Glacial Maximum (LGM), defined at both 21,500–18,000 years B.P. (“Last Isotope Maximum”) and 23,000–19,000 years B.P. (maximum glacial sea level low stand and orbital minimum of solar insolation; EPILOG working group; see Mix et al. [2001]). These reconstructions use 275 sediment cores between the North Pole and 60°S with carefully defined chronostratigraphies. Four categories of core quality are distinguished. More than 100 core sections provide a glacial record with subcentennial- to multicentennial-scale resolution. SST estimates are based on a new set of almost 1000 reference samples of modern planktic foraminifera and on improved transfer-function techniques to deduce SST from census counts of microfossils, including radiolarians and diatoms. New proxies also serve to deduce sea ice boundaries. The GLAMAP 2000 SST patterns differ significantly in crucial regions from the CLIMAP [1981] reconstruction and thus are important in providing updated boundary conditions to initiate and validate computational models for climate prediction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-05-10
    Description: An 8 million year record of subtropical and midlatitude shelf-sea temperatures, derived from oxygen isotopes of well-preserved brachiopods from a variety of European sections, demonstrates a long-term Cenomanian temperature rise (16–20°C, midlatitudes) that reached its maximum early in the late Turonian (23°C, midlatitudes). Superimposed on the long-term trend, shelf-sea temperatures vary at shorter timescales in relation to global carbon cycle perturbations. In the mid-Cenomanian and the late Turonian, two minor shelf-sea cooling events (2–3°C) coincide with carbon cycle perturbations and times of high-amplitude sea level falls. Although this evidence supports the hypothesis of potential glacioeustatic effects on Cretaceous sea level, the occurrence of minimum shelf-sea temperatures within transgressive beds argues for regional changes in shelf-sea circulation as the most plausible mechanism. The major carbon cycle event in the latest Cenomanian (oceanic anoxic event 2) is accompanied by a substantial increase in shelf-sea temperatures (4–5°C) that occurred ∼150 kyr after the commencement of the δ13C excursion and is related to the spread of oceanic conditions in western European shelf-sea basins. Our oxygen isotope record and published δ18O data of pristinely preserved foraminifera allow the consideration of North Atlantic surface water properties in the Cenomanian along a transect from the tropics to the midlatitudes. On the basis of fossil-derived δ18O, estimated δw ranges, and modeled salinities, temperature-salinity-density ranges were estimated for tropical, subtropical, and midlatitude surface waters. Accordingly, the Cenomanian temperate shelf-seas waters have potentially the highest surface water density and could have contributed to North Atlantic intermediate to deep waters in the preopening stage of the equatorial Atlantic gateway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-05-10
    Description: This paper presents data to support the presence of (1) intra-annual signals in the chemical composition (δ18O and Sr/Ca) of the skeletons of sclerosponges from the Bahamas and (2) variable rates of skeletal accretion. These conclusions are based on data obtained by using a microsampling method for the stable oxygen and carbon isotopes in which material was extracted at a resolution of one sample every 34 μm and a laser microprobe which obtained trace element data every 20 μm (Sr, Mg, and Pb). An age model was established using a combination of changes in the concentration of Pb, the change in the δ13C of the skeleton of the sclerosponges, and U/Th isotopic measurements. These methods yield a mean growth rate of 220 μm/yr but suggest that the growth rate in this particular sclerosponge was not constant. The calculated growth rate is within error identical to that determined by U/Th methods. The variable growth rate was confirmed through spectral analysis of the δ18O and Sr/Ca data that showed peaks corresponding to the annual cycle in these parameters as well as peaks corresponding to growth rates of approximately 128, 212, 270, and 400 μm/yr. The presence of these additional frequencies suggests a growth rate between approximately 100 and 300 μm/yr. These conclusions were supported by modeling of oxygen isotopic data measured on a scleractinian coral as well as model isotope data generated on synthetic time series. These findings have important implications for the use of sclerosponges as proxies of paleoclimate because they emphasize the need for a precise yearly chronology in order that proxy data can be compared with climatic variables.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 (21). L21502.
    Publication Date: 2015-01-26
    Description: The consistency of long-term yearly precipitation and runoff trends over the largest Arctic watersheds (Ob, Yenisei and Lena Rivers) is examined. Three gridded precipitation datasets (Climatic Research Unit, University of Delaware, NCEP) are used for comparative analyses with runoff data collected at basin outlets. The results generally demonstrate inconsistency in long-term changes of basin precipitation and runoff. The Yenisei River runoff increases significantly, while precipitation data show mostly negative trends. The Ob River does not show any significant trend either in precipitation or runoff. Positive trend in the Lena River runoff is accompanied by a weak precipitation increase; however, the precipitation increase is not strong enough to support the observed runoff change. The inconsistency identified in basin precipitation and runoff trends suggests uncertainty in both the quality of basin precipitation and runoff datasets, as well as the perceived hydrologic factors impacting runoff change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 (6). GRL-1298.
    Publication Date: 2015-03-06
    Description: This study has been motivated by reports of extraordinary change in the Arctic Ocean observed in recent decades. Most of these observations are based on synoptic measurements, while evaluation of anomalies requires an understanding of the underlying long-term variability. Historical climatologies give reference means, and while these datasets are a reliable source of the mean Atlantic Layer temperature, they significantly underestimate variability. Using historical data, we calculated statistical parameters for selected Arctic Ocean regions. They demonstrate a high level of Atlantic Layer temperature variability in the Nansen Basin and sea-surface salinity fluctuations on the Siberian shelf and the Amundsen Basin. These estimates suggest strong limitations on our ability to define amplitudes of anomalies by comparing recent synoptic measurements with climatologies, especially for regions characterized by strong variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 81 (32). 361, 366-367.
    Publication Date: 2019-09-23
    Description: The fifth Laptev Sea System Project Workshop was held November 25-29,1999, at the State Research Center-Arctic and Antarctic Research Institute in St. Petersburg, Russia.The abstracts of the workshop have been published in Terra Nostra,Vol. 99 (11) by the Alfred Wegener Foundation, Cologne, Germany.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. AGU (American Geophysical Union), Washington, DC, pp. 1-9. ISBN 0-87590-296-0
    Publication Date: 2015-09-09
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 15 (1). pp. 95-109.
    Publication Date: 2017-01-18
    Description: The southwest Pacific Ocean covers a broad range of surface-water conditions ranging from warm, salty water in the subtropical East Australian Current to fresher, cold water in the Circumpolar Current. Using a new database of planktonic foraminifera assemblages (AUSMAT-F2), we demonstrate that the modern analog technique can be used to accurately reconstruct the magnitude of sea-surfacetemperature (SST) in this region. We apply this technique to data from 29 deep-sea cores along a meridional transect of the southwest Pacific Ocean to estimate the magnitude of SST cooling during the Last Glacial Maximum. We find minimal cooling in the tropics (0°–2°C), moderate cooling in the subtropical midlatitudes (2°–6°C), and maximum cooling to the southeast of New Zealand (6°–10°C). The magnitude of cooling at the sea surface from the tropics to the temperate latitudes is found to generally be less than cooling at the surface of adjacent land masses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. AGU (American Geophysical Union), Washington, DC, pp. 105-107. ISBN 0-87590-296-0
    Publication Date: 2015-09-09
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Explosive Subaqueous Volcanism. , ed. by White, J. D. L., Smellie, J. L. and Clague, D. A. AGU (American Geophysical Union), Washington, USA, pp. 167-178.
    Publication Date: 2015-08-11
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-01-06
    Description: Log and core data document gas saturations as high as 90% in a coarse-grained turbidite sequence beneath the gas hydrate stability zone (GHSZ) at south Hydrate Ridge, in the Cascadia accretionary complex. The geometry of this gas-saturated bed is defined by a strong, negative-polarity reflection in 3D seismic data. Because of the gas buoyancy, gas pressure equals or exceeds the overburden stress immediately beneath the GHSZ at the summit. We conclude that gas is focused into the coarse-grained sequence from a large volume of the accretionary complex and is trapped until high gas pressure forces the gas to migrate through the GHSZ to seafloor vents. This focused flow provides methane to the GHSZ in excess of its proportion in gas hydrate, thus providing a mechanism to explain the observed coexistence of massive gas hydrate, saline pore water and free gas near the summit.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-05-10
    Description: Shallow-water carbonate systems are reliable recorders of sea level fluctuations and changes in ambient seawater conditions. Drilling results from Ocean Drilling Program (ODP) Legs 133 and 166 indicate that the timing of late Neogene sedimentary breaks triggered by sea level lowerings is synchronous in the sedimentary successions of the Queensland Plateau and the Great Bahama Bank. This synchrony indicates that these sea level changes were eustatic in origin. The carbonate platforms were also affected by contemporary, paleoceanographically controlled fluctuations in carbonate production. Paleoceanographic changes are recorded at 10.7, 3.6, and 1.7–2.0 Ma. At the Queensland Plateau, sea surface temperature shifts are documented by shifts from tropical to temperate carbonates (10.7 Ma) and vice versa (3.6 Ma); the modern tropical platform was established at 2.0–1.8 Ma. At Great Bahama Bank, changes were registered in compositional variations of platform-derived sediment, such as major occurrence of peloids (3.6 Ma) and higher rates of neritic carbonate input (1.7 Ma). The synchroneity of these changes attests to the far-field effects of modifications in the oceanographic circulation on shallow-water, low-latitude carbonate production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 81 (21). 233, 238.
    Publication Date: 2019-09-23
    Description: The Earth's heat budget is the result of a complex interaction that depends on the atmosphere, the oceans, and how this heat is exchanged geographically. Most people today are somewhat aware of a number of problems that may arise from global warming. However, to what extent these changes will occur remains a major issue in climate prediction. Obviously, one of the imminent features of the global climate system is the natural, steep temperature gradient that exists between the cold polar regions—where the Earth is most easily able to release heat—and the much warmer, lower latitudes. If one follows the more recent literature, there seems to be little doubt that future temperature increase will first be detected in the Arctic [Dickson, 1999], due to the various temperature-related processes that occur there [Johannessen et al., 1995; Grotefendt et al., 1998].
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Natural Gas Hydrates: Occurence, distribution, and Detection. , ed. by Paull, C. K. and Dillon, W. P. Geophysical Monograph Series, 124 . AGU (American Geophysical Union), Washington, DC, pp. 257-271.
    Publication Date: 2019-08-06
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 105 (B10). pp. 23727-23740.
    Publication Date: 2018-04-25
    Description: Multiphase flow in basaltic volcanic conduits is investigated using analog experiments and theoretical approaches. Depending on gas supply, large gas bubbles (gas slugs) may rise through basaltic magma in regimes of distinct fluid‐dynamical behavior: ascent of single slugs, supplied slugs fed from the gas source during ascent, and periodic slug flow. An annular flow regime commences at the highest gas supply rates. A first set of experiments demonstrates that the growth of gas slugs due to hydrostatic decompression does not affect their ascent velocity and that excess pressure in the slugs remain negligible. The applicability of theoretical formulae describing slug ascent velocity as a function of liquid and conduit properties is evaluated in a second set of experiments. A third set of experiments with continuous gas supply into a cylindrical conduit are scaled to basaltic conditions over Morton, Eotvös, Reynolds, and Froude numbers. Gas flow rate and liquid viscosity are varied over the whole range of flow regimes to observe flow dynamics and to measure gas and liquid eruption rates. Foam generation by slug bursting at the surface and partial slug disruption by wake turbulence can modify the bubble content and size distribution of the magma. At the transition from slug to annular flow, when the liquid bridges between the gas slugs disappear, pressure at the conduit entrance drops by ∼60% from the hydrostatic value to the dynamic‐flow resistance of the annular flow, which may trigger further degassing in a stored magma to maintain the annular flow regime until the gas supply is exhausted and the eruption ends abruptly. Magma discharge may also terminate when magma ascent is hindered by wall friction in long volcanic conduits and the annular gas flow erodes all magma from the conduit. Supplied slugs are found to reach much higher rise velocities than unsupplied slugs and to collapse to turbulent annular flow upon bursting at the surface. A fourth set of experiments uses a conduit partially blocked by built‐in obstacles providing traps for gas pockets. Once gas pockets are filled, rising gas slugs deform but remain intact as they move around obstacles without coalescence or significant velocity changes. Bursting of bubbles coalescing with trapped gas pockets causes pressure signals at least 3 orders of magnitude more powerful than gas pocket oscillation induced by passing liquid. Our experiments suggest a refined classification of Strombolian and Hawaiian eruptions according to time‐dependant behavior into sporadically pulsating lava fountains (driven by stochastic rise of single slugs), periodically pulsating lava fountains (resulting from slug flow), and quasi‐steady lava fountains (oscillating at the frequency of annular‐flow turbulence).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-06-29
    Type: Report , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-01-18
    Description: Today the western tropical Atlantic is the most important passage for cross-equatorial transfer of heat in the form of warm surface water flowing from the South into the North Atlantic. Circulation changes north of South America may thus have influenced the global thermohaline circulation system and high northern latitude climate. Here we reconstruct late Quaternary variations of western equatorial Atlantic surface circulation and Amazon lowland climate obtained from a multiproxy sediment record from Ceará Rise. Variations in the illite/smectite ratio suggest drier climatic conditions in the Amazon Basin during glacials relative to interglacials. The 230Thex-normalized fluxes and the 13C/12C record of organic carbon indicate that sea level fluctuations, shelf topography, and changes of the surface circulation pattern controlled variations and amplitude of terrigenous sediment supply to the Ceará Rise. We attribute variations in thermocline depth, reconstructed from vertical planktic foraminiferal oxygen isotope gradients and abundances of the phytoplankton species Florisphaera profunda, to changes in southeast trade wind intensity. Strong trade winds during ice volume maxima are associated with a deep western tropical Atlantic thermocline, strengthening of the North Brazil Current retroflection, and more vigorous eastward flow of surface waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 (C5). pp. 9057-9073.
    Publication Date: 2019-09-23
    Description: Time series of sea ice draft in the Weddell Sea are evaluated together with hydrographic observations, satellite passive microwave data, and ice drift for estimation of the freshwater fluxes into and out of the Weddell Sea. Ice draft is measured with moored upward looking sonars since 1990 along two transects across the Weddell Gyre. One transect, extending from the tip of the Antarctic Peninsula to Kapp Norvegia, was sampled between 1990 and 1994 and covers the flow into and out of the southern Weddell Sea. The other transect, sampled since 1996 and extending from the Antarctic continent northward along the Greenwich meridian, covers the exchange of water masses between the eastern and the western Weddell Sea. In order to relate results obtained during the different time periods, empirical relationships are established between the length of the sea ice season, derived from the satellite passive microwave data and defined as the number of days per year with the sea ice concentration exceeding 15%, and (1) the annual mean ice draft and (2) the annual mean ice volume transport. By using these empirical relationships, estimates of annual mean ice drafts and ice volume transports are derived at all mooring sites for the period February 1979 through February 1999. Wind and current force a westward ice transport in the coastal areas of the eastern Weddell Sea and a northward ice transport in the west. During the 2-year period 1991/1992 the mean ice volume export from the Weddell Sea is (50 ± 19) × 103 m3 s−1. This freshwater export is representative for a longer-term (20-year) mean and exceeds the average amount of freshwater gained by precipitation and ice shelf melt by about 19×103 m3 s−1, yielding an upper bound for the formation rate of newly ventilated bottom water in the Weddell Sea of 2.6 Sv.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (22). p. 2081.
    Publication Date: 2018-02-20
    Description: We report on controlled experiments to document the fate of naturally occurring methane hydrate released from the sea floor (780 m, 4.3°C) by remotely operated vehicle (ROV) disturbance. Images of buoyant sediment-coated solids rising (∼0.24 m/s) from the debris cloud, soon revealed clear crystals of methane hydrate as surficial material sloughed off. Decomposition and visible degassing began close to the predicted phase boundary, yet pieces initially of ∼0.10 m size easily survived transit to the surface ocean. Smaller pieces dissolved or dissociated before reaching the surface ocean, yet effectively transferred gas to depths where atmospheric ventilation times are short relative to methane oxidation rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-01-30
    Description: [1] We report results of magnetic data from the Nazca Plate and of geochemical (major element and Sr-Nd-Pb-isotope) analyses of rocks dredged from the Galápagos hot spot tracks (Cocos, Carnegie, Malpelo and Coiba Ridges and adjacent seamounts) in the Central East Pacific. Magnetic anomalies indicate that the Malpelo and Carnegie Ridges were once attached and that seafloor spreading separated the two ridges between 14.5 Ma and 9.5 Ma. The variations in Sr-Nd-Pb isotopic composition show that three of the mantle components currently observed at the Galápagos (Central, Southern, and Eastern) existed in the hot spot for at least 20 m.y., whereas the Northern Galápagos mantle component has been present for at least ∼15 Ma. Our data are consistent with the existence of a compositionally zoned/striped Galápagos plume since ∼20 Ma. Combined constraints from the morphology of the hot spot tracks, the magnetic record, and the isotope geochemistry of the rock samples provide new insights into the hot spot-ridge geometry and interaction of the Galápagos hot spot with the Cocos-Nazca spreading center (CNS) over the past 20 m.y. At 19.5 Ma a ridge jump moved the spreading axis to the northern edge of the hot spot. Between 19.5 and 14.5 Ma, the spreading axis was located above the center of the hot spot. At 14.5 Ma, a new ridge jump moved the spreading axis to the south, splitting the paleo-Carnegie Ridge into the present Carnegie and Malpelo Ridges. The repeated ridge jumps reflect capture of the northwardly drifting spreading center by the Galápagos hot spot. At 11–12 Ma an offset of the spreading axis lay above the plume center. Spreading between the Carnegie and Malpelo Ridges continued until 9.5 Ma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 109 . B02101.
    Publication Date: 2018-04-25
    Description: The 1.5-km-high, obliquely subducting Nazca Ridge and its collision zone with the Peruvian margin have been imaged by wide-angle and reflection seismic profiles, swath bathymetry, and gravity surveying. These data reveal that the crust of the ridge at its northeastern tip is 17 km thick and exhibits seismic velocities and densities similar to layers 2 and 3 of typical oceanic crust. The lowermost layer contributes 10–12 km to the total crustal thickness of the ridge. The sedimentary cover is 300–400 m thick on most parts of the ridge but less than 100 m thick on seamounts and small volcanic ridges. At the collision zone of ridge and margin, the following observations indicate intense tectonic erosion related to the passage of the ridge. The thin sediment layer on the ridge is completely subducted. The lower continental slope is steep, dipping at ∼9°, and the continental wedge has a high taper of 18°. Tentative correlation of model layers with stratigraphy derived from Ocean Drilling Program Leg 112 cores suggests the presence of Eocene shelf deposits near the trench. Continental basement is located 〈15 km landward of the trench. Normal faults on the upper slope and shelf indicate extension. A comparison with the Peruvian and northern Chilean forearc systems, currently not affected by ridge subduction, suggests that the passage of the Nazca Ridge along the continental margin induces a temporarily limited phase of enhanced tectonic erosion superposed on a long-term erosive regime.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 19 (PA1003).
    Publication Date: 2017-05-10
    Description: A marine sediment core from the leeward margin of Great Bahama Bank (GBB) was subjected to a multiproxy study. The aragonite dominated core MD992201 comprises the past 7230 years in a decadal time resolution and shows sedimentation rates of up to 13.8 m/kyr. Aragonite mass accumulation rates, age differences between planktonic foraminifera and aragonite sediments, and temperature distribution are used to deduce changes in aragonite production rates and paleocurrent strengths. Aragonite precipitation rates on GBB are controlled by exchange of carbonate ions and CO2 loss due to temperature-salinity conditions and biological activity, and these are dependent on the current strength. Paleocurrent strengths on GBB show high current velocities during the periods 6000–5100 years BP, 3500–2700 years BP, and 1600–700 years BP; lower current speeds existed during the time intervals 5100–3500 years BP, 2700–1600 years BP, and 700–100 years BP. Bahamian surface currents are directly linked to the North Atlantic atmospheric circulation, and thus periods with high (low) current speeds are proposed to be phases of strong (weak) atmospheric circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 4 (4). p. 9003.
    Publication Date: 2018-01-31
    Description: [1] The Franciscan Complex (Coast Ranges and Diablo Range, California) and the Western Baja Terrane (WBT; Baja California, Mexico) were metamorphosed along high-P/T paths like those experienced in many active subduction zones, recording peak conditions up to ∼1 GPa and 300°C. Franciscan and WBT metasedimentary rocks are similar in lithology and geochemistry to clastic sediments outboard of many subduction zones. These metamorphic suites provide evidence regarding devolatilization history experienced by subducting sediments, information that is needed to mass-balance the inputs of materials into subduction zones with their respective outputs. Analyzed samples have lower total volatile contents than their likely protoliths. Little variation in LOI among similar lithologies at differing metamorphic grades, suggests that loss of structurally bound water occurred during early clay-mineral transformations. Finely disseminated carbonate is present in the lowest-grade rocks, but absent in all higher-grade rocks. δ13CVPDB of reduced-C is uniform in the lower-grade Franciscan samples (mean = −25.1‰, 1σ = 0.4‰), but varies in higher-grade rocks (−28.8 to −21.9‰). This likely reflects a combination of devolatilization and C-isotope exchange, between organic and carbonate reservoirs. Nitrogen concentration ranges from 102 to 891 ppm, with δ15Nair of +0.1 to +3.0‰ (n = 35); this organic-like δ15N probably represents an efficient transfer of N from decaying organic matter to reacting clay minerals. The lowest-grade rocks in the Coastal Belt have elevated carbonate contents and correlated N-δ15N variations, and exhibit the most uniform δ13C and C/N, all consistent with these rocks having experienced less devolatilization. Most fluid-mobile trace elements are present at concentrations indistinguishable from protoliths. Suggesting that, despite apparent loss of much clay-bound H2O and CO2 from diagenetic cements (combined, 〈5–10 wt. %), most fluid-mobile trace elements are retained to depths of up to ∼40 km. Organic-like δ15N, lower than that of many seafloor sediments, is consistent with some loss of adsorbed N (perhaps as NO3−) during early stages of diagenesis. The efficient entrainment of fluid-mobile elements to depths of at least 40 km in these relatively cool subduction zone settings lends credence to models invoking transfer of these elements to the subarc mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 27 (9). pp. 1243-1246.
    Publication Date: 2018-02-14
    Description: The salinity, temperature and current distributions have been measured during the TROPAC cruise (Oct./Nov. 1996) at two sections, i.e. 143°E and 150°E, during the final phase of the 1995/1996 La Niña. The results present evidence that the fresh pool and the salinity front at its eastern boundary had moved far to the west, and that a barrier layer existed in that phase. The observed currents support the idea that advective processes play an essential role in creating the thermohaline structure during this ENSO phase. In relation with this process, it is found that the westward subduction mechanism of relatively dense eastern equatorial waters may apply during that phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 (C12). 31,017-31,032.
    Publication Date: 2018-04-18
    Description: During the European project Canary Island Azores Gibraltar Experiment (CANIGO), intensive shipboard observations were carried out in April 1996 and October 1997 in order to observe the spatial and temporal variability of the flow and of the water mass structure in the Strait of Gibraltar. At the sill and the eastern and western entrances to the strait, repeated cross-strait sections and station time series of the flow and of T–S profiles were measured using vessel-mounted and lowered acoustic Doppler current profilers (ADCP) and conductivity-temperature-depth probes (CTD)/expendable bathythermographs (XBT), yielding new views of the rapid changes over tidal cycles and of approximate tidal means. It is argued that transport observations might be easier to carry out away from the sill, in the eastern part of the strait, even though maximum resolved shears were comparable in both places, 0.03–0.04 s−1 in the vertical and 0.001–0.016 s−1 in the horizontal. In the east, coordinated changes in the stratification and the flow field are documented via four time series over M 2 tidal cycles, showing a sharpening/diffusing of the vertical gradients in the water masses and the flow. Maximum shear and maximum water mass gradients do not always coincide there, and both are much shallower (50–80 m) than the delimiter between inflow and outflow (120–150 m). The mean salinity of the outflow core decreases from 38.43 in the east to 38.17 west of the sills as a result of the mixing processes. The internal bore was followed and directly observed with rapid CTD-yoyo stations and with XBT/vessel-mounted ADCP measurements. It generates extreme changes in currents and shears on timescales of minutes, with directly measured vertical velocities reaching ±50 cm s−1. Patches of density inversions were observed as the bore passed by, consistent with active turbulent mixing along the interface. The time series of flow and CTD measurements allow the direct calculation of Froude numbers at various locations and over tidal cycles. These and along-strait sections suggest that the exchange through the strait is maximal in April 1996 and submaximal in October 1997, supporting the expectations of Garrett et al. [1990].
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 . pp. 2761-2778.
    Publication Date: 2019-09-23
    Description: The Weddell Sea is known to feed recently formed deep and bottom water into the Antarctic circumpolar water belt, from whence it spreads into the basins of the world ocean. The rates are still a matter of debate. To quantify the flow of bottom water in the northwestern Weddell Sea data obtained during five cruises with R/V Polarstern between October 1989 and May 1998 were used. During the cruises in the Weddell Sea, five hydrographic surveys were carried out to measure water mass properties, and moored instruments were deployed over a time period of 8.5 years to obtain quasi-continuous time series. The average flow in the bottom water plume in the northwestern Weddell Sea deduced from the combined conductivity-temperature-depth and moored observations is 1.3±0.4 Sv. Intensive fluctuations of a wide range of timescales including annual and interannual variations are superimposed. The variations are partly induced by fluctuations in the formation rates and partly by current velocity fluctuations related to the large-scale circulation. Taking into account entrainment of modified Warm Deep Water and Weddell Sea Deep Water during the descent of the plume along the slope, between 0.5 Sv and 1.3 Sv of surface-ventilated water is supplied to the deep sea. This is significantly less than the widely accepted ventilation rates of the deep sea. If there are no other significant sources of newly ventilated water in the Weddell Sea, either the dominant role of Weddell Sea Bottom Water in the Southern Ocean or the global ventilation rates have to be reconsidered.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 105 (C3). pp. 6359-6376.
    Publication Date: 2018-04-18
    Description: The winter monsoon circulation in the northern inflow region of the Somali Current is discussed on the basis of an array of moored acoustic Doppler current profiler and current meter stations deployed during 1995–1996 and a ship survey carried out in January 1998. It is found that the westward inflow into the Somali Current regime occurs essentially south of 11°N and that this inflow bifurcates at the Somali coast, with the southward branch supplying the equatorward Somali Current and the northward one returning into the northwestern Arabian Sea. This northward branch partially supplies a shallow outflow through the Socotra Passage between the African continent and the banks of Socotra and partially feeds into eastward recirculation directly along the southern slopes of Socotra. Underneath this shallow surface flow, southwestward undercurrent flows are observed. Undercurrent inflow from the Gulf of Aden through the Socotra Passage occurs between 100 and 1000 m, with its current core at 700–800 m, and is clearly marked by the Red Sea Water (RSW) salinity maximum. The observations suggest that the maximum RSW inflow out of the Gulf of Aden occurs during the winter monsoon season and uses the Socotra Passage as its main route into the Indian Ocean. Westward undercurrent inflow into the Somali Current regime is also observed south of Socotra, but this flow lacks the RSW salinity maximum. Off the Arabian peninsula, eastward boundary flow is observed in the upper 800 m with a compensating westward flow to the south. The observed circulation pattern is qualitatively compared with recent high-resolution numerical model studies and is found to be in basic agreement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 . pp. 2169-2172.
    Publication Date: 2018-02-20
    Description: The sea surface temperatures (SSTs) of the tropical Indian Ocean show a pronounced warming since the 1950s. We have analyzed the impact of this warming on Sahelian rainfall and on the North Atlantic Oscillation (NAO) by conducting ensemble experiments with an atmospheric general circulation model. Additionally, we investigate the impact of the other two tropical oceans on these two climate parameters. Our results suggest that the warming trend in the Indian Ocean played a crucial role for the drying trend over the West Sahel from the 1950s to 1990s and may also have contributed to the strengthening of the NAO during the most recent decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-05-10
    Description: On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84–85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-02
    Description: We present time series of export productivity proxy data including 230Thex-normalized deposition rates (rain rates) of 10Be, dissolution-corrected biogenic Ba, and biogenic opal as well as authigenic U concentrations which are complemented by rain rates of total (detrital) Fe and sea ice indicating diatom abundances from five sediment cores across the Atlantic sector of the Southern Ocean covering the past 150,000 years. The results suggest that 10Be rain rates and authigenic U concentration cannot serve as quantitative paleoproductivity proxies because they have also been influenced by detrital particle fluxes in the case of 10Be and bulk sedimentation rates (sediment focussing) and deep water oxygenation in the case of U. The combined results of the remaining productivity proxies of this study (rain rates of biogenic opal and biogenic Ba in those sections without authigenic U) and other previously published proxy data from the Southern Ocean (231Pa/230Th and nitrogen isotopes) suggest that a combination of sea ice cover, shallow remineralization depth, and stratification of the glacial water column south of the present position of the Antarctic Polar Front and possibly Fe fertilization north of it have been the main controlling factors of export paleoproductivity in the Southern Ocean over the last 150,000 years. An overall glacial increase of export paleoproductivity is not supported by the data, implying that bioproductivity variations in the Southern Ocean are unlikely to have contributed to the major glacial atmospheric CO2 drawdown observed in ice cores.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-01-30
    Description: [1] We report Hf isotope compositions of 79 lavas that record the early (∼5–95 Ma) history of the Galápagos plume volcanism. These include lavas from the Caribbean Large Igneous Province (CLIP; ∼95–70 Ma), the accreted Galápagos paleo-hot spot track terranes (54–65 Ma) of Costa Rica (Quepos, Osa and Burica igneous complexes), and the Galápagos hot spot tracks (〈20 Ma) located on the Pacific seafloor (Cocos, Carnegie, Malpelo, and Coiba Ridges and associated seamounts). These samples have previously been well characterized in terms of major and trace elements, Sr-Nd-Pb isotopes and Ar/Ar ages. As a result of the relative immobility of the high field strength and rare earth elements during syn- and post-emplacement hydrothermal activity and low-temperature alteration, combined Lu-Hf and Sm-Nd isotope systematics, when used in conjunction with Pb isotopes, provide a particular powerful tool, for evaluating the source compositions of ancient and submarine lavas. The combined Nd-Hf isotope data suggest that three of the isotopically distinct source components found today in the Galápagos Islands (the Floreana-like southern component, the Fernandina-like central component, and the depleted Genovesa-like eastern component) were present in the CLIP already by 95–70 Ma. The fourth Pinta-like northern component is first recorded at about 83–85 Ma by volcanism taking place during the transition from the plume head/CLIP to plume tail stage and has then been present in the hot spot track continuously thereafter. The identification of the unique northern and southern Galápagos Plume Hf-Nd-Pb isotope source signatures within the CLIP and the oldest hot spot track lavas provides direct evidence that the CLIP represents the plume head stage of the Galápagos hot spot. Hafnium isotopes are consistent with the possibility that two types of sediment components may have contributed to the Hf, Nd and Pb isotope compositions of the Galápagos plume lavas. One component, characterized by Δ207Pb/204Pb ≈ 0 and high positive ΔεHf has an isotope signature indicative of relatively recently recycled pelagic sediment, a signature typical of the southern Galápagos island Floreana. The other component has an EM like isotopic composition resembling modern seafloor sediments with positive Δ207Pb/204Pb and lower ΔεHf, a signature typical of the northern Galápagos island Pinta.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 1 (1008).
    Publication Date: 2018-01-30
    Description: The 40Ar/39Ar ages for 35 volcanic rocks and 14C ages for two charcoal samples from the Madeira Archipelago and Ampère Seamount (eastern North Atlantic) are presented. The volcanic evolution of Madeira can be divided into a voluminous shield stage (〉4.6–0.7 Ma) and a subsequent low-volume posterosional stage (〈0.7–0 Ma). Volcanism during the shield stage originated from a two-armed rift system, composed of the E–W oriented Madeira rift arm and the N–S oriented Desertas rift arm. Average growth rates for the submarine (5500 km3/Ma) and subaerial (100–150 km3/Ma) shield stages on Madeira are among the lowest found for ocean island volcanoes. It is proposed that Madeira represents the present location of a 〉70 Myr old hotspot which formed Porto Santo Island (11.1–14.3 Ma), Seine, Ampère (31 Ma), Corral Patch and Ormond (65–67 Ma [Féraud et al., 1982, 1986]) Seamounts, and the Serra de Monchique (70–72 Ma [McIntyre and Berger, 1982]) complex in southern Portugal. Age and spatial relationships result in a calculated absolute African plate motion above the hotspot of 1.2 cm/yr around a rotation pole located at 43°36′N/ 24°33′W.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Nonlinear Processes in Geophysics, 11 . pp. 393-398.
    Publication Date: 2017-02-15
    Description: Linear methods of dimensionality reduction are useful tools for handling and interpreting high dimensional data. However, the cumulative variance explained by each of the subspaces in which the data space is decomposed may show a slow convergence that makes the selection of a proper minimum number of subspaces for successfully representing the variability of the process ambiguous. The use of nonlinear methods can improve the embedding of multivariate data into lower dimensional manifolds. In this article, a nonlinear method for dimensionality reduction, Isomap, is applied to the sea surface temperature and thermocline data in the tropical Pacific Ocean, where the El Niño-Southern Oscillation (ENSO) phenomenon and the annual cycle phenomena interact. Isomap gives a more accurate description of the manifold dimensionality of the physical system. The knowledge of the minimum number of dimensions is expected to improve the development of low dimensional models for understanding and predicting ENSO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 17 (1). pp. 1005-1024.
    Publication Date: 2018-03-16
    Description: Temporal trends in oceanic dissolved inorganic carbon (DIC) and δ13C-DIC were reconstructed along five isopycnals in the upper 1000 m of the North Atlantic Ocean using a back-calculation approach. The mean anthropogenic DIC increase was 1.21 ± 0.07 μmol kg−1 yr−1 and the mean 13C decrease was −0.026 ± 0.002‰ yr−1, both in good agreement with the results from previous studies. The observed δ13C-DIC perturbation ratio is −0.024 ± 0.003‰ (μmol kg−1)−1. Our results indicate that the North Atlantic is able to maintain equilibrium with the anthropogenic perturbation for DIC and follows it with decadal time lag for δ13C. A CFC-calibrated one-dimensional isopycnal advection-diffusion model is used to evaluate temporal DIC and δ13C trends and perturbation ratios of the reconstructions. We investigate the time history of the air-sea CO2 and 13C disequilibria in the North Atlantic and discuss the importance of physical and biological processes in maintaining them. We find evidence that the North Atlantic Ocean is characterized by enhanced uptake of anthropogenic CO2. Also, we use the model to examine how the time rate of change of δ13C depends on changes in the temporal evolution of δ13C in the atmosphere. The model evolution explains the curious result that the time rate of change of surface water δ13C in the North Atlantic Ocean can exceed that observed concurrently in the atmosphere. Finally we introduce a powerful way of estimating the global air-sea pCO2 disequilibrium based on the oceanic δ13C-DIC perturbation ratio.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-01-31
    Description: [1] Volcanic glasses contained in distal fallout tephras from the Izu arc volcanic front (Izu VF) provide unique perspectives on general problems of arc volcanism. Unlike cogenetic lavas, these glasses are liquid compositions where element concentrations as well as ratios have significance. Isotopic evidence and previous work show that there is no sediment melt contribution to the sources of the Izu VF tephras, and hence their trace element characteristics permit determination of the trace element contents of slab fluids. The slab fluid is a composite of metasediment (∼5% of total fluid) and metabasalt (∼95%) component fluids, and carries large ion lithophile elements (LILE) with high LILE/Th and LILE/U, and low Th and U relative to source. Except for Sr and K, the metabasalt fluid is much less enriched than the metasediment fluid, but its large relative proportions make it an important carrier of many trace elements. The metabasalt fluid has the characteristics of the arc trace element signature, obviating the need for ubiquitous involvement of sediment in arc magma genesis. The fluid component in the tephras is remarkably constant in composition over fifteen million years, and hence appears to be a robust composition that may be applicable to other convergent margins. Assuming that the metabasalt fluid is a common component, and that distribution coefficients between sediment and fluid are similar from one arc to another, composite fluid compositions can be estimated for other arcs. Differences from this composition then would likely result from a sediment melt component. Comparison to arcs with sediment melt components in their source (Marianas, eastern Aleutians) shows that partial sediment melts may be so enriched, that they can completely mask the signature of the comingling slab fluids. Hence sediment melts can easily dominate the trace element and isotopic signature of many convergent margins. Since sediment melts inherit the LILE/LILE ratios of the trench sediment, Earth's surface processes must eventually influence the compositional diversity of arcs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-02-20
    Description: A seismic wide-angle section offshore Costa Rica is presented across the boundary between oceanic crust generated at the East Pacific rise (EPR) and at the Galápagos spreading center (GSC) as indicated by magnetic anomalies. This suture, where the Farallon plate broke up ∼23 Ma ago, is marked by pronounced velocity variations throughout the crust including a low-velocity body in the lower crust. This body is well constrained by refracted waves above the inversion zone and by strong PmP reflections from its lower boundary. The distinctness of this body and the local gravity field point to an igneous intrusion rather than serpentinized rock. Typical oceanic crust is found adjacent to the suture zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-09-23
    Description: Erosional convergent margins, where material is removed from the base of the upper plate and subducted on the lower plate, are fundamental features of the Circum Pacific. The erosional Middle America Trench convergent Pacific margin, remarkable for its broad diversity of dynamic environments, is a natural laboratory for studying convergent margin processes and seismogenesis. These environments include a shallow and deep trench axis, shallow-to-steep-dipping plate interfaces, abnormally hot-to-cold subducting plate temperatures, and a subducting plate with smooth morphology bordering basement ridges and seamounts. The subducting topography accelerates erosion and localizes seismicity.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 (C10). pp. 22143-22158.
    Publication Date: 2017-11-24
    Description: Moored observations of Kuroshio current structure and transport variability were made across the channel between northeast Taiwan and the Ryukyu Islands at 24 degreesN from September 19, 1994, to May 27, 1996. This was a cooperative, effort between the United States and Taiwan. The moored array was designated PCM-1, for the World Ocean Circulation Experiment (WOCE) transport resolving array. The dominant current and transport variability occurred on 100-day timescales and is shown by Zhang et al. [2001] to be caused by warm mesoscale eddys merging with the Kuroshio south of the array causing offshore meandering and flow splitting around the Ryukyu Islands. An annual transport cycle could not be resolved from our 20-month moored record because of abasing from the 100-day period events. Sea level difference data were used to extend the transport time series to 7 years giving a variation in the range of the annual transport cycle of 4-10 Sv, with a mean range closer to 4 Sv. The seasonal maximum of 24 Sv occurred in the summer and the seasonal minimum of 20 Sv occurred in the fall. A weaker secondary maximum also occurred in the winter. The cycle of Kuroshio transport appears to result from a combination of local along-channel wind forcing and Sverdrup forcing over the Philippine Sea. Our estimate of the mean transport of the Kuroshio at the entrance to the East China Sea from the moored array is 21.5 +/- 2.5 Sv. The mean transpacific balance of meridional flows forced by winds and thermohaline processes at this latitude requires an additional mean northward flow of 12 Sv with an annual cycle of +/-8 Sv along the eastern boundary of the Ryukyu Islands. The mean transport and annual cycle of the Kuroshio were found to be in reasonable agreement with basin-scale wind-forced models. Remarkable similarities are shown to exist between the mean western boundary currents and their seasonal cycles in the Atlantic (Florida Current and Antilles Current) and Pacific (Kuroshio and boundary current east of Ryukyu Island chain) at the same latitude. However, detailed comparison shows that the mean Kuroshio is weaker and more surface intensified than the mean Florida Current, while the Kuroshio-transport variability is significantly larger.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 (15). Nr. 1781.
    Publication Date: 2018-02-20
    Description: It is shown that the Arctic averaged wintertime temperature variability during the 20th century can be essentially described by two orthogonal modes. These modes were identified by an Empirical Orthogonal Function (EOF) decomposition of the 1892-1999 surface wintertime air temperature anomalies (40degreesN-80degreesN) using a gridded dataset covering high Arctic. The first mode (1st leading EOF) is related to the NAO and has a major contribution to Arctic warming during the last 30 years. The second one (3rd leading EOF) dominates the SAT variability prior to 1970. A correlation between the corresponding principal component PC3 and the Arctic SAT anomalies is 0.79. This mode has the largest amplitudes in the Kara-Barents Seas and Baffin Bay and exhibits no direct link to the large-scale atmospheric circulation variability, in contrast to the other leading EOFs. We suggest that the existence of this mode is caused by long-term sea ice variations presumably due to Atlantic inflow variability
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 17 (2). p. 1052.
    Publication Date: 2016-06-15
    Description: Three scenarios have been proposed to explain the 20-ppm post-8000 BP rise in atmospheric CO2 content. Indermühle et al. [1999] call on a climate-induced decrease in terrestrial biomass. W. F. Ruddiman (personal communication, 2002) calls on an anthropogenically induced decrease in terrestrial biomass. Broecker et al. [2001] suggest instead that this rise in CO2 was a response to a CaCO3 preservation event induced by an early Holocene increase in terrestrial biomass. The biomass decline hypothesis not only rests on shaky 13C data, but also requires an unreasonably large decrease in biomass (195 ± 40 GtC). While evidence for a decrease in deep sea carbonate ion concentration over the last 8000 years reconstructed from CaCO3 size index and foraminifera shell weight measurements appears to support the idea that the CO2 rise was caused by a change in the inventory of terrestrial biomass, the decrease appears to be too large to be explained solely in this way. Regardless, the CO3= decline cannot be used to distinguish between the late Holocene biomass decrease and early Holocene biomass increase scenarios. Only when a convincing 13C record for atmospheric CO2 has been generated will it be possible to make this distinction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Nonlinear Processes in Geophysics, 10 (3). pp. 197-210.
    Publication Date: 2017-05-18
    Description: We develop the theory of cyclic Markov chains and apply it to the El Niño-Southern Oscillation (ENSO) predictability problem. At the core of Markov chain modelling is a partition of the state space such that the transition rates between different state space cells can be computed and used most efficiently. We apply a partition technique, which divides the state space into multidimensional cells containing an equal number of data points. This partition leads to mathematical properties of the transition matrices which can be exploited further such as to establish connections with the dynamical theory of unstable periodic orbits. We introduce the concept of most and least predictable states. The data basis of our analysis consists of a multicentury-long data set obtained from an intermediate coupled atmosphere-ocean model of the tropical Pacific. This cyclostationary Markov chain approach captures the spring barrier in ENSO predictability and gives insight also into the dependence of ENSO predictability on the climatic state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: The cenozoic southern ocean: tectonics, sedimentation and climate change between Australia and Antarctica. , ed. by Exon, N., Kennett, J. and Malone, M. Geophysical Monograph Series, 151 . AGU (American Geophysical Union), Washington, DC, pp. 291-318. ISBN 0-87590-416-5
    Publication Date: 2016-04-05
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 107 (C12).
    Publication Date: 2018-04-18
    Description: A description of the near-surface circulation and its properties is the result of the analysis of a drifting buoy data set in the eastern North Atlantic between the Iberian Peninsula, the Azores, and the Canary Islands. World Ocean Circulation Experiment-Tropical Ocean-Global Atmosphere experiment drifters equipped with holey sock drogues centered at 15 m depth collected a total of 14.4 years of data. The drifters sampled a rather inhomogeneous velocity field with a weak mean flow regime and eddies of different scales. They meandered southward everywhere in the study region, except in the Iberian coastal transition zone north of 41degreesN where they headed northward. The near-surface mean velocity field obtained from the drifter data set shows all important mean currents, including the poleward Portugal Coastal Countercurrent during the fall, winter, and early spring off western and northern Iberia, the southward Portugal Coastal Current, the slow offshore southward flow of the Portugal Current during the whole year, the southwestward Canary Current, and the eastward Azores Current, which extends to the vicinity of the African coast near the Gulf of Cadiz. Maps of the eddy kinetic energy field were obtained from the drifters and from satellite altimetry. It provides the largest part of the total kinetic energy. The rate of dispersion is estimated from the Lagrangian statistics of the drifting buoys. The dispersion of the drifters in the study region is well modeled by a simple description of eddy diffusion assuming homogeneous turbulence. Ensemble mean diffusivities K and the Langrangian integral length scales and timescales (L and T) were obtained for the zonal and meridional directions. The sea surface temperature measured along the drifter trajectories is used to produce estimates of the eddy diffusivity, which is compared with the diffusivity estimates obtained from the theory of Taylor. The eddy diffusivity is found to be approximately proportional to the eddy kinetic energy. Discrete eddies and meanders were observed using drifters and altimetry in order to map and describe their geographical distribution and characteristics in the eastern North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-05-12
    Description: The O'Higgins Seamount Group is a cluster of volcanic domes located 120 km west of the central Chilean Trench on the crest of the Juan Fernández Ridge. This aseismic hot spot track is subducting under South America triggering a belt of intraslab earthquake hypocenters extending about 700 km inland. The Juan Fernández Ridge marks the southern boundary of a shallow subduction segment. Subduction of oceanic basement relief has been suggested as a cause for the “flat” slab segments characterizing the Andean trench system. The Juan Fernández Ridge, however, shows only moderate crustal thickening, inadequate to cause significant buoyancy. In 2001, wide-angle seismic data were collected along two perpendicular profiles crossing the O'Higgins Group. We present tomographic images of the volcanic edifices and adjacent outer rise-trench environment, which indicate a magmatic origin of the seamounts dominated by extrusive processes. High-resolution bathymetric data yield a detailed image of a network of syngenetic structures reactivated in the outer rise setting. A pervasive fault pattern restricted to the hot spot modified lithosphere coincides with anomalous low upper mantle velocities gained from a tomographic inversion of seismic mantle phases. Reduced uppermost mantle velocities are solely found underneath the Juan Fernández Ridge and may indicate mineral alterations. Enhanced buoyancy due to crustal and upper mantle hydration may contribute an additional mechanism for shallow subduction, which prevails to the north after the southward migration of the Juan Fernández Ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 19 (PA4011).
    Publication Date: 2017-05-10
    Description: On the basis of two sedimentary records from the central Sea of Okhotsk, we reconstruct the closely coupled glacial/interglacial changes in terrigenous flux, marine productivity, and sea ice coverage over the past 1.1 Myr. The correspondance of our sedimentary records to the China loess grain size record (China loess particle timescale, CHILOPARTS) suggests that environmental changes in both the Sea of Okhotsk area and in SE Asia were closely related via the Siberian atmospheric high-pressure cell. During full glacial times our records point to a strong Siberian High causing northerly wind directions, the extension of the sea ice cover, and a reduced Amur River discharge. Deglacial maxima of terrigenous flux were succeeded by or synchronous to high-productivity events. Marine productivity was strengthened during glacial terminations because of an effective nutrient utilization at times of enhanced water column stratification and high nutrient supply from fluvial runoff and sea ice thawing. During interglacials, SE monsoonal winds prevailed, analogous to today's summer situation of a pronounced Mongolian Heat Low and a strong Hawaiian High. Strong freshwater discharge induced by high precipitation rates in the Amur drainage area and a seasonally reduced and mobile sea ice cover favored marine productivity (although being considerably lower than during the terminations) and a lowered flux of ice-rafted detritus.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: The North Atlantic Oscillation: climatic significance and environmental impact. , ed. by Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. Geophysical Monograph Series, 134 . AGU (American Geophysical Union), Washington, DC, pp. 1-36.
    Publication Date: 2020-03-26
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 17 (1). p. 1023.
    Publication Date: 2018-02-27
    Description: Bromoform (CHBr3) is the largest single source of atmospheric organic bromine and therefore of importance as a source of reactive halogens to the troposphere and lower stratosphere. The sea-to-air flux, originating with macroalgal and planktonic sources, is the main source for atmospheric bromoform. We review bromoform's contribution to atmospheric chemistry, its atmospheric and oceanic distributions and its oceanic sources and sinks. We have reassessed oceanic emissions, based on published aqueous and airborne concentration data, global climatological parameters, and information concerning coastal and biogenic sources. The goals are to attempt an estimate of the global source strength and partly to identify key regions that require further investigation. The sea-to-air flux is spatially and temporally variable with tropical, subtropical and shelf waters identified as potentially important source regions. We obtain an annual global flux of bromoform of ∼10 Gmol Br yr−1 (3–22 Gmol Br yr−1). This estimate is associated with significant uncertainty, arising from data precision and coverage, choice of air-sea exchange parameterizations and model assumptions. Anthropogenic sources of ∼0.3 (to 1.1) Gmol Br yr−1 (as CHBr3) can be locally significant, but are globally negligible. Our estimate of the global oceanic source is three to four times higher than recent estimates based on the modeling of atmospheric sinks. The reasons for this discrepancy could lie with the limited regional and temporal data available and the broad assumptions that underlie our flux calculations. Alternatively, atmospheric sink calculations, often made on the basis of background CHBr3 levels, may neglect the influence of strong but highly localized sources (e.g., from some coastal and shelf regions). The strongly variable and poorly characterized source of CHBr3, together with its short atmospheric lifetime, complicates model-based estimation of the distribution of reactive Br resulting from its atmospheric degradation. An integrated program of marine and atmospheric observations, atmospheric modeling and mechanistic studies of oceanic bromoform production is required to better constrain present and future Br delivery to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 17 (3). p. 1084.
    Publication Date: 2018-03-15
    Description: A new model for the marine cycles of particulate organic carbon (POC), oxygen, nitrate, and phosphorus has been developed and applied to explore the controls and constraints on marine productivity and nutrient inventories. The coupled benthic-pelagic model uses a new approach for the simulation of the reactive phosphorus turnover (Preac corresponding to the sum of organic P, authigenic P, and adsorbed phosphate) in marine sediments. The simulated POC/Preac burial ratio in shelf, slope and rise, and deep-sea sediments increases under strongly reducing conditions in agreement with field observation. The model runs revealed that the spread of anoxia in bottom waters may enhance the productivity of the global ocean by one order of magnitude if sufficient nitrate is provided by N2-fixation. Thus anoxic bottom waters promote eutrophic conditions and vice versa. Additional model runs showed that the productivity and nutrient inventory of the glacial ocean were probably enhanced due to the falling sea level. Marine regression induced a narrowing of the depositional areas on the continental shelves and thereby an increase in the fraction of POC exported to the deep ocean. The accelerated POC delivery, in turn, decreased the oxygen contents of the deep water and thus favored the release of phosphate from deep-sea and rise sediments. Enhanced recycling of phosphate at the seafloor promoted further POC export in a positive feedback loop.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 27 (8). pp. 1187-1190.
    Publication Date: 2018-02-13
    Description: Two zonal sections at 11°S in the South Atlantic, separated in time by 11 years, provide temperature differences in the deep ocean. The aim of this case study is to check whether intrinsic temperature changes are sufficiently large to identify long-term water mass property variations which could be related to climate change. Potential temperature differences on isobaric surfaces in the deep ocean here reach several tenths of °C. They can be caused by vertical (cross-isopycnal) or horizontal (isopycnal) advection and mixing, or by intrinsic water mass changes. The effect of vertical transport is removed by using neutral (density) surfaces. The effect of horizontal transport is determined by using a mixing parameterization for temperature and silica on neutral surfaces. The residual intrinsic temperature changes are, with a few local exceptions, within the range of the ±0.05°C uncertainty, and the temperature changes can thus be explained by advection and mixing alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 83 (29). 309; 314-315.
    Publication Date: 2017-02-14
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 . pp. 4139-4142.
    Publication Date: 2018-02-14
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (17). p. 1840.
    Publication Date: 2018-02-19
    Description: Within the context of the German CLIVAR program, an observational program in the western tropical Atlantic with shipboard sections, profiling floats and a moored array aims at studying the role of the shallow thermohaline subtropical cell (STC) in tropical-subtropical interactions and the cold water transports underneath. From 6 repeated shipboard profiling sections off Brazil near 5°S a northward warm water transport above 1100 m of 25.0 ± 4.4 Sv is determined, of which 13.4 ± 2.7 Sv occur in the thermocline layer supplying the Equatorial Undercurrent. Trajectories of 15 profiling floats released near the western boundary are presented that drift at shallow levels (200 m and 400 m) and delineate the different STC branches. For the southward flow of North Atlantic Deep Water (NADW) a section-mean transport of −31.7 ± 9.2 Sv was determined at 5°S. However, different from the steady NADW flow observed earlier along the topography north of the equator, the NADW currents at 5–10°S are much more variable with long periods of northward counterflow along the topography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 27 . pp. 2277-2280.
    Publication Date: 2018-02-14
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 (6). p. 1296.
    Publication Date: 2018-02-20
    Description: The island of Tenerife is composed of three Miocene shields, which are centered by the Cañadas volcano since the Pliocene. Tenerife sits on more than 2 km thick oceanic sediments. Quaternary volcanism of the Cañadas series and giant landslides were principally confined to triaxial rift zones. The mechanism of triaxial rifting, however, has remained unclear. Physical analog models show that these rift zones may have formed by gravity-driven lateral escape of island segments, induced by loading of the deformable substratum. For experiments scaled to Tenerife, three adjacent sand cones were mounted onto viscous PDMS substratum. Gravitational spreading caused circumferential expansion of each cone, until a large edifice (Cañadas) was constructed in their center. The older cones now acted each as a buttress; radial fractures were overprinted by fractional spreading of the Cañadas edifice. This resulted in formation of three main extensional zones, resembling the triaxial rifting configuration of Tenerife.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 14 . pp. 1283-1297.
    Publication Date: 2018-03-15
    Description: Despite its importance for the global oceanic nitrogen (N) cycle, considerable uncertainties exist about the N fluxes of the Arabian Sea. On the basis of our recent measurements during the German Arabian Sea Process Study as part of the Joint Global Ocean Flux Study (JGOFS) in 1995 and 1997, we present estimates of various N sources and sinks such as atmospheric dry and wet depositions of N aerosols, pelagic denitrification, nitrous oxide (N2O) emissions, and advective N input from the south. Additionally, we estimated the N burial in the deep sea and the sedimentary shelf denitrification. On the basis of our measurements and literature data, the N budget for the Arabian Sea was reassessed. It is dominated by the N loss due to denitrification, which is balanced by the advective input of N from the south. The role of N fixation in the Arabian Sea is still difficult to assess owing to the small database available; however, there are hints that it might be more important than previously thought. Atmospheric N depositions are important on a regional scale during the intermonsoon in the central Arabian Sea; however, they play only a minor role for the overall N cycling. Emissions of N2O and ammonia, deep-sea N burial, and N inputs by rivers and marginal seas (i.e., Persian Gulf and Red Sea) are of minor importance. We found that the magnitude of the sedimentary denitrification at the shelf might be ∼17% of the total denitrification in the Arabian Sea, indicating that the shelf sediments might be of considerably greater importance for the N cycling in the Arabian Sea than previously thought. Sedimentary and pelagic denitrification together demand ∼6% of the estimated particulate organic nitrogen export flux from the photic zone. The main northward transport of N into the Arabian Sea occurs in the intermediate layers, indicating that the N cycle of the Arabian Sea might be sensitive to variations of the intermediate water circulation of the Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 (15). 1793,.
    Publication Date: 2018-02-20
    Description: The response of the Arctic Ocean sea ice system to Northern Annular Mode-like wind forcing has been investigated using an ocean/sea ice general circulation model coupled to an atmospheric boundary layer model. A series of idealized experiments was performed to investigate the Arctic Ocean's response to idealized winter wind anomalies on interannual to multi-decadal time scales. The sea ice response of the model consists of a rapid change of ice movements leading to widespread variation in sea ice thickness and concentration. In most areas the response is largely independent of the forcing frequency with only a slight increase towards longer periods. Only the Greenland Sea exhibited a change in sign of sea ice concentration anomalies at about 20 years period which appears to be caused by slow adjustment of the oceanic circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 14 (1). pp. 357-372.
    Publication Date: 2018-03-15
    Description: A linear inverse mixing model is applied to hydrographic, nutrient, and carbon data collected during Joint Global Ocean Flux Study and World Ocean Circulation Experiment cruises in 1995 to estimate the ΔCorg/ΔN/ΔP/ΔSi/-ΔO2 remineralization ratios within the Arabian Sea between 550 and 4500 m. The observed concentrations are separated into mixing fractions of source water masses and changes caused by remineralization processes, while the effect of denitrification is considered. In contrast to earlier investigations, diapycnal mixing, which plays an important role in dissolved matter fluxes in the Arabian Sea, is accounted for. The ratios are found to be variable with depth, especially in the upper 2000 m of the water column. We suppose that in general nutrients are released faster than carbon dioxide during remineralization. The Corg/ΔCinorg decrease from ∼4 ± 1 at 550 m to 2 ± 0.2 at 2000 m and 1.2 ± 0.3 at 4000 m, suggesting that the dissolution of calcium carbonate above the calcite lysocline is a potentially important process within the Arabian Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (4). p. 1106.
    Publication Date: 2021-01-26
    Description: An eddy-resolving coupled ecosystem-circulation model of the North Atlantic is used to investigate the impact of mesoscale variability on the nitrate supply to the light-lit euphotic zone. The focus is on the oligotrophic subtropical gyre where eddies have been suggested to reconcile apparently contradictory observational estimates of nutrient supply and export production. Comparison with observations indicates that the numerical model provides a realistic description of the subtropical eddy field and its interaction with biogeochemical tracers. The model results illustrate that the eddy-induced nitrate flux into the euphotic zone is largest near the margins of the oligotrophic gyre where both vertical and lateral nutrient supply by eddies are effective. Typical values of simulated eddy-induced nitrate supply are 0.05 mol m-2 yr-1, which is much lower than has been suggested previously. This new estimate of eddy-induced nitrate supply is not sufficient to reconcile seemingly contradictory observational estimates of biological production in the subtropics. Alternative sources of fixed nitrogen, deviations from standard elemental stoichiometry, and possible effects of interannual variability will have to be considered in order to resolve apparent observational discrepancies in the oligotrophic subtropical gyres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-05-10
    Description: We have developed a new 163-year bimonthly coral δ18O record from La Réunion (55°E, 21°S). Interannual variations in coral δ18O are coherent with the Southern Oscillation Index but not with regional sea surface temperature (SST). Correlations with the global SST field suggest more negative seawater δ18O (δ18Osw) during La Niña years. We propose that the signal results from changes in the strength of the South Equatorial Current and the Indonesian throughflow, which carry low salinity water. Multidecadal variations in coral δ18O are coherent with regional SST, but the sign is of opposite sense as expected from the coral δ18O-temperature relationship. This requires multidecadal changes in salinity large enough to overprint the SST contribution in the coral δ18O record. Our results suggest that multidecadal salinity variations result from modulations in the transport of the South Equatorial Current, which varies in response to the surface wind field and/or the Indonesian throughflow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 105 (C5). pp. 11299-11320.
    Publication Date: 2018-04-17
    Description: A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous‐plastic rheology, a cavitating‐fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite‐derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous‐plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free‐drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating‐fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous‐plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-02-19
    Description: During the 13 day Southern Ocean Iron RE-lease Experiment (SOIREE), dissolved iron concentrations decreased rapidly following each of three iron-enrichments, but remained high (〉1 nM, up to 80% as FeII) after the fourth and final enrichment on day 8. The former trend was mainly due to dilution (spreading of iron-fertilized waters) and particle scavenging. The latter may only be explained by a joint production-maintenance mechanism; photoreduction is the only candidate process able to produce sufficiently high FeII, but as such levels persisted overnight (8 hr dark period) —ten times the half—life for this species—a maintenance mechanism (complexation of FeII) is required, and is supported by evidence of increased ligand concentrations on day 12. The source of these ligands and their affinity for FeII is not known. This retention of iron probably permitted the longevity of this bloom raising fundamental questions about iron cycling in HNLC (High Nitrate Low Chlorophyll) Polar waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 . pp. 2923-2926.
    Publication Date: 2018-02-14
    Description: The abyssal ocean is filled with cold, dense waters that sink along the Antarctic continental slope and overflow sills that lie south of the Nordic Seas. Recent integrations of chlorofluorocarbon‐11 (CFC) measurements are similar in Antarctic Bottom Water (AABW) and in lower North Atlantic Deep Water (NADW), but Antarctic inputs are ≈ 2°C colder than their northern counterparts. This indicates comparable ventilation rates from both polar regions, and accounts for the Southern Ocean dominance over abyssal cooling. The decadal CFC‐based estimates of recent ventilation are consistent with other hydrographic observations and with longer‐term radiocarbon data, but not with hypotheses of a 20th‐century slowdown in the rate of AABW formation. Significant variability is not precluded by the available ocean measurements, however, and interannual to decadal changes are increasingly evident at high latitudes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-03-16
    Description: The results of 1 year of automated pCO2 measurements in 2002/2003 onboard the car carrier M/V Falstaff are presented and analyzed with regard to the driving forces that change the seawater pCO2 in the midlatitude North Atlantic Ocean. The pCO2 in surface seawater is controlled by thermodynamics, biology, air-sea gas exchange, and physical mixing. Here we estimate the effects on the annual cycle of pCO2 and relate this property to parameters like SST, nitrate, and chlorophyll. On the basis of the amplitude in seawater pCO2 for all 4° × 5° grid boxes, this region can be separated into an eastern and western basin. The annual pCO2 cycle in the eastern basin (10°W–35°W) is less variable, which can be related to the two counteracting effects of temperature and biology; air-sea gas exchange plays a minor role when using climatological MLD. In the western basin (36°W–70°W) the pCO2 amplitude is more variable and strongly follows the thermodynamic forcing, since the biological forcing (as derived from nitrate concentrations) is decreased. Biology and air-sea exchange strongly depend on the MLD and therefore also include physical mixing effects. The pCO2 data of the analyzed region between 34°N and 52°N compare well to the Takahashi et al. [2002] climatology except for regions north of 45°N during the wintertime where the bias is significant.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 106 (D13). pp. 14301-14312.
    Publication Date: 2019-07-31
    Description: In order to investigate the accuracy of simplification in modeling the radiative transfer in those solar spectral regions with major impacts on bio-organisms, i.e., the UVA (0.32–0.4 μm), the UVB (0.28–0.32 μm), and the photosynthetically active radiation (PAR, 0.4–0.7 μm), radiative transfer calculations with varying treatments of cloud geometries (plane-parallel homogeneous (PPHOM), independent column approximation (ICA), and three-dimensional (3-D) inhomogeneous) have been performed. The complete sets of atmospheric information for 133 cloud realizations are taken from the three-dimensional nonhydrostatic mesoscale atmospheric model (GESIMA). A Monte Carlo radiative transfer model (GRIMALDI) has been developed that simulates scattering and absorption for arbitrarily three-dimensional distributions of cloud hydrometeors, air molecules, and water vapor. Results are shown for domain-averaged direct and total transmission (and so, implicitly, diffuse transmission) at the ground surface. In the UVA the PPHOM assumption leads to an underestimation in direct (total) downward flux by as much as 43 (28) W m−2, which is about 49% (32%) of the incoming irradiation, whereas results based on the ICA are almost identical to the 3-D case, except for convective clouds where the error in the UVA for direct (total) downward flux reaches 5 (2) W m−2, or 6% (2%) of the incoming solar irradiation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 105 (C7). pp. 16941-16950.
    Publication Date: 2018-04-27
    Description: The semienclosed western Mediterranean Sea has proven to be a useful location to evaluate surface heat flux estimates. In the past the directly measured average oceanic heat transport from the Atlantic into the Mediterranean Sea through the Strait of Gibraltar of similar to 5.2 +/- 1.3 W m(-2) has been compared to estimates of the average heat flux across the surface of the Mediterranean Sea. On long timescales both should closely balance each other. By using a monthly temperature climatology of the western Mediterranean Sea we offer the possibility to extend the comparison to the seasonal timescale. This gives additional information with which different surface heat flux data sets can be evaluated. The seasonal heat content changes of the western Mediterranean and the advective exchange of heat through the Straits of Gibraltar and Sicily are estimated on the basis of a new extensive hydrographic data set and of published values for the volume transports. To demonstrate the method, a limited number of surface heat flux data sets are compared with the oceanographically calculated counterpart. The comparison reveals that some heat fluxes do not only agree well for the long-term averages but also for the seasonal timescale, whereas others show larger deviations. The remaining rms discrepancies of +/-10.2 W m(-2) for the best heat flux data set are smaller than the uncertainty of the oceanographic estimate and of a reasonable magnitude compared to the uncertainty of the long-term average of similar to 5 W m(-2).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 4 (2). p. 1018.
    Publication Date: 2018-01-31
    Description: [1] New and published analyses of major element oxides (SiO2, TiO2, Al2O3, FeO*, MnO, MgO, CaO, K2O, Na2O and P2O5) from the central Izu Bonin and Mariana arcs (IBM) were compiled in order to investigate the evolution of the IBM in terms of major elements since arc inception at ∼49 million years ago. The database comprises ∼3500 volcanic glasses of distal tephra fallout and ∼500 lava samples, ranging from the Quaternary to mid-Eocene in age. The data were corrected to 4 wt% MgO in order to display the highly resolved temporal trends. These trends show that the IBM major elements have always been “arc-like” and clearly distinct from N-MORB. Significant temporal variations of some major element oxides are apparent. The largest variations are displayed by K4.0. The data support a model wherein the K2O variability is caused by the addition of slab component with strongly differing K2O contents to a fairly depleted subarc mantle; variable extents of melting, or mantle heterogeneity, appear to play a negligible role. The other major element oxides are controlled by the composition and processes of the subarc mantle wedge. The transition from the boninitic and tholeiitic magmatism of the Eocene and Oligocene to the exclusively tholeiitic magmatism of the Neogene IBM is proposed to reflect a change in the composition of the subarc mantle wedge. The early boninitic magmas originate from an ultra-depleted subarc mantle, that is residual to either the melting of E-MORB mantle, or of subcontinental lithospheric mantle. During the Eocene and Oligocene, this residual mantle is gradually replaced by Indian MORB mantle advected from the backarc regions. The Indian MORB mantle is more radiogenic in Nd isotope ratios but also more fertile with respect to major and trace elements. Therefore the Neogene tholeiites have higher Al2O3 and TiO2 contents and lower mg# numbers at given SiO2 content. After the subarc mantle replacement was complete in the late Oligocene or early Miocene, the Neogene IBM entered a “steady state” that is characterized by the continuous advection of Indian MORB mantle from the reararc, which is fluxed by fluids and melt components from slab. The thickness of the IBM crust must have grown with time, but any effects of crustal thickening on the major element chemistry of the IBM magmas appear to be minor relative to the compositional changes that are related to source composition. Therefore next to the processes of melting, the composition of the mantle sources must play a major role in creating substantiative heterogeneities in the major element chemistry of the arc crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...