ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,604)
  • SPACECRAFT DESIGN, TESTING AND PERFORMANCE  (3,604)
  • 2000-2004
  • 1990-1994  (1,802)
  • 1985-1989  (1,800)
  • 1960-1964  (2)
  • 1950-1954
Collection
  • Other Sources  (3,604)
Source
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: This paper addresses the design considerations and strategies for astrophysical observations as key elements of an international solar system exploration program. Emphasis is placed on the technical and programmatic challenges and opportunities associated with an evolving program of lunar-based astronomy. Both robotic and human tended facilities are discussed ranging from relatively small meter-class transit telescopes to large interferometer and filled-aperture systems.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Space Technology - Industrial and Commercial Applications (ISSN 0892-9270); 14; 6; p. 355-365
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: A method is presented by which measured modes and frequencies from a modal test can be used to determine the location and magnitude of damage in a space struss structure. The damage is located by computing the Euclidean distances between the measured mode shapes and the best achievable eigenvectors. The best achievable eigenvectors are the projection of the measured mode shapes onto the subspace defined by the refined analytical model of the structure and the measured frequencies. Loss of both stiffness and mass properties can be located and quantified. To examine the performance of the method when experimentally measured modes are employed, various damage detection studies using a laboratory eight-bay truss structure were conducted. The method performs well even though the measurement errors inevitably make the damage location more difficult.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 1049-1057
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Following the project's first major design review, some unresolved technical issues, mainly centered on details of how to integrate Russian hardware into the U.S./international space station, remain. No 'show stoppers' were found in the review. Specific open technical issues are discussed in this article.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Aviation Week & Space Technology (ISSN 0005-2175); 140; 13; p. 26-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 31; 3; p. 421-428
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Advanced Satellite for Cosmology and Astrophysics (ASCA) is a high-throughput X-ray astronomy observatory which is capable of simultaneous imaging and spectroscopic observations over a wide energy range 0.5-10 keV. The scientific capabilities of ASCA and some aspects related to its operation and observations are briefly described.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: PASJ: Publications of the Astronomical Society of Japan (ISSN 0004-6264); 46; 3; p. L37-L41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: We examine the electromagnetic (EM) bias by using retracked TOPEX altimeter data. In contrast to previous studies, we use a parameterization of the EM bias which does not make stringent assumptions about the form of the correction or its global behavior. We find that the most effective single parameter correction uses the altimeter-estimated wind speed but that other parameterizations, using a wave age related parameter of significant wave height, may also significantly reduce the repeat pass variance. The different corrections are compared, and their improvement of the TOPEX height variance is quantified.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,971-24,979
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Monthly Ku band sigma(sub 0) and significant wave height (SWH) histograms from the NASA altimeter on the TOPEX/POSEIDON satellite are preseneted for January through June 1993 for three latitude bands between +/- 60 degrees. The data are compared to distributions from the Geosat mission for the same months in 1987-1989. Generally, the distributions agree quite well, although there are some seasonal/hemispherical differences. The sigma(sub 0) comparison reveals an overall bias between the two altimeters with the TOPEX sigma(sub 0) higher by about 0.7 dB, which is consistent with algorithm improvements for TOPEX. The SWH distributions show strong hemispherical/seasonal changes. The seasonal/hemispherical differences between TOPEX and Geosat are consistent for SWH and sigma(sub 0). The joint distribution of sigma(sub 0) and SWH is extremely stable friom month to month. The typical SWH is independent of sigma(sub 0) for sigma(sub 0) greater than 11.3 dB. The minimum SWH grows exponentially with wind speed. This joint distribution may be useful for understanding electromagnetic bias in altimeter measurements. Finally, altimeter data are compared to buoy values from 21 overflights of the NASA verification site near Pt. Conception, California. Wave heights agree well with an root mean square (RMS) difference of only 0.2 m. Altimeter sigma(sub 0) values are compared to buoy wind speeds. The results are consistent with the -0.7 dB sigma(sub 0) offset from the histogram comparisons.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 25,015-25,024
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: To assess the accuracy of the TOPEX altimeter data, we have reprocessed the raw altimeter waveform data using more sophisticated algorithms than those implemented in the altimeter hardware. We discuss systematic contamination of the waveform which we have observed and its effect on very long wavelength errors. We conclude that these systematic errors are responsible for a very long wavelength error whose peak-to-peak magnitude for the Ku band altimeter is of the order of 1 cm. We also examine the ability of retracked data to reduce the repeat pass variance and correct for significant wave height (SWH) and acceleration dependent errors. We find that the ground postprocessing contains SWH dependent biases which depend on the altimeter fine height correction.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,957-24,969
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The routine ground processing of data from the NASA radar altimeter of TOPEX/POSEIDON includes instrument corrections for the effects of significant wave height and attitude angle changes on the altimeter's estimates of range, backscattered power, and significant wave height. This paper describes how these instrument corrections were generated and how they are applied. Detailed waveform fitting to telemetered waveform samples is use to assess the effectiveness of the corrections. There are several altimeter hardware-caused small waveform departures from the model waveforms and these departures, designated waveform 'features', are described in detailed. A consequence of the waveform features, and their positioning relationship to range rate, is that range data for ground tracks moving toward the equator may differ systematically by about a centimeter compared to range data for ground tracks moving away from the equator. The results and discussion are limited to side A of the redundant altimeter, as only side A has been operated on orbit.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,941-24,955
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Results of the in-flight calibration and performance evaluation campaign for the TOPEX/POSEIDON microwave radiometer (TMR) are presented. Intercomparisons are made between TMR and various sources of ground truth, including ground-based microwave water vapor radiometers, radiosondes, global climatological models, special sensor microwave imager data over the Amazon rain forest, and models of clear, calm, subpolar ocean regions. After correction for preflight errors in the processing of thermal/vacuum data, relative channel offsets in the open ocean TMR brightness temperatures were noted at the approximately = 1 K level for the three TMR frequencies. Larger absolute offsets of 6-9 K over the rain forest indicated a approximately = 5% gain error in the three channel calibrations. This was corrected by adjusting the antenna pattern correction (APC) algorithm. AS 10% scale error in the TMR path delay estimates, relative to coincident radiosondes, was corrected in part by the APC adjustment and in part by a 5% modification to the value assumed for the 22.235 FGHz water vapor line strength in the path delay retrieval algorithm. After all in-flight corrections to the calibration, TMR global retrieval accuracy for the wet tropospheric range correction is estimated at 1.1 cm root mean square (RMS) with consistent peformance under clear, cloudy, and windy conditions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,915-24,926
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: The NASA altimeter on board TOPEX/POSEIDON exploits the difference in the delays of the Ku and C band radar pulses to estimate an ionosphere correction to the range measurement. The dependence of the ionosphere correction on ocean and satellite parameters is less than 1 cm. The standard deviation of the 1-s averaged ionosphere correction depends on the height of the ocean waves and ranges from 5 to 14 mm. The accuracy of the ionosphere correction is better than 1 cm at the 1 sigma confidence level. The ionosphere correction should be averaged over 140 km (20 s) along track in order to minimize its noise without sacrificing its accuracy. Ionosphere models must achieve an independent sample spacing of 900 km or less in order to allow a single-frequency altimeter to have an ionosphere correction comparable in accuracy to that of the NASA dual-frequency altimeter.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,895-24,906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,907-24,914
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: GSC-13444
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: GSC-13374
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD is written in FORTRAN 77, PASCAL, and MACRO assembler for batch execution and has been implemented on a DEC VAX series computer operating under VMS. The PASCAL and MACRO routines (in addition to the FORTRAN program) are supplied as both source and object code, so the PASCAL compiler is not required for implementation. This program was last updated in 1985.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: GSC-13006
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: In an effort to place payloads into orbit at the lowest possible costs, the use of air-breathing space-planes, which reduces the need to carry the propulsion system oxidizer, has been examined. As this approach would require the space-plane to fly at hypersonic speeds for periods of time much greater than that required by rockets, many factors must be considered when analyzing its benefits. The Basic Hypersonic Data and Equations spreadsheet provides data gained from three analyses of a space-plane's performance. The equations used to perform the analyses are derived from Newton's second law of physics (i.e. force equals mass times acceleration); the derivation is included. The first analysis is a parametric study of some basic factors affecting the ability of a space-plane to reach orbit. This step calculates the fraction of fuel mass to the total mass of the space-plane at takeoff. The user is able to vary the altitude, the heating value of the fuel, the orbital gravity, and orbital velocity. The second analysis calculates the thickness of a spherical fuel tank, while assuming all of the mass of the vehicle went into the tank's shell. This provides a first order analysis of how much material results from a design where the fuel represents a large portion of the total vehicle mass. In this step, the user is allowed to vary the values for gross weight, material density, and fuel density. The third analysis produces a ratio of gallons of fuel per total mass for various aircraft. It shows that the volume of fuel required by the space-plane relative to the total mass is much larger for a liquid hydrogen space-plane than any other vehicle made. This program is a spreadsheet for use on Macintosh series computers running Microsoft Excel 3.0. The standard distribution medium for this package is a 3.5 inch 800K Macintosh format diskette. Documentation is included in the price of the program. Macintosh is a registered trademark of Apple Computer, Inc. Microsoft is a registered trademark of Microsoft Corporation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: ARC-13185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: GSC-13443
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2005-09-22
    Description: The SMall EXplorer (SMEX) Fast Auroral SnapshoT (FAST) spacecraft was developed to investigate plasma physics of auroral phenomena at high orbital altitude. The FAST satellite comprises a variety of deployable booms with sensors on the ends, and instruments that protrude from the main body of the spacecraft to obtain the plasma and electromagnetic fields data. This required the plasma disturbance around the satellite to be kept to a minimum. A non deployable, body mounted solar array was implemented. This led to the design of a light weight solar array substrate with a high degree of structural integrity.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: CNES, Proceedings of the 2nd International Symposium on Small Satellites Systems and Services; 16 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: Design and analysis of Environmental Control and Life Support Systems (ECLSS) and Active Thermal Control Systems (ATCS) for spacecraft missions requires powerful software that is flexible and responsive to the demands of particular projects. CASE/A is an interactive trade study and analysis tool designed to increase productivity during all phases of systems engineering. The graphics-based command-driven package provides a user-friendly environment in which the engineer can analyze the performance and interface characteristics of an ECLS/ATC system. The package is useful during all phases of a spacecraft design program, from initial conceptual design trade studies to the actual flight, including pre-flight prediction and in-flight anomaly analysis. The CASE/A program consists of three fundamental parts: 1) the schematic management system, 2) the database management system, and 3) the simulation control and execution system. The schematic management system allows the user to graphically construct a system model by arranging icons representing system components and connecting the components with physical fluid streams. Version 4.1 contains 51 fully coded and documented default component routines. New components can be added by the user through the "blackbox" component option. The database management system supports the storage and manipulation of component data, output data, and solution control data through interactive edit screens. The simulation control and execution system initiates and controls the iterative solution process, displaying time status and any necessary diagnostic messages. In addition to these primary functions, the program provides three other important functional areas: 1) model output management, 2) system utility commands, and 3) user operations logic capacity. The model output management system provides tabular and graphical output capability. Complete fluid constituent mass fraction and properties data (mass flow, pressure, temperature, specific heat, density, and viscosity) is generated at user-selected output intervals and stored for reference. The Integrated Plot Utility (IPU) provides plotting capability for all data output. System utility commands are provided to enable the user to operate more efficiently in the CASE/A environment. The user is able to customize a simulation through optional operations FORTRAN logic. This user-developed code is compiled and linked with a CASE/A model and enables the user to control and timeline component operating parameters during various phases of the iterative solution process. CASE/A provides for transient tracking of the flow stream constituents and determination of their thermodynamic state throughout an ECLSS/ATCS simulation, performing heat transfer, chemical reaction, mass/energy balance, and system pressure drop analysis based on user-specified operating conditions. The program tracks each constituent through all combination and decomposition states while maintaining a mass and energy balance on the overall system. This allows rapid assessment of ECLSS designs, the impact of alternate technologies, and impacts due to changes in metabolic forcing functions, consumables usage, and system control considerations. CASE/A is written in FORTRAN 77 for the DEC VAX/VMS computer series, and requires 12Mb of disk storage and a minimum paging file quota of 20,000 pages. The program operates on the Tektronix 4014 graphics standard and VT100 text standard. The program requires a Tektronix 4014 or later graphics terminal, third party composite graphics/text terminal, or personal computer loaded with appropriate VT100/TEK 4014 emulator software. The use of composite terminals or personal computers with popular emulation software is recommended for enhanced CASE/A operations and general ease of use. The program is available on an unlabeled 9-track 6250 BPI DEC VAX BACKUP format magnetic tape. CASE/A development began in 1985 under contract to NASA/Marshall Space Flight Center. The latest version (4.1) was released in 1990. Tektronix and TEK 4014 are trademarks of Tektronix, Inc. VT100 is a trademark of Digital Equipment Corporation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: MFS-28573
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: BUMPERII is a modular program package employing a numerical solution technique to calculate a spacecraft's probability of no penetration (PNP) from man-made orbital debris or meteoroid impacts. The solution equation used to calculate the PNP is based on the Poisson distribution model for similar analysis of smaller craft, but reflects the more rigorous mathematical modeling of spacecraft geometry, orientation, and impact characteristics necessary for treatment of larger structures such as space station components. The technique considers the spacecraft surface in terms of a series of flat plate elements. It divides the threat environment into a number of finite cases, then evaluates each element of each threat. The code allows for impact shielding (shadowing) of one element by another in various configurations over the spacecraft exterior, and also allows for the effects of changing spacecraft flight orientation and attitude. Four main modules comprise the overall BUMPERII package: GEOMETRY, RESPONSE, SHIELD, and CONTOUR. The GEOMETRY module accepts user-generated finite element model (FEM) representations of the spacecraft geometry and creates geometry databases for both meteoroid and debris analysis. The GEOMETRY module expects input to be in either SUPERTAB Universal File Format or PATRAN Neutral File Format. The RESPONSE module creates wall penetration response databases, one for meteoroid analysis and one for debris analysis, for up to 100 unique wall configurations. This module also creates a file containing critical diameter as a function of impact velocity and impact angle for each wall configuration. The SHIELD module calculates the PNP for the modeled structure given exposure time, operating altitude, element ID ranges, and the data from the RESPONSE and GEOMETRY databases. The results appear in a summary file. SHIELD will also determine the effective area of the components and the overall model, and it can produce a data file containing the probability of penetration values per surface area for each element in the model. The SHIELD module writes this data file in either SUPERTAB Universal File Format or PATRAN Neutral File Format so threat contour plots can be generated as a post-processing feature of the FEM programs SUPERTAB and PATRAN. The CONTOUR module combines the functions of the RESPONSE module and most of the SHIELD module functions allowing determination of ranges of PNP's by looping over ranges of shield and/or wall thicknesses. A data file containing the PNP's for the corresponding shield and vessel wall thickness is produced. Users may perform sensitivity studies of two kinds. The effects of simple variations in orbital time, surface area, and flux may be analyzed by making changes to the terms in the equation representing the average number of penetrating particles per unit time in the PNP solution equation. The package analyzes other changes, including model environment, surface area, and configuration, by re-running the solution sequence with new GEOMETRY and RESPONSE data. BUMPERII can be run with no interactive output to the screen during execution. This can be particularly useful during batch runs. BUMPERII is written in FORTRAN 77 for DEC VAX series computers running under VMS, and was written for use with the finite-element model code SUPERTAB or PATRAN as both a pre-processor and a post-processor. Use of an alternate FEM code will require either development of a translator to change data format or modification of the GEOMETRY subroutine in BUMPERII. This program is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution media) or on TK50 tape cartridge. The original BUMPER code was developed in 1988 with the BUMPERII revisions following in 1991 and 1992. SUPERTAB is a former name for I-DEAS. I-DEAS Finite Element Modeling is a trademark of Structural Dynamics Research Corporation. DEC, VAX, VMS and TK50 are trademarks of Digital Equipment Corporation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: MFS-28565
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: One of the most important factors in the development of nuclear rocket engine designs is to be able to accurately predict temperatures and pressures throughout a fission nuclear reactor core with axial hydrogen flow through circular coolant passages. CAC is an analytical prediction program to study the heat transfer and fluid flow characteristics of a circular coolant passage. CAC predicts as a function of time axial and radial fluid conditions, passage wall temperatures, flow rates in each coolant passage, and approximate maximum material temperatures. CAC incorporates the hydrogen properties model STATE to provide fluid-state relations, thermodynamic properties, and transport properties of molecular hydrogen in any fixed ortho-para combination. The program requires the general core geometry, the core material properties as a function of temperature, the core power profile, and the core inlet conditions as function of time. Although CAC was originally developed in FORTRAN IV for use on an IBM 7094, this version is written in ANSI standard FORTRAN 77 and is designed to be machine independent. It has been successfully compiled on IBM PC series and compatible computers running MS-DOS with Lahey F77L, a Sun4 series computer running SunOS 4.1.1, and a VAX series computer running VMS 5.4-3. CAC requires 300K of RAM under MS-DOS, 422K of RAM under SunOS, and 220K of RAM under VMS. No sample executable is provided on the distribution medium. Sample input and output data are included. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. CAC was developed in 1966, and this machine independent version was released in 1992. IBM-PC and IBM are registered trademarks of International Business Machines. Lahey F77L is a registered trademark of Lahey Computer Systems, Inc. SunOS is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: LEW-15400
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Although extensive knowledge of space station design exists, the information is widely dispersed. The Space Station Freedom Program (SSFP) needs policies and procedures that ensure the use of consistent design objectives throughout its organizational hierarchy. The System Design Tradeoff Model (SDTM) produces information that can be used for this purpose. SDTM is a mathematical model of a set of possible designs for Space Station Freedom. Using the SDTM program, one can find the particular design which provides specified amounts of resources to Freedom's users at the lowest total (or life cycle) cost. One can also compare alternative design concepts by changing the set of possible designs, while holding the specified user services constant, and then comparing costs. Finally, both costs and user services can be varied simultaneously when comparing different designs. SDTM selects its solution from a set of feasible designs. Feasibility constraints include safety considerations, minimum levels of resources required for station users, budget allocation requirements, time limitations, and Congressional mandates. The total, or life cycle, cost includes all of the U.S. costs of the station: design and development, purchase of hardware and software, assembly, and operations throughout its lifetime. The SDTM development team has identified, for a variety of possible space station designs, the subsystems that produce the resources to be modeled. The team has also developed formulas for the cross consumption of resources by other resources, as functions of the amounts of resources produced. SDTM can find the values of station resources, so that subsystem designers can choose new design concepts that further reduce the station's life cycle cost. The fundamental input to SDTM is a set of formulas that describe the subsystems which make up a reference design. Most of the formulas identify how the resources required by each subsystem depend upon the size of the subsystem. Some of the formulas describe how the subsystem costs depend on size. The formulas can be complicated and nonlinear (if nonlinearity is needed to describe how designs change with size). SDTM's outputs are amounts of resources, life-cycle costs, and marginal costs. SDTM will run on IBM PC/XTs, ATs, and 100% compatibles with 640K of RAM and at least 3Mb of fixed-disk storage. A printer which can print in 132-column mode is also required, and a mathematics co-processor chip is highly recommended. This code is written in Turbo C 2.0. However, since the developers used a modified version of the proprietary Vitamin C source code library, the complete source code is not available. The executable is provided, along with all non-proprietary source code. This program was developed in 1989.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NPO-17878
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Autonomous Frequency Domain Identification program, AU-FREDI, is a system of methods, algorithms and software that was developed for the identification of structural dynamic parameters and system transfer function characterization for control of large space platforms and flexible spacecraft. It was validated in the CALTECH/Jet Propulsion Laboratory's Large Spacecraft Control Laboratory. Due to the unique characteristics of this laboratory environment, and the environment-specific nature of many of the software's routines, AU-FREDI should be considered to be a collection of routines which can be modified and reassembled to suit system identification and control experiments on large flexible structures. The AU-FREDI software was originally designed to command plant excitation and handle subsequent input/output data transfer, and to conduct system identification based on the I/O data. Key features of the AU-FREDI methodology are as follows: 1. AU-FREDI has on-line digital filter design to support on-orbit optimal input design and data composition. 2. Data composition of experimental data in overlapping frequency bands overcomes finite actuator power constraints. 3. Recursive least squares sine-dwell estimation accurately handles digitized sinusoids and low frequency modes. 4. The system also includes automated estimation of model order using a product moment matrix. 5. A sample-data transfer function parametrization supports digital control design. 6. Minimum variance estimation is assured with a curve fitting algorithm with iterative reweighting. 7. Robust root solvers accurately factorize high order polynomials to determine frequency and damping estimates. 8. Output error characterization of model additive uncertainty supports robustness analysis. The research objectives associated with AU-FREDI were particularly useful in focusing the identification methodology for realistic on-orbit testing conditions. Rather than estimating the entire structure, as is typically done in ground structural testing, AU-FREDI identifies only the key transfer function parameters and uncertainty bounds that are necessary for on-line design and tuning of robust controllers. AU-FREDI's system identification algorithms are independent of the JPL-LSCL environment, and can easily be extracted and modified for use with input/output data files. The basic approach of AU-FREDI's system identification algorithms is to non-parametrically identify the sampled data in the frequency domain using either stochastic or sine-dwell input, and then to obtain a parametric model of the transfer function by curve-fitting techniques. A cross-spectral analysis of the output error is used to determine the additive uncertainty in the estimated transfer function. The nominal transfer function estimate and the estimate of the associated additive uncertainty can be used for robust control analysis and design. AU-FREDI's I/O data transfer routines are tailored to the environment of the CALTECH/ JPL-LSCL which included a special operating system to interface with the testbed. Input commands for a particular experiment (wideband, narrowband, or sine-dwell) were computed on-line and then issued to respective actuators by the operating system. The operating system also took measurements through displacement sensors and passed them back to the software for storage and off-line processing. In order to make use of AU-FREDI's I/O data transfer routines, a user would need to provide an operating system capable of overseeing such functions between the software and the experimental setup at hand. The program documentation contains information designed to support users in either providing such an operating system or modifying the system identification algorithms for use with input/output data files. It provides a history of the theoretical, algorithmic and software development efforts including operating system requirements and listings of some of the various special purpose subroutines which were developed and optimized for Lahey FORTRAN compilers on IBM PC-AT computers before the subroutines were integrated into the system software. Potential purchasers are encouraged to purchase and review the documentation before purchasing the AU-FREDI software. AU-FREDI is distributed in DEC VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard media) or a TK50 tape cartridge. AU-FREDI was developed in 1989 and is a copyrighted work with all copyright vested in NASA.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NPO-18096
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-08-31
    Description: This paper presents the capabilities implemented in the SAX system for an efficient operations management during its in-flight mission. SAX is an Italian scientific satellite for x-ray astronomy whose major mission objectives impose quite tight constraints on the implementation of both the space and ground segment. The most relevant mission characteristics require an operative lifetime of two years, performing scientific observations both in contact and in noncontact periods, with a low equatorial orbit supported by one ground station, so that only a few minutes of communications are available each orbit. This operational scenario determines the need to have a satellite capable of performing the scheduled mission automatically and reacting autonomously to contingency situations. The implementation approach of the on-board operations management, through which the necessary automation and autonomy are achieved, follows a hierarchical structure. This has been achieved adopting a distributed avionic architecture. Nine different on-board computers, in fact, constitute the on-board data management system. Each of them performs the local control and monitors its own functions while the system level control is performed at a higher level by the data handling applications software. The SAX on-board architecture provides the ground operators with different options of intervention by three classes of telecommands. The management of the scientific operations will be scheduled by the operation control center via dedicated operating plans. The SAX satellite flight mode is presently being integrated at Alenia Spazio premises in Turin for a launch scheduled for the end of 1995. Once in orbit, the SAX satellite will be subject to intensive check-out activities in order to verify the required mission performances. An overview of the envisaged procedure and of the necessary on-ground activities is therefore depicted as well.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Third International Symposium on Space Mission Operations and Ground Data Systems, Part 2; p 837-846
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Galileo sequence design and integration are supported by a suite of formal software tools. Sequence review, however, is largely a manual process with reviewers scanning hundreds of pages of cryptic computer printouts to verify sequence correctness. Beginning in 1990, a series of small, PC based sequence review tools evolved. Each tool performs a specific task but all have a common 'look and feel'. The narrow focus of each tool means simpler operation, and easier creation, testing, and maintenance. Benefits from these tools are (1) decreased review time by factors of 5 to 20 or more with a concomitant reduction in staffing, (2) increased review accuracy, and (3) excellent returns on time invested.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Third International Symposium on Space Mission Operations and Ground Data Systems, Part 1; p 591-597
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-08-31
    Description: It is clear that computer software is needed to assist in the generation of the equations of motion for complex, flexible spacecraft. Daniel Poelaert of ESTEC has developed the software DISTEL with which he has modeled the structural dynamics for different satellites. He is interested in expanding the capabilities of DISTEL to include structural damping and control systems. Unfortunately, the software has not been released. The author has developed similar software, PDEMOD, which has been used to model the Spacecraft control Laboratory Experiment (SCOLE), the Solar Array Flight Experiment (SAFE), the Mini-MAST truss, and the LACE satellite. PDEMOD has been used also for optimal parameter estimation and integrated control-structures design. PDEMOD is also being extended to include structural damping and control systems which are imbedded into the same equations for the structural dynamics. This paper will address the formulation of the equations for the structural dynamics of spacecraft structures which are constructed of a 3-dimensional arrangement of rigid bodies and flexible beam elements. Control system dynamics are imbedded into the same equations so that model order reduction approximations are not necessary. The input data consists of the physical data of the elements and the topological information describing how the elements are connected. PDEMOD accomplishes the following: (1) automatically assembles the equations of motion for the entire structural model; (2) calculates the modal frequencies; (3) calculates the mode shapes; (4) generates perspective views of the mode shapes; and (5) forms selected transfer functions. The software PDEMOD continues to be developed to provide additional features to assist in analyzing and synthesizing control and structural systems for flexible spacecraft.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 587-603
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-08-31
    Description: Sliding mode control became very popular recently because it makes the closed loop system highly insensitive to external disturbances and parameter variations. Sliding algorithms for flexible structures have been used previously, but these were based on finite-dimensional models. An extension of this approach for differential-difference systems is obtained. That makes if possible to apply sliding-mode control algorithms to the variety of nondispersive flexible structures which can be described as differential-difference systems. The main idea of using this technique for dispersive structures is to reduce the order of the controlled part of the system by applying an integral transformation. We can say that transformation 'absorbs' the dispersive properties of the flexible structure as the controlled part becomes dispersive.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 333-350
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-08-31
    Description: This paper presents an overview of the recent advances in system identification for modal testing and control of large flexible structures. Several techniques are discussed including the Observer/Kalman Filter Identification, the Observer/Controller Identification, and the State-Space System Identification in the Frequency Domain. The System/Observer/Controller Toolbox developed at NASA Langley Research Center is used to show the applications of these techniques to real aerospace structures such as the Hubble spacecraft telescope and the active flexible aircraft wing.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 279-289
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-08-31
    Description: The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 261-278
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-08-31
    Description: The work presented is motivated by the need for a national satellite rescue policy, not the ad hoc policy now in place. In studying different approaches for a national policy, the issue of capture and stabilization of a tumbling spacecraft must be addressed. For a rescue mission involving a tumbling spacecraft, it may be advantageous to have a rescue vehicle which is compact and 'rigid' during the rendezvous/capture phase. After capture, passive stabilization techniques could be utilized as an efficient means of detumbling the resulting system (i.e., both the rescue vehicle and captures spacecraft). Since the rescue vehicle is initially compact and 'rigid,' significant passive stabilization through energy dissipation can only be achieved through the deployment of flexible appendages. Once stabilization is accomplished, retraction of the appendages before maneuvering the system to its final destination may also prove advantageous. It is therefore of paramount interest that we study the effect of appendage deployment/retraction on the attitude stability of a spacecraft. Particular interest should be paid to appendage retraction, since if this process is destabilizing, passive stabilization as proposed may not be useful. Over the past three decades, it has been an 'on-again-off-again affair' with the problem of spacecraft appendage deployment. In most instances, these studies have been numerical simulations of specific spacecraft configurations for which there were specific concerns. The primary focus of these studies was the behavior of the appendage during deployment; the effects of appendage retraction was considered only in one of these studies. What is missing in the literature is a thorough study of the effects of appendage deployment/retraction on the attitude stability of a spacecraft. This paper presents a rigorous analysis of the stability of a spinning spacecraft during the deployment or the retraction of an appendage. The analysis is simplified such that meaningful insights into the problem can be inferred; it is not overly simplified such that critical dynamical behavior is neglected. The system is analyzed assuming that the spacecraft hub is rigid. The appendage deployment mechanism is modeled as a point mass on a massless rod whose length undergoes prescribed changes. Simplified flexibility effects of the appendage are included. The system is examined for stability by linearizing the equations in terms of small deviations from steady, noninterfering coning motion. Routh's procedure for analyzing small deviations from steady motion in dynamical systems is utilized in the analysis. The system of equations are nondimensionalized to facilitate parametric studies. The results are presented in terms of a reduced number of nondimensional parameters so that some general conclusions may be drawn. Verification of the linear analysis is presented through numerical simulations of the complete nonlinear, nonautonomous, coupled equations.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 447-448
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, The 28th Aerospace Mechanisms Symposium; p 141-145; NASA-CP-3260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: The Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), Volume 1; p 61-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-08-31
    Description: Autonomy is needed for future spacecraft to solve the problems of human operator overload and transmission delay. This paper describes the autonomous spacecraft executive for rendezvous and docking. It is an onboard expert system and has decision making capability for mission planning of nominal and contingency cases. The executive has been developed and verified using a hardware motion based simulator.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 235-238
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-08-31
    Description: Results of a trade study addressing the issues and benefits in using carbon fiber reinforced composites for the Magnetosphere Imager (MI) spacecraft are presented. The MI mission is now part of the Sun/Earth Connection Program. To qualify for this category, new technology and innovative methods to reduce the cost and size have to be considered. Topics addressed cover: (1) what is a composite, including advantages and disadvantages of composites and carbon/graphite fibers; and (2) structural design for MI, including composite design configuration, material selection, and analysis of composite structures.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Alabama Univ., Research Reports: 1994 NASA(ASEE Summer Faculty Fellowship Program; 6 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-08-31
    Description: The NASDA office of R&D is studying an automatic technique to capture and berth free-floating satellites using a robot arm on another satellite. A demonstration experiment plan with the Japanese engineering test satellite ETS-7 is being developed based on the basic research on the ground. The overview and key technologies of this experiment plan are presented, and future applications of the automatic capture technique are also reviewed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 205-208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-08-31
    Description: ETS-7 (Engineering Test Satellite #7) is an experimental satellite for the in-orbit experiment of the Rendezvous Docking (RVD) and the space robot (RBT) technologies. ETS-7 is a set of two satellites, a chaser satellite and a target satellite. Both satellites will be launched together by NASDA's H-2 rocket into a low earth orbit. Development of ETS-7 started in 1990. Basic design and EM (Engineering Model) development are in progress now in 1994. The satellite will be launched in mid 1997 and the above in-orbit experiments will be conducted for 1.5 years. Design of ETS-7 RBT experiment system and development status are described in this paper.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 143-147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-08-31
    Description: A robot experiment concept of space truss telemanipulation by National Aerospace Laboratory (NAL) is described in its flight model development. The experiment will be carried out on the Engineering Test Satellite No. 7 (ETS-7) using its robot arm. The satellite is scheduled to be launched in 1997 by National Space Development Agency of Japan (NASDA). The truss flight model is composed of deployable truss system and assemble truss joint. Those truss components will be manipulated by the ETS-7 robot arm using its small grapple fixture type-N (GPF-N), and the experimental task operation will be executed from the ground control station.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 275-278
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-08-31
    Description: The Communications Research Laboratory plans to test an antenna-assembling mechanism on the Engineering Test Satellite 7. The test is one of the application missions for the space robotics experiments that will be conducted mainly by the National Space Development Agency of Japan (NASDA). The purpose of the test is to verify the ability of the antenna assembling mechanism to function in space and to experiment on the teleoperation of a space robot to develop antenna-assembling technology. We present the test experiment plans and the outline of the onboard assembling mechanism.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 279-284
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-08-31
    Description: This paper describes the Starpicker expert system, a tool for spacecraft operations planning. Both programmatic and technical aspects are discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 245-248
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-31
    Description: Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer aware of some of the most important aspects of manufacturing associated with his/her choice of the structural materials. The other objective of this study is to propose a quantitative method to determine a Manufacturing Complexity Factor (MCF) for each material being contemplated. This MCF is derived on the basis of the six cost drivers mentioned above plus a Technology Readiness Factor which is very closely related to the Technology Readiness Level (TRL) as defined in the Access To Space final report. Short of any manufacturing information, our MCF is equivalent to the inverse of TRL. As more manufacturing information is available, our MCF is a better representation (than TRL) of the fabrication processes involved. The most likely application for MCF is in cost modeling for trade studies. On-going work is being pursued to expand the potential applications of MCF.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Hampton Univ., 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; p 59
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-08-31
    Description: Space station requirements for power have resulted in a need for photovoltaic solar arrays possessing large blanket surface area. However, due to the limited shuttle payload volume solar array designers have been driven to a deployable concept that by nature is extremely flexible. The principal support for this array system is the Folding Articulating Square Truss Mast (FASTMast). In order to accomodate service loads the FASTMast is expected to exhibit nonlinear behavior which could possibly result in structural instability. Presented herein are the results of the Lewis Research Center test and analysis efforts performed in an effort to characterize the FASTMast structural behavior in terms of stability. Results include those obtained from recent nonlinear testing and analysis involving a 1/10 segment of the FASTMast flight article. Implications of these results as they relate to expected behavior of the flight unit will also be discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 299-312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-08-31
    Description: The objective was to design a method to measure weight and center of gravity (C.G.) location for Space Station Modules by adding sensors to the existing Rack Insertion End Effector (RIEE). Accomplishments included alternative sensor placement schemes organized into categories. Vendors were queried for suitable sensor equipment recommendations. Inverse mathematical models for each category determine expected maximum sensor loads. Sensors are selected using these computations, yielding cost and accuracy data. Accuracy data for individual sensors are inserted into forward mathematical models to estimate the accuracy of an overall sensor scheme. Cost of the schemes can be estimated. Ease of implementation and operation are discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Univ. of Central Florida, NASA(ASEE Summer Faculty Fellowship Program. 1994 Research Reports; p 31-60
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-06-07
    Description: It has often been proposed that a vehicle returning from Mars will use aerobraking in the Earth's atmosphere to dissipate hyperbolic excess velocity to capture into Earth orbit. Here a different system for dissipating excess velocity without expenditure of reaction mass, magnetobraking, is proposed. Magnetobraking uses the force on an electrodynamic tether in the Earth's magnetic field to produce thrust. An electrodynamic tether is deployed from the spacecraft as it approaches the Earth. The Earth's magnetic field produces a force on electrical current in the tether. If the tether is oriented perpendicularly to the Earth's magnetic field and to the direction of motion of the spacecraft, force produced by the Earth's magnetic field can be used to either brake or accelerate the spacecraft without expenditure of reaction mass. The peak acceleration on the Mars return is 0.007 m/sq sec, and the amount of braking possible is dependent on the density and current-carrying capacity of the tether, but is independent of length. A superconducting tether is required. The required critical current is shown to be within the range of superconducting technology now available in the laboratory.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Pennsylvania State Univ., NASA Propulsion Engineering Research Center, Volume 2; p 111-113
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-08-31
    Description: In this age of shrinking military, civil, and commercial space budgets, an off-the-shelf solution is needed to provide a multimission approach to spacecraft control. A standard operational interface which can be applied to multiple spacecraft allows a common approach to ground and space operations. A trend for many space programs has been to reduce operational staff by applying autonomy to the spacecraft and to the ground stations. The Spacecraft Command Language (SCL) system developed by Interface and Control Systems, Inc. (ICS) provides an off-the-shelf solution for spacecraft operations. The SCL system is designed to provide a hyper-scripting interface which remains standard from program to program. The spacecraft and ground station hardware specifics are isolated to provide the maximum amount of portability from system to system. Uplink and downlink interfaces are also isolated to allow the system to perform independent of the communications protocols chosen. The SCL system can be used for both the ground stations and the spacecraft, or as a value added package for existing ground station environments. The SCL system provides an expanded stored commanding capability as well as a rule-based expert system on-board. The expert system allows reactive control on-board the spacecraft for functions such as electrical power systems (EPS), thermal control, etc. which have traditionally been performed on the ground. The SCL rule and scripting capability share a common syntax allowing control of scripts from rules and rules from scripts. Rather than telemeter over sampled data to the ground, the SCL system maintains a database on-board which is available for interrogation by the scripts and rules. The SCL knowledge base is constructed on the ground and uploaded to the spacecraft. The SCL system follows an open-systems approach allowing other tasks to communicate with SCL on the ground and in space. The SCL system was used on the Clementine program (launched January 25, 1994) and is required to have bidirectional communications with the guidance, navigation, and control (GNC) algorithms which were written as another task. Sequencing of the spacecraft maneuvers are handled by SCL, but the low-level thruster pulse commands are handled by the GNC software. Attitude information is reported back as telemetry, allowing the SCL expert system to inference on the changing data. The Clementine SCL flight software was largely reused from another Naval Center for Space Technology (NCST) satellite program. This paper details the SCL architecture and how an off-the-shelf solution makes sense for multimission spacecraft programs. The Clementine mission will be used as a case study in the application of the SCL to a 'fast track' program. The benefits of such a system in a 'better, cheaper, faster' climate will be discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Third International Symposium on Space Mission Operations and Ground Data Systems, Part 1; p 559-568
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-31
    Description: Aerothermal environments as encountered during the reentry of spaceplanes or during the cruise of hypersonic aircrafts represent complex loading conditions for the external structures of those vehicles. In order to shield against the aerodynamic heating a special Thermal Protection System (TPS) is required which is designed as a light weight structure to reduce the weight penalty. TPS is therefore vulnerable to vibroacoustic fatigue caused by the pressure fluctuations of the environment. Because of the complex interactions between the loading forces and the resulting structural response which make an analytical treatment difficult and in order to provide means for fatigue testing IABG has designed and built a thermoacoustic facility which recently became operational. The facility is capable to produce surface temperatures up to 1.300 C at sound pressure levels up to 160 dB. This paper describes the design of the facility, some operational test work it also deals with problems associated with the facility instrumentation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 441-450
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-31
    Description: A software tool, the Relative Collision Matrix (RCM), has been developed to provide a quick-look representation of the shortterm collision hazard to space systems from a fragmentation event in Earth orbit. The software performs multiple fragmentation simulations of space objects to quantify the probability of collision for a satellite or a constellation of satellites nearby. Previously, the results were displayed in a color matrix format which showed the relative hazard of each constellation. The RCM can be used for scientific research and operational assessments even though it was designed for test and evaluation applications. Because of its successful use as an analytical tool, the capabilities of RCM are being extended by enhancing the orbital hazard analysis routines, developing ballistic trajectory hazard analysis routines, and expanding the breakup modeling. Improvements are also being made to the RCM's usability and presentation quality by developing a graphical user interface and by providing graphical animated and nonanimated output.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 401-408
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-31
    Description: In this paper the approximation problem for a class of optimal compensators for flexible structures is considered. The particular case of a simply supported truss with an offset antenna is dealt with. The nonrational positive real optimal compensator transfer function is determined, and it is proposed that an approximation scheme based on a continued fraction expansion method be used. Comparison with the more popular modal expansion technique is performed in terms of stability margin and parameters sensitivity of the relative approximated closed loop transfer functions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 483-496
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-31
    Description: Three-axis attitude determination is equivalent to finding a coordinate transformation matrix which transforms a set of reference vectors fixed in inertial space to a set of measurement vectors fixed in the spacecraft. The attitude determination problem can be expressed as a constrained optimization problem. The constraint is that a coordinate transformation matrix must be proper, real, and orthogonal. A transformation matrix can be thought of as optimal in the least-squares sense if it maps the measurement vectors to the reference vectors with minimal 2-norm errors and meets the above constraint. This constrained optimization problem is known as Wahba's problem. Several algorithms which solve Wahba's problem exactly have been developed and used. These algorithms, while steadily improving, are all rather complicated. Furthermore, they involve such numerically unstable or sensitive operations as matrix determinant, matrix adjoint, and Newton-Raphson iterations. This paper describes an algorithm which minimizes Wahba's loss function, but without the constraint. When the constraint is ignored, the problem can be solved by a straightforward, numerically stable least-squares algorithm such as QR decomposition. Even though the algorithm does not explicitly take the constraint into account, it still yields a nearly orthogonal matrix for most practical cases; orthogonality only becomes corrupted when the sensor measurements are very noisy, on the same order of magnitude as the attitude rotations. The algorithm can be simplified if the attitude rotations are small enough so that the approximation sin(theta) approximately equals theta holds. We then compare the computational requirements for several well-known algorithms. For the general large-angle case, the QR least-squares algorithm is competitive with all other know algorithms and faster than most. If attitude rotations are small, the least-squares algorithm can be modified to run faster, and this modified algorithm is faster than all but a similarly specialized version of the QUEST algorithm. We also introduce a novel measurement averaging technique which reduces the n-measurement case to the two measurement case for our particular application, a star tracker and earth sensor mounted on an earth-pointed geosynchronous communications satellite. Using this technique, many n-measurement problems reduce to less than or equal to 3 measurements; this reduces the amount of required calculation without significant degradation in accuracy. Finally, we present the results of some tests which compare the least-squares algorithm with the QUEST and FOAM algorithms in the two-measurement case. For our example case, all three algorithms performed with similar accuracy.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 529-543
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-31
    Description: A relatively general formulation for studying the dynamics and control of an arbitrary spacecraft with interconnected flexible bodies has been developed. This self-contained and comprehensive numerical algorithm using system modes is applicable to a large class of spacecraft configurations of contemporary and future interest. Here, versatility of the approach is demonstrated through the dynamics and control studies aimed at the evolving Space Station Freedom.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Marshall Space Flight Center, The Second Annual International Space University Alumni Conference; p 96-111
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The SpaceHab 1 flight on STS-57 served as a test platform for evaluation of two space station payloads. The first payload evaluated a space station maintenance concept using a sweep signal generator and a 48-channel logic analyzer to perform fault detection and isolation. Crew procedures files, test setup diagram files, and software to configure the test equipment were created on the ground and uplinked on the astronauts' voice communication circuit to perform tests in flight. In order to use these files, the portable computer was operated in a multi-window configuration. The test data transmitted to the ground allowing the ground staff to identify the cause of the fault and provide the crew with the repair procedures and diagrams. The crew successfully repaired the system under test. The second payload investigated hand soldering and de-soldering of standard components on printed circuit (PC) boards in zero gravity. It also used a new type of intra-vehicular foot restraints which uses the neutral body posture in zero-g to provide retention of the crew without their conscious attention.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), Volume 2; p 661-665
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-31
    Description: Very often servicing of satellites is necessary to replace components which are responsible for anomalous behavior of satellite operations due to adverse interactions with the natural space environment. A major difficulty with this diagnosis is that those responsible for diagnosing these anomalies do not have the tools to assess the role of the space environment causing the anomaly. To address this issue, we have under development a new rule-based, expert system for diagnosing spacecraft anomalies. The knowledge base consists of over two-hundred rules and provides links to historical and environmental databases. Environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose. The system's driver translates forward chaining rules into a backward chaining sequence, prompting the user for information pertinent to the causes considered. When the user selects the novice mode, the system automatically gives detailed explanations and descriptions of terms and reasoning as the session progresses, in a sense teaching the user. As such it is an effective tutoring tool. The use of heuristics frees the user from searching through large amounts of irrelevant information and allows the user to input partial information (varying degrees of confidence in an answer) or 'unknown' to any question. The system is available on-line and uses C Language Integrated Production System (CLIPS), an expert shell developed by the NASA Johnson Space Center AI Laboratory in Houston.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Johnson Space Center, Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), Volume 2; p 641-651
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-31
    Description: The Galileo Jupiter orbital mission using the Low Gain Antenna (LGA) requires a higher degree of spacecraft state knowledge than was originally anticipated. Key elements of the revised design include onboard buffering of science and engineering data and extensive processing of data prior to downlink. In order to prevent loss of data resulting from overflow of the buffers and to allow efficient use of the spacecraft resources, ground based models of the spacecraft processes will be implemented. These models will be integral tools in the development of satellite encounter sequences and the cruise/playback sequences where recorded data is retrieved.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Third International Symposium on Space Mission Operations and Ground Data Systems, Part 2; p 1039-1044
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-31
    Description: The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Joint Launch + One Year Science Review of USML-1 and USMP-1 with the Microgravity Measurement Group; p 45-64
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-31
    Description: Anticipating the construction of the international space station, on-orbit modal identification of space platforms through optimally placed accelerometers is an area of recent activity. Unwanted vibrations in the platform could affect the results of experiments which are planned. Therefore, it is important that sensors (accelerometers) be strategically placed to identify the amount and extent of these unwanted vibrations, and to validate the mathematical models used to predict the loads and dynamic response. Due to cost, installation, and data management issues, only a limited number of sensors will be available for placement. This work evaluates and compares four representative sensor placement algorithms for modal identification. Most of the sensor placement work to date has employed only numerical simulations for comparison. This work uses experimental data from a fully-instrumented truss structure which was one of a series of structures designed for research in dynamic scale model ground testing of large space structures at NASA Langley Research Center. Results from this comparison show that for this cantilevered structure, the algorithm based on Guyan reduction is rated slightly better than that based on Effective Independence.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 333-348
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-31
    Description: A new algorithm is developed for inflight magnetometer bias determination without knowledge of the attitude. This algorithm combines the fast convergence of a heuristic algorithm currently in use with the correct treatment of the statistics and without discarding data. The algorithm performance is examined using simulated data and compared with previous algorithms.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 513-527
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-31
    Description: The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 379-403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-31
    Description: The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 341-354
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-31
    Description: This paper explores using a gravity gradiometer to measure the attitude of a satellite, given that the gravity field is accurately known. Since gradiometers actually measure a combination of the gradient and attitude rate and acceleration terms, the answer is far from obvious. The paper demonstrates that it can be done and at microradian accuracy. The technique employed is dynamic estimation, based on the momentum biased Euler equations. The satellite is assumed nominally planet pointed, and subject to control, gravity gradient, and partly radom drag torques. The attitude estimator is unusual. While the standard method of feeding back measurement residuals is used, the feedback gain matrix isn't derived from Kalman theory. instead, it's chosen to minimize a measure of the terminal covariance of the error in the estimate. This depends on the gain matrix and the power spectra of all the process and measurement noises. An integration is required over multiple solutions of Lyapunov equations.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 315-329
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-31
    Description: This paper presents general insight into the design and implementation of heaters as used in actuating mechanisms for spacecraft. Problems and considerations that were encountered during development of the Deep Space Probe and Science Experiment (DSPSE) solar array release mechanism are discussed. Obstacles included large expected fluctuations in ambient temperature, variations in voltage supply levels outgassing concerns, heater circuit design, materials selection, and power control options. Successful resolution of these issues helped to establish a methodology which can be applied to many of the heater design challenges found in thermally actuated mechanisms.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, The 28th Aerospace Mechanisms Symposium; p 379-393; NASA-CP-3260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-31
    Description: This paper discusses aspects of the design, development, and testing of the sensor cover on the Clementine (DSPSE) spacecraft. Particular attention is given to defining the typically ambiguous issue of cleanliness. To characterize performance with respect to these requirements, a simple and effective method for testing prototype seals was developed. This testing was useful for comparing various types of seals as well as for providing information about achievable cleanliness levels. The results were invaluable input for defining a realistic final cleanliness requirement that satisfied everyone from mechanisms to sensor engineers. Balancing torque margins (reliability) versus cost and/or weight of the system can be significantly influenced by the choice of seal type. Several seal types are discussed in terms of both cleanliness and ease of implementation. These design issues influence the actuator selection and structural integrity of the door. The cover system designed and fabricated as described above was thoroughly tested both on a component level and on the Clementine system level. Testing included characterization, vibration, pyro-shock, life, and thermal/vacuum. The extensive testing identified problems early enough that they could be resolved prior to integration and launch.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, The 28th Aerospace Mechanisms Symposium; p 135-140; NASA-CP-3260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-31
    Description: This paper discusses the system level structural testing that was performed to qualify the Clementine Spacecraft for flight. These tests included spin balance, combined acoustic and axial random vibration, lateral random vibration, quasi-static loads, pyrotechnic shock, modal survey and on-orbit jitter simulation. Some innovative aspects of this effort were: the simultaneously combined acoustic and random vibration test; the mass loaded interface modal survey test; and the techniques used to assess how operating on board mechanisms and thrusters affect sensor vision.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 313-331
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-31
    Description: This paper reports on the recently completed thermal balance/thermal vacuum testing of an MSAT satellite, the first satellite to provide mobile communications service for all of continental North America. MSAT is a two-spacecraft program, using a three-axis-stabilized HUGHES HS-601 series bus as the vehicle for the Canadian-designed payload. The thermal tests performed at the Canadian Space Agency's David Florida Laboratory in Ottawa, Canada, lasted approximately 32 days.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 241-254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-31
    Description: SAX is a satellite for X-Ray astronomy. It is a major element of the overall basic Science Program of the Italian Space Agency (ASI) and is being developed with the contribution of the Netherlands Agency for Aerospace Programs (NIVR). The scientific objectives of SAX are to carry out systematic and comprehensive observations of celestial X-Ray sources over the 0.1 - 300 KeV energy range with special emphasis on spectral and timing measurements. The satellite will also monitor the X-Ray sky to investigate long-term source variability and to permit localization and study of X-Ray transients. Alenia Spazio is developing the satellite that is intended for launch in the second half of 1995 in a low, near-equatorial Earth orbit. At system level a Structural Thermal Model (STM) has been conceived to verify the environmental requirements by validating the mechanical and thermal analytical models and qualifying satellite structure and thermal control. In particular, the following tests have been carried out in Alenia Spazio, CEA/CESTA and ESTEC facilities: Modal Survey, Centrifuge, Acoustic, Sinusoidal/Random Vibration and Thermal Balance. The paper, after a short introduction of the SAX satellite, summarizes the environmental qualification program performed on the SAX STM. It presents test objectives, methodologies and relevant test configurations. Peculiar aspects of the test campaign are highlighted. Problems encountered and solutions adopted in performing the tests are described as well. Furthermore, test results are presented and assessed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 195-209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-31
    Description: NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 177-186
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-31
    Description: The control of flexible spacecraft is a difficult problem because of large number of elastic modes; low value, closely-spaced frequencies; very small damping; and uncertainties in math models. The traditional design approach is to design the structure first and then to design the control system. This view-graph presentation develops a methodology for spacecraft design which addresses control/structure interaction issues, produces technology for simultaneous control/structure design, and translates into algorithms and computational tools for practical integrated computer-aided design.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 427-443
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-31
    Description: This presentation discusses various misgivings concerning the directions and productivity of Distributed Parameter System (DPS) theory as applied to spacecraft vibration control. We try to show the need for greater cross-fertilization between DPS theorists and spacecraft control designers. We recommend a shift in research directions toward exploration of asymptotic frequency response characteristics of critical importance to control designers.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 3-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: The Miniature Sensor Technology Integration (MSTI) 2 Spacecraft is a small 3-axis stabilized spacecraft designed to track mid-range missiles and estimate their state vectors. In order to accurately estimate the target state vector, the MSTI 2 spacecraft must have highly accurate knowledge of its own attitude. Errors in its attitude knowledge arise primarily from the errors in its Attitude Control System (ACS) sensors. The ACS sensors on the spacecraft include a scanning Earth Sensor (ES), a Sun Sensor (SS), and two 2-axis gyros. The On-Orbit Alignment (OOA) generated an error map of the ES and estimated the biases of the SS and the misalignment of the gyros. This paper discusses some of the error sources, and the techniques used to reduce the effects of these errors. The payload carried by the MSTI2 spacecraft is a high fidelity camera, which was aimed at the target using gimballed mirrors. By aiming it at a celestial target, the payload was used as a high-accuracy single-axis attitude reference. This attitude reference was compared to the attitude reference of the ACS sensors, and the errors were attributed to the ACS sensors.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 303-313
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-31
    Description: Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 281-295
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-31
    Description: Increasing research is being done into industrial uses for the microgravity environment aboard orbiting space vehicles. However, there is some concern over the effects of reaction forces produced by moving objects, especially motors, robotic actuators, and astronauts. Reaction forces produced by the movement of these objects may manifest themselves as undesirable accelerations in the space vehicle making the vehicle unusable for microgravity applications. It is desirable to provide compensation for such forces using active means. This paper presents the design and experimental evaluation of the NASA three degree of freedom reaction compensation platform, a system designed to be a testbed for the feasibility of active attenuation of reaction forces caused by moving objects in a microgravity environment. Unique 'linear motors,' which convert electrical current directly into rectilinear force, are used in the platform design. The linear motors induce accelerations of the displacer inertias. These accelerations create reaction forces that may be controlled to counteract disturbance forces introduced to the platform. The stated project goal is to reduce reaction forces by 90 percent, or -20 dB. Description of the system hardware, characterization of the actuators and the composite system, and design of the software safety system and control software are included.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: The 28th Aerospace Mechanisms Symposium; p 147-152; NASA-CP-3260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-08-31
    Description: The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 433-444
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-01-25
    Description: A fast and efficient method for simulating potential interactions between space objects is presented. The specialized hazard analysis simulation is run at the Russian Space Surveillance Center. It simulates the motion of objects in space and determines close encounters between these objects. First, ephemerides are predicted for all space objects over the time interval of concern. Second, using the predicted ephemerides, pairs of satellites that would likely collide are grouped together. Throughout the process, the pairs initially chosen are refined until all pairs of satellites are found which come within a certain miss distance of each other. In addition to the miss distance, other characteristics of the encounter including angle of incidence, relative velocity, type of approaching object, and probability of collision come out of the simulation. There are many potential applications of this simulation and its results to missing planning and mission safety. Artificial objects can be introduced to the simulation to examine potential encounters between the new objects and current objects for mission design applications. The simulation can be run many times to create data for statistical analysis of encounter parameters. These as well as many other potential applications are presented and discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 409
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-01-25
    Description: At this writing, Clementine had successfully fulfilled its moon-mapping mission; at this reading it will have also, with continued good fortune, taken a close look at the asteroid Geographos. The thermal design that made all this possible was indeed formidable in many respects, with very high ratios of requirements-to-available resources and performance-to-cost and mass. There was no question that a test verification of this quite unique and complex design was essential, but it had to be squeezed into an unyielding schedule and executed with bare-bones cost and manpower. After describing the thermal control subsystem's features, we report all the drama, close-calls, and cost-cutting, how objectives were achieved under severe handicap but (thankfully) with little management and documentation interference. Topics include the newly refurbished chamber (ready just in time), the reality level of the engineering model, using the analytical thermal model, the manner of environment simulation, the hand-scratched film heaters, functioning of all three types of heat pipes (but not all heat pipes), and the BMDO sensors' checkout through the chamber window. Test results revealed some surprises and much valuable data, resulting in thermal model and flight hardware refinements. We conclude with the level of correlation between predictions and both test temperatures and flight telemetry.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: The present work reports on the recently completed infrared thermal balance/thermal vacuum testing of a MSAT satellite, the first satellite to provide mobile communications service for all of continental North America. MSAT is a two spacecraft program, using a three-axis stabilized Hughes HS-601 series Bus as the vehicle for the Canadian designed Payload. The thermal tests which were performed at the Canadian Space Agency's David Florida Laboratory in Ottawa, Canada, lasted approximately 35 days. The infrared (IR) heating rig was designed to provide radiant heat inputs into seven spacecraft zones during Thermal Vacuum (TV) testing. The TV test was divided into multiple phases. It began with a thermal balance cold phase, followed by a thermal cold cycle and a hot balance phase, complemented by a thermal hot cycle to finish with a thermal cycle with continuous monitoring of the Bus and Payload. The spacecraft's external heat fluxes were provided by IR lamp sources. To ensure flux uniformity, highly reflective baffles and IR East and West faces; the Earth facing (Nadir); and the inside of the thrust cylinder. The aft-end panel heat fluxes were provided by a heated LN2 shroud. The radiation flux intensity on the spacecraft zones from the various rig elements was measured using Monitored Background Radiometers (MBR's) and compared with direct calculations and with pretest predictions. The temperature measurement system was based on Uniform Temperature References (UTR's) located inside the chamber such that all feedthroughs were copper-copper. This system was devised to achieve a temperature measurement accuracy of plus/minus 0.5 C for over 850 thermocouples used in the test. A PC-(QNX-based) based real-time data acquisition system was utilized to provide continuous monitoring of all channels based on a 30-second time scan. In addition, the data acquisition system was able to retrieve telemetry stream from the Satellite Test Equipments (STE) station for real-time data manipulation. Preliminary results showed the test to be successful from both the thermal balance side and the electrical testing side.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NIPS-95-05518 , NASA-CR-199527 , NAS 1.26:199527
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-06-28
    Description: System parameters should be tracked on-line to build a reconfigurable control system even though there exists an abrupt change. For this purpose, a new performance index that we are studying is the speed of adaptation- how quickly does the system determine that a change has occurred? In this paper, a new, robust algorithm that is optimized to minimize the time delay in detecting a change for fixed false alarm probability is proposed. Simulation results for the aircraft lateral motion with a known or unknown change in control gain matrices, in the presence of doublet input, indicate that the algorithm works fairly well. One of its distinguishing properties is that detection delay of this algorithm is superior to that of Whiteness Test.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NIPS-95-05569 , NASA-CR-199529 , NAS 1.26:199529
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-06-28
    Description: Global asymptotic stability of a class of nonlinear multibody flexible space structures under dissipative compensation is established. Two cases are considered. The first case allows unlimited nonlinear motions of the entire system and uses quaternion feedback. The second case assumes that the central body motion is in the linear range although the other bodies can undergo unrestricted nonlinear motion. The stability is proved to be robust to the inherent modeling nonlinearities and uncertainties. Furthermore, for the second case, the stability is also shown to be robust to certain actuator and sensor nonlinearities. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems. The results are applicable to a wide class of systems, including flexible space structures with articulated flexible appendages.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-109099 , NAS 1.15:109099
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-06-28
    Description: The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-3449 , L-17343 , NAS 1.60:3449
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-06-28
    Description: The objective of this study is to model the on-orbit vibration environment encountered by a SmallSat. Vibration control issues are common to the Earth observing, imaging, and microgravity communities. A spacecraft may contain dozens of support systems and instruments each a potential source of vibration. The quality of payload data depends on constraining vibration so that parasitic disturbances do not affect the payload's pointing or microgravity requirement. In practice, payloads are designed incorporating existing flight hardware in many cases with nonspecific vibration performance. Thus, for the development of a payload, designers require a thorough knowledge of existing mechanical devices and their associated disturbance levels. This study evaluates a SmallSat mission and seeks to answer basic questions concerning on-orbit vibration. Payloads were considered from the Earth observing, microgravity, and imaging communities. Candidate payload requirements were matched to spacecraft bus resources of present day SmallSats. From the set of candidate payloads, the representative payload GLAS (Geoscience Laser Altimeter System) was selected. The requirements of GLAS were considered very stringent for the 150 - 500 kg class of payloads. Once the payload was selected, a generic SmallSat was designed in order to accommodate the payload requirements (weight, size, power, etc.). This study seeks to characterize the on-orbit vibration environment of a SmallSat designed for this type of mission and to determine whether a SmallSat can provide the precision pointing and jitter control required for earth observing payloads.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-194915 , NAS 1.26:194915
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-28
    Description: The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-106514 , NAS 1.15:106514 , MMAP-STS-57 , E-8631
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-06-28
    Description: Subcritical cryogens such as liquid hydrogen (LH2) and liquid oxygen (LO2) are required for space based transportation propellant, reactant, and life support systems. Future long-duration space missions will require on-orbit systems capable of long-term cryogen storage and efficient fluid transfer capabilities. COLD-SAT, which stands for cryogenic orbiting liquid depot-storage acquisition and transfer, is a free-flying liquid hydrogen management flight experiment. Experiments to determine optimum methods of fluid storage and transfer will be performed on the COLD-SAT mission. The success of the mission is directly related to the type and accuracy of measurements made. The instrumentation and measurement techniques used are therefore critical to the success of the mission. This paper presents the results of the COLD-SAT experiment subsystem instrumentation and wire harness design effort. Candidate transducers capable of fulfilling the COLD-SAT experiment measurement requirements are identified. Signal conditioning techniques, data acquisition requirements, and measurement uncertainty analysis are presented. Electrical harnessing materials and wiring techniques for the instrumentation designed to minimize heat conduction to the cryogenic tanks and provide optimum measurement accuracy are listed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-189172 , E-8098 , NAS 1.26:189172
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-06-28
    Description: Tests were performed on the Space Station Freedom (SSF) solar array flat conductor circuit (FCC) to determine if hypervelocity impacts could induce pyrolization of Kapton and/or cross-conductor arcing. A sample piece of FCC was placed in a plasma environment and biased to +200 V relative to the plasma potential. The FCC was then impacted with particles in the 100 micron size range with hypervelocities of about 7 km/s. These tests were unable to induce Kapton pyrolization, cross-conductor arcing, or any other plasma interaction.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-106528 , E-8656 , NAS 1.15:106528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-06-28
    Description: A general design methodology to integrate active control with passive damping was demonstrated on the NASA LaRC CSI Evolutionary Model (CEM), a ground testbed for future large, flexible spacecraft. Vibration suppression controllers designed for Line-of Sight (LOS) minimization were successfully implemented on the CEM. A frequency-shaped H2 methodology was developed, allowing the designer to specify the roll-off of the MIMO compensator. A closed loop bandwidth of 4 Hz, including the six rigid body modes and the first three dominant elastic modes of the CEM was achieved. Good agreement was demonstrated between experimental data and analytical predictions for the closed loop frequency response and random tests. Using the Modal Strain Energy (MSE) method, a passive damping treatment consisting of 60 viscoelastically damped struts was designed, fabricated and implemented on the CEM. Damping levels for the targeted modes were more than an order of magnitude larger than for the undamped structure. Using measured loss and stiffness data for the individual damped struts, analytical predictions of the damping levels were very close to the experimental values in the (1-10) Hz frequency range where the open loop model matched the experimental data. An integrated active/passive controller was successfully implemented on the CEM and was evaluated against an active-only controller. A two-fold increase in the effective control bandwidth and further reductions of 30 percent to 50 percent in the LOS RMS outputs were achieved compared to an active-only controller. Superior performance was also obtained compared to a High-Authority/Low-Authority (HAC/LAC) controller.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4580 , NAS 1.26:4580
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: A method is described for obtaining optimal attitude estimation algorithms for spacecraft lacking attitude rate measurement devices (rate gyros), and then demonstrated using actual flight data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) spacecraft. SAMPEX does not have on-board rate sensing, and relies on sun sensors and a three-axis magnetometer for attitude determination. Problems arise since typical attitude estimation is accomplished by filtering measurements of both attitude and attitude rates. Rates are nearly always sampled much more densely than are attitudes. Thus, the absence/loss of rate data normally reduces both the total amount of data available and the sampling density (in time) by a substantial fraction. As a result, the sensitivity of the estimates to model uncertainty and to measurement noise increases. In order to maintain accuracy in the attitude estimates, there is increased need for accurate models of the rotational dynamics. The proposed approach is based on the minimum model error (MME) optimal estimation strategy, which has been successfully applied to estimation of poorly modeled dynamic systems which are relatively sparsely and/or noisily measured. The MME estimates may be used to construct accurate models of the system dynamics (i.e. perform system model identification). Thus, an MME-based approach directly addresses the problems created by absence of attitude rate measurements.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 497-511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-06-28
    Description: This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Flight Mechanics(Estimation Theory Symposium, 1994; p 481-495
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-28
    Description: Attitude estimator use observations from different times to reduce the effects of noise. If the vehicle is rotating, the attitude at one time needs to be propagated to that at another time. If the vehicle measures its angular velocity, attitude propagating entails integrating a rotational kinematics equation only. If a measured angular velocity is not available, torques can be computed and an additional rotational dynamics equation integrated to give the angular velocity. Initial conditions for either of these integrations come from the estimation process. Sometimes additional quantities, such as gyro and torque parameters, are also solved for. Although the partial derivatives of attitude with respect to initial attitude and gyro parameters are well known, the corresponding partial derivatives with respect to initial angular velocity and torque parameters are less familiar. They can be derived and computed numerically in a way that is analogous to that used for the initial attitude and gyro parameters. Previous papers have demonstrated the feasibility of using dynamics models for attitude estimation but have not provided details of how each angular velocity and torque parameters can be estimated. This tutorial paper provides some of that detail, notably how to compute the state transition matrix when closed form expressions are not available. It also attempts to put dynamics estimation in perspective by showing the progression from constant to gyro-propagated to dynamics-propagated attitude motion models. Readers not already familiar with attitude estimation will find this paper an introduction to the subject, and attitude specialists may appreciate the collection of heretofore scattered results brought together in a single place.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 545-557
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: Given a valid system model and adequate observability, a Kalman filter will converge toward the true system state with error statistics given by the estimated error covariance matrix. The errors generally do not continue to decrease. Rather, a balance is reached between the gain of information from new measurements and the loss of information during propagation. The errors can be further reduced, however, by a second pass through the data with an optimal smoother. This algorithm obtains the optimally weighted average of forward and backward propagating Kalman filters. It roughly halves the error covariance by including future as well as past measurements in each estimate. This paper investigates whether such benefits actually accrue in the application of an optimal smoother to spacecraft attitude determination. Tests are performed both with actual spacecraft data from the Extreme Ultraviolet Explorer (EUVE) and with simulated data for which the true state vector and noise statistics are exactly known.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 431-445
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: Two cover mechanisms were designed and developed for the Extreme Ultraviolet Explorer (EUVE) science payload to keep the EUVE telescope mirrors and detectors sealed from the atmospheric environment until the spacecraft was placed into orbit. There were four telescope front covers and seven motorized detector covers on the EUVE science payload. The EUVE satellite was launched into orbit in June 1992 and all the covers operated successfully after launch. This success can be attributed to high design margins and extensive testing at each level of assembly. This paper described the design of the telescope front covers and the motorized detector covers. This paper also discusses some of the many design considerations and modifications made as performance and reliability problems became apparent from each phase of testing.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, The 28th Aerospace Mechanisms Symposium; p 199-209; NASA-CP-3260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-3375 , L-17239 , NAS 1.60:3375
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: Orbital debris growth threatens the survival of spacecraft systems from impact-induced failures. Whereas the probability of debris impact and spacecraft penetration may currently be calculated, another parameter of great interest to safety engineers is the probability that debris penetration will cause actual spacecraft or crew loss. Quantifying the likelihood of crew loss following a penetration allows spacecraft designers to identify those design features and crew operational protocols that offer the highest improvement in crew safety for available resources. Within this study, a manned spacecraft crew survivability (MSCSurv) computer model is developed that quantifies the conditional probability of losing one or more crew members, P(sub loss/pen), following the remote likelihood of an orbital debris penetration into an eight module space station. Contributions to P(sub loss/pen) are quantified from three significant penetration-induced hazards: pressure wall rupture (explosive decompression), fragment-induced injury, and 'slow' depressurization. Sensitivity analyses are performed using alternate assumptions for hazard-generating functions, crew vulnerability thresholds, and selected spacecraft design and crew operations parameters. These results are then used to recommend modifications to the spacecraft design and expected crew operations that quantitatively increase crew safety from orbital debris impacts.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-108452 , NAS 1.15:108452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-106405 , E-8241 , NAS 1.15:106405
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-195703 , NAS 1.26:195703
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-06-28
    Description: The use of Pontryagin's Maximum Principle for the large-angle slewing of large flexible structures usually results in the so-called two-point boundary-value problem (TPBVP), in which many requirements (e.g., minimum time, small flexible amplitude, and limited control powers, etc.) must be satisfied simultaneously. The successful solution of this problem depends largely on the use of an efficient numerical computational algorithm. There are many candidate algorithms available for his problem (e.g., quasilinearization, gradient, and shooting, etc.). In this paper, a proposed algorithm, which combines the quasilinearization method with a time shortening technique and a shooting method, is applied to the minimum-time, three-dimensional, and large-angle maneuver of flexible spacecraft, particularly the orbiting Spacecraft Control Laboratory Experiment (SCOLE) configuration. Theoretically, the nonlinear TPBVP can be solved only through the shooting method to find the 'exact' switching times for the bang-bang controls. However, computationally, a suitable guess for the missing initial costates is crucial because the convergence range of the unknown initial costates is usually narrow, especially for systems with high dimensions and when a multi-bang-bang control strategy is needed. On the other hand, the problems of near minimum time attitude maneuver of general rigid spacecraft and fast slewing of flexible spacecraft have been examined by the authors through a numerical approach based on the quasilinearization algorithm with a time shortening technique. Computational results have demonstrated its broad convergence range and insensitivity to initial costate choices. Consequently, a combined approach is naturally suggested here to solve the minimum time slewing problem. That is, in the computational process, the quasilinearization method is used first to obtain a near minimum time solution. Then, the acquired converged initial costates from the quasilinearization approach are transformed (tailored) to and used as the initial costate guess for starting the shooting method. Finally, the shooting method takes over the remaining calculations until the minimum-time solution converges. The nonlinear equations of motion of the SCOLE are formulated by using Lagrange's equations, with the mast modeled as a continuous beam subject to three-dimensional deformations. The numerical results will be presented and some related computational issues will also be discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems; p 293-316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-06-28
    Description: A guide for users of the Thermal Analyst's Help Desk is provided. Help Desk is an expert system that runs on a DOS based personal computer and operates within the EXSYS expert system shell. Help Desk is an analysis tool designed to provide users having various degrees of experience with the capability to determine first approximations of thermal capacity for spacecraft and instruments. The five analyses supported in Help Desk are: surface area required for a radiating surface, equilibrium temperature of a surface, enclosure temperature and heat loads for a defined position in orbit, enclosure temperature and heat loads over a complete orbit, and selection of appropriate surface properties. The two geometries supported by Help Desk are a single flat plate and a rectangular box enclosure.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-194885 , NAS 1.26:194885
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994; p 153-166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-06-28
    Description: A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-195152 , NAS 1.26:195152
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-04-02
    Description: A review is given which surveys the variety of faults and failures which have occurred in space due both to the effects of single, energetic nuclear particles, as well as effects due to the accumulated ionizing dose or the fluence of nuclear particles. The review covers a variety of problems with sensors, electronics, instruments and spacecraft from several countries.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Life Sciences and Space Research 25 (2) Radiation Biology: Topical Meeting of the COSPAR Interdisciplinary Scientific Commission F of the COSPAR 29th Plenary Meeting, Washington, DC, Aug. 28-Sep. 5, 1 (ISSN 0273-1177); 14; 10; p. 685-9-693
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: Global asymptotic stability of a class of nonlinear multibody flexible space-stnuctures under dissipative compensation is established. Two cases are considered. The first case allows unlimited nonlinear motions of the entire system and uses quaternion feedback. The second case assumes that the central body motion is in the linear range although the other bodies can undergo unrestricted nonlinear motion. The stability is proved to be robust to the inherent modeling nonlinearities and uncertainties. Furthermore for the second case the stability is also shown to be robust to certain actuator and sensor nonlinearities. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems. The results are applicable to a wide class of systems including flexible space-structures with articulated flexible appendages.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-109099 , NAS 1.15:109099
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: A mathematical model for a general multibody flexible spacecraft is obtained. The generic spacecraft considered consists of a flexible central body to which a number of flexible multibody structures are attached. The coordinate systems used in the derivation allow effective decoupling of the translational motion of the entire spacecraft from its rotational motion about its center of mass. The derivation assumes that the deformations in the bodies are only due to elastic motions. The dynamic model derived is a closed-form vector-matrix differential equation. The model developed can be used for analysis and simulation of many realistic spacecraft configurations.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-109166 , NAS 1.15:109166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: In this 'Lift off to Learning' series, Loren Shriver, commander of STS 46, and the other members of the mission (Claude Nicollier, Marsha Ivins, Andrew Allen, Jeffrey Hoffman, Franklin Chiang-Diaz, and Franco Maerba) use computer graphics, and physical experiments to explain how the tethered satellite to be deployed during their mission will be raised, how it works, the influence of the Shuttle on the satellite and the satellite's influence on the Shuttle's orbit, the gravitational effects, and other effects concerning the Theoretical Physics used to plan this mission (gravity gradient force, center of mass, angular momentum, centrifugal force, and coriolis effect). This video ends with a discussion of the technology transfer and utilization of this tethered satellite concept and design.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110518 , NONP-NASA-VT-95-42566
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: Qualitative and quantitative estimates for the fundamental frequency of uniform and optimized tetrahedral truss platforms are determined. A semiempirical equation is developed for the frequency of free-free uniform trusses as a function of member material properties, truss dimensions, and parasitic (nonstructural) mass fraction Mp/Mt. Optimized trusses with frequencies approximately two times those of uniform trusses are determined by varying the cross-sectional areas of member groups. Trusses with 3 to 8 rings, no parasitic mass, and member areas up to 25 times the minimum area are optimized. Frequencies computed for ranges of both Mp/Mt and the ratio of maximum area to minimum area are normalized to the frequency of a uniform truss with no parasitic mass. The normalized frequency increases with the number of rings, and both frequency and the ratio of maximum area to minimum area decrease with increasing Mp/Mt. Frequency improvements that are achievable with a limited number of member areas are estimated for a 3-ring truss by using Taguchi methods. Joint stiffness knockdown effects are also considered. Comparison of optimized and baseline uniform truss frequencies indicates that tailoring can significantly increase structural frequency; maximum gains occur for trusses with low values of Mp/Mt. This study examines frequency trends for ranges of structural parameters and may be used as a preliminary design guide.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-3461 , L-17307 , NAS 1.60:3461
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...