ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 101
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: This slide presentation reviews the basics of biosafety and the importance of assuring proper biosafety practices. The objectives of the presentation are to review regulations about biosafety, and the different biosafety levels; the biosafety facilities at Johnson Space Center; the usage and maintenance of the biosafety cabinet, the proper methods to handle biologically hazardous materials upon exposure, and the methods of cleanup in the event of a spill, and the training requirements that are mandated for personnel handling biologically hazardous materials.
    Keywords: Life Sciences (General)
    Type: JSC-CN-18741
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-07-12
    Description: "Laboratory-on-a-chip" devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically 0.5 m wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.
    Keywords: Life Sciences (General)
    Type: MSC-24046-1 , NASA Tech Briefs, May 2009; 51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2019-07-12
    Description: The designed benchtop technique is primed to detect bacteria and viruses from antigenic surface marker proteins in solutions, initially water. This inclusive bio-immunoassay uniquely combines nanofiltration and near infrared (NIR) dyes conjugated to antibodies to isolate and distinguish microbial antigens, using laser excitation and spectrometric analysis. The project goals include detecting microorganisms aboard the International Space Station, space shuttle, Crew Exploration Vehicle (CEV), and human habitats on future Moon and Mars missions, ensuring astronaut safety. The technique is intended to improve and advance water contamination testing both commercially and environmentally as well. Lastly, this streamlined technique poses to greatly simplify and expedite testing of pathogens in complex matrices, such as blood, in hospital and laboratory clinics.
    Keywords: Life Sciences (General)
    Type: LEW-18387-1 , NASA Tech Briefs, May 2009; 44-45
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-12
    Description: Progress has been made in continuing research on scaffolds for the guided growth of nerves to replace damaged ones. The scaffolds contain pores that are approximately cylindrical and parallel, with nearly uniform widths ranging from tens to hundreds of microns. At the earlier stage of development, experimental scaffolds had been made from agarose hydrogel. Such a scaffold was made in a multistep process in which poly(methyl methacrylate) [PMMA] fibers were used as templates for the pores. The process included placement of a bundle of the PMMA fibers in a tube, filling the interstices in the tube with a hot agarose solution, cooling to turn the solution into a gel, and then immersion in acetone to dissolve the PMMA fibers. The scaffolds were typically limited to about 25 pores per scaffold, square cross sections of no more than about 1.5 by 1.5 mm, and lengths of no more than about 2 mm.
    Keywords: Life Sciences (General)
    Type: NPO-45303 , NASA Tech Briefs, May 2009; 46-47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-08-24
    Description: An apparatus is introduced for the use of enhancing tissue repair in mammals. The apparatus includes a sleeve; an electrically conductive coil; a sleeve support; an electrical circuit configured to supply the coil with a square wave time varying electrical current sufficient to create approximately 0.05 gauss to 0.5 gauss. When in use, the sleeve of the apparatus is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.5 gauss is generated on the mammalian body for an extended period of time so that the tissue is encouraged to be regenerated in the mammalian body part at a rate in excess of the normal tissue regeneration rate relative to regeneration without application of the time varying electromagnetic force.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: This viewgraph presentation reviews the current microbial challenges of environmental control and life support systems. The contents include: 1) Environmental Control and Life Support Systems (ECLSS) What is it?; 2) A Look Inside the International Space Station (ISS); 3) The Complexity of a Water Recycling System; 4) ISS Microbiology Acceptability Limits; 5) Overview of Current Microbial Challenges; 6) In a Perfect World What we Would like to Have; and 7) The Future.
    Keywords: Life Sciences (General)
    Type: M09-0707 , 6th International Space Life Sciences Working Group Workshop on Space Microbiology; Aug 24, 2009 - Aug 26, 2009; Rohnert Park, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-08-13
    Description: Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving 〉2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of the DNA repair-defective cell lines were smaller than those of normal cells, with the DNA-PK-deficient cells having RBEs near unity. To further investigate the sensitivity differences that were observed in ATM and NBS deficient cells, chromosomal aberrations were analyzed in normal lung fibroblast cells treated with KU-55933 (a specific ATM kinase inhibitor) or Mirin (an Mre11- Rad50-Nbs1 complex inhibitor involved in activation of ATM). We also performed siRNA knockdown of these proteins. Preliminary data indicate that chromosome exchanges increase in cells treated with the specific ATM inhibitor. Possible cytogenetic signatures of acute and low dose-rate gamma irradiation in ATM or nibrin deficient and suppressed cells will be discussed.
    Keywords: Life Sciences (General)
    Type: JSC-CN-18259 , Heavy Ions in Therapy and Space Symposium; Jul 06, 2009 - Jul 10, 2009; Cologne; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-08-27
    Description: A mobile pill transmitter system that moves through or adjacent to one or more organs in an animal's body and that provides signals from which the pill's present location and/or present angular orientation can be determined. The system also provides signals from which the present roll angle of the pill, about a selected axis, can be determined. When the location coordinates and the roll angle of the pill are within selected ranges, an aperture on the pill container releases a selected chemical into or onto the body. Optionally, the pill as it moves also provides a sequence of visually perceptible images; the times for image formation may correspond to times at which the pill transmitter system location or image satisfies one or at least four different criteria.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-08-27
    Description: Antibodies have been developed against the different molecular forms of urokinase using synthetic peptides as immunogens. The peptides were synthesized specifically to represent those regions of the urokinase molecules which are exposed in the three-dimensional configuration of the molecule and are uniquely homologous to urokinase. Antibodies are directed against the lysine 158-isoleucine 159 peptide bond which is cleaved during activation from the single-chain (ScuPA) form to the bioactive double chain (54 KDa and 33 KDa) forms of urokinase and against the lysine 135 lysine 136 bond that is cleaved in the process of removing the alpha-chain from the 54 KDa form to produce the 33 KDa form of urokinase. These antibodies enable the direct measurement of the different molecular forms of urokinase from small samples of conditioned medium harvested from cell cultures.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: NASA maintains on site occupational health clinics at all Centers and major facilities NASA maintains an on-site clinic that offers comprehensive health care to astronauts at the Johnson Space Center NASA deploys limited health care capability to space and extreme environments Focus is always on preventive health care
    Keywords: Aerospace Medicine
    Type: KSC-2009-112 , 2nd Annual Congress on On-Site Employee Health Clinics; Jun 01, 2009 - Jun 03, 2009; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-08-13
    Description: This slide presentation reviews the requirement from an Anthropometric standpoint for the development of the Constellation's programs hardware, specifically the Orion crew exploration vehicle. The NASA JSC Anthropometry and Biomechanics Facility (ABF) provides anthropometry, strength, mobility, and mass properties requirements; gathers, interprets, manages and maintains the flight crew anthropometry database; and participates and provides input during crew selection. This is used to assist in requirements for vehicle and space suit design and for crew selection.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18594 , NASA Advisory Council Meeting; Jul 14, 2009 - Jul 15, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-08-13
    Description: There is ample evidence to suggest that space flight leads to immune system dysregulation, however the nature of the phenomenon as it equilibrates over longer flights has not been determined. This dysregulation may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) for exploration-class space flight is unknown, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles (RNA, intracellular, secreted), viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. This study is currently ongoing. To date, 10 short duration and 5 long-duration crewmembers have completed the study. Technically, the study is progressing well. In-flight blood samples are being collected, and returned for analysis, including functional assays that require live cells. For all in-flight samples to date, sample viability has been acceptable. Preliminary data (n = 4/7; long/short duration, respectively) indicate that distribution of most peripheral leukocyte subsets is largely unaltered during flight. Exceptions include elevated T cells, reduced B/NK cells, increased memory T cells and increased central memory CD8+ T cells. General T cell function, early blastogenesis response to mitogenic stimulation, is markedly reduced in-flight. In-vivo cytokine production profiles are altered, with in-flight dysregulation observed in the Th1/Th2/Treg equilibrium. EBV specific T cell levels are increased during flight, whereas their function is reduced. VZV reactivation was observed inflight and several days post flight with highest levels measured later during long-duration flight. The shedding of CMV in the urine was detected of 4/5 long duration and 4/7 short duration crewmembers. Plasma cortisol was not elevated during flight. Further data will be required to validate the initial observations.
    Keywords: Aerospace Medicine
    Type: HRP Investigators Workshop; Feb 02, 2009 - Feb 04, 2009; Texas; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-07-13
    Description: We describe emerging capabilities to understand physical processes and biogeoehemical cycles in coastal waters through the use of satellites, numerical models, and ship observations. Emerging capabilities provide significantly improved ability to model ecological systems and the impact of environmental management actions on them. The complex interaction of physical and biogeoehemical processes responsible for hypoxic events requires an integrated approach to research, monitoring, and modeling in order to fully define the processes leading to hypoxia. Our efforts characterizes the carbon cycle associated with river plumes and the export of organic matter and nutrients form coastal Louisiana wetlands and embayments in a spatially and temporally intensive manner previously not possible. Riverine nutrients clearly affect ecosystems in the northern Gulf of Mexico as evidenced in the occurrence of regional hypoxia events. Less known and largely unqualified is the export of organic matter and nutrients from the large areas of disappearing coastal wetlands and large embayments adjacent to the Louisiana Continental Shelf. This project provides new methods to track the river plume along the shelf and to estimate the rate of export of suspended inorganic and organic paniculate matter and dissolved organic matter form coastal habitats of south Louisiana.
    Keywords: Life Sciences (General)
    Type: AD-A526507 , NRL/PP/7330-09-9348 , Oceans ''09 MTS/IEEE Conference; Oct 26, 2009 - Oct 29, 2009; Biloxi, MS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the studies done to reduce neuromuscular strength loss during unilateral lower limb suspension (ULLS). Since there are animals that undergo fairly long periods of muscular disuse without any or minimal muscular atrophy, there is an answer to that might be applicable to human in situations that require no muscular use to diminish the effects of muscular atrophy. Three sets of ULLS studies were reviewed indicated that muscle strength decreased more than the muscle mass. The study reviewed exercise countermeasures to combat the atrophy, including: ischemia maintained during Compound muscle action potential (CMAP), ischemia and low load exercise, Japanese kaatsu, and the potential for rehabilitation or situations where heavy loading is undesirable. Two forms of countermeasures to unloading have been successful, (1) high-load resistance training has maintained muscle mass and strength, and low load resistance training with blood flow restriction (LL(sub BFR)). The LL(sub BFR) has been shown to increase muscle mass and strength. There has been significant interest in Tourniquet training. An increase in Growth Hormone(GH) has been noted for LL(sub BFR) exercise. An experimental study with 16 subjects 8 of whom performed ULLS, and 8 of whom performed ULLS and LL(sub BFR) exercise three times per week during the ULLS. Charts show the results of the two groups, showing that performing LL(sub BFR) exercise during 30 days of ULLS can maintain muscle size and strength and even improve muscular endurance.
    Keywords: Aerospace Medicine
    Type: JSC-17748 , Lecture to faculty in Kinesiology at Texas A and M; Jan 29, 2009; Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This presentation is an overview of the function of the work of the Space Medicine & Health Care Systems Office. The objective of the medical operations is to ensure the health, safety and well being of the astronaut corps and ground support team during all phases of space flight. There are many issues that impact the health of the astronauts. Some of them are physiological, and others relate to behavior, psychological issues and issues of the environment of space itself. Reviews of the medical events that have affected both Russian, and Americans while in space are included. Some views of shuttle liftoff, and ascent, the medical training aboard NASA's KC-135 and training in weightlessness, the Shuttle Orbiter Medical system (SOMS), and some of the medical equipment are included. Also included are a graphs showing Fluid loading countermeasures, and vertical pursuit tracking with head and eye. The final views are representations of the future crew exploration vehicle (CEV) approaching the International Space Station, and the moon, and a series of perspective representations of the earth in comparison to the other planets and the Sun, the Sun in relation to other stars, and a view of where in the galaxy the Sun is.
    Keywords: Aerospace Medicine
    Type: JSC-17755 , Sigma Xi Scientific Society meeting; Feb 17, 2009; Minnesota; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Overview of talk: a) Content of Human Life Science data; b) Data archive structure; c) Applicable legal documents and policies; and d) Methods for data access. Life Science Data Archive (LSDA) contains research data from NASA-funded experiments, primarily data from flight experiments and ground analog data collected at NASA facilities. Longitudinal Study of Astronaut Health (LSAH) contains electronic health records (medical data) of all astronauts, including mission data. Data are collected for clinical purposes. Clinical data are analyzed by LSAH epidemiologists to identify trends in crew health and implement changes in pre-, in-, or post-flight medical care.
    Keywords: Life Sciences (General)
    Type: JSC-17808 , NASA Human Research Program Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-07-13
    Description: Through the epidemiological analysis of bone data, HRP is seeking evidence as to whether the prolonged exposure to microgravity of low earth orbit predisposes crewmembers to an earlier onset of osteoporosis. While this collaborative Epidemiological Project may be currently limited by the number of ISS persons providing relevant spaceflight medical data, a positive note is that it compares medical data of astronauts to data of an age-matched (not elderly) population that is followed longitudinally with similar technologies. The inclusion of data from non-ISS and non-NASA crewmembers is also being pursued. The ultimate goal of this study is to provide critical information for NASA to understand the impact of low physical or minimal weight-bearing activity on the aging process as well as to direct its development of countermeasures and rehabilitation programs to influence skeletal recovery. However, in order to optimize these results NASA needs to better define the requirements for long term monitoring and encourage both active and retired astronauts to contribute to a legacy of data that will define human health risks in space.
    Keywords: Aerospace Medicine
    Type: Human Research Program Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-07-13
    Description: This viewgraph presentation describes ARED which is a new hardware exercise device for use on the International Space Station. Astronaut physiological adaptations, muscle parameters, and cardiovascular parameters are also reviewed.
    Keywords: Aerospace Medicine
    Type: Human Research Program Investigators Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-13
    Description: During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.
    Keywords: Aerospace Medicine
    Type: JSC-17724 , Human Research Program Investigators Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: 56th Annual Meeting of the American College of Sports Medicine; May 27, 2009 - May 30, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-07-13
    Description: In exercising muscles force production and muscular endurance are impaired by a decrease in intramuscular pH. The effects of aerobic training (AT) on preventing acidosis and prolonging exercise time in muscles not specifically targeted by the training are unknown. Purpose: To compare interstitial pH, measured non-invasively with near infrared spectroscopy (NIRS), in the flexor digitorum profundus (FDP) during rhythmic handgrip exercise in sedentary subjects and those who participate in AT activities that target the lower body. Methods: Maximal isometric force (MIF) was measured on three separate days in AT (n=5) and sedentary (n=8) subjects using a handgrip dynamometer (HGD). Isometric muscular endurance (IME) was measured during five trials, each separated by at least 48 hrs. For each IME trial subjects rhythmically squeezed (4 sec at 40% of MVC) and relaxed (2 sec) to fatigue or failure to reach the target force in three consecutive contractions or four non-consecutive contractions. Interstitial pH was derived from spectra collected using a NIRS sensor adhered to the skin over the FDP. The first four IME trials served to familiarize subjects with the protocol; the fifth trial was used for analysis. NIRS-derived pH was averaged in 30 sec increments. Between group differences in MIF and exercise time were tested using paired t-tests. A repeated measures ANOVA was used to analyze effects of AT and exercise time on pH. Results: MIF was not different between groups (mean SD; aerobic=415.6 95.4 N vs. sedentary =505.1 107.4 N). Time to fatigue was greater in the AT than in the sedentary group (mean SD: 611 173 sec vs. 377 162 sec, p〈0.05). pH was not different between groups at any time point. Average pH decreased (p〈0.05) in both groups from rest (pH=7.4) through 90 sec of exercise (pH=6.9), but did not decrease further throughout the remainder of exercise. Conclusion: Although between group differences in pH were not detected, differences during the onset of exercise may exist with a more frequent sampling. AT individuals appear to better tolerate decreased interstitial pH and are able to continue submaximal muscular work, possibly due to psychological familiarization to muscular fatigue and/or systemic physiological benefits.
    Keywords: Aerospace Medicine
    Type: JSC-CN-17274 , Annual Meeting of the American College of Sports Medicine; May 27, 2009 - May 30, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-13
    Description: Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.
    Keywords: Aerospace Medicine
    Type: Human Research Program Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-07-13
    Description: This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.
    Keywords: Life Sciences (General)
    Type: JSC-CN-17544 , JSC-CN-20790 , Human Systems Integration Symposium; Mar 17, 2009 - Mar 19, 2009; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-07-12
    Description: Micro-organ devices (MODs) are being developed to satisfy an emerging need for small, lightweight, reproducible, biological-experimentati on apparatuses that are amenable to automated operation and that imp ose minimal demands for resources (principally, power and fluids). I n simplest terms, a MOD is a microfluidic device containing a variety of microstructures and assemblies of cells, all designed to mimic a complex in vivo microenvironment by replicating one or more in vivo micro-organ structures, the architectures and composition of the extr acellular matrices in the organs of interest, and the in vivo fluid flows. In addition to microscopic flow channels, a MOD contains one or more micro-organ wells containing cells residing in microscopic e xtracellular matrices and/or scaffolds, the shapes and compositions o f which enable replication of the corresponding in vivo cell assembl ies and flows.
    Keywords: Life Sciences (General)
    Type: MSC-23988-1 , NASA Tech Briefs, September 2009; 21-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-12
    Description: To estimate astronaut health risk due to space radiation, one must have the ability to calculate exposure-related quantities averaged over specific organs and tissue types. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various tissues to the reference values specified by the International Commission on Radiological Protection (ICRP). Major discrepancies are found between the CAM and CAF tissue masses and the ICRP reference data for almost all of the tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN to compute mass averaged exposure quantities. A numerical algorithm is used to generate multiple point distributions for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.
    Keywords: Aerospace Medicine
    Type: NASA/TP-2009-215562 , LF99-8300 , L-19570
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-07-12
    Description: The Human Factors Assessment of Vibration Effects on Visual Performance During Launch (Visual Performance) investigation will determine visual performance limits during operational vibration and g-loads on the Space Shuttle, specifically through the determination of minimum readable font size during ascent using planned Orion display formats. Research Summary: The aim of the Human Factors Assessment of Vibration Effects on Visual Performance during Launch (Visual Performance) investigation is to provide supplementary data to that collected by the Thrust Oscillation Seat Detailed Technical Objective (DTO) 695 (Crew Seat DTO) which will measure seat acceleration and vibration from one flight deck and two middeck seats during ascent. While the Crew Seat DTO data alone are important in terms of providing a measure of vibration and g-loading, human performance data are required to fully interpret the operational consequences of the vibration values collected during Space Shuttle ascent. During launch, crewmembers will be requested to view placards with varying font sizes and indicate the minimum readable size. In combination with the Crew Seat DTO, the Visual Performance investigation will: Provide flight-validated evidence that will be used to establish vibration limits for visual performance during combined vibration and linear g-loading. o Provide flight data as inputs to ongoing ground-based simulations, which will further validate crew visual performance under vibration loading in a controlled environment. o Provide vibration and performance metrics to help validate procedures for ground tests and analyses of seats, suits, displays and controls, and human-in-the-loop performance.
    Keywords: Aerospace Medicine
    Type: JSC-17962-47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The Urine Monitoring System (UMS) is a system designed to collect an individual crewmember's void, gently separate urine from air, accurately measure void volume, allow for void sample acquisition, and discharge remaining urine into the Waste Collector Subsystem (WCS) onboard the International Space Station. The Urine Monitoring System (UMS) is a successor design to the existing Space Shuttle system and will resolve anomalies such as: liquid carry-over, inaccurate void volume measurements, and cross contamination in void samples. The crew will perform an evaluation of airflow at the ISS UMS urinal hose interface, a calibration evaluation, and a full user interface evaluation. o The UMS can be used to facilitate non-invasive methods for monitoring crew health, evaluation of countermeasures, and implementation of a variety of biomedical research protocols on future exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-17962-45
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-12
    Description: Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias (Integrated Cardiovascular) will quantify the extent of long-duration space flightassociated cardiac atrophy (deterioration) on the International Space Station crewmembers.
    Keywords: Aerospace Medicine
    Type: JSC-17962-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-12
    Description: Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crew members during long-duration stays on the space station.
    Keywords: Aerospace Medicine
    Type: JSC-17962-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-12
    Description: Sleep-Wake Actigraphy and Light Exposure During Spaceflight - Short (Sleep-Short) will examine the effects of spaceflight on the sleep of the astronauts during space shuttle missions. Advancing state-of-the-art technology for monitoring, diagnosing and assessing treatment of sleep patterns is vital to treating insomnia on Earth and in space.
    Keywords: Aerospace Medicine
    Type: JSC-17962-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-12
    Description: Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss (Bisphosphonates) will determine whether antiresorptive agents, in conjunction with the routine inflight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density documented on previous ISS missions.
    Keywords: Aerospace Medicine
    Type: JSC-17962-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The Integrated Research Plan (IRP) describes the portfolio of Human Research Program (HRP) research and technology tasks. The IRP is the HRP strategic and tactical plan for research necessary to meet HRP requirements. The need to produce an IRP is established in HRP-47052, Human Research Program - Program Plan, and is under configuration management control of the Human Research Program Control Board (HRPCB). Crew health and performance is critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological and behavioral effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes HRP s approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and how they are integrated to provide a risk mitigation tool. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.
    Keywords: Aerospace Medicine
    Type: JSC-17774 , HRP-47065-Rev A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Exploration-class missions lead to longer communication delays with mission control. May not always have communication capability to stream real-time ultrasound images. SURGE explores use of a "just-in-time" learning tool, called OPEL = On-Board Proficiency Enhancer Light as an aid to a hypothetical crew medical officer working autonomously.
    Keywords: Aerospace Medicine
    Type: JSC-CN-20519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-12
    Description: This slide presentation reviews the importance of communications about anthropometry and population analysis in particular for the design of aerospace systems. The difficulty of providing anthropometric accomodation an entire range of the population is reviewed, and the importance of communication of the issues with human system integration is emphasized, and the analysis of population as it applies to existing human factors methodologies is a novel way to assist with the communication. The issues of space suit design and anthropometry is reviewed as an example.
    Keywords: Aerospace Medicine
    Type: JSC-CN-20792
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2019-07-12
    Description: A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-12
    Description: The Cardiovascular Risk Standing Review Panel (SRP) evaluated several cardiovascular risks associated with space flight along with the ongoing and emerging plans to study these issues and potentially propose and/or develop countermeasures. The areas of focus included: 1) The risk of cardiac rhythm problems during prolonged space flight, and 2) Issues related to the risk of orthostatic intolerance during re-exposure to gravity. An emerging area of concern is radiation associated vascular injury. The risk of cardiac rhythm disturbances has emerged based on case reports only. No systematic study of this risk has been published. However, concerns about this risk are heightened by the age range of astronauts, the structural changes in the heart that occur during space flight, and the potential shifts in fluids and electrolytes. The current plan is to use prolonged Holter monitor EKG records made as part of the "Integrated Cardiovascular SMO" in space to determine more about the frequency and magnitude of this problem and to link this data to complementary data from the nutrition group on electrolytes. The SRP was supportive of this approach. The SRP also felt that any data related to cardiovascular risk in space should be better coordinated with the medical screening data that all astronauts undergo at regular intervals. Additionally, while there are potential privacy issues related to this suggestion, many of the current barriers to better coordination of experimental and clinical data appear to reflect longstanding cultural traditions at NASA that need rethinking. The risk of orthostatic intolerance during re-exposure to gravity was seen by the SRP as an area supported by a wealth of published physiological evidence. The SRP also felt that moving forward with the planned approach to countermeasures was reasonable and that extensive additional hypothesis testing on the physiology of orthostatic intolerance was not needed at this time. There was support for developing ground based models of limited (e.g. 1/6 th) G environments on Earth that generated a number of ideas for consideration by NASA investigators.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19450
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-12
    Description: The Bone and Muscle Risk Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on October 4-6, 2009 to discuss the areas of current and future research targeted by the Human Health Countermeasures (HHC) Element of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Bone and Muscle Risk SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the Panel's review. The Bone and Muscle Risk SRP consisted of scientists who are experts in muscle, bone, or both and could evaluate the existing evidence with sufficient knowledge of the potential effects of long duration exposure to microgravity. More important, although expertise in basic science is important, the SRP was requested to evaluate the practicality of the proposed efforts in light of the realistic demands placed on the HRP. In short, all tasks presented in the Integrated Research Plan (IRP) should address specific questions related to the challenges faced by the astronauts as a result of prolonged exposure to microgravity. All tasks proposed to fill the gaps in knowledge should provide applied, translational data necessary to answer the specific questions. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the panel charge, either as a group or in separate sessions for the Bone and Muscle Risk subgroups. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on October 6, 2009. Taking the evidence and identified risks as givens, the SRP concluded that 1) integration of information should lead to a more comprehensive approach to identifying the gaps, 2) not all tasks addressed the gaps as stated in the IRP, 3) better access should be given to the SRP to existing data to include in its review, and 4) there were some missing gaps and tasks. As a result the SRP recommended 1) combining certain gaps, which in some cases were addressed with identical tasks, 2) additional gaps and tasks to address some of the gaps, 3) deleting some gaps and tasks to better focus the efforts of NASA s HRP in prioritizing their efforts, and 4) prioritizing gaps to address significant issues needing resolution in the short term while maintaining an awareness of long-term goals. The SRP commended the efforts by the HHC Element to integrate knowledge gaps and design tasks to address the higher order questions. This integration did not apply to the Bone and Muscle Risk alone, but the musculoskeletal system as its functions integrate with issues in
    Keywords: Aerospace Medicine
    Type: JSC-CN-19448
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-12
    Description: Astronauts are at risk for developing decompression sickness (DCS) while exposed to the hypobaric environment of the extravehicular suit in space, in terrestrial hypobaric chambers, and during ascent from neutral buoyancy training dives. There is increasing recognition that DCS risk is different between diving and altitude exposures, with many individual parameters and environmental factors implicated as risk factors for development of DCS in divers but are not recognized as risk factors in altitude exposures. Much of the literature to date has focused on patent foramen ovale (PFO), which has long been considered a major risk factor for DCS in diving exposures, but its link to serious DCS in altitude exposures remains unclear. Knowledge of those risk factors specific to hypobaric DCS may help identify susceptible individuals and aid in astronaut selection, crew assignment, and mission planning. This paper reviews the current literature pertaining to these risk factors, including PFO, anthropometric parameters, gender, menstrual cycle, lifetime diving experience, physical fitness, biochemical levels, complement activation, cigarette smoking, fluid balance, and ambient temperature. Further research to evaluate pertinent risk factors for DCS in altitude exposures is recommended.
    Keywords: Aerospace Medicine
    Type: JSC-CN-20567
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2019-07-12
    Description: To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.
    Keywords: Aerospace Medicine
    Type: JSC-CN-20521
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-07-12
    Description: This document represents a summary of medical and scientific evaluations conducted aboard the C-9 and other NASA-sponsored aircraft from June 2008 to June 2009. Included is a general overview of investigations manifested and coordinated by the Human Adaptation and Counter-measures Division. A collection of brief reports that describe tests conducted aboard the NASA-sponsored aircraft follows the overview. Principal investigators and test engineers contributed significantly to the content of the report, describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the Reduced Gravity Program. Acknowledgments
    Keywords: Aerospace Medicine
    Type: JSC-CN-18858
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-12
    Description: Very little research has systematically evaluated the prevalence (or potential risk) of cardiac arrhythmias during space flight. There are several observational reports of non life-threatening but potentially concerning arrhythmias. At least two potential risk factors for arrhythmias have been reported either during or immediately after space flight: cardiac atrophy and a prolonged QTc interval. The potential severity of the mission impact of a serious arrhythmia requires that a systematic evaluation be conducted of the risk of arrhythmia due to space flight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19062
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-12
    Description: A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.
    Keywords: Aerospace Medicine
    Type: LEW-18357-1 , NASA Tech Briefs, May 2009; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-07-12
    Description: The ultimate goal of planetary protection research is to develop superior strategies for inactivating resistance bearing micro-organisms like Rummeli - bacillus stabekisii. By first identifying the particular physiologic pathway and/or structural component of the cell/spore that affords it such elevated tolerance, eradication regimes can then be designed to target these resistance-conferring moieties without jeopardizing the structural integrity of spacecraft hardware. Furthermore, hospitals and government agencies frequently use biological indicators to ensure the efficacy of a wide range of sterilization processes. The spores of Rummelibacillus stabekisii, which are far more resistant to many of such perturbations, could likely serve as a more significant biological indicator for potential survival than those being used currently.
    Keywords: Life Sciences (General)
    Type: NPO-46221 , NASA Tech Briefs, May 2009; 45-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2019-07-12
    Description: The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.
    Keywords: Aerospace Medicine
    Type: NASA/TM-2009-215592 , E-16882
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-12
    Description: The purpose of this document is to define, document, and allocate the Human Research Program (HRP) requirements to the HRP Program Elements. It establishes the flow-down of requirements from Exploration Systems Mission Directorate (ESMD) and Office of the Chief Health and Medical Officer (OCHMO) to the various Program Elements of the HRP to ensure that human research and technology countermeasure investments are made to insure the delivery of countermeasures and technologies that satisfy ESMD's and OCHMO's exploration mission requirements. Requirements driving the HRP work and deliverables are derived from the exploration architecture, as well as Agency standards regarding the maintenance of human health and performance. Agency human health and performance standards will define acceptable risk for each type and duration of exploration mission. It is critical to have the best available scientific and clinical evidence in setting and validating these standards. In addition, it is imperative that the best available evidence on preventing and mitigating human health and performance risks is incorporated into exploration mission and vehicle designs. These elements form the basis of the HRP research and technology development requirements and highlight the importance of HRP investments in enabling NASA's exploration missions. This PRD defines the requirements of the HRP which is comprised of the following major Program Elements: Behavioral Health and Performance (BHP), Exploration Medical Capability (ExMC), Human Health Countermeasures (HHC), ISS Medical Project (ISSMP), Space Human Factors and Habitability (SHFH), and Space Radiation (SR).
    Keywords: Aerospace Medicine
    Type: JSC-17772 , HRP-47052, Rev. C
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-13
    Description: We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites (~ 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture density, gene expression, and metabolic activity while in the space environment. Flight data and results will be presented from GeneSat-1, which tracked gene expression levels of GFP-labeled E. coli and from PharmaSat, which monitored the dose dependency of an antifungal agent against S. cerevisiae. The O/OREOS SESLO instrument, which will study the effects of radiation and microgravity upon the viability and growth characteristics of B. subtilis and the halophile Halorubrum chaoviatoris for periods of 0 - 6 months in space, will be described as well. The ongoing expansion of the small satellite toolbox of biological technologies will be summarized.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN886 , ISPE 09 Annual Meeting: Thriving in a Survival Environment; Nov 08, 2009 - Nov 11, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19165 , Texas Life Science Conference; Nov 12, 2009 - Nov 13, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-13
    Description: Tissue Doppler (TD) registers movement of a given sample of cardiac tissue throughout the cardiac cycle. TD spectra of the right ventricle (RV) were obtained from a long-duration ISS crewmember as a portion of an ongoing experiment ("Braslet" test objective). To our knowledge, this is the first report of RV TD conducted in space flight, and the data represent reproducibility and fidelity of this application in space and serve as the first "space normal" data set. Methods RV TD was performed by astronaut scientists remotely guided by an ultrasound expert from Mission Control Center, Houston, TX. In four of the subjects, RV TD was acquired from the free wall near the tricuspid annulus in two separate sessions 4 to 7 days apart. A fifth subject had only one session. All digital DICOM frames were exported for off-line analysis. Systolic (S ), early diastolic (E ) and late diastolic (A ) velocities were measured. RV Tei-index was calculated using diastolic and systolic time intervals as a combined measure of myocardial performance. Results and Discussion The mean values from the first 4 subjects (8 sessions) were used as the on-orbit reference data, and subject 5 was considered as a hypothetical patient for comparison (see Table). The greatest difference was in the early diastolic A (31 %) yet the standard deviation (a) for A amongst the reference subjects was 2.25 (mean = 16.02). Of interest is the Tei index, a simple and feasible indicator of overall ventricular function; it was similar amongst all the subjects. The late diastolic A seems to compensate for the variance in E . Normal Tei index for the RV is 〈 0.3, yet our data show all but one subject consistently above this level, notwithstanding their nominal responses to daily exercise in microgravity. These data remind us that the physiology of RV preload in altered gravity environments is still not completely understood.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19030 , Aerospace Medicine Association Annual Meeting; May 09, 2010 - May 13, 2010; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN586 , Genetic and Evolutionary Computation Conference (GECCO); Jul 08, 2009 - Jul 12, 2009; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-07-13
    Description: The recent developments in the field of nanotechnology have provided scientists with a new set of nanoscale materials, tools and devices in which to investigate the biological science thus creating the mulitdisciplinary field of bio-nanotechnology. Bio-nanotechnology merges the biological sciences with other scientific disciplines ranging from chemistry to engineering. Todays students must have a working knowledge of a variety of scientific disciplines in order to be successful in this new field of study. This talk will provide insight into the issue of multidisciplinary education from the perspective of a graduate student working in the field of bio-nanotechnology. From the classes we take to the research we perform, how does the modern graduate student attain the training required to succeed in this field?
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN443 , AAAS National Meeting; Feb 12, 2009 - Feb 14, 2009; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-07-13
    Description: The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18951 , AsMA Annual meeting; May 09, 2010 - May 13, 2010; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-07-13
    Description: Risk prediction equations from the Framingham Heart Study are commonly used to predict the absolute risk of myocardial infarction (MI) and coronary heart disease (CHD) related death. Predicting CHD-related events in the U.S. astronaut corps presents a monumental challenge, both because astronauts tend to live healthier lifestyles and because of the unique cardiovascular stressors associated with being trained for and participating in space flight. Traditional risk factors may not hold enough predictive power to provide a useful indicator of CHD risk in this unique population. It is important to be able to identify individuals who are at higher risk for CHD-related events so that appropriate preventive care can be provided. This is of special importance when planning long duration missions since the ability to provide advanced cardiac care and perform medical evacuation is limited. The medical regimen of the astronauts follows a strict set of clinical practice guidelines in an effort to ensure the best care. The purpose of this study was to evaluate the utility of the Framingham risk score (FRS), low-density lipoprotein (LDL) and high-density lipoprotein levels, blood pressure, and resting pulse as predictors of CHD-related death and MI in the astronaut corps, using Cox regression. Of these factors, only two, LDL and pulse at selection, were predictive of CHD events (HR(95% CI)=1.12 (1.00-1.25) and HR(95% CI)=1.70 (1.05-2.75) for every 5-unit increase in LDL and pulse, respectively). Since traditional CHD risk factors may lack the specificity to predict such outcomes in astronauts, the development of a new predictive model, using additional measures such as electron-beam computed tomography and carotid intima-media thickness ultrasound, is planned for the future.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18979 , Kelsey Research Foundation''s Annual Health Services & Outcomes Research Conference; Dec 02, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18923 , Department of Defense Para-Rescue-Jumpers; Oct 26, 2009 - Oct 30, 2009; Patrick AFB, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2019-07-13
    Description: Despite the use of exercise countermeasures during long-duration space missions, bone mineral density (BMD) and predicted bone strength of astronauts continue to show decreases in the lower extremities and spine. This site-specific bone adaptation is most likely caused by the effects of microgravity on the mechanical loading environment of the crew member. There is, therefore, a need to quantify the mechanical loading experienced on Earth and on-orbit to define the effect of a given "dose" of loading on bone homeostasis. Gene et al. recently proposed an enhanced DLS (EDLS) model that, when used with entire days of in-shoe forces, takes into account recently developed theories on the importance of factors such as saturation, recovery, and standing and their effects on the osteogenic response of bone to daily physical activity. This algorithm can also quantify the tinting and type of activity (sit/unload, stand, walk, run or other loaded activity) performed throughout the day. The purpose of the current study was to use in-shoe force measurements from entire typical work days on Earth and on-orbit in order to quantify the type and amount of loading experienced by crew members. The specific aim was to use these measurements as inputs into the EDLS model to determine activity timing/type and the mechanical "dose" imparted on the musculoskeletal system of crew members and relate this dose to changes in bone homeostasis.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18837 , Orthopadeic Research Society 56th Annual Meeting; Mar 06, 2010 - Mar 09, 2010; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Slightly more than 500 people have flown in space, most of them for short periods of time. The total number of person years in space is small. Given this fact, and given rigorous astronaut screening, it is not surprising that the accumulated infectious disease experience in space is also small, and mostly, theoretical. As the human space presence expands, we may expect mission length, total accumulated person years and the environmental complexity to increase. Add to the mix both changes in human immunity and microbial virulence, and it becomes realistic to consider infectious scenarios and the means to mitigate them. This lecture will cover the inhabited space environment from the perspective of host-microbe interactions, current relevant research, and the current countermeasures used. Future challenges will be discussed and there will be opportunity to ask questions about Space Operations. The audience is encouraged to think about what medical tools you would choose to have in different types of mission, what you would be willing to leave behind, and how you would compensate for the necessary trade offs in mission design.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18838 , Cleveland Clinic Foundation; Sep 15, 2009; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the epidemiology of Lyme Disease that accounts for more than 95% or vector borne diseases in the United States. The history, symptoms and the life cycle of the tick, the transmitting agent of Lyme Disease, a map that shows the cases reported to the CDC between1990 and 2006 and the number of cases in Alabama by year from 1986 to 2007. A NASA project is described, the goals of which are to (1) Demonstrate the presence of the chain of infection of Lyme disease in Alabama (2) Identify areas with environmental factors that support tick population using NASA Earth Observation Systems data in selected areas of Alabama and (3) Increase community awareness of Lyme disease and recommend primary and secondary prevention strategies. The remote sensing methods included: Analyzed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and DigitalGlobe Quickbird satellite imagery from summer months and Performed image analyses in ER Mapper 7.1. Views from the ASTER and Quickbird land cover are shown, the Normalized Difference Vegetation Index (NDVI) algorithm was applied to all ASTER and Quickbird imagery. The use of the images to obtain the level of soil moisture is reviewed, and this analysis was used along with the NDVI, was used to identify the areas that support the tick population.
    Keywords: Life Sciences (General)
    Type: M09-0656 , (POSTER) UAB DEVELOP Student Poster for Summer ''09/DEVELOP Stakeholders meeting; Jul 29, 2009; Birmingham, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-07-13
    Description: Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) 〉30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons (50-300 MeV) in real-time is shown to be a crucial issue for crew protection.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18746 , JSC-CN-19412 , American Geophysical Union; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019-07-13
    Description: The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18605 , NASA Papilledema Summit; Jul 27, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-07-13
    Description: The purpose of this project is to assess the potential toxicity of lunar dust to cause the release of pro-inflammatory cytokines by human lung cells. Some of this dust is on the scale of 1-2 micrometers and could enter the lungs when astronauts track dust into the habitat and inhale it. This could be a serious problem as NASA plans on going back to the moon for an extended period of time. Literature shows that quartz, which has a known cytoxicity, can cause acute cases of silicosis within 6 months, and in most cases cause silicosis after 3 years. The activation of lunar dust through impacts creates surface based radicals which, upon contact with water create hydroxl radicals and peroxyl radicals which are very reactive and potentially might even be as cytotoxic as quartz. These radicals could then react with lung cells to produce pro-inflammatory mediators such as interleukin-6 and interleukin-8, and TNF-alpha.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18618 , JSc-CN-18790 , SF Student Presentation; Jul 22, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-07-13
    Description: This joint U.S. - Russian work aims to establish a methodology for assessing cardiac function in microgravity in association with manipulation of central circulating volume. Russian Braslet-M occlusion cuffs were used to temporarily increase the volume of blood in the lower extremities, which effectively reduces the volume returning to the heart in the central circulation. A novel methodology was tested on the International Space Station (ISS) to assess the volume status of crewmembers by evaluating the responses to application and release of the Braslet-on-occlusion cuffs, as well as to modified Valsalva and Mueller maneuvers. Baseline echocardiographic tissue Doppler imaging (TDI) of the right ventricular free wall with no Braslet applied shows early diastolic E' (16 cm/sec), late diastolic A' (14 cm/sec), and systolic (12 cm/sec) velocities compatible with normal subjects on Earth. TDI of the RV free wall with Braslet applied shows that early diastolic E' decreased by 50% (8 cm/sec), late diastolic A' increased by 45%, and systolic S' remains unchanged. TDI of the RV free wall approximately 8 beats after the Braslet was released shows early diastolic E' (8 cm/sec), late diastolic A' (12 cm/sec), and systolic S' (13 cm/sec) velocities. During this portion of the release, early diastolic E' did not recover to baseline values but late diastolic A' and systolic S' recovered to pre-Braslet values. The pre-systolic cross-sectional area of the internal jugular vein with Braslet off was 1.07 cm(sup 2) and 1.13 cm(sup 2) 10 min after the Braslet was applied. The presystolic cross-sectional area of the common femoral vein with Braslet off was 0.50 cm(sup 2), and was 0.54 cm(sup 2) 10 min after the Braslet was applied. The right ventricular myocardial performance Tei index also was calculated for comparison with typical values found in healthy subjects on Earth. Baseline and Braslet-on values for Tei index were 0.25 and 0.22 respectively. Braslet Tei indices are within normal ranges found in healthy subjects and temporarily become greater than 0.4 during the dynamic Braslet release portion of this study. Tissue Doppler imaging of the right ventricle revealed that the Braslet influenced cardiac preload and that fluid was sequestered in the lower-extremity interstitial and vascular space after only 10 minutes of application. This report demonstrates that Braslet application affects right ventricular physiology in long-duration space flight based on TDI and that this effect is in part due to venous hemodynamics.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18425 , 17th IAA Humans in Space Symposium; Jun 07, 2009 - Jun 11, 2009; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-07-13
    Description: This slide presentation concerns the 5th volume of a joint publication that describes the cooperation between the United States and Russia in research into space biology and medicine. Each of the chapters is briefly summarized.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18399 , 17th IAA Humans in Space Symposium; Jun 07, 2009 - Jun 11, 2009; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-07-13
    Description: Decreases in strength and neuromuscular function are observed following prolonged disuse. Exercise countermeasures to prevent muscle dysfunction during disuse typically involve high intensity resistance training. The purpose of the study is to evaluate the effectiveness of low-load resistance training with a blood flow occlusion to mitigate muscle loss and dysfunction during 30 days of unilateral lower limb suspension (ULLS).
    Keywords: Aerospace Medicine
    Type: JSC-CN-18253 , American College of Sports Medicine meeting; May 27, 2009 - May 30, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-07-13
    Description: There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18264 , Aerospace Medical Association (AsMA) 80th Annual Meeting; May 03, 2009 - May 07, 2009; California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Astronaut back pain is frequently reported in the early phase of space flight as they adapt to microgravity. The epidemiology of space adaptation back pain (SABP) has not been well established. This presentation seeks to determine the exact incidence of SABP among astronauts, develop a case definition of SABP, delineate the nature and pattern of SABP, review available treatments and their effectiveness in relieving SABP; and identify any operational impact of SABP. A retrospective review of all available mission medical records of astronauts in the U.S. space program was performed. It was revealed that the incidence of SABP has been determined to be 53% among astronauts in the U.S. space program; most cases of SABP are mild, self-limited, or respond to available treatment; there are no currently accepted preventive measures for SABP; it is difficult to predict who will develop SABP; the precise mechanism and spinal structures responsible for SABP are uncertain; there was no documented evidence of direction operational mission impact related to SABP; and, that there was the potential for mission impact related to uncontrolled pain, sleep disturbance, or the adverse side effects pf anti-inflammatory medications
    Keywords: Aerospace Medicine
    Type: JSC-CN-18241 , Aerospace Medical Association (AsMA) 80th Annual Meeting; May 03, 2009 - May 07, 2009; California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-07-13
    Description: NASA s Neutral Buoyancy Laboratory (NBL) contains a 6.2 million gallon, 12-meter deep pool where astronauts prepare for space missions involving space walks (extravehicular activity EVA). Training is conducted in a space suit (extravehicular mobility unit EMU) pressurized to 4.0 - 4.3 PSI for up to 6.5 hours while breathing a 46% NITROX mix. Since the facility opened in 1997, over 30,000 hours of suited training has been completed with no occurrence of decompression sickness (DCS) or oxygen toxicity. This study examines the last 5 years of astronaut suited training runs. All suited runs are computer monitored and data is recorded in the Environmental Control System (ECS) database. Astronaut training runs from 2004 - 2008 were reviewed and specific data including total run time, maximum depth and average depth were analyzed. One hundred twenty seven astronauts and cosmonauts completed 2,231 training runs totaling 12,880 exposure hours. Data was available for 96% of the runs. It was revealed that the suit configuration produces a maximum equivalent air depth of 7 meters, essentially eliminating the risk of DCS. Based on average run depth and time, approximately 17% of the training runs exceeded the NOAA oxygen maximum single exposure limits, with no resulting oxygen toxicity. The NBL suited training protocols are safe and time tested. Consideration should be given to reevaluate the NOAA oxygen exposure limits for PO2 levels at or below 1 ATA.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18262 , Undersea and Hyperbaric Medicine Society Annual Meeting; Jun 25, 2009 - Jun 27, 2009; Nevada; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-07-13
    Description: The Public Health application area focuses on Earth science applications to public health and safety, particularly regarding infectious disease, emergency preparedness and response, and environmental health issues. The application explores issues of toxic and pathogenic exposure, as well as natural and man-made hazards and their effects, for risk characterization/mitigation and improvements to health and safety. The program elements of the NASA Applied Sciences Program are: Agricultural Efficiency, Air Quality, Climate, Disaster Management, Ecological Forecasting, Water Resources, Weather, and Public Health.
    Keywords: Life Sciences (General)
    Type: M10-0124 , 2009 American Society of Tropical Medicine and Hygiene Conference; Nov 21, 2009 - Nov 25, 2009; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-07-13
    Description: Collaboration between Medical Informatics and Healthcare Systems (MIHCS) at NASA/Johnson Space Center (JSC) and the Texas Medical Center (TMC) Library was established to investigate technologies for facilitating knowledge discovery across multiple life sciences research disciplines in multiple repositories. After reviewing 14 potential Enterprise Search System (ESS) solutions, Collexis was determined to best meet the expressed needs. A three month pilot evaluation of Collexis produced positive reports from multiple scientists across 12 research disciplines. The joint venture and a pilot-phased approach achieved the desired results without the high cost of purchasing software, hardware or additional resources to conduct the task. Medical research is highly compartmentalized by discipline, e.g. cardiology, immunology, neurology. The medical research community at large, as well as at JSC, recognizes the need for cross-referencing relevant information to generate best evidence. Cross-discipline collaboration at JSC is specifically required to close knowledge gaps affecting space exploration. To facilitate knowledge discovery across these communities, MIHCS combined expertise with the TMC library and found Collexis to best fit the needs of our researchers including:
    Keywords: Life Sciences (General)
    Type: JSC-CN-19361 , APQC''s 15th Knowledge Management Conference; Apr 29, 2010 - Apr 30, 2010; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the threat astronauts face from acute mountain sickness (AMS). It includes information about the symptoms of AMS, the potential threat to astronauts, and future efforts to mitigate the AMS threat.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19242 , ESA Workshop on Hypoxic Bed Rest Study; Nov 14, 2009 - Nov 16, 2009; Planica; Slovenia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-07-13
    Description: This presentation reviews the work being done to research the possibility of injuries from landing the Orion Crew Exploration Vehicle in either water or land contingencies This was done using the Total Human Model for Safety (THUMS) finite element model. The purpose of the simulations was to compare variations of a Vehicle Interface Element (VIE) and to evaluate the potential for injury. The presentation is accompanied by several animations from the model runs, showing the projected motion, with and without the various suggested types of VIEs. There are charts showing the injury metrics with the various types of VIEs. The ultimate use of this analysis was to assist in a selection of possible VIE designs
    Keywords: Aerospace Medicine
    Type: JSC-CN-18665 , Advances in Injury Biomechanics; Aug 04, 2009; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019-07-13
    Description: Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon dioxide that could meet the 1000-day SMAC of 0.5%, which would apply to long-duration voyages to Mars.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18669 , JSC-CN-19102 , SAMAP Submarine Air Monitoring Air Purification Conference; Oct 19, 2009 - Oct 22, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-07-13
    Description: This viewgraph presentation describes the various flight investigations performed on the International Space Station as part of the NASA Human Research Program (HRP). The evaluations include: 1) Stability; 2) Periodic Fitness Evaluation with Oxygen Uptake Measurement; 3) Nutrition; 4) CCISS; 5) Sleep; 6) Braslet; 7) Integrated Immune; 8) Epstein Barr; 9) Biophosphonates; 10) Integrated cardiovascular; and 11) VO2 max.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18398 , 12th Meeting of the US/Russian Joint Working Group on Space Biomedical and Biological Sciences Research; Jun 03, 2009 - Jun 05, 2009; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the performance errors associated with sleep loss, fatigue and psychomotor factors during manned space flight. Short and long term behavioral health factors are also addressed
    Keywords: Aerospace Medicine
    Type: JSC-CN-18277 , 80th Annual Scientific Meeting of the Aerospace Medical Association; May 03, 2009 - May 07, 2009; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-23958
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2019-07-12
    Description: Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.
    Keywords: Life Sciences (General)
    Type: NPO-45182 , NASA Tech Briefs, May 2009; 51-52
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019-07-12
    Description: A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.
    Keywords: Life Sciences (General)
    Type: MSC-23775-1 , NASA Tech Briefs, May 2009; 45
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-07-12
    Description: A process for making monodisperse liposomes having lipid bilayer membranes involves fewer, simpler process steps than do related prior methods. First, a microfluidic, cross junction droplet generator is used to produce vesicles comprising aqueous solution droplets contained in single layer lipid membranes. The vesicles are collected in a lipid-solvent mix that is at most partially soluble in water and is less dense than is water. A layer of water is dispensed on top of the solvent. By virtue of the difference in densities, the water sinks to the bottom and the solvent floats to the top. The vesicles, which have almost the same density as that of water, become exchanged into the water instead of floating to the top. As there are excess lipids in the solvent solution, in order for the vesicles to remain in the water, the addition of a second lipid layer to each vesicle is energetically favored. The resulting lipid bilayers present the hydrophilic ends of the lipid molecules to both the inner and outer membrane surfaces. If lipids of a second kind are dissolved in the solvent in sufficient excess before use, then asymmetric liposomes may be formed.
    Keywords: Life Sciences (General)
    Type: MSC-24302-1 , NASA Tech Briefs, May 2009; 51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-07-12
    Description: To assess changes in muscular strength and endurance after microgravity exposure, NASA measures isokinetic strength and endurance across multiple sessions before and after long-duration space flight. Accurate interpretation of pre- and post-flight measures depends upon the reliability of each measure. The purpose of this study was to evaluate the test-retest reliability of the NASA International Space Station (ISS) isokinetic protocol. Twenty-four healthy subjects (12 M/12 F, 32.0 +/- 5.6 years) volunteered to participate. Isokinetic knee, ankle, and trunk flexion and extension strength as well as endurance of the knee flexors and extensors were measured using a Cybex NORM isokinetic dynamometer. The first weekly session was considered a familiarization session. Data were collected and analyzed for weeks 2-4. Repeated measures analysis of variance (alpha=0.05) was used to identify weekly differences in isokinetic measures. Test-retest reliability was evaluated by intraclass correlation coefficients (ICC) (3,1). No significant differences were found between weeks in any of the strength measures and the reliability of the strength measures were all considered excellent (ICC greater than 0.9), except for concentric ankle dorsi-flexion (ICC=0.67). Although a significant difference was noted in weekly endurance measures of knee extension (p less than 0.01), the reliability of endurance measure by week were considered excellent for knee flexion (ICC=0.97) and knee extension (ICC=0.96). Except for concentric ankle dorsi-flexion, the isokinetic strength and endurance measures are highly reliable when following the NASA ISS protocol. This protocol should allow accurate interpretation isokinetic data even with a small number of crew members.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18042
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-12
    Description: This viewgraph presentation reviews muscle atrophy, models for atrophy, exercise countermearures and muscle strength as it relates to muscle function.
    Keywords: Aerospace Medicine
    Type: JSC-CN-17747
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-12
    Description: The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Analytical methods have not changed from earlier reports.
    Keywords: Aerospace Medicine
    Type: JSC-17978
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Stability testing is a tool used to access shelf life and effects of storage conditions for pharmaceutical formulations. Early research from the International Space Station (ISS) revealed that some medications may have degraded while in space. This potential loss of medication efficacy would be very dangerous to Crew health. The aim of this research project, Stability of Pharmacotherapeutic Compounds, is to study how the stability of pharmaceutical compounds is affected by environmental conditions in space. Four identical pharmaceutical payload kits containing medications in different dosage forms (liquid for injection, tablet, capsule, ointment and suppository) were transported to the ISS aboard a Space Shuttle. One of the four kits was stored on that Shuttle and the other three were stored on the ISS for return to Earth at various time intervals aboard a pre-designated Shuttle flight. The Pharmacotherapeutics laboratory used stability test as defined by the United States Pharmacopeia (USP), to access the degree of degradation to the Payload kit medications that may have occurred during space flight. Once these medications returned, the results of stability test performed on them were compared to those from the matching ground controls stored on Earth. Analyses of the results obtained from physical and chemical stability assessments on these payload medications will provide researchers additional tools to promote safe and efficacious medications for space exploration.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18668 , SK Student Presentations; Aug 13, 2009
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2019-07-19
    Description: How will migrating birds respond to changes in the environment under climate change? What are the implications for migratory success under the various accelerated climate change scenarios as forecast by the Intergovernmental Panel on Climate Change? How will reductions or increased variability in the number or quality of wetland stop-over sites affect migratory bird species? The answers to these questions have important ramifications for conservation biology and wildlife management. Here, we describe the use of continental scale simulation modeling to explore how spatio-temporal changes along migratory flyways affect en-route migration success. We use an individually based, biophysical, mechanistic, bird migration model to simulate the movement of shorebirds in North America as a tool to study how such factors as drought and wetland loss may impact migratory success and modify migration patterns. Our model is driven by remote sensing and climate data and incorporates important landscape variables. The energy budget components of the model include resting, foraging, and flight, but presently predation is ignored. Results/Conclusions We illustrate our model by studying the spring migration of sandpipers through the Great Plains to their Arctic breeding grounds. Why many species of shorebirds have shown significant declines remains a puzzle. Shorebirds are sensitive to stop-over quality and spacing because of their need for frequent refueling stops and their opportunistic feeding patterns. We predict bird "hydrographs that is, stop-over frequency with latitude, that are in agreement with the literature. Mean stop-over durations predicted from our model for nominal cases also are consistent with the limited, but available data. For the shorebird species simulated, our model predicts that shorebirds exhibit significant plasticity and are able to shift their migration patterns in response to changing drought conditions. However, the question remains as to whether this behavior can be maintained over increasing and sustained environmental change. Also, the problem is much more complex than described by the current processes captured in our model. We have taken some important and interesting steps, and our model does demonstrate how local scale information about individual stop-over sites can be linked into the migratory flyway as a whole. We are incorporating additional, species specific, mechanistic processes to better reflect different climate change scenarios
    Keywords: Life Sciences (General)
    Type: 94th ESA Annual Meeting; Aug 02, 2009 - Aug 07, 2009; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-19
    Description: Initial efforts to develop a deterministic model for predicting and simulating pollen release and downwind concentration to study dependencies of phenology on meteorology will be discussed. The development of a real-time, rapid response pollen release and transport system as a component of the New Mexico Environmental Public Health Tracking System (EPHTS), is based on meteorological models, NASA Earth science results (ESR), and an in-situ network of phenology cameras. The plan is to detect pollen release verified using ground based atmospheric pollen sampling within a few hours using daily MODIS daa in nearly real-time from Direct Broadcast, similar to the MODIS Rapid Response System for fire detection. As MODIS winds down, the NPOESS-VIIRS sensor will assume daily vegetation monitoring tasks. Also, advancements in geostationary satellites will allow 1km vegetation indices at 15-30 minute intervals. The pollen module in EPHTS will be used to: (1) support public health decisions for asthma and allergy alerts in New Mexico, Texas and Oklahoma; (2) augment the Centers for Disease Control and Prevention (CDC)'s Environmental Public Health Tracking Network (EPHTN); and (3) extend surveillance services to local healthcare providers subscribing to the Syndrome Reporting Information System (SYRIS). Previous studies in NASA's public health applications portfolios provide the infrastructure for this effort. The team is confident that NASA and NOAA ESR data, combined into a verified and validated dust model will yield groundbreaking results using the modified dust model to transport pollen. The growing ESR/health infrastructure is based on results from a rapid prototype scoping effort for pollen detection and simulation carried out by the principal investigators.
    Keywords: Life Sciences (General)
    Type: M09-0579 , 2009 National Environmental Public Health Conference: Healthy People in a Healthy Environment; Oct 26, 2009 - Oct 28, 2009; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-19
    Description: Obtaining vitamin D is critical for space travelers because they lack ultraviolet light exposure and have an insufficient dietary supply of vitamin D. Despite the provision of 400 IU vitamin D supplements to International Space Station (ISS) early crewmembers, vitamin D status was consistently lower after flight than before flight, and in several crewmembers has decreased to levels considered clinically significant. Vitamin D has long been known to play a role in calcium metabolism, and more recently its non-calcitropic functions have been recognized. According to the results of several recent studies, functionally relevant measures indicate that the lower limit of serum 25-hydroxyvitamin D (a marker of vitamin D status) should be raised from the current 23 nmol/L to 80 nmol/L. The mean preflight serum 25-hydroxyvitamin D (25-OH vit D) for U.S. ISS crewmembers to date is 63 +/- 16 nmol/L, and after a 4- to 6-mo space flight it typically decreases 25-30% despite supplementation (400 IU/d). The sub-optimal pre- and postflight vitamin D status is an issue that needs to be addressed, to allow NASA to better define the appropriate amount of supplemental vitamin D to serve as a countermeasure against vitamin D deficiency in astronaut crews. A series of ground-based and flight studies in multiple models have been conducted, including Antarctica in winter months when UV-B radiation levels are essentially zero, bed rest where subjects are not exposed to UV-B radiation for 60-90 days, in free-living individuals in Houston, and in International Space Station crewmembers. In these studies, we looked at dose regimen and efficacy, compliance issues, as well as toxicity. Preliminary results from these studies will be presented. Together, the data from these studies will enable us to provide space crews with evidence-based recommendations for vitamin D supplementation. The findings also have implications for other persons with limited UV light exposure, including polar workers and the elderly.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19439 , HRP Investigators'' Workshop; Feb 03, 2010 - Feb 05, 2010; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-19
    Description: The mission of NASA's Human Research Program (HRP) is to understand and reduce the risk to crew health and performance in exploration missions. The HRP addresses 27 specific risks by identifying and then filling gaps in understanding the risks and in the ability to disposition the risks. The primary bases for identifying gaps have been past experience and requirements definition. This approach has been very effective in identifying some important, relevant gaps, but may be inadequate for identifying gaps outside the past experience base. We are exploring the use of a gap taxonomy as a comprehensive, underlying conceptual framework that allows a more systematic identification of gaps. The taxonomy is based on these stages in medical care: prediction, prevention, detection/diagnosis, treatment, monitoring, rehabilitation, and lifetime surveillance. This gap taxonomy approach identifies new gaps in HRP health risks. Many of the new gaps suggest risk reduction approaches that are more cost effective than present approaches. A major benefit of the gap taxonomy approach is to identify new, economical approaches that reduce the likelihood and/or consequence of a risk.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19252 , 81st Annual Scientific Meeting of the Aerospace Medical Association; May 09, 2010 - May 13, 2010; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-19
    Description: Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of ~2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19278 , Experimental Biology Meeting of 2010; Apr 24, 2010 - Apr 28, 2010; Anaheim, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-19
    Description: Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.
    Keywords: Life Sciences (General)
    Type: JSC-CN-18117 , JSC-CN-18097 , 55th Annual Meeting of the Radiation Research Society; Oct 04, 2009 - Oct 07, 2009; Savannah, GA; United States|Heavy Ions in Therapy and Space Symposium 2009; Jul 06, 2009 - Jul 10, 2009; Cologne; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-19
    Description: The old adage we are our own worst enemies may perhaps be the most profound statement ever made when applied to man s desire for extraterrestrial exploration and habitation of Space. Consider the immune system protects the integrity of the entire human physiology and is comprised of two basic elements the adaptive or circulating and the innate immune system. Failure of the components of the adaptive system leads to venerability of the innate system from opportunistic microbes; viral, bacteria, and fungal, which surround us, are transported on our skin, and commonly inhabit the human physiology as normal and imunosuppressed parasites. The fine balance which is maintained for the preponderance of our normal lives, save immune disorders and disease, is deregulated in microgravity. Thus analogue systems to study these potential Risks are essential for our progress in conquering Space exploration and habitation. In this study we employed two known physiological target tissues in which the reactivation of hCMV and VZV occurs, human neural and lung systems created for the study and interaction of these herpes viruses independently and simultaneously on the innate immune system. Normal human neural and lung tissue analogues called tissue like assemblies (TLAs) were infected with low MOIs of approximately 2 x 10(exp -5) pfu hCMV or VZV and established active but prolonged low grade infections which spanned .7-1.5 months in length. These infections were characterized by the ability to continuously produce each of the viruses without expiration of the host cultures. Verification and quantification of viral replication was confirmed via RT_PCR, IHC, and confocal spectral analyses of the respective essential viral genomes. All host TLAs maintained the ability to actively proliferate throughout the entire duration of the experiments as is analogous to normal in vivo physiological conditions. These data represent a significant advance in the ability to study the triggering mechanisms which surround Herpes vial reactivation and proliferation. Additionally, prolonged replication of these viruses will allow the tracking of viral genomic shift.
    Keywords: Life Sciences (General)
    Type: Human Research Program Investigators Workshop; Feb 02, 2009 - Feb 04, 2009; League City, Texas; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-07-19
    Description: The primary objective of this project is to provide information pertaining to changes in seated height due to spinal elongation in a microgravity environment. The proposed experiment aims to collect seated height data for subjects exposed to microgravity environments, provide information relating to seated height rate of change over time, and feed new information regarding the elongation of the spine forward into the design of Constellation systems. Historical data indicates that spinal elongation occurs when crewmembers are subjected to microgravity. In as little as two days, the typical crewmember will exhibit increases in stature of up to 3 percent. However, data has been collected only for crewmembers in standing postures, and a limited pool of subjects was available. Due to the criticality of seated height in the design of the Crew Exploration Vehicle (CEV), a better understanding of the effects of microgravity on seated height is necessary. Small changes in seated height that may not have impacted crew accommodation in previous programs will have significant effects on crew accommodation due to the layout of seats in the CEV. The proposed study will directly measure changes in seated height for crewmembers in the Shuttle cockpit. An anthropometer will be used to record measurements to the top of the head of a seated subject, and an orthogonal photograph will be taken in order to measure seated height based on scaling references of known sizes as well as verify the posture and positioning remained consistent throughout the study. Data gained from this study will provide better information to CEV designers. Accurate measurements of crew seated height will be valuable for vehicle and habitation designers for future programs as well.
    Keywords: Aerospace Medicine
    Type: JSC-17759 , Human Research Program Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019-07-19
    Description: The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to ISS, medical equipment will be located on ISS, and carried into CEV in the event of an emergency. Flight Surgeons (FS) on the ground in Mission Control will be expected to direct the Crew Medical Officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. Human factors personnel at Johnson Space Center have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground. This area of research involved the feasibility of Just-in-time (JIT) training techniques and concepts for real-time medical procedures. In Phase 1, preliminary feasibility data was gathered for two types of prototype display technologies: a hand-held PDA, and a Head Mounted Display (HMD). The PDA and HMD were compared while performing a simulated medical procedure using ISS flight-like medical equipment. Based on the outcome of Phase 1, including data on user preferences, further testing was completed using the PDA only. Phase 2 explored a wrist-mounted PDA, and compared it to a paper cue card. For each phase, time to complete procedures, errors, and user satisfaction were captured. Information needed by the FS during ISS mission support, especially for an emergency situation (e.g. fire onboard ISS), may be located in many different places around the FS s console. A performance support tool prototype is being developed to address this issue by bringing all of the relevant information together in one place. The tool is designed to include procedures and other information needed by a FS during an emergency, as well as procedures and information to be used after the emergency is resolved. Several walkthroughs of the prototype with FSs have been completed within a mockup of an ISS FS console. Feedback on the current tool design as well as recommendations for existing ISS FS displays were captured.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19205 , 81st Annual Scientific Meeting of the Aerospace Medical Association; May 09, 2010 - May 13, 2010; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019-07-19
    Description: Exposure to microgravity during human spaceflight is required to be defined and understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Urine voids are capable of measuring the calcium and other metabolic byproducts in a constituent s urine. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross contamination (〈0.7 ml urine) and has volume accuracy of +/-2% between 100 to 1000 ml urine voids.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19172 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-07-19
    Description: Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs reviewed. DISCUSSION. A true ground-based flight analog for sensorimotor function is not feasible. A combination of flight analogs; however, can be used to selectively mimic different aspects of the spaceflight-induced sensorimotor performance decrements.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19134 , 81st Annual Scientific Aerospace Medical Association Meeting; May 09, 2010 - May 13, 2010; Phoenix, Az; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-07-19
    Description: Decreased peak oxygen consumption (VO2pk) and an elevated exercise heart rate (HR) response are associated with a reduction in plasma volume (PV) after space flight and bed rest, a space flight analog. Reduced VO2pk and submaximal exercise tolerance would negatively impact an astronaut s ability to perform near maximal work that would be required in the event of an emergency. We previously have administered IV furosemide followed by a low salt diet to model PV loss and orthostatic intolerance observed after spaceflight. Purpose: To determine whether a pharmacologically-induced reduction in PV results in decreased VO2pk and elevated exercise HR response. Methods: Six subjects (5M, 1F) performed two graded peak cycle tests (work rate increased by 35 or 50 W every 3 min), once while normovolemic and once while hypovolemic. HR and expired respiratory gases were continuously measured. To induce hypovolemia, subjects were administered a single dose of IV furosemide (0.5 mg.kg-1) 30 hr before exercise testing and then consumed a low-salt diet (10 mEq.d(sup -1)). PV was measured using carbon monoxide rebreathing. Exercise HR and VO2 responses were quantified as the area under the curve (AUC) calculated over each quartile of the peak test, based on test time in the hypovolemia condition. Paired t-tests were used to test for differences in PV, VO2pk, and peak HR between conditions. Repeated-measures ANOVAs were used to test for differences in AUC between conditions. Results: PV (3.32+/-0.12 vs. 2.77+/-0.16 L, p〈0.05) and VO2pk (3.30+/-0.67 vs. 2.90+/-0.57 L.min(sup -1), p〈0.05) were lower during hypovolemia than during normovolemia, but peak HR was not different (187+/-5 vs. 187+/-5 bpm). The AUC for VO2 and HR was different (p〈0.05) between conditions only in the highest quartile: HR was 4% higher and VO2 was 5% lower during the hypovolemia condition. Conclusion: The mean difference in VO2pk (-12%) between normovolemia and hypovolemia was similar to the mean difference in PV (-17%). Similar decreases in PV and VO2pk have been observed following short duration space flight, suggesting that pharmacologically-induced PV loss can be used to model microgravity-induced reductions in VO2pk.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19127 , American College of Sports Medicine; Jun 02, 2010 - Jun 05, 2010; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-07-19
    Description: NASA will build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of fine, reactive dust. Astronauts on the Moon will go in and out of the base for various activities, and will inevitably bring some dust into the living quarters. Depressurizing the airlock so that astronauts can exit for outdoor activities could also bring dust inside the airlock to the habitable area. Concerned about the potential health effects on astronauts exposed to airborne lunar dust, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust. The toxicity data also will be needed by toxicologists to establish safe exposure limits for astronauts residing in the lunar habitat and by environmental engineers to design an appropriate dust mitigation strategy. We conducted a study to examine biomarkers of toxicity (inflammation and cytotoxicity) in lung lavage fluids from mice intrapharyngeally instilled with lunar dust samples; we also collected lung tissue from the mice for histopathological examination 3 months after the dust instillation. Reference dusts (TiO2 and quartz) having known toxicities and industrial exposure limits were studied in parallel with lunar dust so that the relative toxicity of lunar dust can be determined. A 6-month histopathology study has been planned. These instillation experiments will be followed by inhalation studies, which are more labor intensive and technologically difficult. The animal inhalation studies will be conducted first with an appropriate lunar dust simulant to ensure that the exposure techniques to be used with actual lunar dust will be successful. The results of these studies collectively will reveal the toxicological risk of exposures and enable us to establish exposure limits on lunar dust for astronauts living in the lunar habitat.
    Keywords: Aerospace Medicine
    Type: JSC-17708 , NASA Human Research Program Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-07-19
    Description: Hygiene is something that is usually taken for granted by those of us on the Earth. The ability to perform hygiene satisfactorily during long duration space flight is crucial for the crew's ability to function. Besides preserving the basic health of the crew, crew members have expressed that the ability to clean up on-orbit is vital for mental health. Providing this functionality involves more than supplying hygiene items such as soap and toothpaste. On the International Space Station (ISS), the details on where and how to perform hygiene were left to the crew discretion for the first seventeen increments. Without clear guidance, the methods implemented on-orbit have resulted in some unintended consequences to the ISS environment. This paper will outline the issues encountered regarding hygiene activities on-board the ISS, and the lessons that have been learned in addressing those issues. Additionally, the paper will address the resolutions that have been put into place to protect the ISS environment while providing the crew sufficient means to perform hygiene.
    Keywords: Aerospace Medicine
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-07-19
    Description: Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the space flight environment may adversely affect the shelf life of pharmaceuticals aboard space missions.
    Keywords: Aerospace Medicine
    Type: Human Research Program Investigators Workshop; Feb 02, 2009 - Feb 04, 2009; Texas; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019-07-19
    Description: Elevated plasma homocysteine has been associated with altered cognitive performance in older adults. Elders referred to Adult Protective Services (APS) for self-neglect have been reported to have elevated plasma homocysteine levels and to suffer from cognitive impairment. This study assesses the association, if any, between plasma homocysteine and cognitive performance among elders with self-neglect. Methods: Sixty-five community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 matched controls (matched for age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS), the Wolf-Klein Clock Drawing Tests (CDT) and a comprehensive nutritional biochemistry panel, which included plasma homocysteine. Student s t tests and Pearson correlations were conducted to assess for bivariate associations. Results: Elders with self-neglect had significantly higher plasma homocysteine levels (M=12.68umol/L, sd=4.4) compared to the controls (M=10.40umol/L, sd=3.61;t=3.21, df=127, p=.002). There were no statistically significant associations between cognitive performance and plasma homocysteine in the self-neglect group, however there was a significant correlation between plasma homocysteine and the CDT among the controls (r=-.296, p=.022). Conclusion: Mean plasma homocysteine levels were significantly higher in elders with self-neglect, however, they do not appear to be related to cognitive performance, indicating that cognitive impairment in elder self-neglect involve mechanisms other than hyperhomocysteinemia. These findings warrant further investigation
    Keywords: Aerospace Medicine
    Type: American Geriatrics Society Annual Meeting; Apr 29, 2009 - May 03, 2009; Illinois; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-07-19
    Description: Until 2006, it was not been possible to assess nutritional status of crewmembers on the ISS during flight because blood and urine could not be collected during ISS missions. Postflight observations of alterations in status of several nutrients are troubling, and we require the ability to monitor the status of these nutrients during flight to determine if there is a specific impetus or timeframe for these changes. In addition to the monitoring of crew nutritional status during flight, in-flight sample collection would allow better assessment of countermeasure effectiveness. Collecting samples during flight is one of the objectives of SMO 016E, and it is also designed to expand the current medical requirement for nutritional assessment (MR016L) to include additional normative markers for assessing crew health and countermeasure effectiveness. Additional markers of bone metabolism will be measured to better monitor bone health and the effectiveness of countermeasures to prevent bone resorption. New markers of oxidative damage will be measured to better assess the type of oxidative insults that occur during space flight. The array of nutritional assessment variables will be expanded to include ones that will allow us to better understand changes in folate, vitamin K, and vitamin B6 status, as well as risk factors for cardiovascular and oxidative damage during and after flight. Stress hormones and hormones that affect bone and muscle metabolism will also be measured. Measuring these additional variables will allow us to better monitor the health of crewmembers and make more accurate recommendations for their rehabilitation. Several nutritional assessment variables are altered at landing, but it is not known how long these changes persist. We extended the original protocol to include an additional postflight blood and urine sample collection 30 days after landing. Data are being collected before, during, and after flight. These data will provide a complete survey of how nutritional status and related systems are affected by space flight. Analyzing the data will help us to define nutritional requirements for long-duration missions. This expanded set of measurements will also aid in the identification of nutritional countermeasures to counteract, for example, the deleterious effects of microgravity on bone and muscle and the effects of space radiation.
    Keywords: Aerospace Medicine
    Type: JSC-CN-17452 , JSC-CN-19420 , NASA Human Research Program; Feb 03, 2010 - Feb 05, 2010; Houston, TX; United States|Human Research Program Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019-07-19
    Description: Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health and safety. Early polar expeditions and exploration expeditions by sailing vessels have taught us that a deficiency, or excess, of even a single vitamin in the food supply can be catastrophic. Evidence from ground-based research indicates that some vitamins are destroyed and fatty acids are oxidized (and therefore rendered dangerous or useless) by different types of radiation and by conditions of long-term storage. We hypothesize that radiation and long-term storage in the space-flight environment will affect the stability of vitamins, amino acids, and fatty acids in the space food system. The research objectives of our ongoing stability studies are to determine the stability of water- and fat-soluble vitamins, fatty acids, and amino acids in the space food supply before and after space flight on the International Space Station (ISS). Foods were analyzed after 2 weeks (a flight control), 11, 19, and 28 months of flight. Along with the space-flown foods, ground-based controls matched for time, light, and temperature are analyzed. The flight studies complement planned ground-based studies of the effects of radiation on vitamins, amino acids, and fatty acids. Flight studies are needed because a model based on ground-based data cannot predict all of the effects of the space-flight environment. Flight studies provide a more accurate test system to determine the effects on these nutrients of the temperature, and radiation conditions in the space-flight environment. Ground studies are required to evaluate longer missions and higher radiation levels expected outside low-Earth orbit. In addition to providing information about nutrient stability in space, the results of these studies will help NASA determine if a need exists to develop special packaging that can ensure stability of foods and nutrients in space, or if further studies of nutrient metabolism or nutrient requirements are needed.
    Keywords: Aerospace Medicine
    Type: Human Research Program Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-19
    Description: In the framework of an operationally oriented investigation, we conducted a prospective trial of a standard clinical echocardiography protocol in a cohort of long-duration crewmembers. The resulting primary and processed data appear to have no precedents. Our tele-echocardiography paradigm, including just-in-time e-training methods, was also assessed. A critical review of the imaging technique, equipment and setting limitations, and quality assurance is provided, as well as the analysis of "space normal" data.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19029 , 81st Annual Scientific Meeting of the Aerospace Medical Association; May 09, 2010 - May 13, 2010; Phoenix,AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe (PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without air breaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and air breaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the air break was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = delta P defined DCS dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. The log likelihood (LL) without DCS dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included air breaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an air break in PB within the narrow range of tested conditions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18959 , 81st Annual Scientific Meeting of the Aerospace Medical Association; May 09, 2010 - May 13, 2010; Phoenix, Az; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...