ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (38)
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (35)
  • Elsevier  (53)
  • American Geophysical Union  (19)
  • Annual Reviews
  • 2005-2009  (72)
  • 1990-1994
  • 1985-1989
  • 1980-1984
  • 1975-1979
Collection
Years
Year
  • 1
    Publication Date: 2021-01-07
    Description: The CO2 degassing process from a large area on the Tyrrhenian side of central Italy, probably related to the input into the upper crust of mantle fluids, was investigated in detail through the geochemical study of gas emissions and groundwater. Mass-balance calculations and carbon isotopes show that over 50% of the inorganic carbon in regional groundwater is derived from a deep source highlighting gas−liquid separation processes at depth. The deep carbonate−evaporite regional aquifer acts as the main CO2 reservoir and when total pressure of the reservoir fluid exceeds hydrostatic pressure, a free gas phase separates from the parent liquid and escapes toward the surface generating gas emissions which characterise the study area. The distribution of the CO2 flux anomalies and the location of high PCO2 springs and gas emissions suggest that the storage and the expulsion of the CO2 toward the atmosphere are controlled by the geological and structural setting of the shallow crust. The average CO2 flux and the total amount of CO2 discharged by the study area were computed using surface heat flow, enthalpy and CO2 molality of the liquid phase circulating in the deep carbonate−evaporite aquifer. The results show that the CO2 flux varies from 1×104 mol y−1 km−2 to 5×107 mol y−1 km−2, with an average value of 4.8×106 mol y−1 km−2, about five times higher than the value of 1×106 mol y−1 derived by Kerrick et al. [Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293] as baseline for terrestrial CO2 emissions. The total CO2 discharged from the study area is 0.9×1011 mol y−1, confirming that Earth degassing from Tyrrhenian central Italy is a globally relevant carbon source
    Description: Published
    Description: 89–102
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Earth degassing ; carbon dioxide ; CO2 flux ; groundwater ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Description: The eruptive events of the July–August 2001 and October 2002–January 2003 at Mt. Etna provide new insights for reconstructing the complex geometry of the feeding system and their relationship to regional tectonics. The 2001 eruption took place mainly on the upper southern sector of the volcano. The eruption was preceded by a large earthquake swarm for a few days before its onset and accompanied by ground deformation and fracturing. The development of surface cracking along with the seismic pattern has allowed us to recognize three distinct eruptive systems (the SW–NE, NNW–SSE and N–S systems) which have been simultaneously active. Such eruptive systems are only the upper portions of a complex feeding system that was fed at the same time by two distinct magmas. The SW–NE and NNW–SSE systems, connected with the SE crater conduit, were fed by magma coming from depth, whereas the N–S system served instead as an ascending pathway for an amphibole-bearing magma residing in a shallow reservoir. The eruptive activity started again on October 2002 on the NE Rift Zone, where about 20 eruptive vents were aligned between 2500 and 1900 m a.s.l., and on the southern flank, from the central crater to the Montagnola. The onset of eruptive activity was accompanied by a seismic swarm. As in the 2001 eruptive event, two independent feeding systems formed, characterized by distinct magmas. The SW–NE system controlled the feeding of the Northeast Rift and was accommodated by left-lateral displacement along the WNW–ESE trending Pernicana Fault. The N–S system fed the eruptions on the southern flank. Moreover, the associated crustal deformation triggered seismic reactivation of tectonic structures in the eastern flank of the volcano and offshore. These two last eruptions indicate that at Mt. Etna the ascent of magma, as well as the accommodation of deformation, is strongly dominated by local extensional structures that are connected to a regional tectonic regime.
    Description: Published
    Description: 211-233
    Description: partially_open
    Keywords: extensional tectonics ; volcanic activity ; seismicity ; Sicily ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 5898384 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: We present the first helium isotope data for thermal waters and gas emissions on the islands of Terceira, Graciosa, Faial, Pico and Flores, as well as new data for Sao Miguel. The results allow us to track current mantle degassing associated with the Azores hot spot, to delineate its spatial distribution and to discuss its possible origin. As a general rule, we find that free gases tend to display somewhat higher 3He/4He ratio than groundwaters.We argue that this difference is likely due to radiogenic helium inputs to aquifers duringwater– rock interactions and, therefore, that gas phases are the fluid carriers with the most representative of mantle source signature. The measured 3He/4He ratios (normalized to the air ratio, Ra) range from lower-than-MORB values (5.23–6.07 Ra) on central Sao Miguel, to MORB values on Faial (8.53 Ra) and Flores (8.04 Ra) – located on either side of the Mid-Atlantic Ridge – and to plume-type values on Graciosa (11.2 Ra) and Terceira (13.5 Ra) where free gases also display ten times higher-than-MORB CO2/3He ratios (1.8–2.6×1010). Such a wide He isotopic range and its spatial distribution corroborate with available data for volcanic rocks, indicating that plume's head presently underlies the central part of the archipelago. The plume-type 3He/4He ratios on Terceira and Graciosa agree with geochemical and seismic evidence of a deep-rooted mantle plume feeding the Azores hot spot. Our finding that high 3He/4He ratios correspond to low 3He concentrations and high (arctype) CO2/3He values exclude a simple plume supply of 3He-rich primitive mantle. Instead, the simultaneity of both elevated CO2/3He and 3He/4He ratios is best explained by a 3He-rich contribution from the lower mantle diluted in a CO2-rich feeding plume that contains a recycled altered oceanic plate component. The alternative possibility of an enhanced time-integrated 3He/(U+Th) ratio in the Azores plume due to a greater compatibility of helium relative to U and Th during melting events is difficult to reconcile with the enriched pattern of volcanic rocks from the central islands. In any case, the Azores plume should derive from a mantle reservoir that could escape convective homogenization for a very long period of time, in agreement with subchondritic osmium isotopic ratios in volcanic rocks from the central islands of the archipelago.
    Description: Published
    Description: 70−80
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: hydrothemal fluids ; helium isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-14
    Description: From 25 November to 2 December 2006, the first active seismic tomography experiment at Stromboli volcano was carried out with the cooperation of four Italian research institutions. Researchers on board the R/V Urania of the Italian National Council of Research (CNR), which was equipped with a battery of four 210- cubic- inch generated injection air guns (GI guns), fired more than 1500 offshore shots along profiles and rings around the volcano.
    Description: DPC/INGV agreement 2004-2006
    Description: Published
    Description: 269-270
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; seismic tomography ; air-gun ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The properties of volcanic tremor wavefield at Mt. Etna Volcano, Italy, are investigated using data from two dense, smallaperture arrays of short-period seismometers deployed on the North and South flank of the volcano. Spectral analysis shows that most of the seismic energy is associated to several, narrow spectral peaks spanning the 1–5 Hz frequency band. Analysis of simultaneous recordings evidences that most of these peaks are common to different sites, thus suggesting a source effect as the origin of this energy. Frequency-slowness analyses evidence a complex wavefield, where body- and surface-waves alternatively dominate depending on the frequency band and component of motion taken into account. Surface waves are found to dominate at frequencies below 1 Hz and above 3 Hz. Conversely, the 0.8–2.3 Hz vertical- and radial-component wavefields at both arrays exhibit a nondispersive nature, with apparent velocities spanning the 1–2 s/km range. Particle motion analysis suggests these arrivals are associated to both P- and SV-waves inciding at shallow angles. At the northern array, back-azimuths of these waves encompass the whole summit crater area. At the southern array, back-azimuths are instead clustered around a direction pointing about 500 m east of the SE crater. At frequency around 4 Hz, the dominant direction of wave propagation at the southern site shifts about 30jW, pointing to the Bocca-Nuova/Voragine craters, and concordance of location is found with the source imaged by the northern array. The 0.8–2.3 Hz transverse-component of motion depicts velocities of about 0.5 km/s, a value which is about three times lower than those associated to the vertical and radial components. Results from polarization analyses at the two array sites depict the dominance of horizontal, linear particle motion oriented transversally with respect to the source direction. Polarization ellipsoids at the stations of the sparse network all depict a quasi-horizontal setting. With two exceptions, the direction of particle motion is always oriented tangentially to the summit volcanic edifice. The origin of the large transverse motion observed at the two array sites is thus attributed to SH waves generated by free-surface interaction of waves impinging the concave topography. The correlation method is used to derive the dispersion properties of short-period (0.5–5 Hz) Rayleigh waves, from which the shallow shear-wave velocity structures are derived for beneath the two semicircular arrays. Using a probabilistic approach, we invert slowness data measured at the two dense arrays for retrieving source location and extent. The joint inversion of slowness data from the two arrays point to different sources. This observation is interpreted in terms of ray bending associated to lateral heterogeneity and/or strong topographic effects on wave propagation. Once the propagation effects are taken into account, the most probable source locations are associated to a shallow region encompassing the summit craters and the eruptive fissures active at the time of the experiment (September 1999).
    Description: Published
    Description: 223-245
    Description: partially_open
    Keywords: Mount Etna ; Volcanic tremor ; Volcanic seismicity ; Seismic monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 487 bytes
    Format: 1473591 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The recent eruption of Mount Etna (July 2001) offered the opportunity to analyze magma-derived volatiles emitted during preand syn-eruptive phases, and to verify whether their composition is affected by changes in volcanic dynamics. This paper presents the results of analyses of F, Cl and S in the volcanic plume collected by filter-packs, and interprets variations in the composition based on contrasting solubility in magmas. A Rayleigh-type degassing mechanism was used to fit the acquired data and to estimate Henryâ s solubility constant ratios in Etnean basalt. This model provided insights into the dynamics of the volcano. Abundances of sulfur and halogens in eruptive plumes may help predict the temporal evolution of an ongoing effusive eruption.
    Description: -Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 1559
    Description: partially_open
    Keywords: magmatic degassing ; acidic gases ; plume chemistry ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 275912 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: On October 9, 1999 an earthquake of ML =3.6 occurred about 3 km beneath the central cone of Mt. Vesuvius, near Naples, Italy. The event had the highest magnitude recorded for at least 25 years, and possibly since the last eruption of this volcano (1944), and was not accompanied by other geophysical or geochemical changes. The present paper essentially deals with the seismological data collected at Mt. Vesuvius for 29 years before the October 9 earthquake till the end of 2001, and describes the time pattern distribution of seismic slip release and the b-parameter of the Gutenberg^Richter distribution. The self-similarity of the source process is investigated through the scaling law of the seismic spectrum. Results indicate a two-fold pattern of stress release, with high values (up to 100 bar) for earthquakes occurring close to the top of the carbonate basement that underlies the volcano at 2^3 km of depth, and low values (down to 0.1 bar) for the shallow events occurring within the volcanic edifice. The scaling law of the seismic spectrum is non-self-similar, indicating that the source dimensions do not scale with the seismic moment. For this reason the low-magnitude events substantially contribute to the overall cumulative seismic slip release. The bparameter of the Gutenberg^Richter distribution shows a variation around 1980, and a substantial constancy in the other time periods. The presence of extended aquifers, with their tops at about 1 km beneath the crater, favors the hypothesis of the triggering of the shallowest events by water-level changes. This hypothesis is in agreement with the low values of the stress drop measured for the shallowest seismic events. The existence of a carbonate basement with its top at about 2.5 km beneath the crater and the higher stress drops for the deeper events make reasonable the hypothesis that the pre-fractured carbonate basement may be the site of tectonic stress release.
    Description: Published
    Description: 23-39
    Description: partially_open
    Keywords: Vesuvius ; Seismicity ; Seismic source ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 616643 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: On April 5, 2003, one of the largest eruptions in the last decades was observed at Stromboli volcano, Italy. The eruption occurred in a period of increased volcanic activity, following a first explosion in December 2002, which interrupted the typical moderate “Strombolian” behaviour. We present an exhaustive analysis of the available broadband seismic data and relate them to the observed eruption phases. Prominent features of the seismic signals include an ultra long period signal starting a few tens of seconds prior to the explosive eruption as well as a strong energetic signal a few seconds after the onset of the eruption. Both signals are not exactly synchronized with the other geophysical observations. We present a detailed study of those signals using spectral and particle motion techniques. We estimate eruption parameters and seismic source characteristics by different inversion approaches. Results clearly indicate that the paroxysmal eruption was triggered by a shallow slow thrust-faulting dislocation event with a moment magnitude of Mw=3.0 and possibly associated with a crack that formed previously by dike extrusion. At least one blow-out phase during the paroxysmal explosion could be identified from seismic signals with an equivalent moment magnitude of Mw=3.7 and is represented by a vertical linear vector dipole and two weaker horizontal linear dipoles in opposite direction, plus a vertical force.
    Description: Published
    Description: 164-178
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; source inversion ; volcano seismology ; paroxysm ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This paper deals with the problem of seismicity at Mt. Vesuvius with a view to providing an estimation of the maximum expected earthquake. Integrated analysis of both historical and current seismicity as well as the geological conditions of Vesuvius and the surrounding areas show that seismogenetic structures may fall within the crater axis and at the boundaries of the volcanic complex. While activation of the whole seismogenetic volume detected by seismicity in the past 30 years would indicate a total seismic moment of Mo = 7.1E+ 15 Nm for a magnitude M = 4.5, knowledge of the area's geological structure suggests faulting surfaces of about 32 km2 with an associated magnitude of M = 5.4. The areas of maximum expected damage differ according to the orientation of the hypothesized structure. Analysis of geological and geophysical data and the damage associated to the AD 62 earthquake shows that the prevailing directions in the faulting planes are NE–SW in the eastern sector of the volcanic complex, and roughly WNW–ESE in the southern part of the volcano along the coast. Comparison of instrumental seismicity and historical data reveals two significantly different energy levels: a lower earthquake level with Mmax = 4.5, corresponding to current seismicity and that which accompanied volcanic activity in the eruptive period from 1631–1944; an upper level with Mmax = 5.4, represented by the AD 62 earthquake. The two levels correspond to two stress states and different seismogenetic structures.
    Description: Published
    Description: 139-149
    Description: 3.6. Fisica del vulcanismo
    Description: 3.10. Sismologia storica e archeosismologia
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Vesuvius ; seismic hazard ; historical seismicity ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The soil CO2 flux on Mt. Etna as recorded by the ETNAGAS network (an automatic system for measuring soil CO2 flux and meteorological parameters) started to increase strongly about 5 months prior to the onset of the 2004–2005 eruption and decreased a few months before the end of the eruption. Time delays in the occurrences of anomalies in soil CO2 flux at different sites in the geochemical network constrain the relationship between soil CO2 flux distributions and the tectonic framework of Etna volcano. The anomalies observed before the 2004–2005 eruption support the intrusion of new undegassed magma into the upper feeding system of the volcano (〈20 km below sea level). Magma subsequently rose slowly in the volcano conduits, thereby triggering the onset of the 2004–2005 eruption. The time delays in the occurrences of anomalies in combination with spectral analysis indicate the importance of tectonic and volcanotectonic structures in driving the ascent of deep gases within the crust. Moreover, greatest amplitude pulsations of the low-frequency components of the CO2 flux signals were correlated with the paroxystic activities of the 2004–2005 eruption. This study confirms that CO2 flux variation is a useful indicator for volcanic activity in the surveillance of the Mt. Etna and similar basaltic volcanoes.
    Description: Dipartimento Protezione Civile Ministero degli Interni
    Description: Published
    Description: B09206
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux ; Continuous monitoring of soil CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4=0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake,meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009±1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.
    Description: Published
    Description: 237–248
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: El Chichón volcano ; crater lake–Spring dynamics ; fluid geochemistry ; stable isotopes ; monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultraacidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-tohydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~200 gm−2 day−1.
    Description: Published
    Description: 472-481
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: El Chichón ; crater lake ; mass-energy budget ; CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Historical sources have recorded earthquake shocks, their effects and difficulties that local inhabitants experienced before the AD 79 Pompeii eruption. Archaeological studies pointed out the effects of such seismicity, and have also evidenced that several water crises were occurring at Pompeii in that period. Indeed numerous sources show that, at the time of eruption, and probably some time before, the civic aqueduct, having ceased to be supplied by the regional one, was out of order and that a new one was being built. Since Roman aqueducts were usually built with a recommended minimum mean slope of 20 cm/km and Pompeii's aqueduct sloped from the nearby Apennines toward the town, this slope could have been easily cancelled by uplift that occurred in the area even if this was only moderate. For the crustal deformations a volcanic origin is proposed and a point source model is used to explain the observations. Simple analysis of the available data suggests that the ground deformations were caused by a b2 km3 volumetric change at a depth of ∼8 km that happened over the course of several decades.
    Description: Published
    Description: 959–970
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; ground deformation ; seismicity ; stress changes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: In a geothermal area, a detailed knowledge of the three-dimensional velocity structures aids the managementof the field and the further development of the geothermal source. Here,we present a high-resolution study of the three-dimensional S-wave velocity structures from microearthquake travel times for the Larderello-Travale geothermal field, Italy.We have also deduced the Vp/Vs and Vp ×Vs parameters for this area toemphasize the deep variations in the physical rock properties due to fluid content and porosity. Furthermore, effective porousmedium modelling has been performed for site-relevant lithologies, to improve our interpretation of the results in terms of rock physics signatures. This has allowed us to estimate the variation range of the seismological parameters investigated, as well as their sensitivity for suitable rock under specific physical conditions. LowVp/Vs anomalies, arising froma lower Vp compared to Vs, dominate the geothermal field of Larderello-Travale. These have been interpreted as due to steam-bearing formations. On the contrary, analysis of Vp ×Vs images provides information on the relative changes in rock porosity at depth. Comparison of tomographic section images with previously interpreted seismic lines suggests that the reflective ‘K-horizon’ delineates a transition between zones that have different porosities or crack gatherings. The ‘K-horizon’ also lies on low Vp/Vs anomalies, which suggests a steam saturation zone, despite the reduced porosity at this depth.
    Description: In press
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: P- and S-wave velocity ; Seismic tomography images ; Geothermal field ; Rock properties ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: We investigate the relationship between changes of the gravity field and the release of the seismic energy at Mt. Etna over a 12-year period (1994-2006), during which the volcano exhibited different eruptive patterns. Over the two sub-periods when intense gravity decreases occur, centered on the upper southeastern sector of the volcano (late-1996 to mid-1999 and late-2000 to mid-2001), the strain release curve displays neat long-term accelerations, with many hypocenters clustered in the volume containing the gravity source. Various evidences suggest that, since 1994 and until the breakout of the 2001 eruption, the eastern flank of Etna remained peripheral to the lines of rise of the magma from the deep storage to the surface. Accordingly, we hypothesize that, rather than being directly associated to the migration of the magma, the joint anomalies we found image phases of higher tensile stress on the upper southeastern sector, associated to increase in the rate of microfracturing along the NNW-SSE fracture zone. Such an increase implies a local density (gravity) decrease, and an increase in the release of seismic energy, thus explaining the correlation we observe. The second period of gravity decrease/strain release increase culminated in the breakout of the 2001 flank eruption, as a pressurized deeper magma accumulation used the inferred zone of increasing microfracturing as a path to the surface. This eruption marks an important modification in the structure of Etna’s plumbing system, as also testified by the absence of post-2001 long-term gravity changes and accelerations in the strain release curve and the neat modification of the seismicity and ground deformation patterns. Thus we prove that joint microgravity and seismic studies can allow zones of the medium experiencing an increase in the rate of microfracturing to be identified months to years before a magma batch is conveyed through them to the surface, setting off a lateral eruption.
    Description: Published
    Description: 282–292
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: microgravity changes ; seismic strain release ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization [WHO (1993): WHO Guidelines for Drinking Water Quality- http://www.who.int/water_sanitation_health/GDWQ/index.htlm]. Positive co-variations of (THg) with sulphate indicate that Hg-SO4-rich acid groundwaters receive a direct input of magmatic/hydrothermal gases carrying mercury as Hg0 (gas). Increasing THg in a volcanic aquifer could thus be a sensitive tracer of magmatic gas input prior to an eruption. Since the complex behaviour and toxicity of mercury in waters depend on its chemical speciation, we carefully determined the different aqueous forms of this element in our samples.We find that dissolved elemental Hg0 (aq) and particulate-bound Hg (HgP) widely prevail in volcanic aquifers, in proportions that highlight the efficiency of Hg adsorption onto colloidal particles. Moreover, we observe that dissolved Hg0 aq and Hg(II) forms coexist in comparable amount in most of the waters, in stark contrast to the results of thermodynamic equilibrium modelling. Therefore, chemical equilibrium between dissolved mercury species in volcanic waters is either prevented by natural kinetic effects or not preserved in collected waters due to sampling/storage artefacts. Finally, we provide a first quantitative comparison of the relative intensity of aqueous transport and atmospheric emissions of mercury at Mount Etna, a very active basaltic volcano.
    Description: Published
    Description: 96-106
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: speciation ; volcanic aquifers ; total and dissolved mercury ; mercury cycling ; volatile budget ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Volcanic tremor and low frequency events, together with infrasound signals, can represent important precursory phenomena of eruptive activity because of their strict relationship with eruptive mechanisms and with fluid flows through the volcano's feeding system. Important variations of these seismo-volcanic and infrasound signals, recorded at Mt. Etna volcano, occurred both in the medium- and short-term before the eruption, that took place on 13 May 2008. The most significant changes were observed in the frequency content and location of LP events, as well as in volcanic tremor location, that allowed us to track the magma pathway feeding the 2008 eruptive activity. The infrasound showed three different families of events linked to the activity of the three active vents: North-East crater, South-East crater and the eruptive fissure. The seismic and infrasonic variations reported, corroborated by ground deformations variations, help to develop a quantitative prediction and early-warning system for effusive and or explosive eruptions.
    Description: European Union VOLUME FP6-2004-Global-3
    Description: Published
    Description: L18307
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna Eruption ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Active volcanoes produce inaudible infrasound due to the coupling between surface magmatic processes and the atmosphere. Monitoring techniques based on infrasound measurements have been proved capable of producing information during volcanic crises. We report observations collected from an infrasound network on Mt. Etna which enabled us to detect and locate a new summit eruption on May 13, 2008 when poor weather inhibited direct observations. Three families of signals were identified that allowed the evolution of the eruption to be accurately tracked in real-time. Each family is representative of a different active vent, producing different waveforms due to their varying geometry. Several competitive models have been developed to explain the source mechanisms of the infrasonic events, but according to our studies we demonstrate that two source models coexist at Mt. Etna during the investigated period. Such a monitoring system represents a breakthrough in the ability to monitor and understand volcanic phenomena.
    Description: Published
    Description: L05304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; infrasound ; eruption ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: On July 18, 2001, two main eruptive vents opened on the southern flank of Mount Etna volcano (Italy) at ~2100 m and ~2550 m a.s.l., respectively. The former vent fed mild strombolian activity and lava flows, while the latter represented the main explosive vent, producing strong phreato-magmatic explosions. Explosions at this latter vent, however, shifted to a strombolian style in the following days, before switching back to phreato-magmatic activity towards the end of the eruption, which ended on August 9, 2001. On August 3, a small seismoacoustic array was deployed close to the eruptive vents. The array was composed of three stations, which recorded seismic and infrasonic waves coming from both of the eruptive vents. A further seismoacoustic station, equipped with a thermal-infrared sensor, was also installed several kilometers north of the first array. Seismic signals relating to the strombolian activity at the 2100-m vent were characterized by a strong decompression at the source. Analysis of the time delays between seismic, infrasonic and infrared event onsets also revealed that ejection velocities during explosions from both vents were subsonic. Time delays between the onset of explosive events apparent in the infrared and infrasound data indicated that the explosion source at the 2550-m vent was located 220–250 m below the crater rim. In comparison, the depth of the seismic source was estimated to be between 230 and 335 m below the rim. This converts to 120–150 and 130–235 m below the preexisting ground surface. In addition, time delays between seismic and infrasonic signals recorded for the lower (2100 m) vent also revealed a seismic source that was no more than a few tens of meters deeper than the fragmentation surface.
    Description: Published
    Description: 219-230
    Description: partially_open
    Keywords: Mt. Etna ; explosive eruptions ; arrays ; seismic ; infrasonic and thermal data ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 590708 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: A new method for extracting dissolved gases in natural waters has been developed and tested, both in the laboratory and in the field. The sampling device consists of a polytetrafluroethylene (PTFE) tube (waterproof and gas permeable) sealed at one end and connected to a glass sample holder at the other end. The device is pre-evacuated and subsequently dipped in water, where the dissolved gases permeate through the PTFE tube until the pressure inside the system reaches equilibrium. A theoretical model describing the time variation in partial gas pressure inside a sampling device has been elaborated, combining the mass balance and ‘‘Solution-Diffusion Model’’ which describes the gas permeation process through a PTFE membrane). This theoretical model was used to predict the temporal evolution of the partial pressure of each gas species in the sampling device. The model was validated by numerous laboratory tests. The method was applied to the groundwater of Vulcano Island (southern Italy). The results suggest that the new sampling device could easily extract the dissolved gases from water in order to determine their chemical and isotopic composition.
    Description: - European Social Fund.
    Description: Published
    Description: Q09005
    Description: partially_open
    Keywords: dissolved gases ; helium isotope ; PTFE membrane ; Vulcano Island ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 446781 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high CO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol) with an appreciable content of H2S (0.8). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February-March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8/25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.
    Description: - GNV funded research project Gas Hazard of Colli Albani
    Description: Published
    Description: 81^94
    Description: partially_open
    Keywords: Colli Albani ; CO2 flux ; H2S ; gas hazard ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 660932 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: Despite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at midocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas,as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223–18251.] to CO2–He–Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01–0.5 m/s), slightly faster rates of energetic effusions (0.1–1 m/s), up to rates of 1–10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine deposits where they are collected. Enhanced knowledge of a number of physical properties of gas-bearing MOR magmas is also required, mainly noble gas diffusivities, to describe multicomponent bubble growth at a higher confidence level.
    Description: Published
    Description: 138-158
    Description: partially_open
    Keywords: Bubble growth ; MORB ; Noble gas ; Kinetic fractionation ; Modeling ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 695380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Seismic attenuation in the area of Mt. Vesuvius is reappraised by studying more than 400 S-coda envelopes of small local VT earthquakes recorded at Mt. Vesuvius from 1996 to 2002 at the three-component stations of OVO and BKE. The purpose is to obtain a stable separate estimate of intrinsic and scattering quality factors for shear waves. We investigate in the present paper four frequency bands, centered respectively at fc = 3, 6, 12 and 18 Hz with a bandwidth of 0.6fc. Stacked coda envelopes are fit to the multiple scattering model according to the Zeng approximation in the hypothesis of constant velocity half space. Results show that the diffusion regime is a good approximation as the scattering attenuation (proportional toQ−1 S , the inverse scattering-quality factor) is much stronger than the intrinsic dissipation (proportional to Q−1 I ). Q−1 S decreases with frequency while intrinsic attenuation is much less frequency-dependent. We also fit the stacked coda envelopes at BKE to the diffusion equation solved with the boundary condition of a 2 km thick diffusive layer over a homogeneous half space. Results show that the diffusivity, D, estimated in the assumption of reflecting boundary condition is greater than that estimated in the assumption of uniform half space, whereas the diffusivity estimated with the absorbing boundary condition is close to the estimate done in the assumption of half space. OVO station shows results different from those obtained at BKE and at a group of five stations located on Mt. Vesuvius for the frequency bands centered at 12 and 18 Hz. In these two bands, scattering attenuation at OVO is comparable to the intrinsic dissipation, and is much smaller than that measured at the other stations. We interpret this anomaly as due to an effect of strong lateral heterogeneity which modifies the redistribution of the seismic energy into the coda at OVO. A comparison of the results obtained using passive data (the present data set) and the active data obtained in the same area during TOMOVES experiment by Wegler (2004) show that the diffusivity estimated with shot data during TOMOVES is smaller of a factor greater than 4. This discrepancy is interpreted as due to different earth volumes sampled by the coda waves in the two cases.
    Description: Published
    Description: 202-212
    Description: reserved
    Keywords: Scattering ; Diffusion ; Seismic attenuation ; Mt. Vesuvius ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1269144 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: The sustained and uninterrupted plume degassing at Mount Etna volcano, Southern Italy, represents the troposphere’s most prominent natural source of fluorine. Of the ~ 200 Mg of fluorine (as HFg) emitted daily by the volcano, 1.6±2.7 Mg are deposited by wet and dry deposition. Fluorine-deposition via volcanic ash, here characterised for the first time, can be quite significant during volcanic eruptions (i.e. 60 Mg of fluorine were deposited during the 2001 eruption through volcanic ash, corresponding to ~ 85% of the total fluorine deposition). Despite the fact that these depositions are huge, the fate of the deposited fluorine and its impact on the environment are poorly understood. We herein present original data on fluorine abundance in vegetation (Castanea Sativa and Pinus Nigra) and andosoils from the volcano’s flank, in the attempt to reveal the potential impact of volcanogenic fluorine emissions. Fluorine contents in chestnut leaves and pine needles are in the range 1.8-35 µg/g and 2.1-74 µg/g respectively; they exceed the typical background concentrations in plants growing in rural areas, but fall within the lower range of typical concentrations in plants growing near high fluorine anthropogenic emission sources. The rare plume fumigations on the lower flanks of Mt Etna (distance 〉 4 km from summit craters) are probably the cause of the “undisturbed” nature of Etnean vegetation: climatic conditions, which limit the growth of vegetation on the upper regione deserta, are a natural limit to the development of more severe impacts. High fluorine contents, associated with visible symptoms, were only measured in pine needles at three sites, located near recently-active (2001 to 2003) lateral eruptive fractures. Total fluorine contents (FTOT) in the Etnean soils have a range of 112-341 µg/g, and fall within the typical range of undisturbed soils; fluorine extracted with distilled water (FH2O) have a range of 5.1 to 61 µg/g and accounts for 2-40 % of FTOT. FH2O is higher in topsoils from the eastern flank (downwind), while it decreases with depth in soil profiles and on increasing soil grain size (thereby testifying to its association with clay-mineral-rich, fine soil fractions). The fluorine adsorption capacity of the andosoils acts as a natural barrier that protects the groundwater system.
    Description: Published
    Description: 87-101
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Fluorine ; environmental volcanology ; impact of volcanic F ; soils ; vegetation ; volcanic ash ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: Introduction of a special issue of the journal
    Description: no abstract
    Description: Published
    Description: 1-4
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Earth's degassing ; volcanic areas ; seismic areas ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The seismicity which affects Mt.Vesuvius is, at present, the only clear indicator of the volcano dynamics. In the last years, two periods of increased seismic activity occurred (August-October 1995 and March-May 1996). This seismicity was detected by the 10 analog stations of the Permanent Seismic Network as well as by up to 7 three-component temporary digital stations. A total number of about 600 events have been recorded, four of which showing magnitude 〉3.0. The maximum magnitude earthquake (M=3.4) was the strongest in the last fifty years and occurred on 25 April 1996. The use of three-component seismometers allowed us to obtain very reliable hypocentral locations. The focal volume of the two seismic crises does not exceed 5-6 km of depth below the crater area. Fault plane solutions of the most energetic events show focal planes oriented NW-SE and NE-SW, in agreement with the regional tectonic features, indicating that at present the seismicity of Mt.Vesuvius develops along pre-existing discontinuities. In addition, the occurrence of a fluiddriven source mechanism suggests a role played by the underground water on the seismic energy release. Shear wave splitting analyses confirmed the presence of an anisotropic volume related to a distribution of cracks andlor fractures parallely aligned to the main faults system of the volcano.
    Description: Published
    Description: 977-983
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Vesuvius ; seismic swarms ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-04
    Description: Explosion-quake seismograms recorded at Stromboli show that seismic phases with a high-amplitude and high-frequency content propagate with a velocity of approximately 330 m/s - the sound speed. The analysis of seismograms, recorded at a distance of 500 m from one of the three active vents, shows for the first onset a low frequency and particle motion characteristics of a p-wave, which loses its longitudinal polarization with the onset of the air-wave. Recording the explosion-quake simultaneously with a microphonewe would ascertain that the high frequency onset coincides with the air-wave's. In order to better understand the seismic wavefield generated by the atmospheric pressure, we performed a controlled source experiment at Stromboli using a seismic gun. Seismograms with the same two phases and particle motions comparable with the volcanic seismic data were obtained. A second experiment demonstrated, that the air-wave propagates at least in the uppermost 1m of the gound. We suggest that the seismic source of the corresponding seismograms is an explosion at the top of the magma column and conclude that the p- and air-waves are both generated in the same point and at the same time.
    Description: Published
    Description: 65-68
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; Stromboli ; air wave ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: The persistent occurrence of long period (LP) events at Mt Etna became apparent with the installation of the first fixed broad-band seismic network in late 2003. Repeating similar LP events from Nov. ‘03 to Sept. ‘04 indicate a non-destructive source process. We perform moment tensor (MT) inversions on a stacked high S/N ratio representative LP signal, conducting a grid search for the source geometry and L2-inversion for the source time function. Results indicate a NNW-SSE oriented resonating sub-vertical crack as the most probable source. This result is consistent with deformation and GPS observations. Crucial to this result are constraints imposed by detailed 3D full waveform numerical simulations in a heterogeneous tomographic model with topography, and in particular a detailed assessment of the influence of very near surface velocity structure on LP signals. Pulsating gas injection is hypothesised as the most likely LP trigger.
    Description: Published
    Description: L22316
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; moment tensor inversion ; LP activity ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system.
    Description: Published
    Description: 340-354
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: long-period seismicity ; Etna volcano ; volcano monitoring ; precursor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: Metamorphic and magmatic garnets are known to fractionate REE, with generally HREE-enriched patterns, and high Lu/ Hf and Sm/Nd ratios, making them very useful as geochemical tracers and in geochronological studies. However, these garnets are typically Al-rich (pyrope, almandine, spessartine, and grossular) and little is known about garnets with a more andraditic (Fe3+) composition, as frequently found in skarn systems. This paper presents LA-ICP-MS data for garnets from the Crown Jewel Au-skarn deposit (USA), discusses the factors controlling incorporation of REE into garnets, and strengthens the potential of garnet REE geochemistry as a tool to help understand the evolution of metasomatic fluids. Garnets from the Crown Jewel deposit range from Adr30Grs70 to almost pure andradite (Adr〉99). Fe-rich garnets (Adr〉90) are isotropic, whereas Al-rich garnets deviate from cubic symmetry and are anisotropic, often showing sectorial dodecahedral twinning. All garnets are extremely LILE-depleted, Ta, Hf, and Th and reveal a positive correlation of RREE3+ with Al content. The Al-rich garnets are relatively enriched in Y, Zr, and Sc and show ‘‘typical’’ HREE-enriched and LREE-depleted patterns with small Eu anomalies. Fe-rich garnets (Adr〉90) have much lower RREE and exhibit LREE-enriched and HREE-depleted patterns, with a strong positive Eu anomaly. Incorporation of REE into garnet is in part controlled by its crystal chemistry, with REE3+ following a coupled, YAG-type substitution mechanism ð½ X2þ VIII 1 ½REE3þ VIII þ1 ½ Si4þ IV 1½Z3þ IV þ1Þ, whereas Eu2+ substitutes for X2+ cations. Thermodynamic data (e.g., Hmixing) in grossular– andradite mixtures suggest preferential incorporation of HREE in grossular and LREE in more andraditic compositions. Variations in textural and optical features and in garnet geochemistry are largely controlled by external factors, such as fluid composition, W/R ratios, mineral growth kinetics, and metasomatism dynamics, suggesting an overall system that shifts dynamically between internally and externally buffered fluid chemistry driven by fracturing. Al-rich garnets formed by diffusive metasomatism, at low W/R ratios, from host-rock buffered metasomatic fluids. Fe-rich garnets grow rapidly by advective metasomatism, at higher W/R ratios, from magmatic-derived fluids, consistent with an increase in porosity by fracturing.
    Description: Published
    Description: 185-205
    Description: 3.6. Fisica del vulcanismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: A LA-ICP-MS ; Crown Jewel ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH≈6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH≈2) saline (10 g/kg of Cl) water with a much lower outflow rate (b10 l/s). Water–rock interaction modeling of main types of the El Chichón thermal waters using regular log Q/K graphs (saturation indices vs temperature) showed maximum equilibrium temperature slightly higher than 200 °C. Acidic waters are equilibrated with some clay minerals at about 120 °C. Three main sources of the salinity of thermal water are suggested on the basis of mixing plots and isotopic data: a magmatic source for CO2, boron, sulfur and a limited part of Cl; volcanic rock source for the major cations and trace elements; the oil-bearing evaporitic basement source (oil-field brine?) for NaCl, Br, a part of Ca and some trace elements. All flank thermal springs end up in the river Rio Magdalena that has a variable seasonal flow rates from 4 to 20 m3/s. Any changes in the chemistry of springs must notably change the composition of the streams draining hot springs and eventually, Rio Magdalena. A monthly geochemical monitoring of Rio Magdalena and streams draining main hot springs would be a useful tool for surveying the activity of the volcano.
    Description: Published
    Description: 224–236
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: volcano–hydrothermal system ; crater lake ; acidic water ; trace elements ; thermochemical modeling ; El Chichón volcano ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: Dynamic accumulation chamber methods have been extensively used to estimate the total output of CO2 released from active volcanic area. In order to asses the performance and reliability of a closed dynamic system several tests were carried out with different soil permeabilities and soil CO2 fluxes. A special device was used to create a constant one-dimensional CO2 flux through a soil column with a known permeability. Three permeabilities were investigated, ranging between 3.6 × 10− 2 and 3.5 × 10 μm2, as were several CO2 fluxes (ranging between 1.1 × 10− 6 and 6.3 × 10− 5 kg m− 2 s− 1). The results highlight that the accuracy of soil CO2 flux measurements strictly depends on the soil gas permeability and the soil CO2 flux regimen. Generally chamber measurements underestimate CO2 fluxes at low soil permeability and low soil CO2 fluxes, whereas appreciable overestimations occur for high permeability soil, especially for high soil CO2 fluxes. Other tests carried out with different settings for the measurement device, such as the chamber volume and the flux of the pump used to recirculate air through the chamber and the gas analyzer (recirculation flux), revealed a strong dependence of the closed dynamic chamber measurements on the recirculation flux. Low recirculation fluxes (0.2–0.4 l min− 1) decreased the performance of the measurement system, causing underestimations of the actual soil CO2 flux, whereas higher values (0.6–1.0 l min− 1) resulted in overestimations, especially for elevated soil CO2 fluxes. An empirical equation was deduced to allow accumulation chamber fluxes to be calculated very accurately based on soil gas permeabilities measured in the field.
    Description: Published
    Description: 387-393
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux measuraments ; Closed dynamic chamber ; soil gas permeability ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  “Accepted for publication in (Journal of Geophysical Research). Copyright (2009) American Geophysical Union. Further reproduction or electronic distribution is not permitted.”
    Publication Date: 2017-04-04
    Description: The eruptive episode of Mount Etna’s Southeast Crater (SEC) on 16 November 2006, which culminated with phreatomagmatic explosions and a peculiar volcaniclastic flowage event, is the subject of different interpretations. Behncke (2009) and Behncke et al. (2008, 2009), interpret the explosions as resulting from mixing of flowing lava with fluid-saturated, hydrothermally altered rock, and describe the resulting flow as a low-temperature (but potentially deadly) pyroclastic density current (PDC). Norini et al. (2009) speak of gravity-induced flank collapse affecting the SEC cone, leading to the emplacement of a landslide (or debris avalanche) deposit. Finally, Ferlito et al., commenting our recent work (Behncke et al., 2009), re-propose their earlier (2007) scenario of a shallow intrusion from the SEC conduit, caused by unloading and decompression when a part of the SEC cone flank was removed (“sector collapse”), leading to the explosive opening of an eruptive fissure, which discharged a pyroclastic flow. An outstanding feature of this event is that it was not accompanied by any significant change in the seismic signal, which led us (Behncke et al. 2009) to exclude the opening of an eruptive fissure. However, Ferlito et al. point out that seismic evidence alone does not rule out their scenario, and cite the lack of seismic signals accompanying the start of the (rather voluminous, in terms of lava discharge, but purely effusive) 2004-2005 Etna eruption as support for their hypothesis. Finally, they describe what they interpret as the source fissure for the phreatomagmatic explosions and PDCs, and was the site of minor lava extrusion toward the end of the 16 November 2006 event. On their website, Ferlito et al. host a short (〈2 min) clip excerpted from a 40:54 min long video recorded by G. Tomarchio, cameraman of the Italian public television RAI, featuring only the 1425 GMT explosion and PDC. The integral, original version of that video (which was made available to INGV-CT immediately after the event) documents, amongst others, the presence of Behncke and INGV colleagues on-site, and shows a number of extremely similar explosions and PDCs over several hours prior to 1425 GMT, only on a smaller scale. As for the 1425 GMT event, the video spectacularly shows explosive activity, but nothing proving the opening of an eruptive fissure, neither does it show any landsliding as surmised by Norini et al. (2009). Our careful viewing of 1500 still photographs taken of the activity on that day, including nearly 1000 taken by INGV staff, plus other videos taken from different viewpoints (e.g., Movie S3 in the auxiliary material to our article) leads us to analogous conclusions. Videos and photographs document dozens of minor explosive, PDC-generating events before the major phreatomagmatic explosions and PDCs at 1425 GMT. The mechanisms of these events were virtually the same throughout, differing only in their magnitude. All were caused by hot, flowing lava mixing with wet, hydrothermally altered rocks making up the SEC cone’s flank that the lava was burrowing through. The “eruptive fracture” that Ferlito et al. refer to is a secondary feature, formed at the toe of a lava flow, which had flowed down the ESE side of the cone early on 16 November 2006 and was severed around noon by the progressive enlargement of the large scar eroded into the cone’s flank. Draining of the lava within the active channel of the severed flow led to accumulation of lava at the cone’s base, developing into a sort of bubble. For reasons unknown, this bubble drained during the late afternoon, yielding an extremely small flow. The pocket evacuated by this outflow subsided to become what Ferlito et al. interpret as an eruptive fissure, a single slightly elongate collapse depression, lying approximately 150 m northeast of the locus of the 1425 GMT phreatomagmatic explosions, which is well visible in aerial photographs taken after the events under discussion (Figure 1). The lava flow that Ferlito et al. claim to have sampled is the secondary flow formed by the draining of the pocket. It has no whatsoever genetic relationship with the phreatomagmatic explosions and PDCs of 1425 GMT. Another fundamental argument lies in the seismic record, and it is here that Ferlito et al. miss two major points. Firstly, unlike the seismic scenario usually observed at Etna in more than three decades of monitoring (e.g., Patanè et al., 2004), the start of the 2004-2005 lava effusion was exceptionally silent as many authors noted (e.g., Burton et al., 2005; Di Grazia et al., 2006; Corsaro et al., 2009). The onset of lava emission was indeed completely and unusually aseismic (in terms of volcano-tectonic seismicity, volcanic tremor changes, etc.), but it was also totally non-explosive, due to the nearly complete depletion in gas of the magma. Therefore, this effusive episode stands in marked contrast with the 16 November 2006 activity. It should be noted that when new, gas-rich magma moved toward the surface at a later stage of the 2004-2005 lava effusion, the volcanic tremor amplitude markedly increased (Di Grazia et al., 2006). Secondly, Ferlito et al. refer to papers (e.g., Cardaci et al., 1993; Patanè et al., 2004) which deal with the relationship between volcano-tectonic (VT) seismicity and the triggering of eruptive activity at Etna. VT seismicity covers just a part of the information contained in a seismic record (e.g., McNutt, 2000), a detail which can be easily missed by non-experts in seismology. There is indeed a variety of signals (e.g., long-period events, hybrid events, volcanic tremor, explosion quakes) related to the movement of fluids and/or magma, which can herald and accompany the opening of eruptive fractures. We did extensive cross-checking of the seismic record of the entire 2006 eruptive sequence, paying particular attention to episodes of new eruptive fissures opening. Each single event marked by the opening of new vents displaying some sort of explosive activity (this occurred during at least four of the paroxysms during the August-December 2006 eruptive sequence) shows conspicuous changes not only in the amplitude of the seismic (tremor) signal, but also in the location of the centroid of the tremor source, and frequency content, features amply discussed in our paper (Behncke et al., 2009). The migration of subsurface magma can thus be well documented, if it is accompanied by degassing. We would also like to point out that the phreatomagmatic explosions and PDCs of 1425 GMT occurred shortly after a conspicuous drop in the volcanic tremor amplitude (see Fig. 8 in Behncke et al., 2009). The lack of changes in the seismic signals concurrent with the PDC is also evident in the spectrograms (in which the frequency content excludes the occurrence of any seismic signals associated with fracturing, see Fig. 9 in Behncke et al., 2009) and in the records of all the broadband stations considered by Behncke et al. (2009), notwithstanding their vicinity to the site of the PDC-generating explosions (EBEL and ECPN are located ~1 km from the SEC, at 2899 and 3050 m elevation above sea level, respectively). Finally, the hypothesis of magma uprise at the base of the SEC cone caused by unloading related to the removal of a major portion of the cone’s flank, has been vested by Ferlito et al. (2007) in a volcanic sector collapse scenario similar to the catastrophic 1980 debris avalanche at Mount St. Helens. Volcanic sector collapse commonly takes place instantaneously, which is the contrary of what happened at the SEC on 16 November 2006. Thanks to our presence on site from the early morning onward, we were able to document how the removal of a portion of the flank of the cone occurred extremely slowly, over at least 5 hours (cf. Fig. 5 in Behncke et al., 2008). The material involved in this displacement moved at best at 50-80 m per hour, which is rather unlike the speed of volcanic debris avalanches. There was no such thing as a major landslide, and no such thing as a new eruptive fissure opening; what did happen was a very hazardous sequence of events, including phreatomagmatic explosions and quite low-temperature but fast-moving, dense pyroclastic density currents. Such volcanic phenomena deserve in-depth multidisciplinary studies, and the ongoing discussion underscores how much work is still necessary to better understand the dynamics of a versatile volcano such as Mount Etna.
    Description: Published
    Description: B12205
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Volcano monitoring ; Mt. Etna ; Volcanic hazard ; instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: This study presents a detailed analysis and interpretation of the seismicity that occurred on July 2-7 and August 22, 2000, during a ground uplift episode which started on March 2000 at Solfatara crater, Campi Flegrei. Earthquakes are located using a probabilistic grid-search procedure acting on a 3-D heterogeneous earth structure. The mainshock of the July swarm depicts a spectrum characterized by a few narrow peaks spanning the 1^5-Hz frequency band. For this event, we hypothesize a direct involvement of magmatic fluids in the source process. Conversely, the spectra of the August events are typical of shear failure. For these latter events, we evaluate the source properties from P-and Swave displacement spectra. Results for the most energetic shocks (Md around 2) yield a source radius in the order of 100 m and stress drop around 10 bars, in agreement with most of the earthquakes that occurred during the 1982-1984 bradyseismic crises. For the August swarm we identify two clusters of similar earthquakes. Application of highresolution relative location techniques to these events allows for the recognition of two parallel alignments trending NE^SW. The relationship among source dimension and relative location evidences overlapping of sources. This may be interpreted in terms of either a heterogeneous stress field or a lubrication process acting over the fault surface. For a selected subset of the August events, we also analyze the splitting of the shear waves: results are indicative of wave propagation through a densely fractured medium characterized by a distribution of cracks oriented NE-SW. The pattern of faulting suggested by relative locations and shear-wave splitting is not consistent with the surface trace of NW^SE striking faults. However, a detailed mesostructural analysis carried out over the Solfatara area indicated the occurrence of two main crack systems striking NW-SE and NE-SW. This latter system shows a strike consistent with that derived from seismic evidence. Results from a stress analysis of the crack systems indicate that a fluid overpressure within the NW-SE-striking faults is able to form NE-SW cracks. We found that the pressure of fluids Pf required to activate the NW-SE faults is less than cHmin, while the Pf value required to open the NE-SW cracks is higher than cHmax. Our main conclusions are: (a) the Solfatara area is affected by two orthogonal fracture systems, and the fluid pathway during the 2000 crisis mainly occurred along the NNE-SSW/NE-SW-striking crack system; (b) the July seismicity is associated to the upward migration of a pressure front triggered by an excess of fluid pressure from a small-size magmatic intrusion; conversely, the August events are associated to the brittle readjustment of the inflated system occurring along some lubricated structures.
    Description: Published
    Description: 229-246
    Description: partially_open
    Keywords: Seismicity ; Hydrothermal fuids ; Fuid pressure ; Faults ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 992189 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: We present the first regional map of CO2 Earth degassing from a large area (most of central and south Italy) derived from the carbon of deep provenance dissolved in the main springs of the region. The investigation shows that a globally significant amount of deeply derived CO2 (10% of the estimated global CO2 emitted from subaerial volcanoes) is released by two large areas located in western Italy. The anomalous flux of CO2 suddenly disappears in the Apennine in correspondence to a narrow band where most of seismicity concentrates. Here, at depth, the gas accumulates in crustal traps generating CO2 overpressurized reservoirs which induce seismicity.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Carbon dioxide ; Central Italy ; Southern Italy ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 426 bytes
    Format: 284605 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: Chlorine- and sulphur-bearing compounds in fumarole discharges of the La Fossa crater at Vulcano Island (Italy) can be modelled by a mixing process between magmatic gases and vapour from a boiling hydrothermal system. This allows estimating the compounds in both endmembers. Magma degassing cannot explain the time variation of sulphur and HCl concentrations in the deep endmember, which are more probably linked to reactions of solid phases at depth, before mixing with the hydrothermal vapours. Based on the P^T conditions and speciation of the boiling hydrothermal system below La Fossa, the HCl and Stot contents in the hydrothermal vapours were used to compute the redox conditions and pH of the aqueous solution. The results suggest that the haematite magnetite buffer controls the hydrothermal fO2 values, while the pH has increased since the end of the 1970s. The main processes affecting pH values may be linked to Na^Ca exchanges between evolved seawater, feeding the boiling hydrothermal system, and local rocks. While Na is removed from water, calcium enters the solution, undergoes hydrolysis and produces HCl,lowering the pH of the water. The increasing water^rock ratio within the hydrothermal system lowers the Ca availability, so the aqueous solution becomes less acidic. Seawater flowing towards the boiling hydrothermal brine dissolves a large quantity of pyrite along its path. In the boiling hydrothermal system, dissolved sulphur precipitates as pyrite and anhydrite, and becomes partitioned in vapour phase as H2S and SO2. These results are in agreement with the paragenesis of hydrothermal alteration minerals recovered in drilled wells at Vulcano and are also in agreement with the isotopic composition of sulphur emitted by the crater fumaroles.
    Description: Published
    Description: 137-150
    Description: partially_open
    Keywords: chlorine ; sulphur ; hydrothermal system ; genetic processes ; Vulcano Island ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 498111 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande-Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP^CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41‡ and N64‡, and decoupled from the volcanic structures.
    Description: Published
    Description: 1^18
    Description: partially_open
    Keywords: Stromboli ; hydrothermal system ; self-potential ; soil gas ; carbon dioxide ; Aeolian islands ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1106054 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: A physical model based on the advective–diffusion theory was developed in order to describe the mixing between a deep gas source and the atmosphere. The model was used to predict the isotopic fractionation of carbon in soil CO2. Gas samples were collected at different depths in areas characterized by different geological settings and CO2 fluxes. The relative theoretical and experimental isotopic profiles were compared and a good agreement was found. These profiles show how the isotopic composition of CO2 changes through the upper few decimeters of soil and how the amount of the isotopic fractionation is strongly influenced by soil CO2 flux. Finally, the model was used to derive the carbon isotopic composition of unfractioned deep CO2 source for all the investigated sites
    Description: Published
    Description: 3016–3027
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon isotope fractionation ; soil degassing ; gas transport ; D13C(CO2) ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: The seismic activity of Mt. Etna from April 1988 until the December 1991 eruption was monitored by means of permanent and temporary seismic network. Volcanic activity that occurred during this period was preceded and accompanied by the occurrence of deep (Z 〉/- 15 km) seismicity. This deep seismic activity, occurring a few days up to some weeks before the volcanic phases, was characterized by typical mainshock-aftershocks sequences. Both the observation of deep seismicity occurrence also before or during previous eruptions and the role played by tectonics as controller of the magma uprise suggest the hypothesis of a relation between the seismic energy released in the volcanic basement and the recharge mechanisms of the volcanic system.
    Description: Published
    Description: 277-289
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: deep earthquakes ; volcano ; Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: The analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 C was inferred by methanebased chemical–isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200–240 C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (dD 20&, d18O 10&) and a CO2-rich composition ðXCO2 0:4Þ has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to 0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal system
    Description: Published
    Description: 3040-3055
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: origin of the fumaroles ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: Repeated phenomena of flank instability accompanied the 28 December 2002 to 21 July 2003 eruption of Stromboli volcano. The major episodes were two tsunamigenic landslides on 30 December 2002, 2 d after the volcano unrest. After 30 December, sliding processes remodeled the area affected by slope instability.We propose analyses of 565 sliding episodes taking place from December 2002 to February 2003.We try to shed light on their main seismic features and links with the ongoing seismic and volcanic activity using variogram analysis as well. A characterization of the seismic signals in the time and frequency domains is presented for 185 sliding episodes. Their frequency content is between 1 Hz and 7 Hz. On the basis of the dominant peaks and shape of the spectrum, we identify three subclasses of signals, one of which has significant energy below 2 Hz. Low-frequency signatures were also found in the seismic records of the landslides of 30 December, which affected the aerial and submarine northwestern flank of the volcano. Accordingly, we surmise that spectral analysis might provide evidence of sliding phenomena with submarine runouts.We find no evidence of sliding processes induced by earthquakes. Additionally, a negative statistical correlation between sliding episodes and explosion quakes is highlighted by variogram analysis. Variograms indicate a persistent behavior, memory, of the flank instability from 5 to 10 d.We interpret the climax in the occurrence rate of the sliding processes between 24 and 29 January 2003 as the result of favorable conditions to slope instability due to the emplacement of NW-SE aligned, dike-fed vents located near the scarp of the landslide area. Afterward, the stabilizing effect of the lava flows over the northwestern flank of the volcano limited erosive phenomena to the unstable, loose slope not covered by lava.
    Description: This work was supported financially by Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile, project INGV-DPC V4/02.
    Description: Published
    Description: Q04022
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: rockfalls ; seismicity ; volcanoes ; volcano collapses ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO2 flux (8.5 Mg d 1), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO2/SO2 ratio; by multiplying these data we compute a CO2 flux of 170 Mg d 1. Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydro-thermal systems, relative to SO2, the ability to remotely measure CO2 fluxes is significant, with promise to provide more profound geochemical insights, and earlier eruption forecasts, than possible with SO2 fluxes alone: the most ubiquitous current source of remotely sensed volcanic gas data.
    Description: Published
    Description: L06303
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Plume measurements ; carbon dioxide fluxes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: Research article
    Description: Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization [WHO (1993): WHO Guidelines for Drinking Water Quality- http://www.who.int/water_sanitation_health/GDWQ/index.htlm]. Positive co-variations of (THg) with sulphate indicate that Hg-SO4-rich acid groundwaters receive a direct input of magmatic/hydrothermal gases carrying mercury as Hg0 (gas). Increasing THg in a volcanic aquifer could thus be a sensitive tracer of magmatic gas input prior to an eruption. Since the complex behaviour and toxicity of mercury in waters depend on its chemical speciation, we carefully determined the different aqueous forms of this element in our samples.We find that dissolved elemental Hg0 (aq) and particulate-bound Hg (HgP) widely prevail in volcanic aquifers, in proportions that highlight the efficiency of Hg adsorption onto colloidal particles. Moreover, we observe that dissolved Hg0 aq and Hg(II) forms coexist in comparable amount in most of the waters, in stark contrast to the results of thermodynamic equilibrium modelling. Therefore, chemical equilibrium between dissolved mercury species in volcanic waters is either prevented by natural kinetic effects or not preserved in collected waters due to sampling/storage artefacts. Finally, we provide a first quantitative comparison of the relative intensity of aqueous transport and atmospheric emissions of mercury at Mount Etna, a very active basaltic volcano.
    Description: In press
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: open
    Keywords: Fluid geochemistry ; volcanic mercury ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: Long time series of fumarolic compositions at Campi Flegrei (Italy), Mammoth Mountain (California), Panarea (Italy) and Nisyros (Greece) show rapid increases, up to orders of magnitude, of the CO2/CH4 ratio systematically with the occurrence of volcanic unrest periods. These easily detected anomalies originate with the arrival of CH4-poor magmatic fluids in the shallower levels of the volcanoes. The data suggest that volcanoes are characterized by magmatic activity at depth also in periods of apparent quiescence. The activity is constituted by the pulsing release of large amount of fluids which either cause unrest periods (seismicity and ground deformation) or possibly could precede volcanic eruption. This type of volcanic activity can be monitored trough the classical geophysical techniques together with the systematic sampling and analysis of fumaroles.
    Description: In press
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: fumarole ; magma degassing ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: Methane, the most abundant hydrocarbon in the atmosphere, plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after CO2. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (Kvenvolden and Rogers, 2005). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Among natural sources the volcanic/geothermal emissions are probably the least constrained. Recent estimations for volcanic and geothermal systems in Europe (Etiope et al. 2007) gave a rather large provisional range (4-16 kt/a) that claims for much more field measurements in order to widen the current database and decrease the present uncertainties. Pantelleria is an active volcanic complex, at present in quiescent status, hosting a high enthalpy geothermal system. Explorative geothermal wells tapped an exploitable water-dominated reservoir at 600-800 m depth with maximum measured temperatures of 250 °C. While some data are available on diffuse CO2 fluxes, data on CH4 are available only for fumarolic fluids. In the present study we measured CH4 fluxes in the area of Favara Grande characterized by intense diffuse degassing and widespread signs of geothermal activity (fumaroles, steaming grounds and large zones devoid of vegetation). Values range from negative (-43 to 0 mgCH4 m2 day), typical of soils with methanotrophic activity, up to 3500 mgCH4 m2 day in the most thermalized area. The preliminary estimate of the methane release from the area of Favara Grande is about 2.5 t/a. Extrapolation to the whole volcanic/geothermal system of Pantelleria gives about 10 t/a.
    Description: Published
    Description: Davos, Switzerland
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil gases ; methane output ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: The island of Vulcano (Aeolian arc, Southern Italy) has displayed several periods of volcanic unrest since the end of the last eruption (1890). We report here results obtained from a long-term survey concerning variations of both the steam output and the exhaling surface area at the sun~mit crater fumarolic field of La Fossa. The field measurements analysed in a Geographiciil Information System (GIS: show a highly dynamic volcanic system in which deep variations in the geochemishy and the temperature of the released fluids were accompanied by fluctuations in the mass output of steam and the topography of the crater field. The use of a GIS facilitated digitized reconstructions of maps of the crater field in addition to analysis (of the steam flux data. The furnarolic field expanded its surface area from 50 m2 in 1983 to more than 2400 m* in 1995, accompanied by an increase in steam output from 152 to about 1400 tonnes per day. The possibility that the observed phenomena are related to volcano-tectonic activity and to magma uprising is taken into consideration.
    Description: Published
    Description: 253-263
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic surveillance ; Steam output ; tectonic lines ; flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Description: Published
    Description: 246-254
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamics of the volcano, marking the passage from a period (March 1993–June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveals a southward motion of the upper southern part of the volcano, driven by a NNW–SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 78–86
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: stress release ; dike ; volcano-tectonics ; flank instability ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: The period September–November 2007 was characterized at Mount Etna by explosive activity and intense degassing. During this time interval, infrasonic signals were recorded by an infrasonic network. By a triggering procedure, about 1000 infrasonic events were found, characterized by very high signal-to-noise ratio and grouped into nine families. Successively, the spectral analysis allowed subdividing these nine families into three clusters based on the peak frequency and the quality factor of the events. Finally, by the location analysis a cluster (cluster 1) was related to the degassing activity of the northeast crater (NEC), while the other two (clusters 2 and 3) to the explosive activity of the southeast crater (SEC). The comparison between the stacked infrasonic waveforms, interpreted as generated by the vibration of large gas bubbles, and the synthetic ones, permitted to calculate radius, length of the bubble, and initial overpressure, by a genetic algorithm method. The higher overpressure values of cluster 3 compared to the cluster 2 values were in good agreement with the stronger intensity of the explosions accompanying the infrasonic events of cluster 3. The variation of both intensities and waveforms is tentatively attributed to the occasional accumulation of lithic clasts (due to moderate landslides?) on the explosive vent. Indeed, events belonging to cluster 3 were no longer observed once the landslides had ended. Finally, the daily emitted gas volume, related to the active degassing, was estimated for NEC and SEC by using the infrasonic data during the studied period.
    Description: Published
    Description: B08308
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Infrasound ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: Between December 2004 and August 2005, more than 50,000 long-period events (LP) accompanied by very-long period pulses (VLP) were recorded at Mt. Etna, encompassing the effusive eruption which started in September 2004. The observed activity can be explained by the injection of a gas slug formed within the magmatic column into an overlying cavity filled by either magmatic or hydrothermal fluids, thus triggering cavity resonance. Although a large number of LP events exhibit similar waveforms before the eruption, they change significantly during and after the eruption. We study the temporal evolution of the LP-VLP activity in terms of the source movement, change of the waveforms, temporal evolution of the dominant resonance frequencies and the source Q factor and changes in the polarization of the signal. The LP source locations before and after the eruption, respectively, do not move significantly, while a slight movement of the VLP source is found. The intensity of the LP events increases after the eruption as well as their dominant frequency and Q factor, while the polarization of the signals changes from predominantly transversal to pure radial motion. Although in previous studies a link between the observed LP activity and the eruption was not found, these observations suggest that such a link was established at the latter end of the eruptive sequence, most likely as a consequence of a reestablishment of the pressure balance in the plumbing system, after it was undermined due to the discharge of large amounts of resident magma during the eruption. Based on the polarization properties of the signal and geological setting of the area, a fluid-filled crack is proposed as the most likely source geometry. The spectral analysis based on the autoregressive-models (SOMPI) is applied to the signals in order to analyse the resonance frequencies and the source Q-factors. The results suggest water and basalt at low gas volume fraction as the most likely fluids involved in the source process. Using theoretical relations for the “slow waves” radiated from the fluid-filled crack, we also estimate the crack size for both fluids, respectively.
    Description: Published
    Description: 205-220
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; long-period seismicity ; Etna volcano ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: Five gas discharges in the area of Mount Etna volcano (Italy) and in the near Hyblean plateau have been monitored since 1996. All the emissions displayed low contributions from crustal fluids, whereas magmatic gases were the main component. Selective dissolution of these gases into hydrothermal aquifers has been recognized and modeled, allowing us to calculate the original composition of the magma-released gases. The inferred composition of the magmatic gases exhibits synchronous variations of He/Ne and He/CO2 ratios, which are coherent with the magma degassing process. On the basis of numerical simulations of volatile degassing from Etnean basalts we have computed the initial and final pressures of the magma batches feeding the emissions. We thus can define the levels of the Etna plumbing system where magmas are stored. Pressure values were around 360 and 160 MPa for initial and final stages, respectively, meaning related depths of about 10 and 3 km below sea level, matching those obtained by geophysical investigations for the deep and shallow magma reservoirs. In addition, we have been able to recognize episodes of magma migration from the deeper reservoir toward the shallow one. An important magma injection into the shallow storage volume was detected during the onset of the 2001 eruption (17 July). No further injection had taken place during this period until September 2001, providing a possible reason for the quick exhaustion of the eruption. In view of this we suggest that the sampled emissions are a powerful geochemical tool to investigate the Etna’s plumbing system and its magma dynamics, as well as the development of eruptive events.
    Description: Published
    Description: 2463
    Description: partially_open
    Keywords: gas geochemistry ; magma degassing ; modeling ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 695870 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: Data from two dense arrays of short-period seismometers are used to retrieve source locations of the explosion quakes at Stromboli volcano. Slowness vectors stimated at both arrays with the zero-lag cross-correlation technique constitute the experimental data set. A probabilistic approach based on a grid search spanning the volcano interior is used to calculate the probability of the source location. Results depict a shallow source, located beneath the crater area, at depths not greater than 500 m below the surface. Results are slightly different from, but comparable to, those obtained in a companion experiment carried out in the same time period using a broad-band seismometer network, which show a source shifted some hundreds of meters northwest of the crater area. The method is revealed to be effective and useful for future studies having the purpose of real-time tracking of the explosion quakes and tremor.
    Description: Published
    Description: 123-142
    Description: partially_open
    Keywords: Stromboli ; Array ; Explosion quake ; Source location ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 1875674 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: We report results on the measured high 3He/4He isotope ratio in western Sicily, interpreted together with the heat data. The study of this sector of the Europe-Africa interaction is crucial to a better understanding of the tectonics and the geodynamical evolution of the central Mediterranean area. The estimated mantle-derived helium fluxes in the investigated areas are up to 2–3 orders of magnitude greater than those of a stable continental area. The highest flux, found in the southernmost area near the Sicily Channel, where recent eruptions of the Ferdinandea Island occurred 20 miles out to sea off Sciacca, has been associated with a clear excess of heat flow. Our results indicate that there is an accumulation of magma below the continental crust of western Sicily that is possibly intruding and out-gassing through roughly N-S trending deep fault systems linked to the mantle, that have an extensional component. Although the identification of these faults is not sufficiently constrained by our data, they could possibly be linked to the pre-existing faults that originated during the Mesozoic extensional-transtensional tectonic phases.
    Description: Published
    Description: L04312
    Description: partially_open
    Keywords: helium isotopes ; heat production ; tectonics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 134391 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas–water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80–1008 C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO2 in the springs was also detected and associated with high CO2 degassing.
    Description: Published
    Description: 91– 108
    Description: partially_open
    Keywords: Popocatepetl volcano ; helium isotope composition ; carbon isotope composition ; dissolved gases ; gas–water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 899823 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result,the H2O and CO2 content and the dD, d18O, and d13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits. The d13CCO2 of the magmatic gases varies around -3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (-1 to -35‰ vs. standard mean ocean water [SMOW]), as well as the above d13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect. The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the dD and d13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and -2 to -6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (dDH2O 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.
    Description: Published
    Description: 759–772
    Description: partially_open
    Keywords: isotope geochemistry ; volcanic gases ; mixing modeling ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 593620 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: The results of the 7 years (1994-2000) of monthly monitoring of spring water before and during eruptions show response to volcanic activity. Low salinity and temperature characterize most of the springs, which are located on the flanks of Popocatepetl Volcano. The pH ranges from 5.8 to 7.8 and temperature from 3 to 36 jC. Oxygen and hydrogen isotopic data show that the water is of meteoric origin, but SO4 2 , Cl , F , HCO3 , B, and SO4 2- /Cl- variations precede main eruptive activity, which is considered linked to influx of magmatic gases and acid fluids that react with sublimates and host rock and mix with the large water system. Na +, Ca2 + , SiO2 and Mg2 + concentrations in the water also increased before eruptive activity. The computed partial pressure of CO2 in equilibrium with spring waters shows values higher than air-saturated water (ASW), with the highest values up to 0.73 bar of pCO2. Boron is detected in the water only preceding the larger eruptions. When present, boron concentration is normally under health standard limits, but in two cases the concentration was slightly above. Other components are within health standard limits, except for F- in one spring.
    Description: Published
    Description: 207– 229
    Description: partially_open
    Keywords: Volcano monitoring ; Spring water chemistry ; Popocatepetl ; Mexico ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1584175 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Elsevier
    In:  Taran Y. A., Inguaggiato S., Marin M., and Yurova L. M. (2002) Geochemistry of fluids from submarine hot springs at Punta de Mita, Nayarit, Mexico. J. Volcanol. Geoth. Res. 115, 329-338.
    Publication Date: 2017-04-04
    Description: We thank R.M. Prol-Ledesma for her comment on the paper by Taran et al. (2002a) and the new data presented on the water composition of the Punta de Mita (PM) submarine springs. Prol-Ledesma (2003) comments refer to a supposedly wrong citation, superficial description of the geological background, incorrect method of water sampling, wrong approach for the estimation of the end-member composition, irrelevant discussion on the origin of fluids and, lastly, the using of someone else’s ideas and conclusions. In addition, she claims that our data on the fluid chemistry of the springs are not the first (original)ones. The Comment is supported by numerous references to publications by Prol-Ledesma et al. The text below follows the rubrics in the Comment.
    Description: Published
    Description: 319-322
    Description: partially_open
    Keywords: submarine springs ; hydrothermal systems ; geothermometry ; He-isotopes ; formation waters ; Jalisco Block ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 164856 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: In this paper we discuss the data collected by a large aperture array of broadband seismometers and a continuously recording gravity station during the 2002–2003 eruption of Etna volcano (Italy). Seismic signals recorded during the eruption are dominated by volcanic tremor whose energy spans the 0.5–5 Hz frequency band. On three different occasions (12 November, 19–20 November and 8–9 December 2002), we observed marked increases of the tremor amplitude (up to a factor of 4), which occurred simultaneously with gravity decreases (up to 30 μGal). The three concurrent gravity/tremor anomalies last 6 to 12 hours and terminate with rapid (up to 2 hours) changes, after which the signals return back to their original levels. Based on volcanological observations encompassing the simultaneous anomalies, we infer that the accumulation of a gas cloud at some level in the conduit plexus feeding a new eruptive vent could have acted as a joint source. This study highlights the potential of joint gravity–seismological analyses to both investigate the internal dynamic of a volcano and to improve the confidence of volcanic hazard assessment.
    Description: Published
    Description: 616-629
    Description: reserved
    Keywords: Etna ; volcanic tremor ; gravity changes ; foam layer ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1036216 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: A detailed structural and geophysical study of the Somma–Vesuvius volcanic complex was carried out by integrating mesostructural measurements, focal mechanisms and shear-wave splitting analysis. Fault-slip and focal mechanism analysis indicate that the volcano is affected by NW–SE-, NE–SW-trending oblique-slip faults and by E–W-trending normal faults. Magma chamber s. responsible for plinianrsub-plinian eruptions i.e. A.D. 79 and 1631. formed inside the area bounded by E–W-trending normal faults. The post-1631 fissural eruptions i.e. 1794 and 1861.occurred along the main oblique-slip fault segments. The movements of the Vesuvius faults are mainly related to the regional stress field. A local stress field superposed to the regional one is also present but evidences of magma or gravity induced stresses are lacking. The local stress field acts inside the caldera area being related to fault reactivation processes. The present-day Vesuvius seismic activity is due to both regional and local stress fields. Shear-wave splitting analysis reveals an anisotropic volume due to stress induced cracks NW–SE aligned by faulting processes. Since the depth extent of the anisotropic volume is at least 6 km b.s.l., we deduce the NW–SE-trending oblique-slip fault system represents the main discontinuity on which lies the volcano. This discontinuity is responsible for the morphological lowering of the edifice in its southwestern side.
    Description: Published
    Description: 199-218
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: structure of volcanoes ; stress field ; seismology ; tectonics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: Following the significant ground uplift (1.8 m) of the 1982–1984 bradyseismic crisis, the recent history of Campi Flegrei volcanic complex (Italy) has been dominated by a subsidence phase. Recent geodetic data demonstrate that the subsidence has terminated, and that positive ground deformation renewed in November 2004, at a low but accelerating rate leading to about 4 cm of uplift by the end of October 2006. As in previous episodes, ground uplift has been accompanied by swarms of micro-earthquakes (M ≤ 1.4) in three distinct episodes: October 2005, October 2006 and December 2006. Hypocenters of these earthquakes are mainly located beneath the Solfatara Volcano at depths ranging between 0.5 and 4 km. Inversion of S-wave spectra indicates source radius and stress drop on the order of 30–60 m and 104–9 × 105 Pa, respectively. Fault plane solutions indicate predominantly normal mechanisms. Accompanying the October 2006 swarm, we detected intense long-period (LP) activity for about 1 week. These signals consist of weak, monochromatic oscillations whose spectra exhibit a main peak at frequency 0.8 Hz. This peak is common to all the stations of the network, and not present in the noise spectra, suggesting that it is a source effect. About 75% of the detected LPs cluster into three groups of mutually similar events. Adjustment of waveforms using cross-correlation allows for precise alignment and stacking, which enhances signal onsets and permits accurate absolute arrival picks, and thus better absolute as well as relative locations. Locations associated with the three different clusters are very similar, and appear to delineate the SE rim of the Solfatara Volcano at a depth of about 500 m. The most likely source process for the LP events involves the resonance of a fluid-filled, buried cavity. Quality factors of the resonator cluster in a narrow interval around 4, which is consistent with the vibration of a buried cavity filled with a water-vapour mixture at poor gas-volume fractions. We propose a conceptual model to interpret the temporal and spatial patterns of the observed seismicity.
    Description: Published
    Description: 14-24
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Long-period seismicity ; Volcano monitoring ; Caldera ; Hydrothermal system ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: We present a detailed analysis of the source properties of Long-Period (LP) signals recorded at Campi Flegrei Caldera (Italy) during the last (2005–2006) mini-uplift episode. Moment Tensor inversion via full-waveform modelling of broad-band seismograms indicates a crack-like source with a significant volumetric component. From auto-regressive modelling of the signal's tail we evaluate the dominant frequency and the attenuation factor of the oscillating source. Considering the acoustic properties of a fluid-filled crack, these values are consistent with the resonant oscillations of a crack filled by a water–gas mixture at variable gas–volume fraction. For these fluids, the crack size would be on the order of 40–420 m, a size range which is consistent with the spatial spreading of LP hypocenters. Analysis of temporally-correlated time series of seismological and geochemical data indicates that climaxing of LP activity was preceded by swarms of volcano-tectonic (VT) events and rapidly followed by a consistent increase of both thermal emissions and gas fluxes recorded at the surface (1 month — 2/3 days, respectively). Following these observations, we propose a conceptual model where VT activity increases permeability of the medium, thus favouring fluid mobility. As a consequence, the hydrothermal system experiences pressure perturbations able to trigger its resonant, LP oscillations.
    Description: Published
    Description: 1035–1044
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei caldera ; Long-Period earthquakes ; crack model ; Sompi method ; gas composition ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array.We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S–P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1–3 kmbelow the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of “Las Maquinitas” and “Copahue Village”, located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.
    Description: Published
    Description: 284–294
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic seismicity ; volcanic tremor ; seismic array ; volcano tectonic earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: A new method combining measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux was developed in order to qualitatively and quantitatively characterise the CO2 source feeding the soil CO2 diffuse degassing. The method was tested in March 2007 at the Solfatara of Pozzuoli volcano degassing area (Naples, Italy) where more than 300 measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux were performed, surveying Solfatara crater and its surroundings. The wide range of CO2 flux and CO2 isotopic composition values (from 8.4 g m−2 d−1 to 28,834 g m−2 d−1, and from 0.73‰ to −33.54‰, respectively), together with their statistical distributions suggests the occurrence of multiple CO2 sources feeding soil degassing. The combined interpretation of flux and isotopic data allows us to identify and characterise two distinct gas sources: a hydrothermal and a biogenic source. The soil CO2 from the hydrothermal source is characterised by a mean δ13CCO2 of −2.3‰±0.9‰, hence close to the isotopic composition of the fumarolic CO2 (δ13CCO2=−1.48‰± 0.22‰) and by a mean CO2 flux of 2875 g m−2 d−1. The CO2 from the biogenic source is characterised by a mean δ13CCO2 of −19.4‰±2.1‰, and by a mean CO2 flux of 26 g m−2 d−1, which are both in the range of the typical values for biologic CO2 soil degassing. This reliable characterisation of the biogenic CO2 flux would not have been possible by solely applying a statistical analysis of the CO2 flux values, which is commonly applied in volcanological studies for the partitioning between background fluxes and anomalous CO2 fluxes. A map of the Solfatara diffuse degassing structure was derived from the estimated threshold for the biogenic CO2 flux, highlighting that soil degassing of hydrothermal CO2 mixed in different proportion with biogenic CO2 occurs over a large area (~0.8 km2), which extends over the inner part of the Solfatara crater as well as the eastern periphery, corresponding with a NW–SE fault system. The presented method and data analysis are important means of surveillance of the volcanic activity.
    Description: Published
    Description: 372–379
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 soil degassing ; CO2 flux ; carbon dioxide ; carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: Lake Averno is situated in the homonymous crater in the northwestern sector of the Campi Flegrei active volcanic system in Campania region, Italy. In February 2005 a fish kill event was observed in the lake, prompting a geochemical survey to ascertain the possible cause. In February 2005 a geochemical survey revealed that the lake water was unstratified chemically and isotopically, presumably, as a result of lake overturn. This fish kill phenomenon was recorded at least two other times in the past. In contrast to the February 2005 results, data collected in October 2005, shows the Lake Averno to be stratified, with an oxic epilimnion (surface to 6 m) and an anoxic hypolimnion (6 m to lake bottom at about 33 m). Chemical and isotopic compositions of Lake Averno waters suggest an origin by mixing of shallow waters with a Na–Cl hydrothermal component coupled with an active evaporation process. The isotopic composition of Dissolved Inorganic Carbon, as well as the composition of the non-reactive dissolved gas species again supports the occurrence of this mixing process. Decreasing levels of SO4 and increasing levels of H2S and CH4 contents in lake water with depth, strongly suggests anaerobic bacterial processes are occurring through decomposition of organic matter under anoxic conditions in the sediment and in the water column. Sulfate reduction and methanogenesis processes coexist and play a pivotal role in the anaerobic environment of the Lake Averno. The sulfate reducing bacterial activity has been estimated in the range of 14–22 μmol m−2 day−1. Total gas pressure of dissolved gases ranges between 800 and 1400 mbar, well below the hydrostatic pressure throughout the water column, excluding the possibility, at least at the survey time, of a limnic eruption. Vertical changes in the density of lake waters indicate that overturn may be triggered by cooling of epilimnetic waters below 7 °C. This is a possible phenomenon in winter periods if atmospheric temperatures remain frosty for enough time, as occurred in February 2005. The bulk of these results strongly support the hypothesis that fish kill was caused by a series of events that began with the cooling of the epilimnetic waters with breaking of the thermal stratification, followed by lake overturn and the rise of toxic levels of H2S from the reduced waters near the lake bottom.
    Description: Published
    Description: 305–316
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: lake Averno ; dissolved gases ; stable isotopes ; stable isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: We determine the three-dimensional distribution of P- and S-wave velocities for Central São Miguel Island (Azores, Portugal) by tomographic inversion of local earthquake arrival times. We use P- and S-phases from 289 earthquakes recorded by a network of 20 seismometers. The model shows good resolution in the shallowest 5–6 km, as illustrated by different resolution tests. There are several velocity anomalies, interpreted as pyroclastic deposits, intrusive bodies, geothermal fields, and the effects of tectonics. A low Vp zone marks Furnas caldera, probably evidencing volcaniclastic sediments with development of intense geothermal activity. Another low Vp zone extends in correspondence of the highly fractured area between Fogo and the north coast. Conversely, strong positive anomalies are found south of Fogo and northwest of Furnas. They are interpreted in terms of high-density deposits and remnants of a plutonic intrusion. These interpretations are supported by the distribution of Vp/Vs, and are consistent with previous geological, geochemical, and geophysical data.
    Description: Published
    Description: 8-18
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic tomography ; Volcano seismology ; Crustal structure ; Azores ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: Chemical and isotopic analyses of the main gas manifestations of the island of Pantelleria (Italy) were used to gain insight on the origin of the released methane. Results indicate that the most probable origin is through abiogenic reactions within the hydrothermal system. Methane and CO2 flux measurements from the soils were made with the accumulation chamber method in an area of about 0.015 km2 within the main fumarolic area of the island (Favara Grande). The 23 measurements range from –34 to 3550 mg m-2 d-1 for CH4 and from 0.6 to 379 g m-2 d-1 for CO2. The relationships between CH4 and CO2 fluxes and the CH4/CO2 ratios in the gases collected between 25 and 100 cm depth provide evidence for methanotrophic processes within the soils. Methane output for the surveyed area was calculated in 2.5 t a-1 and extrapolated to about 5-10 t a-1 for the entire volcanic/hydrothermal system of the island. Previous higher estimates of the CH4 output at Pantelleria (Etiope et al., 2007 - J. Volcanol. Geotherm. Res., 165, 76 – 86) were based on soil CO2 output and CH4/CO2 ratios in fumarolic gases; the present work provides the first direct CH4 flux data and it suggests that methanotrophic activity in the soil could be substantial in reducing the CH4 emission to the atmosphere.
    Description: Published
    Description: 147-157
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: hydrothermal systems ; gas geochemistry ; isotope composition ; methane output ; methanotrophic consumption ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union
    Publication Date: 2017-04-04
    Description: Three eruptive episodes during the 2006 summit eruptions of Mount Etna were exceptionally well documented by visual, seismic and thermal monitoring. The first (16 November) was strongly explosive, with vigorous Strombolian activity and ash emission from multiple vents, lava emission, and phreatomagmatic explosions generating pyroclastic density currents (PDCs). The second episode (19 November) had a rather weakly explosive component, with mild Strombolian activity but more voluminous lava emission. The third (24 November) was a moderately explosive paroxysm, with intermittent lava fountaining and generation of a tephra column as well as lava emission and PDCs. Data recorded by a thermal monitoring camera clearly document the different phases of each paroxysm, weather clouds occasionally hampering thermal monitoring. The images show a rapid onset of the volcanic activity, which during each of the paroxysms reached a peak in eruptive and thermal intensity, and then decreased gradually. The stronger phreatomagmatic explosions and PDCs on 16 and 24 November did not yield any seismic signature linked to the opening of new vents, nor were they associated with peculiar characteristics of the seismic signal. Nevertheless, eruptive styles (Strombolian activity, lava emission) and different levels in the intensity of explosive activity were generally well reflected in the amplitude and frequency content of the seismic signal, and in the source location of the volcanic tremor centroid throughout the three eruptive episodes. This multidisciplinary study, therefore, not only provides a key to distinguish between endogenous and exogenous origins of the phenomena observed, but also documents the complex magma dynamics within the volcano.
    Description: Published
    Description: B03211
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano monitoring ; Mt Etna ; volcanic hazard ; instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-05-09
    Description: A geochemical survey of thermal waters collected from submarine vents at Panarea Island (Aeolian Islands, southern Italy) was carried out from December 2002 to March 2007, in order to investigate i) the geochemical processes controlling the chemical composition of the hydrothermal fluids and ii) the possible relations between the chemical features of the hydrothermal reservoir and the activity of the magmatic system. Compositional data of the thermal water samples were integrated in a hydrological conceptual model, which describes the formation of the vent fluid by mixing of seawater, seawater concentrated by boiling, and a deep, highly-saline end-member, whose composition is regulated by water-rock interactions at relatively high temperature and shows clear clues of magmatic-related inputs. The chemical composition of concentrated seawater was assumed to be represented by that of the water sample having the highest Mg content. The composition of the deep end-member was instead calculated by extrapolation assuming a zero-Mg end-member. The Na–K–Ca geothermometer, when applied to the thermal end-member composition, indicated an equilibrium temperature of approximately 300 °C, a temperature in agreement with the results obtained by gas-geothermometry.
    Description: Published
    Description: 246-254
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: low-pH waters; shallow submarine hydrothermal springs; Panarea Island ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...