ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy  (13)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (12)
  • American Geophysical Union  (20)
  • Wiley  (4)
  • American Chemical Society
  • American Physical Society
  • 2010-2014  (24)
Collection
Years
Year
  • 1
    Publication Date: 2021-11-09
    Description: In this study, we present a three-dimensional P wave upper-mantle tomography model of the southwest Iberian margin and Alboran Sea based on teleseismic arrival times recorded by Iberian and Moroccan land stations and by a seafloor network deployed for 1 year in the Gulf of Cadiz area during the European Commission Integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system (EC NEAREST) project. The three-dimensional model was computed down to 600 kmdepth. The tomographic images exhibit significant velocity contrasts, as large as 3%, confirming the complex evolution of this plate boundary region. Prominent high-velocity anomalies are found beneath Betics-Alboran Sea, off-shore southwest Portugal, and north Portugal, at sublithospheric depths. The transition zones between high- and low-velocity anomalies in southwest and south Iberia are associated to the contact of oceanic and continental lithosphere. The fast structure below the Alboran Sea-Granada area depicts an L-shaped body steeply dipping from the uppermost mantle to the transition zone where it becomes less curved. This anomaly is consistent with the results of previous tomographic investigations and recent geophysical data such as stress distribution, GPS measurements of plate motion, and anisotropy patterns. In the Atlantic domain, under the Horseshoe Abyssal Plain, the main feature is a high-velocity zone found at uppermost mantle depths. This feature appears laterally separated from the positive anomaly recovered in the Alboran domain by the interposition of low-velocity zones which characterize the lithosphere beneath the southwest Iberian peninsula margin, suggesting that there is no continuity between the high-velocity anomalies of the two domains west and east of the Gibraltar Strait.
    Description: Published
    Description: 1587–1601
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Upper-mantle seismic tomography ; land and marine seismic networks ; SW Iberian margin ; Alboran Sea ; Atlantic domain ; Gulf of Cadiz ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-18
    Description: Along the Italian peninsula adjoin two crustal domains, peri-Tyrrhenian and Adriatic, whose boundary is not univocal in central Italy. In this area, we attempt to map the extent of the Moho in the two terrains from variations of the travel time difference between the direct P wave and the P-to-S wave converted at the crust-mantle boundary, called PsMoho. We use teleseismic receiver functions computed at 38 broad-band stations in this and previous studies, and assigned each of the recording sites to the Adriatic or peri-Tyrrhenian terrains based on station location, geologic and geophysical data and interpretation, and consistency of delays with the regional Moho trend. The results of the present study show that the PsMoho arrival time varies from 2.3 to 4.1 s in the peri-Tyrrhenian domain and from 3.7 to 5.5 s in the Adriatic domain. As expected, the lowest time difference is observed along the Tyrrhenian coastline and the largest values are observed in the axial zone of the Apennine chain. A key new result of this study is a sharp E-W boundary in the Adriatic domain that separates a deeper Moho north of about 42 N latitude from a shallower Moho to the south. This feature is constrained for a length of about 40 km by the observations available in this study. The E-W boundary requires a revision of prior mapping of the Moho in central Italy and supports previous hypotheses of lithosphere segmentation.
    Description: Published
    Description: 3929–3938
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: teleseismic receiver functions ; Moho discontinuity ; central Italy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-26
    Description: This paper presents a velocity model of the Italian (central Mediterranean) lithosphere in unprecedented detail. The model is derived by inverting a set of 166,000 Pg and Pn seismic wave arrival times, restricted to the highest-quality data available. The tomographic images reveal the geometry of the subduction-collision system between the European, Adriatic, and Tyrrhenian plates, over a larger volume and with finer resolution than previous studies. We find two arcs of low-Vp anomalies running along the Alps and the Apennines, describing the collision zones of underthrusting continental lithospheres. Our results suggest that in the Apennines, a significant portion of the crust has been subducted below the mountain belt. From the velocity model we can also infer thermal softening of the crustal wedge above the subducting Adriatic plate. In the Tyrrhenian back-arc region, strong and extensive low-Vp anomalies depict upwelling asthenospheric material. The tomographic images also allow us to trace the boundary between the Adriatic and the Tyrrhenian plates at Moho depth, revealing some tears in the Adriatic-Ionian subducting lithosphere. The complex lithospheric structure described by this study is the result of a long evolution; the heterogeneities of continental margins, lithospheric underthrusting, and plate indentation have led to subduction variations, slab tears, and asthenospheric upwelling at the present day. The high-resolution model provided here greatly improves our understanding of the central Mediterranean’s structural puzzle. The results of this study can also shed light on the evolution of other regions experiencing both oceanic and continental subduction.
    Description: Published
    Description: B05305
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: lithosphere ; crust ; italy ; plates ; subduction ; europe ; seismicity ; adria ; tyrrhenian ; boundary ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-26
    Description: In complex tectonics regions, seismological, geophysical, and geodynamic modeling require accurate definition of the Moho geometry. Various active and passive seismic experiments performed in the central Mediterranean region revealed local information on the Moho depth, in some cases used to produce interpolated maps. In this paper, we present a new and original map of the 3-D Moho geometry obtained by integrating selected high-quality controlled source seismic and teleseismic receiver function data. The very small cell size makes the retrieved model suitable for detailed regional studies, crustal corrections in teleseismic tomography, advanced 3-D ray tracing in regional earthquake location, and local earthquake tomography. Our results show the geometry of three different Moho interfaces: the European, Adriatic-Ionian, and Tyrrhenian. The three distinct Moho are fashioned following the Alpine and Apennines subduction, collision, and back-arc spreading and show medium- to high-frequency topographic undulations reflecting the complexity of the geodynamic evolution.
    Description: Published
    Description: Q09006
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Italy; controlled source seismology; crust; receiver function ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-24
    Description: We propose a new quantitative approach for the joint interpretation of velocity and attenuation tomography images, performed through the lateral separation of scattering and intrinsic attenuation. The horizontal P-wave scattering attenuation structure below Campi Flegrei Caldera (CFC) is imaged using the autocorrelation functions (ACF) of P-wave vertical velocity fluctuations. Cluster analysis (CA) is then applied to interpret the images derived from ACF and the available P-wave total attenuation images at 2000m quantitatively. The analysis allows the separation of intrinsic and scattering attenuation on a 2-D plane, adding new geophysical constraints to the present knowledge about this volcanic area. The final result is a new, quantitative image of the past and present tectonic and volcanological state of CFC. P-wave intrinsic dissipation dominates in an area approximately located under the volcanic centre of Solfatara, as expected in a region with a large presence of fluids and gas. A north–south scattering attenuation region is mainly located below the zone of maximum uplift in the 1982–1984 bradiseismic crisis, in the sea side of the Pozzuoli bay, but also extending below Mt Nuovo. This evidence favours the interpretation in terms of a hard but fractured body, contoured by strong S-wave scatterers, corresponding to the Caldera rim: the region is possibly a section of the residual magma body, associated with the 1538 eruption of Mt Nuovo.
    Description: Published
    Description: 1304-1310
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Probability distributions ; Seismic attenuation ; Seismic tomography ; Statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-23
    Description: SPAC method applied to data from a small aperture seismic array on Mt. Vesuvius gives the shallow velocity model.
    Description: Published
    Description: 481-484
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Array analysis ; shallow structure ; SPAC method ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic Vp model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high‐velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low‐velocity anomaly (8%–10 % reduction in Vp) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low‐velocity volume (∼5% reduction in Vp and as much as 40% reduction in Vs) in the depth interval 8–14 km (6–12 km below mean sea level) beneath the central section of the caldera. The two low‐velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.
    Description: Published
    Description: B12314
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic Tomography ; Long Valley Caldera ; Receiver Function ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We report the paleomagnetic and magnetic fabric results of 58 sites from Cretaceous-Miocene marine and continental strata from the Eastern Cordillera (EC) and the Cucuta zone, at the junction between the Santander Massif and the Merida Andes of Colombia. The EC is an intracontinental doubly vergent range inverting a Triassic to Early Cretaceous rift zone. Twenty-three sites reveal nonsystematic tectonic rotations, including unrotated areas of the EC range with respect to stable South America. Our data show that the EC inverted a NNE oriented rift zone and that the orientation of the Mesozoic rift and the mountain chain roughly correspond. Interestingly, magnetic lineations from anisotropy of magnetic susceptibility analysis do not trend parallel to the chain but rather are oblique to the main orogenic trend. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central western Colombia accommodated by the EC, we suggest that the Miocene-Recent deformation event of this belt arises from ENE oblique convergence reactivating a NNE oriented rift zone. Oblique shortening was likely partitioned into pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well known along both chain fronts) and by range-parallel right-lateral strike-slip faults, which have not been identified yet, but likely exist in the axial part of the EC. Finally, the 35° ± 9° clockwise rotation observed in four post-Miocene magnetically overprinted sites from the Cucuta zone reflects late Cenozoic and ongoing right-lateral strike-slip displacement occurring along faults parallel to the Boconó fault system, possibly connected with the right-lateral faults inferred to exist along the axial part of the EC.
    Description: Published
    Description: 2233–2260
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Paleomagnetism, magnetic fabric, Eastern Cordillera ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Accepted for publication in Journal of Geophysical Research. Copyright (2010) American Geophysical Union.
    Description: A semi-permanent global positioning system (GPS) network of 30 vertices known as the Victoria Land Network for Deformation Control (VLNDEF) was set-up in the Austral summer of 1998 in Northern Victoria Land (NVL), including Terra Nova Bay (TNB), Antarctica. The locations were selected according to the known Cenozoic fault framework that is characterized by a system of NW-SE regional faults with right-lateral, strike-slip kinematics. The TNB1 permanent GPS station is within the VLNDEF, and following its installation on a bedrock monument in October 1998 it has been recording almost continuously. The GPS network has been surveyed routinely every two summers, using high-quality, dual-frequency GPS receivers. In this study, we present the results of a distributed session approach applied to the processing of the GPS data of the VLNDEF. An improved reference frame definition was implemented, including a new Euler pole, to compute the Antarctic intra-plate residual velocities. The projection of the residual velocities on the main faults in NVL show present-day activities for some faults, including the Tucker, Leap Year, Lanterman, Aviator, and David faults, with rightlateral strike-slip kinematics and local extensional/ compressional components. This active fault pattern divides NVL into eight rigid blocks, each characterized by their relative movements and rigid rotations. These show velocities of up to several mm/yr, which are comparable to those predicted by plate tectonic theory at active plate margins.
    Description: All researches were carried out in the framework of the Programma Nazionale di Ricerche in Antartide (PNRA) and financially supported by PNRA S.C.r.l.
    Description: Published
    Description: B12421
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: ANTARCTICA ; GEODESY ; MONITORING NETWORKS ; CRUSTAL DEFORMATION ; CONTINENTAL NEOTECTONICS ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...