ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arctic  (15)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (14)
  • Numerical modeling  (12)
  • Carbon cycle  (11)
  • American Geophysical Union  (50)
  • Accademina Nazionale dei Lincei  (1)
  • Birkhauser  (1)
  • American Institute of Physics (AIP)
  • 2010-2014  (52)
  • 1985-1989
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: From December 2005 to January 2006, an anomalous degassing episode was observed at Mount Etna, well-correlated with an increase in volcanic tremor, and in the almost complete absence of eruptive activity. In the same period, more than 10,000 very long period (VLP) events were detected. Through moment tensor inversion analyses of the VLP pulses, we obtained quantitative estimates of the volumetric variations associated with these events. This allowed a quantitative investigation of the relationship between VLP seismic activity, volcanic tremor, and gas emission rate at Mount Etna. We found a statistically significant positive correlation between SO2 gas flux and volcanic tremor, suggesting that tremor amplitude can be used as a first-order proxy for the background degassing activity of the volcano. VLP volumetric changes and SO2 gas flux are correlated only for the last part of our observations, following a slight change in the VLP source depth. We calculate that the gas associated with VLP signal genesis contributed less than 5% of the total gas emission. The existence of a linear correlation between VLP and degassing activities indicates a general relationship between these two processes. The effectiveness of such coupling appears to depend upon the particular location of the VLP source, suggesting that conduit geometry might play a significant role in the VLP-generating process. These results are the first report on Mount Etna of a quantitative relationship between the amounts of gas emissions directly estimated through instrumental flux measurements and the quantities of gas mass inferred in the VLP source inversion.
    Description: Published
    Description: 4910-4921
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Very Long Period seismicity ; UV scanners network ; Etna Volcano ; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB4018, doi:10.1029/2011GB004192.
    Description: A series of seasonally distributed measurements from the six largest Arctic rivers (the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie) was used to examine the magnitude and significance of Arctic riverine DIC flux to larger scale C dynamics within the Arctic system. DIC concentration showed considerable, and synchronous, seasonal variation across these six large Arctic rivers, which have an estimated combined annual DIC flux of 30 Tg C yr−1. By examining the relationship between DIC flux and landscape variables known to regulate riverine DIC, we extrapolate to a DIC flux of 57 ± 9.9 Tg C yr−1for the full pan-arctic basin, and show that DIC export increases with runoff, the extent of carbonate rocks and glacial coverage, but decreases with permafrost extent. This pan-arctic riverine DIC estimate represents 13–15% of the total global DIC flux. The annual flux of selected ions (HCO3−, Na+, Ca2+, Mg2+, Sr2+, and Cl−) from the six largest Arctic rivers confirms that chemical weathering is dominated by inputs from carbonate rocks in the North American watersheds, but points to a more important role for silicate rocks in Siberian watersheds. In the coastal ocean, river water-induced decreases in aragonite saturation (i.e., an ocean acidification effect) appears to be much more pronounced in Siberia than in the North American Arctic, and stronger in the winter and spring than in the late summer. Accounting for seasonal variation in the flux of DIC and other major ions gives a much clearer understanding of the importance of riverine DIC within the broader pan-arctic C cycle.
    Description: Funding for this work was provided through NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to SET was provided by an NSERC Postdoctoral Fellowship.
    Description: 2013-06-14
    Keywords: Arctic ; Dissolved inorganic carbon ; Ocean acidification ; Permafrost ; River biogeochemistry ; Weathering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-03
    Description: The weakening mechanisms occurring during an earthquake failure are of prominent importance in determining the resulting energy release and the seismic waves excitation. In this paper we consider the fully dynamic response of a seismogenic structure where lubrication processes take place. In particular, we numerically model the spontaneous propagation of a 3-D rupture in a fault zone where the frictional resistance is controlled by the properties of a low viscosity slurry, formed by gouge particles and fluids. This model allows for the description of the fault motion in the extreme case of vanishing effective normal stress, by considering a viscous fault response and therefore without the need to invoke, in the framework of Coulomb friction, the generation of the tensile mode of fracture. We explore the effects of the parameters controlling the resulting governing law for such a lubricated fault; the viscosity of the slurry, the roughness of the fault surfaces and the thickness of the slurry film. Our results indicate that lubricated faults produce a nearly complete stress drop (i.e., a very low residual friction coefficient; mu ~ 0.01), a high fracture energy density (E_G ~ few 10s of MJ/m^2) and significant slip velocities (vpeak ~ few 10s of m/s). The resulting values of the equivalent characteristic slip-weakening distance (d_0_eq = 0.1–0.8 m, depending on the adopted parameters) are compatible with the seismological inferences. Moreover, in the framework of our model we found that supershear ruptures are highly favored. In the case of enlarging gap height we can have the healing of slip or even the inhibition of the rupture. Quantitative comparisons with different weakening mechanisms previously proposed in the literature, such as the exponential weakening and the frictional melting, are also discussed.
    Description: Published
    Description: B05304
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: governing models ; theoretical seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: One hundred twenty-nine long-period (LP) events, divided into two families of similar events, were recorded by the 50 stations deployed on Mount Etna in the second half of June 2008. During this period lava was flowing from a lateral fracture after a summit Strombolian eruption. In order to understand the mechanisms of these events, we perform moment tensor inversions. Inversions are initially kept unconstrained to estimate the most likely mechanism. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainties in the velocity model. Constrained inversions for a crack, a pipe or an explosion then allow us to accurately determine the structural orientations of the source mechanisms. Both numerical tests and LP event inversions emphasise the importance of using stations located as close as possible to the source. Inversions for both families show mechanisms with a strong volumetric component. These events are most likely generated by cracks striking SW–NE for both families and dipping 70° SE (family 1) and 50° NW (family 2). For family 1 events, the crack geometry is nearly orthogonal to the dikelike structure along which events are located, while for family 2 the location gave two pipelike bodies that belong to the same plane as the crack mechanism. The orientations of the cracks are consistent with local tectonics, which shows a SW–NE weakness direction. The LP events appear to be a response to the lava fountain occurring on 10 May 2008 as opposed to the flank lava flow.
    Description: Published
    Description: B01304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Etna Volcano ; long-period events ; source mechanism ; location ; plumbing systems ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Near-fault strong-ground motions (0.1–10 Hz) recorded during the Mw 6.3 2009 L’Aquila earthquake exhibit great spatial variability. Modeling the observed seismograms allows linking distinct features of the observed wavefield to particular source and propagation effects and provides insights on strong motion complexity from this moderate magnitude event. We utilize a hybrid integral-composite approach based on a k-square kinematic rupture model, combining low-frequency coherent and high-frequency incoherent source radiation and providing omega-squared source spectral decay. Several source model features, proven to be stable by means of an uncertainty analysis in the preceding low-frequency (〈0.2 Hz) multiple finite-extent source inversion (Paper 1), were constrained. Synthetic Green’s functions are calculated in a 1D-layered crustal model including 1D soil profiles to account for site-specific response (where available). The results show that although the local site effects improve the modeling, the spatial broadband ground-motion variability is to large extent controlled by the rupture kinematics. The modeling thus confirms and further constraints the source model features, including the position and slip amount of the two main asperities, the largest asperity time delay and the rupture velocity distribution on the fault. Furthermore, we demonstrate that the crossover frequency dividing the coherent and incoherent wavefield, often considered independent on the station position, has to be variable in order to adequately reproduce both near and far station recordings. This suggests that the incoherency of the radiated wavefield is controlled by the wave-propagation phenomena and/or the initial updip rupture propagation was very smooth (coherent) up to relatively high frequencies (〉2 Hz)
    Description: Published
    Description: B0438
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: broad band modeling, source complexity, aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12020, doi:10.1029/2011JC006998.
    Description: A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.
    Description: This study has been carried out as part of ECCO2 and SASS (Synthesis of the Arctic System Science) projects funded by NASA and NSF, respectively. MM and MJF are grateful for support from the National Science Foundation (ARC-0531119 and ARC-0806229) for financial support. MM also acknowledges NASA for providing computer time, the use of the computing facilities at NAS center and also the Scripps post-doctoral program for further financial support that helped to complete the manuscript. RMK also acknowledges NOAA for support (NA08OAR4310820 and NA08OAR4320752).
    Description: 2012-06-15
    Keywords: Air-sea gas exchange ; Biogeochemical cycles ; Land-ocean coupling ; Numerical modeling ; Ocean carbon cycle ; Polar oceans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3225, doi:10.1029/2011PA002273.
    Description: The midpoint of the Last Termination occurred 4,000 years earlier in the deep Atlantic than the deep Pacific according to a pair of benthic foraminiferal δ18O records, seemingly implying an internal circulation shift because the lag is much longer than the deep radiocarbon age. Here a scenario where the lag is instead caused by regional surface boundary condition changes, delays due to oceanic transit timescales, and the interplay between temperature and seawater δ18O (δ18Ow) is quantified with a tracer transport model of the modern-day ocean circulation. Using an inverse method with individual Green functions for 2,806 surface sources, a time history of surface temperature and δ18Ow is reconstructed for the last 30,000 years that is consistent with the foraminiferal oxygen-isotope data, Mg/Ca-derived deep temperature, and glacial pore water records. Thus, in the case that the ocean circulation was relatively unchanged between glacial and modern times, the interbasin lag could be explained by the relatively late local glacial maximum around Antarctica where surface δ18Ow continues to rise even after the North Atlantic δ18Ow falls. The arrival of the signal of the Termination is delayed at the Pacific core site due to the destructive interference of the still-rising Antarctic signal and the falling North Atlantic signal. This scenario is only possible because the ocean is not a single conveyor belt where all waters at the Pacific core site previously passed the Atlantic core site, but instead the Pacific core site is bathed more prominently by waters with a direct Antarctic source.
    Description: G.G. is supported by NSF grant OIA-1124880 and the WHOI Arctic Research Initiative.
    Description: 2013-03-06
    Keywords: Deglaciation ; Foraminiferal data ; Inverse methods ; Numerical modeling ; Oxygen-18 ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C06010, doi:10.1029/2011JC007652.
    Description: We propose a conceptual model for an Arctic sea that is driven by river runoff, atmospheric fluxes, sea ice melt/growth, and winds. The model domain is divided into two areas, the interior and boundary regions, that are coupled through Ekman and eddy fluxes of buoyancy. The model is applied to Hudson and James Bays (HJB, a large inland basin in northeastern Canada) for the period 1979–2007. Several yearlong records from instruments moored within HJB show that the model results are consistent with the real system. The model notably reproduces the seasonal migration of the halocline, the baroclinic boundary current, spatial variability of freshwater content, and the fall maximum in freshwater export. The simulations clarify the important differences in the freshwater balance of the western and eastern sides of HJB. The significant role played by the boundary current in the freshwater budget of the system, and its sensitivity to the wind-forcing, are also highlighted by the simulations and new data analyses. We conclude that the model proposed is useful for the interpretation of observed data from Arctic seas and model outputs from more complex coupled/climate models.
    Description: We thank NSERC and the Canada Research Chairs program for funding. FS acknowledges support from NSF OCE–0927797 and ONR N00014-08-10490.
    Description: 2012-12-20
    Keywords: Arctic ; Models ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB0E02, doi:10.1029/2012GB004299.
    Description: While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3−) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3−. We explored landscape-level controls on DOC and HCO3− flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3− flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3− yields, while increasing permafrost extent was associated with decreases in HCO3−. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.
    Description: Funding for this work was provided through NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to S.E.T. was provided by an NSERC Postdoctoral Fellowship.
    Description: 2013-02-21
    Keywords: Arctic ; Bicarbonate ; Dissolved organic carbon ; Permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L19703, doi:10.1029/2012GL052883.
    Description: Carbon cycling studies focusing on transport and transformation of terrigenous carbon sources toward marine sedimentary sinks necessitate separation of particulate organic carbon (OC) derived from many different sources and integrated by river systems. Much progress has been made on isolating and characterizing young biologically-formed OC that is still chemically intact, however quantification and characterization of old, refractory rock-bound OC has remained troublesome. Quantification of both endmembers of riverine OC is important to constrain exchanges linking biologic and geologic carbon cycles and regulating atmospheric CO2 and O2. Here, we constrain petrogenic OC proportions in suspended sediment from the headwaters of the Ganges River in Nepal through direct measurement using ramped pyrolysis radiocarbon analysis. The unique results apportion the biospheric and petrogenic fractions of bulk particulate OC and characterize biospheric OC residence time. Compared to the same treatment of POC from the lower Mississippi-Atchafalaya River system, contrast in age spectra of the Ganges tributary samples illustrates the difference between small mountainous river systems and large integrative ones in terms of the global carbon cycle.
    Description: This work was partially supported by U.S. National Science Foundation (NSF) Cooperative Agreement OCE-228996 to NOSAMS and NSF grants OCE-0851015 & OCE-0928582 to VG.
    Description: 2013-04-03
    Keywords: Ganges ; Himalaya ; Mississippi ; POC ; Carbon cycle ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Intermediate-focus seismicity (50〈H〈100km) related to the underplating zone of the South Shetland plate have been recorded at a small aperture seismic array set up in Deception Island, Antarctica.
    Description: Published
    Description: 531-534
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Deep earthquakes ; Antarctica ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: 129 Long Period (LP) events, divided in two families were recorded by 50 stations deployed on Mount Etna within an eruptive context in the second half of June 2008. In order to understand the mechanisms of these events, we perform moment tensor inversion. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainities in the velocity model. These tests emphasize the importance of using stations located as close as possible to the source in the inversion of LP events. Inversion of LP signals is initially unconstrained, in order to estimate the most likely mechanism. Constrained inversions then allow us to accurately determine the structural orientations of the mechanisms. Inversions for both families show mechanisms with strong volumetric components. These events are generated by cracks striking SW-NE for both families and dipping 70± SE (fam. 1) and 50± NW (fam. 2). The geometries of the cracks are different from the structures obtained by the location of these events. The orientation of the cracks is consistent with the local tectonic context on Mount Etna. The LP events seem to be a response to the lava fountain occuring on the 10th of May, 2008.
    Description: In press
    Description: (38)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Long-Period events ; earthquake source mechanism ; Etna Volcano ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: We (re)analyzed the source of the 26 December 2004 Sumatra-Andaman earthquake and tsunami through a nonlinear joint inversion of an inhomogeneous data set made up of tide gauges, satellite altimetry, and far-field GPS recordings. The purpose is twofold: (1) the retrieval of the main kinematics rupture parameters (slip, rake, and rupture velocity) and (2) the inference of the rigidity of the source zone. We independently estimate the slip from tsunami data and the seismic moment from geodetic data to derive the rigidity. Our results confirm that the source of the 2004 Sumatra-Andaman earthquake has a complex geometry, constituted by three main slip patches, with slip peaking at ~30 m in the southern part of the source. The rake direction rotates counterclockwise at the northern part of the source, according to the direction of convergence along the trench. The rupture velocity is higher in the deeper than in the shallower part of the source, consistent with the expected increase of rigidity with depth. It is also lower in the northern part, consistent with known variations of the incoming plate properties and shear velocity. Our model features a rigidity (20–30 GPa) that is lower than the preliminary reference Earth model (PREM) average for the seismogenic volume. The source rigidity is one of the factors controlling the tsunami genesis: for a given seismic moment, the lower the rigidity, the higher the induced seafloor displacement. The general consistence between our source model and previous studies supports the effectiveness of our approach to the joint inversion of geodetic and tsunami data for the rigidity estimation.
    Description: Published
    Description: B02304
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Source process ; Sumatra ; Tsunami ; Joint Inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L09804, doi:10.1029/2011GL047238.
    Description: Atmospheric mixing ratios of CO2 are strongly seasonal in the Arctic due to mid-latitude transport. Here we analyze the seasonal influence of moist synoptic storms by diagnosing CO2 transport from a global model on moist isentropes (to represent parcel trajectories through stormtracks) and parsing transport into eddy and mean components. During winter when northern plants respire, warm moist air, high in CO2, is swept poleward into the polar vortex, while cold dry air, low in CO2, that had been transported into the polar vortex earlier in the year is swept equatorward. Eddies reduce seasonality in mid-latitudes by ∼50% of NEE (∼100% of fossil fuel) while amplifying seasonality at high latitudes. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellites. We recommend that (1) regional inversions carefully account for meridional transport and (2) inversion models represent moist and frontal processes with high fidelity.
    Description: This research is supported by the National Aeronautics and Space Administration contracts NNX08AT77G, NNX06AC75G, and NNX08AM56G.
    Keywords: Atmospheric transport ; Carbon cycle ; Inversion ; Isentropic coordinates ; Synoptic weather ; Tracer modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3018, doi:10.1029/2010GB003813.
    Description: Studies indicate that, historically, terrestrial ecosystems of the northern high-latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether Arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr−1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of (1) weakening sinks due to warming-induced increases in soil organic matter decomposition and (2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.
    Description: This study was supported through grants provided as part of the Arctic System Science Program (NSF OPP‐ 0531047), the North American Carbon Program (NASA NNG05GD25G), and the Bonanza Creek Long‐Term Ecological Program (funded jointly by NSF grant DEB‐0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01‐JV11261952‐231).
    Keywords: Carbon cycle ; High-latitude ecosystems ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892.
    Description: The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
    Description: We would like to acknowledge funding from the NOAA Climate Program under the Office of Climate Observations and Global Carbon Cycle Program (NOAA‐NA07OAR4310098), NSF (OCE‐0623034), NCAR, the WHOI Ocean Climate Institute, a National Defense Science and Engineering Graduate Fellowship and an Environmental Protection Agency STAR graduate fellowship. NCAR is sponsored by the National Science Foundation.
    Keywords: North Atlantic Oscillation ; Anthropogenic carbon ; Carbon cycle ; Climate change ; Global climate model ; Mode waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L13405, doi:10.1029/2011GL047630.
    Description: Wave-influenced deltas, with large-scale arcuate shapes and demarcated beach ridge complexes, often display an asymmetrical form about their river channel. Here, we use a numerical model to demonstrate that the angles from which waves approach a delta can have a first-order influence upon its plan-view morphologic evolution and sedimentary architecture. The directional spread of incoming waves plays a dominant role over fluvial sediment discharge in controlling the width of an active delta lobe, which in turn affects the characteristic rates of delta progradation. Oblique wave approach (and a consequent net alongshore sediment transport) can lead to the development of morphologic asymmetry about the river in a delta's plan-view form. This plan-form asymmetry can include the development of discrete breaks in shoreline orientation and the appearance of self-organized features arising from shoreline instability along the downdrift delta flank, such as spits and migrating shoreline sand waves—features observed on natural deltas. Somewhat surprisingly, waves approaching preferentially from one direction tend to increase sediment deposition updrift of the river. This ‘morphodynamic groin effect’ occurs when the delta's plan-form aspect ratio is sufficiently large such that the orientation of the shoreline on the downdrift flank is rotated past the angle of maximum alongshore sediment transport, resulting in preferential redirection of fluvial sediment updrift of the river mouth.
    Description: This research was supported by NSF grants EAR‐0952146 and OCE‐0623766, the Exxon‐Mobil Upstream Research Company, and the WHOI‐USGS postdoctoral fellowship.
    Keywords: Depositional asymmetry ; Large-scale coastal evolution ; Numerical modeling ; Plan-view delta evolution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/quicktime
    Format: application/pdf
    Format: application/msword
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C11019, doi:10.1029/2010JC006509.
    Description: The advance and retreat of sea ice produces seasonal convection and stratification, dampens surface waves and creates a separation between the ocean and atmosphere. These are all phenomena that can affect the air-sea gas transfer velocity (k660), and therefore it is not straightforward to determine how sea ice cover modulates air-sea flux. In this study we use field estimates k660 to examine how sea ice affects the net gas flux between the ocean and atmosphere. An inventory of salinity, 3He, and CFC-11 in the mixed layer is used to infer k660 during the drift of Ice Station Weddell in 1992. The average of k660 is 0.11 m d−1 across nearly 100% ice cover. In comparison, the only prior field estimates of k660 are disproportionately larger, with average values of 2.4 m d−1 across 90% sea ice cover, and 3.2 m d−1 across approximately 70% sea ice cover. We use these values to formulate two scenarios for the modulation of k660 by the fraction of sea ice cover in a 1-D transport model for the Southern Ocean seasonal ice zone. Results show the net CO2 flux through sea ice cover represents 14–46% of the net annual air-sea flux, depending on the relationship between sea ice cover and k660. The model also indicates that as much as 68% of net annual CO2 flux in the sea ice zone occurs in the springtime marginal ice zone, which demonstrates the need for accurate parameterizations of gas flux and primary productivity under partially ice-covered conditions.
    Description: Support for this work was provided by the Climate Center at the Lamont‐Doherty Earth Observatory, an NSF IGERT Fellowship and a NOAA Climate and Global Change Postdoctoral Fellowship to BL, and NSF grant OPP 01‐25523/ANT 04‐40825 (PS).
    Description: 2012-05-15
    Keywords: CO2 ; Southern Ocean ; Carbon cycle ; Gas exchange ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C10036, doi:10.1029/2011JC007035.
    Description: Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.
    Description: Funding was provided through the Office of Naval Research Ripples DRI, U.S. Geological Survey Coastal and Marine Geology Program, and National Science Foundation.
    Keywords: Coastal and nearshore circulation ; Grid resolution ; Nesting ; Numerical modeling ; Tidal rectification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: We (re)analyzed the source of the 26 December 2004 Sumatra-Andaman earthquake and tsunami through a nonlinear joint inversion of an in-homogeneous dataset made up of tide-gages, satellite altimetry, and far-field GPS recordings. The purpose is two-fold: (1) the retrieval of the main kinematics rupture parameters (slip, rake, rupture velocity); (2) the inference of the rigidity of the source zone. We independently estimate the slip from tsunami data and the seismic moment from geodetic data, so to derive the rigidity. Our results confirm that the source of the 2004 Sumatra-Andaman earthquake has a complex geometry, constituted by three main slip patches, with slip peaking at ~30 meters in the Southern part of the source. The rake direction rotates counter-clockwise at North, according to the direction of convergence along the trench. The rupture velocity is higher in the deeper than in the shallower part of the source, consistently with the expected increase of rigidity with depth. It is also lower in the Northern part, consistently with known variations of the incoming plate properties and shear velocity. Our model features a rigidity (20-30 GPa), that is lower than PREM average for the seismogenic volume [Dziewonski and Anderson, 1981]. The source rigidity is one of the factors controlling the tsunamigenesis: for a given seismic moment, the lower the rigidity, the higher the induced seafloor displacement. The general consistence between our source model and previous studies supports the effectiveness of our approach to the joint inversion of geodetic and tsunami data for the rigidity estimation.
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Source process ; Sumatra ; Tsunami ; joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: In a recent work on the problem of sliding surfaces under the presence of frictional melt (applying in particular to earthquake fault dynamics), we derived from first principles an expression for the steady state friction compatible with experimental observations. Building on the expressions of heat and mass balance obtained in the above study for this particular case of Stefan problem (phase transition with a migrating boundary) we propose here an extension providing the full time-dependent solution (including the weakening transient after pervasive melting has started, the effect of eventual steps in velocity and the final decelerating phase). A system of coupled equations is derived and solved numerically. The resulting transient friction and wear evolution yield a satisfactory fit (1) with experiments performed under variable sliding velocities (0.9-2 m/s) and different normal stresses (0.5-20 MPa) for various rock types and (2) with estimates of slip weakening obtained from observations on ancient seismogenic faults that host pseudotachylite (solidified melt). The model allows to extrapolate the experimentally observed frictional behavior to large normal stresses representative of the seismogenic Earth crust (up to 200 MPa), high slip rates (up to 9 m/s) and cases where melt extrusion is negligible. Though weakening distance and peak stress vary widely, the net breakdown energy appears to be essentially independent of either slip velocity and normal stress. In addition, the response to earthquake-like slip can be simulated, showing a rapid friction recovery when slip rate drops. We discuss the properties of energy dissipation, transient duration, velocity weakening, restrengthening in the decelerating final slip phase and the implications for earthquake source dynamics.
    Description: S.N. and G.D.T. were supported by a European Research Council Starting Grant Project (acronym USEMS) and by a Progetti di Eccellenza Fondazione Cassa di Risparmio di Padova e Rovigo. We are grateful to Nick Beeler (and to an anonymous referee) for their constructive reviews and their help to improve the clarity of the manuscript.
    Description: Published
    Description: B10301
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Friction ; Melt ; Earthquake dynamics ; fault mechanics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: The amount of energy radiated from an earthquake can be measured using recent methods based on earthquake coda signals and spectral ratios. Such methods are not altered by either site or directivity effects, with the advantage of a greatly improved accuracy. Several studies of earthquake sequences based on the above measurements showed evidence of a breakdown in self-similarity in the moment to energy relation. Radiated energy can be also used as a gauge to estimate the average dynamic stress drop on the fault. Here we compute the dynamic stress drop, infer the co-seismic friction and estimate the co-seismic heating resulting from the frictional work during events from different main shock-aftershock earthquake sequences. We relate the dynamic friction to the maximum temperature rise estimated on the faults for each earthquake. Our results are strongly indicative that a thermally triggered dynamic frictional weakening is present, responsible for the breakdown in self-similarity. These observations from seismic data are compatible with recent laboratory evidence of thermal weakening in rock friction under seismic slip-rates, associated to various physical processes such as melting, decarbonation or dehydration.
    Description: Kevin Mayeda was supported under Weston Geophysical subcontract No. GC19762NGD and AFRL contract No. FA8718-06-C-0024. Work by L. Malagnini was performed under the auspices of the Dipartimento della Protezione Civile, under contract S3 – INGV-DPC (2007-2009), project: “Valutazione rapida dei parametri e degli effetti dei forti terremoti in Italia e nel Mediterraneo”.
    Description: Published
    Description: B06319
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: earthquake radiation ; coda ; friction ; self-similarity ; dynamic weakening ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: An eleven‐month deployment of 25 ocean bottom seismometers provides an unprecedented opportunity to study low‐magnitude local earthquakes in the complex transpressive plate boundary setting of the Gulf of Cadiz, known for the 1755 Lisbon earthquake and tsunami. 36 relocated earthquakes (ML 2.2 to 4.8) concentrate at 40– 60 km depth, near the base of the seismogenic layer in ∼140 Ma old oceanic mantle lithosphere, and roughly align along two perpendicular, NNE‐SSW and WNWESE striking structures. First motion focal mechanisms indicate compressive stress for the cluster close to the northern Horseshoe fault termination which trends perpendicular to plate convergence. Focal mechanisms for the second cluster near the southern termination of the Horseshoe fault indicate a strike‐slip regime, providing evidence for present‐day activity of a dextral shear zone proposed to represent the Eurasia‐Africa plate contact. We hypothesize that regional tectonics is characterized by slip partitioning.
    Description: Published
    Description: L18309
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: oceanic lithospheric mantle ; focal mechanisms ; stress tensor inversion ; Gulf of Cadiz ; ocean bottom seismometer ; 1755 Lisbon earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: We have simulated several scenarios of dynamic rupture propagation for the 1994 Northridge, California, earthquake, using a three-dimensional finite-difference method. The simulations use a rate- and slip-weakening friction law, starting from a range of initial conditions of stress and frictional parameters. A critical balance between initial conditions and friction parameters must be met in order to obtain a moment as well as a final slip distribution in agreement with kinematic slip inversion results. We find that the rupture process is strongly controlled by the average stress and connectivity of high-stress patches on the fault. In particular, a strong connectivity of the high-stress patches is required in order to promote the rupture propagation from the initial nucleation to the remaining part of the fault. Moreover, we find that a small amount of rate-weakening is needed in order to obtain a level of inhomogeneity in the final slip, similar to that obtained in the kinematic inversion results. However, when the amount of rate-weakening is increased, the overall moment drops dramatically unless the average prestress is raised to unrealistic levels. A velocity-weakening parameter on the order of 10 cm per second is found to be adequate for an average prestress of about a hundred bars. The presence of the free surface and of the uppermost low-impedance layers in the model are found to have negligible influence on the rupture dynamics itself, because the top of the fault is at a depth of several kilometers. The 0.1–0.5 Hz radiated waves from the dynamic simulation provides a good fit to strong motion data at sites NWH and SSA. Underprediction of the recorded peak amplitude at JFP is likely due to omission of near-surface low velocity and 3-D basin effects in the simulations.
    Description: Published
    Description: 2029-2046
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: stress drop ; slip pulses ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Tectonic tremor has been recorded at many subduction zones, including the Nankai, Cascadia, Mexican, and Alaskan subduction zones. This study, the first to use small aperture seismic arrays to track tremor, deployed three small aperture seismic arrays along the Cascadia subduction zone during a tremor and slow slip episode in July 2004. The tremor was active during virtually all (up to 99%) minutes of the analyzed tremor episode using 5 min sample windows. Individual wave phases were tracked across the arrays and used to derive slowness vectors. These were compared with slowness vectors computed from a standard layered Earth model to derive tremor locations. Locations were stable within a volume roughly 250 km2 in epicenter and 20 km in depth for hours to days before moving to a new volume. The migration between volumes was not smooth, and the movement of the sources within the volume followed no specific pattern. Overall migration speeds along the strike of the subduction zone were between 5 and 15 km/d; smaller scale migration speeds between volumes reached speeds up to 2 km/min. Uncertainties in the best locations were 5 km in epicenter and 10 km in depth. For this data set and processing methodology, tremor does not locate predominately on the primary subduction interface. Our favored model for the generation of tectonic tremor signals is that the tremor is triggered by stress and fluid pressure changes caused by slow slip and is composed, at least in part, of low‐frequency earthquakes broadly distributed in location
    Description: Published
    Description: B00A24
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: tremor migration ; Cascadia 2004 ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L03402, doi:10.1029/2007GL032837.
    Description: Arctic rivers transport huge quantities of dissolved organic carbon (DOC) to the Arctic Ocean. The prevailing paradigm is that DOC in arctic rivers is refractory and therefore of little significance for the biogeochemistry of the Arctic Ocean. We show that there is substantial seasonal variability in the lability of DOC transported by Alaskan rivers to the Arctic Ocean: little DOC is lost during incubations of samples collected during summer, but substantial losses (20–40%) occur during incubations of samples collected during the spring freshet when the majority of the annual DOC flux occurs. We speculate that restricting sampling to summer may have biased past studies. If so, then fluvial inputs of DOC to the Arctic Ocean may have a much larger influence on coastal ocean biogeochemistry than previously realized, and reconsideration of the role of terrigenous DOC on carbon, microbial, and food-web dynamics on the arctic shelf will be warranted.
    Description: This material is based on work supported by the National Science Foundation under grant numbers OPP-0436106, OPP- 0519840, and EAR-0403962, and is a contribution to the Study of Environmental Arctic Change (SEARCH).
    Keywords: DOC ; Arctic ; Rivers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L08606, doi:10.1029/2008GL033532.
    Description: Turbulent-scale temperature and conductivity were measured during the pan-arctic Beringia 2005 Expedition. The rates of dissipation of thermal variance and diapycnal diffusivities are calculated along a section from Alaska to the North Pole, across deep flat basins (Canada and Makarov Basins) and steep ridges (Alpha-Mendeleev and Lomonosov Ridges). The mixing rates are observed to be small relative to lower latitudes but also remarkably non-uniform. Relatively elevated turbulence is found over deep topography, confirming the dominant role of bottom-generated internal waves. Measured patterns of mixing in the Arctic are also associated with other mechanisms, such as double-diffusive structures and deep overflows. A better knowledge of the distribution of mixing is essential to understand the dynamics of the changing Arctic environment.
    Description: This work was funded by the National Science Foundation through a Small Grant for Exploratory Research (ARC-0527874) and grant ARC-0612342 with additional support from the Doherty Foundation and internal WHOI Funds.
    Keywords: Turbulence ; Arctic ; Topography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05011, doi:10.1029/2006JC003899.
    Description: In September 2004 a detailed physical and chemical survey was conducted on an anticyclonic, cold-core eddy located seaward of the Chukchi Shelf in the western Arctic Ocean. The eddy had a diameter of ∼16 km and was centered at a depth of ∼160 m between the 1000 and 1500 m isobaths over the continental slope. The water in the core of the eddy (total volume of 25 km3) was of Pacific origin, and contained elevated concentrations of nutrients, organic carbon, and suspended particles. The feature, which likely formed from the boundary current along the edge of the Chukchi Shelf, provides a mechanism for transport of carbon, oxygen, and nutrients directly into the upper halocline of the Canada Basin. Nutrient concentrations in the eddy core were elevated compared to waters of similar density in the deep Canada Basin: silicate (+20 μmol L−1), nitrate (+5 μmol L−1), and phosphate (+0.4 μmol L−1). Organic carbon in the eddy core was also elevated: POC (+3.8 μmol L−1) and DOC (+11 μmol L−1). From these observations, the eddy contained 1.25 × 109 moles Si, 4.5 × 108 moles NO3 −, 5.5 × 107 moles PO3 −, 1.2 × 108 moles POC, and 1.9 × 109 moles DOC, all available for transport to the interior of the Canada Basin. This suggests that such eddies likely play a significant role in maintaining the nutrient maxima observed in the upper halocline. Assuming that shelf-to-basin eddy transport is the dominant renewal mechanism for waters of the upper halocline, remineralization of the excess organic carbon transported into the interior would consume 6.70 × 1010 moles of O2, or one half the total oxygen consumption anticipated arising from all export processes impacting the upper halocline.
    Description: This work was supported by the National Science Foundation, and office of Naval Research; DH OPP-0124900, NB OPP-0124868, DK OPP 0124872, RP N00014-02-1-0317.
    Keywords: Arctic ; Eddy ; Carbon ; Nutrients ; Shelf-basin exchange ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04S60, doi:10.1029/2006JG000371.
    Description: Export of nitrate and dissolved organic carbon (DOC) from the upper Kuparuk River between the late 1970s and early 2000s was evaluated using long-term ecological research (LTER) data in combination with solute flux and catchment hydrology models. The USGS Load Estimator (LOADEST) was used to calculate June–August export from 1978 forward. LOADEST was then coupled with a catchment-based land surface model (CLSM) to estimate total annual export from 1991 to 2001. Simulations using the LOADEST/CLSM combination indicate that annual nitrate export from the upper Kuparuk River increased by ~5 fold and annual DOC export decreased by about one half from 1991 to 2001. The decrease in DOC export was focused in May and was primarily attributed to a decrease in river discharge. In contrast, increased nitrate export was evident from May to September and was primarily attributed to increased nitrate concentrations. Increased nitrate concentrations are evident across a wide range of discharge conditions, indicating that higher values do not simply reflect lower discharge in recent years but a significant shift to higher concentration per unit discharge. Nitrate concentrations remained elevated after 2001. However, extraordinarily low discharge during June 2004 and June–August 2005 outweighed the influence of higher concentrations in determining export during these years. The mechanism responsible for the recent increase in nitrate concentrations is uncertain but may relate to changes in soils and vegetation associated with regional warming. While changes in nitrate and DOC export from arctic rivers reflect changes in terrestrial ecosystems, they also have significant implications for Arctic Ocean ecosystems.
    Description: This work was supported by the Arctic System Science Program of the National Science Foundation (OPP- 0436118) and by NSF funding for the Arctic LTER through a series of grants from 1987 to present.
    Keywords: Nitrate ; DOC ; Arctic ; Rivers ; Change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S06, doi:10.1029/2006JC003643.
    Description: A three-dimensional coupled ocean/ice model, intended for long-term Arctic climate studies, is extended to include tidal effects. From saved output of an Arctic tides model, we introduce parameterizations for (1) enhanced ocean mixing associated with tides and (2) the role of tides fracturing and mobilizing sea ice. Results show tides enhancing loss of heat from Atlantic waters. The impact of tides on sea ice is more subtle as thinning due to enhanced ocean heat flux competes with net ice growth during rapid openings and closings of tidal leads. Present model results are compared with an ensemble of nine models under the Arctic Ocean Model Intercomparison Project (AOMIP). Among results from AOMIP is a tendency for models to accumulate excessive Arctic Ocean heat throughout the intercomparison period 1950 to 2000 which is contrary to observations. Tidally induced ventilation of ocean heat reduces this discrepancy.
    Description: This research is supported by the National Science Foundation Office of Polar Programs under cooperative agreements OPP-0002239 and OPP-0327664 with the International Arctic Research Center, University of Alaska Fairbanks.
    Keywords: Tide ; Arctic ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4028, doi:10.1029/2009GB003519.
    Description: Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.
    Description: We also acknowledge the financial support of the National Aeronautics and Space Administration Land Cover and Land Use Change Program (NNX08AK75G).
    Keywords: Nitrogen cycle ; Carbon cycle ; ISAM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08013, doi:10.1029/2007GC001652.
    Description: We report first evidence for hydrothermal activity from the southern Knipovich Ridge, an ultra-slow spreading ridge segment in the Norwegian-Greenland Sea. Evidence comes from optical backscatter anomalies collected during a systematic side-scan sonar survey of the ridge axis, augmented by the identification of biogeochemical tracers in the overlying water column that are diagnostic of hydrothermal plume discharge (Mn, CH4, ATP). Analysis of coregistered geologic and oceanographic data reveals that the signals we have identified are consistent with a single high-temperature hydrothermal source, located distant from any of the axial volcanic centers that define second-order segmentation along this oblique ridge system. Rather, our data indicate a hydrothermal source associated with highly tectonized seafloor that may be indicative of serpentinizing ultramafic outcrops. Consistent with this hypothesis, the hydrothermal plume signals we have detected exhibit a high methane to manganese ratio of 2–3:1. This is higher than that typical of volcanically hosted vent sites and provides further evidence that the source of the plume signals reported here is most probably a high-temperature hydrothermal field that experiences some ultramafic influence (compare to Rainbow and Logachev sites, Mid-Atlantic Ridge). While such sites have previously been invoked to be common on the SW Indian Ridge, this may be the first such site to be located along the Arctic ultra-slow spreading ridge system.
    Description: Connelly and German were funded by NERC grant NER/B/S/ 2000/00755, NERC Core Strategic Funding at NOC, and the ChEss project of the Census of Marine Life.
    Keywords: Hydrothermal ; Arctic ; Serpentinization ; Knipovich Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08O10, doi:10.1029/2008GC001965.
    Description: We use 2-D numerical models to explore the thermal and mechanical effects of magma intrusion on fault initiation and growth at slow and intermediate spreading ridges. Magma intrusion is simulated by widening a vertical column of model elements located within the lithosphere at a rate equal to a fraction, M, of the total spreading rate (i.e., M = 1 for fully magmatic spreading). Heat is added in proportion to the rate of intrusion to simulate the thermal effects of magma crystallization and the injection of hot magma into the crust. We examine a range of intrusion rates and axial thermal structures by varying M, spreading rate, and the efficiency of crustal cooling by conduction and hydrothermal circulation. Fault development proceeds in a sequential manner, with deformation focused on a single active normal fault whose location alternates between the two sides of the ridge axis. Fault spacing and heave are primarily sensitive to M and secondarily sensitive to axial lithosphere thickness and the rate that the lithosphere thickens with distance from the axis. Contrary to what is often cited in the literature, but consistent with prior results of mechanical modeling, we find that thicker axial lithosphere tends to reduce fault spacing and heave. In addition, fault spacing and heave are predicted to increase with decreasing rates of off-axis lithospheric thickening. The combination of low M, particularly when M approaches 0.5, as well as a reduced rate of off-axis lithospheric thickening produces long-lived, large-offset faults, similar to oceanic core complexes. Such long-lived faults produce a highly asymmetric axial thermal structure, with thinner lithosphere on the side with the active fault. This across-axis variation in thermal structure may tend to stabilize the active fault for longer periods of time and could concentrate hydrothermal circulation in the footwall of oceanic core complexes.
    Description: Funding for this research was provided by NSF grants OCE-0327018 (M.D.B.), OCE-0548672 (M.D.B.), OCE- 0327051 (G.I.), and OCE-03-51234 (G.I.).
    Keywords: Mid-ocean ridges ; Faulting ; Magmatism ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB3007, doi:10.1029/2006GB002857.
    Description: Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.
    Description: R. G. N. and J. L. S. acknowledge the support of NASA grants NAG5-6451 and NAG5-6591, respectively, as part of the JGOFS Synthesis and Modeling Program. G. K. P. and F. J. acknowledge support by the Swiss National Science Foundation. European contributions were supported by the EU GOSAC Project (ENV4-CT97- 0495).
    Keywords: Export production ; Numerical modeling ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2026, doi:10.1029/2006GB002900.
    Description: We investigate the interannual variability in the flux of CO2 between the atmosphere and the Southern Ocean on the basis of hindcast simulations with a coupled physical-biogeochemical-ecological model with particular emphasis on the role of the Southern Annular Mode (SAM). The simulations are run under either pre-industrial or historical CO2 concentrations, permitting us to separately investigate natural, anthropogenic, and contemporary CO2 flux variability. We find large interannual variability (±0.19 PgC yr−1) in the contemporary air-sea CO2 flux from the Southern Ocean (〈35°S). Forty-three percent of the contemporary air-sea CO2 flux variance is coherent with SAM, mostly driven by variations in the flux of natural CO2, for which SAM explains 48%. Positive phases of the SAM are associated with anomalous outgassing of natural CO2 at a rate of 0.1 PgC yr−1 per standard deviation of the SAM. In contrast, we find an anomalous uptake of anthropogenic CO2 at a rate of 0.01 PgC yr−1 during positive phases of the SAM. This uptake of anthropogenic CO2 only slightly mitigates the outgassing of natural CO2, so that a positive SAM is associated with anomalous outgassing in contemporaneous times. The primary cause of the natural CO2 outgassing is anomalously high oceanic partial pressures of CO2 caused by elevated dissolved inorganic carbon (DIC) concentrations. These anomalies in DIC are primarily a result of the circulation changes associated with the southward shift and strengthening of the zonal winds during positive phases of the SAM. The secular, positive trend in the SAM has led to a reduction in the rate of increase of the uptake of CO2 by the Southern Ocean over the past 50 years.
    Description: This work was supported by NASA headquarters under the Earth System Science Fellowship Grant NNG05GP78H to N. S. L. and grants NAG5-12528 and NNG04GH53G to N. G. Both S. C. D. and I. D. L. were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G).
    Keywords: Southern Ocean ; Carbon cycle ; Southern Annular Mode
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02026, doi:10.1029/2007JG000470.
    Description: Permafrost is a defining characteristic of the Arctic environment. However, climate warming is thawing permafrost in many areas leading to failures in soil structure called thermokarst. An extensive survey of a 600 km2 area in and around the Toolik Lake Natural Research Area (TLNRA) revealed at least 34 thermokarst features, two thirds of which were new since ∼1980 when a high resolution aerial survey of the area was done. Most of these thermokarst features were associated with headwater streams or lakes. We have measured significantly increased sediment and nutrient loading from thermokarst features to streams in two well-studied locations near the TLNRA. One small thermokarst gully that formed in 2003 on the Toolik River in a 0.9 km2 subcatchment delivered more sediment to the river than is normally delivered in 18 years from 132 km2 in the adjacent upper Kuparuk River basin (a long-term monitoring reference site). Ammonium, nitrate, and phosphate concentrations downstream from a thermokarst feature on Imnavait Creek increased significantly compared to upstream reference concentrations and the increased concentrations persisted over the period of sampling (1999–2005). The downstream concentrations were similar to those we have used in a long-term experimental manipulation of the Kuparuk River and that have significantly altered the structure and function of that river. A subsampling of other thermokarst features from the extensive regional survey showed that concentrations of ammonium, nitrate, and phosphate were always higher downstream of the thermokarst features. Our previous research has shown that even minor increases in nutrient loading stimulate primary and secondary production. However, increased sediment loading could interfere with benthic communities and change the responses to increased nutrient delivery. Although the terrestrial area impacted by thermokarsts is limited, the aquatic habitat altered by these failures can be extensive. If warming in the Arctic foothills accelerates thermokarst formation, there may be substantial and wide-spread impacts on arctic stream ecosystems that are currently poorly understood.
    Description: The results presented in this report are based upon work supported by the U.S. National Science Foundation under grants to the Arctic Hyporheic project (OPP- 0327440) and the Arctic Long-Term Ecological Research Program (DEB- 9810222).
    Keywords: Arctic ; Climate change ; Streams ; Ecosystem dynamics ; Sediment ; Thermokarst ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): F03016, doi:10.1029/2006JF000666.
    Description: We employ a numerical model to study the development of sorted bed forms under a variety of hydrodynamic and sedimentary conditions. Results indicate that increased variability in wave height decreases the growth rate of the features and can potentially give rise to complicated, a priori unpredictable, behavior. This happens because the system responds to a change in wave characteristics by attempting to self-organize into a patterned seabed of different geometry and spacing. The new wavelength might not have enough time to emerge before a new change in wave characteristics occurs, leading to less regular seabed configurations. The new seabed configuration is also highly dependent on the preexisting morphology, which further limits the possibility of predicting future behavior. For the same reasons, variability in the mean current magnitude and direction slows down the growth of features and causes patterns to develop that differ from classical sorted bed forms. Spatial variability in grain size distribution and different types of net sediment aggradation/degradation can also result in the development of sorted bed forms characterized by a less regular shape. Numerical simulations qualitatively agree with observed geometry (spacing and height) of sorted bed forms. Also in agreement with observations is that at shallower depths, sorted bed forms are more likely to be affected by changes in the forcing conditions, which might also explain why, in shallow waters, sorted bed forms are described as ephemeral features. Finally, simulations indicate that the different sorted bed form shapes and patterns observed in the field might not necessarily be related to diverse physical mechanisms. Instead, variations in sorted bed form characteristics may result from variations in local hydrodynamic and/or sedimentary conditions.
    Description: G.C., M.O.G., and T.M.H. acknowledge funding from the (New Zealand) Foundation for Research, Science and Technology (contract C01X0401). The National Science Foundation (OCE0452178) supported A.B.M.
    Keywords: Self-organization ; Sorted bed forms ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S15, doi:10.1029/2006JC003728.
    Description: The summer circulations and hydrographic fields of the Kara Sea are reconstructed for mean, positive and negative Arctic Oscillation regimes employing a variational data assimilation technique which provides the best fit of reconstructed fields to climatological data and satisfies dynamical and kinematic constraints of a quasi-stationary primitive equation ocean circulation model. The reconstructed circulations agree well with the measurements and are characterized by inflow of 0.63, 0.8, 0.51 Sv through Kara Gate and 1.18, 1.1, 1.12 Sv between Novaya Zemlya and Franz Josef Land, for mean climatologic conditions, positive and negative AO indexes, respectively. The major regions of water outflow for these regimes are the St. Anna Trough (1.17, 1.21, 1.34 Sv) and Vilkitsky/Shokalsky Straits (0.52, 0.7, 0.51 Sv). The optimized velocity pattern for the mean climatological summer reveals a strong anticyclonic circulation in the central part of the Kara Sea (Region of Fresh Water Inflow, ROFI zone) and is confirmed by ADCP surveys and laboratory modeling. This circulation is well pronounced for both high and low AO phases, but in the positive AO phase it is shifted approximately 200 km west relatively to its climatological center. During the negative AO phase the ROFI locaion is close to its climatological position. The results of the variational data assimilation approach were compared with the simulated data from the Hamburg Shelf Ocean Model (HAMSOM) and Naval Postgraduate School 18 km resolution (NPS-18) model to validate these models.
    Description: This research is supported by the Frontier Research System for Global Change, through JAMSTEC, Japan, and by the National Science Foundation Office of Polar Programs (under cooperative agreements OPP-0002239 and OPP-0327664 with the International Arctic Research Center, University of Alaska Fairbanks). The development of the data assimilation system, utilized in this study, was also supported by NSF grant OCE-0118200.
    Keywords: Kara Sea ; Variational approach ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C11015, doi:10.1029/2010JC006152.
    Description: The concentration of inert gases and their isotopes in the deep ocean are useful as tracers of air-sea gas exchange during deepwater formation. ΔKr/Ar, ΔN2/Ar, and δ40Ar were measured in deep profiles of samples collected in the northwest Pacific, subtropical North Pacific and tropical Atlantic oceans. For the ocean below 2000 m, we determined a mean ΔKr/Ar composition of −0.96% ± 0.16%, a mean ΔN2/Ar of 1.29% ± 0.21% relative to equilibrium saturation, and for δ40Ar a value of 1.188‰ ± 0.055‰ relative to air. These data are used to constrain high-latitude ventilation processes in the framework of three-box and seven-box ocean models. For the three-box model tracer data, we constrain the appropriate surface area of the high-latitude region in both models to be 3.6% (+2.5%, −1.7%) of ocean surface area and the bubble air injection rate to be 22.7 (+8.8, −7.3) mol air m−2 yr−1. Results for the seven-box model were similar, with a high-latitude area of 3.3% (+2.2%, −1.3%). Our results provide geochemical support for suggestions that the effective area of high-latitude ventilation is much smaller than the region of elevated preformed nutrients and demonstrate that noble gases strongly constrain the ocean solubility pump. Reducing high-latitude surface area weakens the CO2 solubility pump in the box models and limits communication between the atmosphere and deep ocean. These tracers should be useful constraints on high-latitude ventilation and the strength of the solubility pump in more complex ocean general circulation models.
    Description: Funding was provided by NSF‐OCE‐0647979.
    Keywords: Noble gases ; Ventilation ; Carbon cycle ; Solubility pump ; Gas exchange
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C10018, doi:10.1029/2009JC005660.
    Description: Variations in the Arctic central Canada Basin mixed layer properties are documented based on a subset of nearly 6500 temperature and salinity profiles acquired by Ice-Tethered Profilers during the period summer 2004 to summer 2009 and analyzed in conjunction with sea ice observations from ice mass balance buoys and atmosphere-ocean heat flux estimates. The July–August mean mixed layer depth based on the Ice-Tethered Profiler data averaged 16 m (an overestimate due to the Ice-Tethered Profiler sampling characteristics and present analysis procedures), while the average winter mixed layer depth was only 24 m, with individual observations rarely exceeding 40 m. Guidance interpreting the observations is provided by a 1-D ocean mixed layer model. The analysis focuses attention on the very strong density stratification at the base of the mixed layer in the Canada Basin that greatly impedes surface layer deepening and thus limits the flux of deep ocean heat to the surface that could influence sea ice growth/decay. The observations additionally suggest that efficient lateral mixed layer restratification processes are active in the Arctic, also impeding mixed layer deepening.
    Description: Support for the ITP program and this study was provided by the U. S. National Science Foundation and the Woods Hole Oceanographic Institution. Support for the IMB program came from the National Science Foundation and the National Oceanographic and Atmospheric Administration.
    Keywords: Mixed layer ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): F01006, doi:10.1029/2007JF000885.
    Keywords: Coastline evolution ; Morphodynamic instabilities ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): F04011, doi:10.1029/2005JF000422.
    Description: Contrary to traditional findings, the deepwater angle of wave approach strongly affects plan view coastal evolution, giving rise to an antidiffusional “high wave angle” instability for sufficiently oblique deepwater waves (with angles between wave crests and the shoreline trend larger than the value that maximizes alongshore sediment transport, ∼45°). A one-contour-line numerical model shows that a predominance of high-angle waves can cause a shoreline to self-organize into regular, quasiperiodic shapes similar to those found along many natural coasts at scales ranging from kilometers to hundreds of kilometers. The numerical model has been updated from a previous version to include a formulation for the widening of an overly thin barrier by the process of barrier overwash, which is assumed to maintain a minimum barrier width. Systematic analysis shows that the wave climate determines the form of coastal response. For nearly symmetric wave climates (small net alongshore sediment transport), cuspate coasts develop that exhibit increasing relative cross-shore amplitude and pointier tips as the proportion of high-angle waves is increased. For asymmetrical wave climates, shoreline features migrate in the downdrift direction, either as subtle alongshore sand waves or as offshore-extending “flying spits,” depending on the proportion of high-angle waves. Numerical analyses further show that the rate that the alongshore scale of model features increases through merging follows a diffusional temporal scale over several orders of magnitude, a rate that is insensitive to the proportion of high-angle waves. The proportion of high-angle waves determines the offshore versus alongshore aspect ratio of self-organized shoreline undulations.
    Description: This research was funded by the Andrew W. Mellon Foundation and NSF grants DEB-05-07987 and EAR-04-44792.
    Keywords: Coastline evolution ; Morphodynamic instabilities ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/avi
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C02018, doi:10.1029/2007JC004429.
    Description: Radioisotope evaluation of a cold-core, anticyclonic eddy surveyed in September 2004 on the Chukchi Sea continental slope was used to determine its age since formation over the shelf environment. Because the eddy can be shown to have been generated near the shelf break, initial conditions for several age-dependent tracers could be relatively well constrained. A combination of 228Ra/226Ra, excess 224Ra, and 228Th/228Ra suggested an age on the order of months. This age is consistent with the presence of elevated concentrations of nutrients, organic carbon, suspended particles, and shelf-derived neritic zooplankton within the eddy compared to ambient offshore water in the Canada Basin but comparable to values measured in the Chukchi shelf and shelf-break environment. Hence this feature, at the edge of the deep basin, was poised to deliver biogeochemically significant shelf material to the central Arctic Ocean.
    Description: This work was supported by National Science Foundation Polar Programs grants OPP-662690 and OPP-66040N to the University of Miami (DK), and Office of Naval Research grant N00014-02-1-0317 (RP).
    Keywords: Arctic ; Eddy ; Radium
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07040, doi:10.1029/2007JC004602.
    Description: A coupled physical/biological modeling system was used to hindcast a massive Alexandrium fundyense bloom that occurred in the western Gulf of Maine in 2005 and to investigate the relative importance of factors governing the bloom's initiation and development. The coupled system consists of a state-of-the-art, free-surface primitive equation Regional Ocean Modeling System (ROMS) tailored for the Gulf of Maine (GOM) using a multinested configuration, and a population dynamics model for A. fundyense. The system was forced by realistic momentum and buoyancy fluxes, tides, river runoff, observed A. fundyense benthic cyst abundance, and climatological nutrient fields. Extensive comparisons were made between simulated (both physical and biological) fields and in situ observations, revealing that the hindcast model is capable of reproducing the temporal evolution and spatial distribution of the 2005 bloom. Sensitivity experiments were then performed to distinguish the roles of three major factors hypothesized to contribute to the bloom: (1) the high abundance of cysts in western GOM sediments; (2) strong ‘northeaster' storms with prevailing downwelling-favorable winds; and (3) a large amount of fresh water input due to abundant rainfall and heavy snowmelt. Model results suggest the following. (1) The high abundance of cysts in western GOM was the primary factor of the 2005 bloom. (2) Wind-forcing was an important regulator, as episodic bursts of northeast winds caused onshore advection of offshore populations. These downwelling favorable winds accelerated the alongshore flow, resulting in transport of high cell concentrations into Massachusetts Bay. A large regional bloom would still have happened, however, even with normal or typical winds for that period. (3) Anomalously high river runoff in 2005 resulted in stronger buoyant plumes/currents, which facilitated the transport of cell population to the western GOM. While affecting nearshore cell abundance in Massachusetts Bay, the buoyant plumes were confined near to the coast, and had limited impact on the gulf-wide bloom distribution.
    Description: Research support was provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) grant OCE-0430723 and National Institute of Environmental Health Science (NIEHS) grant 1-P50-ES012742-01, ECOHAB program through NSF grant OCE-9808173 and NOAA grant NA96OP0099, and GOMTOX program through NOAA grant NA06NOS4780245.
    Keywords: Gulf of Maine ; Harmful algal bloom ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04S54, doi:10.1029/2006JG000353.
    Description: Dramatic changes have been observed in the Arctic over the last century. Many of these involve the storage and cycling of fresh water. On land, precipitation and river discharge, lake abundance and size, glacier area and volume, soil moisture, and a variety of permafrost characteristics have changed. In the ocean, sea ice thickness and areal coverage have decreased and water mass circulation patterns have shifted, changing freshwater pathways and sea ice cover dynamics. Precipitation onto the ocean surface has also changed. Such changes are expected to continue, and perhaps accelerate, in the coming century, enhanced by complex feedbacks between the oceanic, atmospheric, and terrestrial freshwater systems. Change to the arctic freshwater system heralds changes for our global physical and ecological environment as well as human activities in the Arctic. In this paper we review observed changes in the arctic freshwater system over the last century in terrestrial, atmospheric, and oceanic systems.
    Description: The authors gratefully acknowledge the National Science Foundation (NSF) for funding this synthesis work. This paper is principally the work of authors funded under the NSF-funded Freshwater Integration (FWI) study.
    Keywords: Arctic ; Freshwater ; System ; Changes ; Impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: Despite considerable effort over the past several decades, the mechanics of earthquake rupture remains largely unknown. Moderate- to large-magnitude earthquakes nucleate at 7–15 km depth and most information is retrieved from seismology, but information related to the physico-chemical processes active during rupture propagation is below the resolution of this method. An alternative approach includes the investigation of exhumed faults, such as those described here from the Adamello Massif (Italian Alps), and the use of rock deformation apparatus capable of reproducing earthquake deformation conditions in the laboratory. The analysis of field and microstructural/mineralogical/geo- chemical data retrieved from the large glacier-polished exposures of the Adamello (Gole Larghe Fault) provides information on earthquake source parameters, including the coseismic slip, the rupture directivity and velocity, the dynamic friction and earthquake energy budgets. Some of this information (e.g., the evolution of the friction coefficient with slip) can be tested in the laboratory with the recently installed Slow to HIgh Velocity Apparatus (SHIVA). SHIVA uses two brushless engines (max power 280 kW) and an air actuator in a rotary shear configuration (nominally infinite displacement) to slide solid or hollow rock cylinders (40/50 mm int/ext diameter) at: (1) slip rates ranging from 10 lm s-1 up to 9 m s-1; (2) accelerations up to 80 m s-2; and (3) normal stresses up to 50 MPa. In comparison to existing high-speed friction machines, this apparatus extends the range of sliding velocities, normal stresses and sample size. In particular, SHIVA has been specifically designed to reproduce slip velocities and accelerations that occur during earthquakes. The characterization of rock frictional behavior under these conditions, plus the comparison with natural fault products, is expected to provide important insights into the mechanics of earthquakes.
    Description: Published
    Description: 95-114
    Description: 3.1. Fisica dei terremoti
    Description: reserved
    Keywords: friction ; pseudotcahylite ; high velocity friction experiments ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03051, doi:10.1029/2003JC001940.
    Description: Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin-wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation (AOO)) that has a prominent decadal variability [Proshutinsky and Johnson, 1997]. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice [Häkkinen and Mellor, 1992; Häkkinen, 1999]. The surface forcing is based on National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide freshwater balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated freshwater anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice melt/freeze anomalies in response to AO are less significant considering the whole Arctic freshwater balance.
    Description: We gratefully acknowledge the support from National Science Foundation under Grant No OPP-0230184 (AP) and from NASA Headquarters (SH).
    Keywords: Fresh water ; Arctic ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C08002, doi:10.1029/2005JC003254.
    Description: A high-resolution hybrid data assimilative (DA) modeling system is used to study barotropic tides and tidal dynamics on the southeast New England shelf. In situ observations include tidal harmonics of 5 major tidal constituents [M2, S2, N2, O1, and K1] analyzed from coastal sea level and bottom pressure gauges. The DA system consists of both forward and inverse models. The former is the three-dimensional, finite difference, nonlinear Regional Ocean Modeling System (ROMS). The latter is a three-dimensional linearized, frequency domain, finite element model TRUXTON. The DA system assimilates in situ observations via the inversion for the barotropic tidal open boundary conditions (OBCs). Model skill is evaluated by comparing the misfits between the observed and modeled tidal harmonics. The assimilation scheme is found effective and efficient in correcting the tidal OBCs, which in turn improve ROMS tidal solutions. Up to 50% decreases of model/data misfits are achieved after inverse data assimilation. Co-amplitude and co-phase maps and tidal current ellipses for each of 5 tidal constituents are generated, revealing complex tidal variability in this transition region between the tidally amplified Gulf of Maine in the northeast and the tidally much less energetic Middle Atlantic Bight in the southwest. Detailed examinations on the residual circulation, energetics, and momentum balances of the M2 tide reveal the key roles of the unique bottom bathymetry of Nantucket Shoals and the complex coastal geometry in affecting the regional tidal dynamics.
    Description: This work was supported by WHOI Coastal Ocean Institute Research Award. J.W. acknowledges support of the Office of Naval Research.
    Keywords: Continental shelf ; Barotropic tides ; Numerical modeling ; Data assimilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07032, doi:10.1029/2007JC004598.
    Description: This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCS soft ). We develop a new theory showing that under conditions of perfect equilibrium between atmosphere and ocean, atmospheric pCO2 can be written as a sum of exponential functions of OCS soft . The theory also demonstrates how the sensitivity of atmospheric pCO2 to changes in the soft-tissue pump depends on the preformed nutrient inventory and on surface buffer chemistry. We validate our theory against simulations of nutrient depletion in a suite of realistic general circulation models (GCMs). The decrease in atmospheric pCO2 following surface nutrient depletion depends on the oceanic circulation in the models. Increasing deep ocean ventilation by increasing vertical mixing or Southern Ocean winds increases the atmospheric pCO2 sensitivity to surface nutrient forcing. Conversely, stratifying the Southern Ocean decreases the atmospheric CO2 sensitivity to surface nutrient depletion. Surface CO2 disequilibrium due to the slow gas exchange with the atmosphere acts to make atmospheric pCO2 more sensitive to nutrient depletion in high-ventilation models and less sensitive to nutrient depletion in low-ventilation models. Our findings have potentially important implications for both past and future climates.
    Description: While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research.
    Keywords: Carbon cycle ; Preformed nutrient ; Nutrient depletion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03042, doi:10.1029/2003JC002007.
    Description: Sea level is a natural integral indicator of climate variability. It reflects changes in practically all dynamic and thermodynamic processes of terrestrial, oceanic, atmospheric, and cryospheric origin. The use of estimates of sea level rise as an indicator of climate change therefore incurs the difficulty that the inferred sea level change is the net result of many individual effects of environmental forcing. Since some of these effects may offset others, the cause of the sea level response to climate change remains somewhat uncertain. This paper is focused on an attempt to provide first-order answers to two questions, namely, what is the rate of sea level change in the Arctic Ocean, and furthermore, what is the role of each of the individual contributing factors to observed Arctic Ocean sea level change? In seeking answers to these questions we have discovered that during the period 1954–1989 the observed sea level over the Russian sector of the Arctic Ocean is rising at a rate of approximately 0.123 cm yr−1 and that after correction for the process of glacial isostatic adjustment this rate is approximately 0.185 cm yr−1. There are two major causes of this rise. The first is associated with the steric effect of ocean expansion. This effect is responsible for a contribution of approximately 0.064 cm yr−1 to the total rate of rise (35%). The second most important factor is related to the ongoing decrease of sea level atmospheric pressure over the Arctic Ocean, which contributes 0.056 cm yr−1, or approximately 30% of the net positive sea level trend. A third contribution to the sea level increase involves wind action and the increase of cyclonic winds over the Arctic Ocean, which leads to sea level rise at a rate of 0.018 cm yr−1 or approximately 10% of the total. The combined effect of the sea level rise due to an increase of river runoff and the sea level fall due to a negative trend in precipitation minus evaporation over the ocean is close to 0. For the Russian sector of the Arctic Ocean it therefore appears that approximately 25% of the trend of 0.185 cm yr−1, a contribution of 0.048 cm yr−1, may be due to the effect of increasing Arctic Ocean mass.
    Description: This material is based upon work supported by the National Science Foundation under grant 0136432.
    Keywords: Arctic ; Sea level rise ; Decadal variability ; Steric effects ; Inverted barometer effect ; Glacial isostatic adjustment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB2002, doi:10.1029/2005GB002530.
    Description: Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
    Description: This research was financially supported by the National Aeronautics and Space Administration under grant NAG5- 12528. N. G. also acknowledges support by the National Science Foundation (OCE-0137274). Climate and Environmental Physics, Bern acknowledges support by the European Union through the Integrated Project CarboOcean and the Swiss National Science Foundation.
    Keywords: Anthropogenic CO2 ; Carbon cycle ; Inverse modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Format: application/x-tex
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3025, doi:10.1029/2007GB003082.
    Description: Interannually varying net carbon exchange fluxes from the TransCom 3 Level 2 Atmospheric Inversion Intercomparison Experiment are presented for the 1980 to 2005 time period. The fluxes represent the model mean, net carbon exchange for 11 land and 11 ocean regions after subtraction of fossil fuel CO2 emissions. Both aggregated regional totals and the individual regional estimates are accompanied by a model uncertainty and model spread. We find that interannual variability is larger on the land than the ocean, with total land exchange correlated to the timing of both El Niño/Southern Oscillation (ENSO) as well as the eruption of Mt. Pinatubo. The post-Pinatubo negative flux anomaly is evident across much of the tropical and northern extratropical land regions. In the oceans, the tropics tend to exhibit the greatest level of interannual variability, while on land, the interannual variability is slightly greater in the tropics and northern extratropics. The interannual variation in carbon flux estimates aggregated by land and ocean across latitudinal bands remains consistent across eight different CO2 observing networks. The interannual variation in carbon flux estimates for individual flux regions remains mostly consistent across the individual observing networks. At all scales, there is considerable consistency in the interannual variations among the 13 participating model groups. Finally, consistent with other studies using different techniques, we find a considerable positive net carbon flux anomaly in the tropical land during the period of the large ENSO in 1997/1998 which is evident in the Tropical Asia, Temperate Asia, Northern African, and Southern Africa land regions. Negative anomalies are estimated for the East Pacific Ocean and South Pacific Ocean regions. Earlier ENSO events of the 1980s are most evident in southern land positive flux anomalies.
    Keywords: Carbon cycle ; Atmospheric inversion ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...