ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (21)
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
  • Earthquake source observations
  • Elsevier Science Limited  (24)
  • Wiley  (5)
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2010-2014  (28)
  • 2005-2009  (1)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2021-07-14
    Description: We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 × 1 m digital elevation model, and a 15 × 15m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m−3, with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m−3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and N64) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. © 2014 Elsevier B.V. All rights reserved.
    Description: Published
    Description: 58–69
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli, Gravity, Inversion, Geophysics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present a review of our work on data acquired by GEOSTAR-class (GEophysical and Oceanographic STation for Abyssal Research) observatories deployed at three EMSO (European Multidisciplinary Seafloor and water-column Observatory; http://www.emso-eu.org) sites in southern European waters where strong geo-hazards are present: the Western Iberian Margin, the Western Ionian Sea, the Marmara Sea, and the Marsili basin in the Tyrrhenian Sea. A procedure for multiparameter data quality control is described. Then we explain why the seafloor is an interesting observation point for geophysical parameters and how it differs from land sites. We consider four interesting geophysical phenomena found at the EMSO sites that are related to geo-hazard. In the first case, we show how unknown seismicity and landslides in the Western Ionian Sea were identified and roughly localised through a single-sensor analysis based on the seismometer. In the second case, we concentrate on the problem of near-coast tsunami generation and describe a Tsunami Early Warning Detection (TEWD) system, tested in the Western Iberian Margin and currently operating in real time at the Western Ionian site. In the third case, we consider two large volcanoes in the central Mediterranean area, Mt. Etna and the Marsili seamount. Signals from the seismometer and gravimeter recorded at the seafloor at 2100 m b.s.l. show various phases of Mt. Etna's 2002–2003 eruption. For the less-known Marsili we illustrate how several indicators coming from different sensors point to hydrothermal activity. A vector magnetometer at the two volcanic sites helps identify the magnetic lithospheric depth. In the fourth and final case, we present a multiparameter analysis which was focused on finding possible correlations between methane seepage and seismic energy release in the Gulf of Izmit (Marmara Sea).
    Description: Published
    Description: 12–30
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: European Seas ; Geophysical measurements ; Multiparameter seafloor and water-column observatories ; Data quality analysis ; Geo-hazard ; Tsunami early detection ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The shallow thermal aquifer at Vulcano Island is strongly affected by deep volcanic fluids. The most significant variations were observed during the 1989–1996 crisis due to a large input of steam and acidic gases from depth. Besides chemical variations related to the input of deep fluids, the record of the water-table elevation at monitored wells has provided remarkable insights into the pressure conditions of the volcano-hydrothermal system. After the pressure drop due to the extensive vaporization of the hydrothermal aquifer, occurred after 1993, the volcano-hydrothermal system has been re-pressurized since 2001, probably because of the contribution of volatiles from the hydrothermal-magmatic source. The increase in fluid pressure may have caused reopening of fractures (which had self-seated during the previous period of cooling) and the onset of a phase of higher vapor output in the fumarole field later in 2004. The fracture opening would have promoted further vapor separation from the deep fluid reservoir (hypothesized at 0.5–1.5 km depth) and finally the drainage of S-rich fluids into the shallow thermal aquifer (found out at few tens of meters of depth). The monitoring of both the water chemistry and the water-table elevation provides insights into the eventual pressurization of the volcano-hydrothermal system that precedes the fracture opening and the extensive drainage of deep fluids. The findings of this study could represent crucial information about the stability of the volcano edifice, and lead to reliable techniques for determining the risk of or even predicting phreatic explosions.
    Description: Published
    Description: 70-80
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrothermal system ; Vulcano Island ; Fluid pressure ; Thermal wells ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-13
    Description: Volcanic lake research boosted after lethal gas burst occurred at Lake Nyos (Cameroon) in 1986, a limnic rather than a volcanic event. This led to the foundation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990s. We here introduce the first data base of volcanic lakes VOLADA, containing 474 lakes, a number that, in our opinion, is surprisingly high. VOLADA could become an interactive, open-access working tool where our community can rely on in the future. Many of the compiled lakes were almost unknown, or at least unstudied to date, whereas there are acidic crater lakes topping active magmat- ic–hydrothermal systems that are continuously or discontinuously monitored, providing useful information for volcanic surveillance (e.g., Ruapehu, Yugama, Poás). Nyos-type lakes, i.e. those hosted in quiescent volcanoes and characterized by significant gas accumulation in bottom waters, are potentially hazardous. These lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term build- up of gas, which can be released after a trigger. Some of the unstudied lakes are possibly in the latter situation. Acidic crater lakes are easily recognized as active, whereas Nyos-type lakes can only be recognized as potentially hazardous if bottom waters are investigated, a less obvious operation. In this review, research strategies are lined out, especially for the “active crater lakes”. We make suggestions for monitoring frequency based on the principle of the “residence time dependent monitoring time window”. A complementary, multi-disciplinary (geochemis- try, geophysics, limnology, statistics) approach is considered to provide new ideas, which can be the bases for fu- ture volcanic lake monitoring. More profound deterministic knowledge (e.g., precursory signals for phreatic eruptions, or lake roll-over events) should not only serve to enhance conceptual models of single lakes, but also serve as input parameters in probabilistic approaches. After more than 25 years of pioneering studies on rather few lakes (~20% of all), the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazards.
    Description: Published
    Description: 78-97
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic lakes ; Active crater lakes ; Nyos-type lakes ; Monitoring ; Residence time dependent monitoring time window ; Hazard forecasting ; VOLADA data base ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: This study assessed the use of a H2 fuel cell as an H2-selective sensor for volcano monitoring. The resolution, repeatability, and cross-sensitivity of the sensor were investigated and evaluated under known laboratory conditions. A tailor-made device was developed and used for continuously monitoring H2 and CO2 at Mt Etna throughout 2009 and 2010. The temporal variations of both parameters were strongly correlated with the evolution of the volcanic activity during the monitoring period. In particular, the CO2 flux exhibited long-term variations, while H2 exhibited pulses immediately before the explosive activity that occurred at Mt Etna during 2010.
    Description: Published
    Description: 41–51
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; H2 monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009–May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai–Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July–August 2011. We interpreted the seismic-related anomalies as ‘‘crustal fluid transients’’, i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.
    Description: Accordo Quadro DPC-INGV 2012-21, Convenzione C, 2012,Progetto V3, Task 3, WP13, UR2
    Description: Published
    Description: 160-169
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal transient ; Fumarole temperature ; Seismic activity ; Stress field ; Teleseism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The continuous monitoring shows short term dynamics and allows multidisciplinary comparisons. Sharp increases and trending variations were recorded in fumarole temperatures. The trends highlighted by punctual monitoring characterized the main fumaroles. A new phase of increasing temperature begun after the year 2001 at the rim fumaroles.
    Description: The exhalation activity at the La Fossa cone (Vulcano Island, Aeolian Archipelago, Italy) has been ongoing for more than 1 century. Many of the monitored geochemical and geophysical parameters have showed transient variations of energy release. The time-series analyses of fumarole temperatures presented in this paper enabled the sequence of observations to be defined and information from different monitoring stations to be integrated. The motion of fluids feeding the fumaroles of the La Fossa cone is driven by the thermal and kinetic energies that balance the seismic and volcanic forces active in the region, and the temperatures of the fumaroles reflect the local response of the hydrothermal system to these forces. During a 14-year period of observation, from 1998 to 2012, fumarole temperatures showed various trends but also cyclic variations characterized by sharp increases. The repetition of these variations during periods with different trends indicates that no physical variation occurred from the hydrothermal source to the surface during the analyzed period, and after each periodic geochemical crisis the previous thermal conditions were restored. Although the continuous monitoring of hightemperature fumaroles was limited to only a few sites, the observed trends characterized the most important fumaroles in the area of Vulcano Island. An evaluation of thermal-energy release based on these spatially discrete measurements would be a speculative exercise in thermodynamics, but the analyses of the recorded data represent a step forward in interpreting the signals from ongoing volcanic activity and in assessing the seismic risk. © 2013 Elsevier B.V. All rights reserved.
    Description: INGV-DPC project
    Description: Published
    Description: 150-163
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: temperature, fumarole, time series, monitoring, geochemistry, volcano ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Herein we report on the chemical and isotopic (C, H, O, and He) compositions of the fluids from La Fossa crater fumaroles of Vulcano from 1999 to 2010. Consistent with records obtained since the end of the 1980s, our data show that the geochemical features of the fumarole system have experienced several episodes of remarkable change, each lasting no more than a few months. Typical signatures of these short-term anomalies are large increments in CO2, N2, and He concentrations, coupled to increased 13C/12C isotopic ratios, but their meaning remains widely debated. Within a model of fumarolic fluids based on mixing between hydrothermal and magmatic endmembers, we have developed a novel approach to constrain chemical (He/ CO2 and N2/He) and isotopic (13C/12C, D/H, and 3He/4He) ratios of the magmatic endmember during the short-term anomalies. Although much of the geochemical variability in fumaroles results from changes in mixing proportions, the magmatic fluid unquestionably shows significant variations in time. The magmatic He/CO2, N2/He, 13C/12C, and 3He/4He values throughout 1988–1996 differed from those feeding the anomaly at the end of 2004. Early clues of the new magmatic fluid appeared in 1998–1999, far from any short-term anomaly, whereas new and old magmatic fluids coexisted after 2004. We quantitatively prove that the detected geochemical changes are consistent with the degassing path of a magma having a latitic composition, and suggest the presence of two magma ponding levels at slightly different pressures, where bubble–melt decoupling can occur. The different He-isotope compositions at these levels suggest low hydraulic connectivity typical of a complex reservoir with dike and sill structures. In this framework, the short-term geochemical anomalies are probably due to gas accumulation at the top of magma bodies followed by massive escape, or activation of new degassing levels in the reservoir, for which the stress field almost certainly plays a key role. Such a scenario explains the observed increases in both fumarole output and shallow high-frequency seismicity (due to increased pore pressure) during the anomalies, while being consistent with the concomitant absence of any deep seismicity or ground deformation, eventually related to magma movement.
    Description: Published
    Description: 158-178
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: fumarole geochemistry ; magma degassing ; thermodynamic modeling ; noble gas geochemistry ; carbon isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Herein, we present a method for continuous measurement of soil CO2 flux that is completely new and distinct from existing instruments. The foremost difference is that instead of using an infrared gas analyser (IRGA), the new device measures soil CO2 flux by means of a simple pressure sensor, measuring pressure transients inside a closed polymeric tube inserted into the soil. This allows continuous measurements even in soil placed in environments that could potentially damage IRGA. In addition, due to the innovative operating principle, measurements of soil CO2 flux can be effortlessly performed also in strongly harsh weather conditions. Theoretical equations were derived for calculating soil CO2 flux solely using measured transient values. The reliability of the equations was rigorously tested with a variety of experiments. Continuous measurements over four months, acquired in a high-emission area on the Island of Vulcano, compared favourably with the data obtained using an established method.
    Description: Published
    Description: 102-109
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Soil CO2 flux measurements ; Continuous monitoring ; Methods of measurement ; Polymeric membranes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: On 13 May 2008, an eruption began at Mt. Etna from an eruptive fissure that opened on the upper eastern flank of the volcano. During 12-13 May, 157 infrasonic events, together with the related seismic transients, were collected. We carried out several analyses to obtain dominant frequencies, pseudospectrograms, peak-to-peak amplitudes, source locations and time lags between infrasonic and seismic events. Spectra of the infrasonic events show two main spectral peaks in the frequency bands ~0.4-0.7 Hz and 1.5-2.0 Hz, respectively. Both infrasonic and seismic events were separately located below the North-East Crater, where no eruptive activity was observed. Moreover, significant changes in infrasound spectral content, as well as in the infrasonic-seismic lags, were found a few hours before the beginning of the eruption. On the basis of the collected information the infrasound source mechanism was modelled as a superposition of pipe and Helmholtz resonance, also leading to outline the geometry of the shallower portion of the North-East Crater plumbing system. The occurrence of these seismo-infrasonic events together with other geological and geophysical evidences, led us to inferring a direct link between North-East Crater activity and the eruptive fissure. Further, based on variations over time of both spectral features and seismicinfrasonic time lag, shallowing phenomena of the free magma column inside North-East Crater conduit were hypothesized. Such an uprise of magma was likely caused by a pressure increase inside the plumbing system occurring before the beginning of the 2008-2009 eruption.
    Description: Published
    Description: 53-68
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; Helmholtz resonator ; plumbing system geometry ; seismo-acoustic studies ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: In this paper we present the first data of temperature continuously recorded in two fumarole fields (designated VOR and HOR) located in the summit area of Mount Etna volcano (Italy). The time series embraces two distinct periods: (1) October 2007 to November 2009, during which an effusive eruption occurred from May 2008 to July 2009, and (2) November 2011 to June 2012, characterized by the occurrence of strong paroxysms (fire fountains and lava flow). The analysis of the temperature signal in both the time and frequency domains, and its comparison with meteorological observations allowed us to separate the exogenous influences from the effects of variations in the activity state of the volcano. The acquired data were weakly affected by seasonal cycles of the air temperature and strongly affected by the rainfall. Optimization of site conditions (i.e., sensor depth and soil permeability) markedly reduced meteorological disturbances. The distance from the main degassing and/or eruptive fractures was crucial to maximizing the probability of the technical survival of the monitoring apparatus, which was seriously affected by the emission of acidic gases, tephra fallout, and lava flows. Apart from the exogenous influences, the most appreciable variation was observed at VOR, where a huge increase in fumarole temperature was detected immediately after the onset of the 2008–2009 eruption. Such an anomalous increase was attributed to the rapid ascent of magma feeding the eruptive fracture. Another abrupt increase in temperature was recorded at HOR in March and April 2012. During this period the frequency of paroxysm occurrence increased markedly, and this led us to hypothesize that the thermal anomaly was due to the intrusion of a new batch of magma in the conduits of the southeast crater. Medium- to long-term monitoring (weeks to months) of fumarole temperatures revealed variations that were attributed to pressurization/depressurization phases of the shallow volcanic system, which varied between the various monitored sectors of the volcano. Our observations suggest that continuous monitoring of fumarole temperature can give useful information about the activity of Mount Etna. Moreover, due to the complexity of its shallow plumbing system, we conclude that the monitoring systems should be extended to cover the entire fumarole network of the summit area.
    Description: Published
    Description: 12-20
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Continuous monitoring ; Mount Etna ; Fumarole temperature ; Meteorological parameters ; Volcanic Degassing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-06-30
    Description: Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4 kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer).
    Description: Published
    Description: 261–271
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 fluxing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-12-15
    Description: The source properties of the Long-Period events that occurred at Campi Flegrei Caldera (Italy) during the 2004–2006 ground uplift episode are investigated by analyzing the temporal release of seismic energy, amplitude distribution and inter-event occurrence time. Moreover, an entropy-based decomposition method is applied to identify the simpler waveforms thought to be representative of the source mechanism of Long-Period events. On the basis of the outcomes, we propose that the main part of these events is the result of a source process triggered by a mechanism of fluid charge/discharge, which causes pressure drop in a main branch of a dentritic network of the hydrothermal system. In this model, the rate of the Poissonian process (about 15 min), which drives the occurrence of the Long-Period events, provides the average recharge time of the system up to the critical condition. A partial shunting of the fluid flow away from the main conduit activates the ”resonance” of a second branch, spatially separated from the first one. This is a process that occurs whenever the fluid pressure exceeds a critical value and produces less energetic Long-Period events. The mechanism of pressure variation in the two conduits generates signals with preferred amplitude scales, described by a bi-lognormal distribution. From a dynamical point of view, Long-Period events result well described by a low-dimensional dynamical system. Finally, the time pattern of the energy release and its correlation with the diurnal solid earth tide suggest that the whole mechanism of fluid charge/discharge is likely modulated by tidal stress variation.
    Description: Published
    Description: 16-30
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: partially_open
    Keywords: Lp sources ; Poissonian occurrence ; Tidal modulation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publication Date: 2017-04-04
    Description: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Description: Published
    Description: 170-186
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-03
    Description: A geologically reasonable working hypothesis is proposed for the lithology of the basement underlying the Campi Flegrei caldera in the ca. 4–8 km depth range. In most current geophysical modeling, this portion of crust is interpreted as composed of Meso-Cenozoic carbonate rocks, underlain by a ca. 1 km thick sill of partially molten rock, thought to be a main magma reservoir. Shallower magma reservoirs likely occur in the 3–4 km depth range. However, the lack of carbonate lithics in any Campi Flegrei caldera volcanic rocks does not support the hypothesis of a limestone basement. Considering the major caldera-forming eruptions, which generated widespread and voluminous ignimbrites during late Quaternary times, including the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions, the total volume of trachytic to phonolitic ejected magma is conservatively estimated at not less than 350 km3. Results of least-squared mass-balance calculations suggest that this evolved magma formed through fractional crystallization from at least 2500 km3 of parent shoshonitic magma, in turn derived from even more voluminous, more mafic, K-basaltic magma. Calculations suggest that shoshonitic magma, likely emplaced at ca. 8 km depth, must have crystallized about 2100 km3 of solid material, dominated by alkali-feldspar and plagioclase, with a slightly lower amount of mafic minerals, during its route toward shallower magma reservoirs, before feeding the Campi Flegrei large-volume eruptions. The calculated volume of cumulate material, likely syenitic in composition at least in its upper portions, is more than enough to completely fill the basement volume in the 4–8 km depth range beneath the Campi Flegrei caldera, estimated at ca. 1250 km3. Thus, it is proposed that the basement underlying the Campi Flegrei caldera below 4 km is composed mostly of crystalline igneous rocks, as for many large calderas worldwide. Syenite sensu lato would meet physical properties requirements for geophysical data interpretations, explain some geochemical and isotopic features of the past 15 ka volcanics, and justify the carbon isotopic composition of fumaroles at the Campi Flegrei caldera. This implies that Meso-Cenozoic limestones, if still present today beneath the Campi Flegrei caldera, no longer constitute significant portions of its basement.
    Description: Published
    Description: 91–98
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: In this paper, we report four years of soil CO2 emission data measured monthly at 130 sites in two peripheral areas of Mt Etna Volcano that are well known for their high discharge rates of volcanic gas. We remove the influence of atmospheric parameters, and by means of statistical analyses, we (i) demonstrate that variations in CO2 emissions are due mainly to CO2 of a deep origin and (ii) quantify the total amounts of CO2 derived from a deep magma source. Periods of anomalous deep degassing are identified in both areas. A comparison of the timing of these anomalies and geophysical data indicates that the periods of anomalous degassing can be mostly ascribed to intrusions of fresh magma into the Etna plumbing system, which is in agreement with many previous works. Based on the existing literature, we formulate an interpretative framework of magma migration within the plumbing system, consistent with temporal trends in the observed anomalies. Finally, we reconstruct the processes of recent magma ascent at Mt Etna based on our interpretative framework, published geophysical data, and records of volcanic activity.
    Description: Published
    Description: 218-227
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; Mt Etna ; Volcanic activity ; Magma transfer ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: In this paper we investigate nature and properties of narrow-band, transient seismic signals observed by a temporary array deployed in the Val Tiberina area (central Apennines, Italy). These signals are characterized by spindle-shaped, harmonic waveforms with no clear S-wave arrivals. The first portion of the seismograms exhibits a main frequency peak centred at 4.5 Hz, while the spectrum of the slowly decaying coda is peaked at about 2 Hz. Events discrimination is performed using a matched-filtering technique, resulting in a set of 2466 detections spanning the 2010 January–March time interval. From a plane-wave-fitting procedure, we estimate the kinematic properties of signals pertaining to a cluster of similar events. The repetition of measurements over a large number of precisely aligned seismograms allows for obtaining a robust statistics of horizontal slownesses and propagation azimuths associated with the early portion of the waveforms. The P-wave arrival exhibits horizontal slownesses around 0.1 s km−1, thus suggesting waves impinging at the array almost vertically. Separately, we use traveltimes measured at a sparse network to derive independent constraints on epicentral location. Ray parameters and azimuths are calibrated using slowness measurements from a local, well-located earthquake. After this correction, the joint solution from traveltime inversion and array analysis indicates a source region spanning the 1–3 km depth interval. Considerations related to the source depth and energy, and the occurrence rate which is not related to the daily and weekly working cycles, play against a surface, artificial source. Instead, the close resemblance of these signals to those commonly observed in volcanic environments suggest a source mechanism related to the resonance of a fluid–filled fracture, likely associated with instabilities in the flux of pressurized CO2.
    Description: Published
    Description: 918-928
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture and flow ; Earthquake source observations ; Interface waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: The 15 March 2007 Vulcanian paroxysm at Stromboli volcano was recorded by several instruments that allowed description of the eruptive sequence and unravelling the processes in the upper feeding system. Among the devices installed on the island, two borehole strainmeters recorded unique signals not fully explored before. Here we present an analysis of these signals together with the time-lapse images from a monitoring system comprising both infrared and visual cameras. The two strainmeter signals display an initial phase of pressure growth in the feeding system lasting ~2 min. This is followed by 25 s of low-amplitude oscillations of the two signals, that we interpret as a strong step-like overpressure building up in the uppermost conduit by the gas-rich magma accumulating below a thick pile of rock produced by crater rim collapses. This overpressure caused shaking of the ground, and triggered a number of small landslides of the inner crater rim recorded by the monitoring cameras. When the plug obstructing the crater was removed by the initial Vulcanian blast, the two strainmeter signals showed opposite sign, compatible with a depressurizing source at ~1.5 km depth, at the junction between the intermediate and shallow feeding system inferred by previous studies. The sudden depressurization accompanying the Vulcanian blast caused an oscillation of the source composed by three cycles of about 20 sec each with a decreasing amplitude, as well recorded by the strainmeters. The visible effect of this behaviour was the initial Vulcanian blast and a 2-3 km high eruptive column followed by two lava fountainings displaying decreasing intensity and height. To our knowledge, this is the first time that such a behaviour was observed on an open conduit volcano.
    Description: Published
    Description: 249-256
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; paroxysmal explosions ; shallow plumbing system ; borehole strainmeters ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: At Stromboli volcano, Italy, continuous seismic monitoring and periodic, visual observations of volcanic activity for surveillance purposes began in the mid-1980s. Since 1985, two eruptions have occurred, one lasting from December, 1985 until April, 1986, and one in May, 1993. There have also been two small overflows, in 1990 and 1994. Since these episodes of lava effusion, the persistent Strombolian activity of the volcano has had several fluctuations during the past 15 years. Some episodes climaxed in powerful explosions. According to seismic records, these paroxysms consisted of a variable number of explosion quakes in rapid succession (i.e. from tens of seconds to a few minutes), associated with a notable increment in the amplitude of volcanic tremor. Throughout these episodes - which are called explosive sequences - lapilli, fragments of old rock, and bombs of varying dimensions were ejected, affecting an area greater than the crater terrace where the active craters are located. In this article, we describe the explosive sequences recorded at Stromboli between 1985 and 1999. We provide a characterization in terms of reduced displacement and duration for nine episodes occurring in 1998 and 1999. Their reduced displacements range from 15 to 124 cm2; their durations are between 6 and 18 min. We find no change in the frequency content of the seismic signal several minutes before and during the sequences. Considering medium- to long-term behavior, the spectral amplitude of the seismic signal decreases or has low values over several months preceding the occurrence of the paroxysms. This feature is common to 20 of the 22 explosive sequences, and is indicative of internal conditions that periodically characterize the feeder. We surmise that the paroxysms are the result of the partial obstruction of the volcanic conduit when the magma column is low or dropping. The onset of the explosive sequence, causing the sudden removal of the material which forms the obstruction, would trigger a sudden depressurization of the conduit and the rapid rise of magma from depth.
    Description: Published
    Description: 137-150
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Paroxysms ; Seismicity ; Volcanoes ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Crustal tectonic seismicity in the Southern Tyrrhenian Sea is characterized by the high occurrence rates of earthquakes to the west of the alignment of Salina, Lipari and Vulcano islands in the Aeolian archipelago. Only a few earthquakes affect the crustal region east of these islands, whereas intermediate and deep seismicity plays a relevant role. Based on this evidence, two aspects of the seismic swarm recorded at the Aeolian Island Seismic Network between June 6 and 17, 1999 looked anomalous. The first aspect concerned the number of earthquakes (78) that affected the Stromboli submarine edifice in a short time interval. Secondly, despite the low maximum magnitude Md 3.2 reached, the cumulative strain release was conspicuous in comparison with previous swarms in this region. We localized the swarm about 6 km northeast of Stromboli, at a depth between 8 and 12km. The source region was identified using standard methods of hypocentral location, as well as azimuth analysis. It is worth noting that the volcanic activity at Stromboli did not change significantly during the swarm nor throughout the following months. Therefore, the seismic swarm had no link with volcanic activity observed at the surface. Most of the earthquakes shared similar waveform and frequency content, and can be divided into families. We identified some earthquakes - with magnitude up to Md 3 - having relatively low frequency content at different seismic stations. This anomalous feature leads us to hypothesize the presence of fluid circulation and/or propagation of seismic waves in a ductile medium. Our hypothesis is in agreement with studies on marine geology, which highlight various forms of submarine volcanism in the southern basin of the Tyrrhenian Sea.
    Description: This work was financially supported by the EC project MULTIMO (Contract No. EVG1-CT-2000-00021).
    Description: Published
    Description: 121-136
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquakes ; Seismic swarm ; Volcanoes ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: A 4-year geochemical survey of some fumaroles at the Voragine summit crater of Mt Etna was performed in combination with synchronous monitoring of peripheral gas emissions at the base of the volcano. This was the first geochemical study at Mt Etna to have included the abundances of Ar, He, and C isotopes. Once the effects of postmagmatic shallow processes were identified and quantitatively removed, the He–Ar–CO2 systematics of the Voragine crater fumaroles and peripheral gas emissions described the same degassing path. Combining the carbon-isotope composition with information about noble gases provided evidence that the crater fumaroles are fed from a two-endmember mixture composed of a deep member coming from pressures between 200 and 400 MPa (depending on time), and a shallower one exsolved at 130 MPa. Similar mixing processes probably also occur in gases from peripheral vents. The simultaneous assessment of d13CCO2 and He/Ar values of crater fumaroles over time has identified simple changes in the mixing proportion between the two endmembers and, moreover, periods during which the exsolution pressure of the deep fluid increased. These periods seem to be linked to pre-eruptive phases of the volcano. The identified open-system degassing processes are indicative of efficient bubble–melt decoupling at depth, whereas the mixing process requires a convective transfer of the deeply exsolved fluids toward shallower levels of magma where further vapor is exsolved. In agreement with the most recent geophysical and petrological data from Mt Etna, these observations allow inferences about a deep portion of the plumbing system (5 to 12 km b.s.l.), comprising sill-like reservoirs connected by small vertical structures, and a main reservoir at 2–3 km b.s.l. that is probably fluxed by magmatic volatiles. 2012 Elsevier Ltd. All rights reserved.
    Description: Published
    Description: 380-394
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: gas geochemistry, isotopes, degassing, modelling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: We analyzed crater SO2 fluxes from Mt Etna, together with soil CO2 effluxes from the volcano's flanks, in the period from 2001 to 2005. Between the 2001 and 2002–2003 eruptions, persistently low values of both parameters suggest that no new gas-rich magma was accumulating at shallow depth (b5 km) within Etna's central conduit, whereas very high SO2 sin-eruptive fluxes during the two eruptions indicated sudden decompression of an un-degassed magma rising along newly-formed eccentric conduits. In November 2003, soil CO2 data indicate migration of gas-rich magma from deep (〉10 km) to shallow (b5 km) portions of the feeding conduits, preceded by an increase in crater SO2 fluxes. A similar behavior was observed also during and after the following 2004–2005 eruption. This degassing style matches a period of increased structural instability of the volcanic edifice caused by acceleration of spreading that affected both its eastern and southern flanks. Spreading could have triggered progressively deeper depressurization in the central conduit, inducing release of the more soluble gas (SO2) first, and then of CO2, contrary to what was observed before the 2001 eruption. This suggests that the edifice has depressurized, promoting ascent of fresh-magma and increasing permeability favouring release of CO2 flux. By integrating geochemical and structural data, previous degassing models developed at Mt. Etna have been updated to advance the understanding of eruptive events that occurred in recent years.
    Description: This work was funded by grants from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and from the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 90-97
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemical modeling ; volcano monitoring ; volcanic gases ; Tectonics and magmatism ; flank collapse ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: The Pernicana–Provenzana Fault System is one of the most active tectonic systems of Mt. Etna and it plays an important role in the dynamic of the eastern flank of the volcano. Earthquakes occurring close to this structural trend have reached magnitudes up to 4.2, sometimes with coseismic surface faulting, and have caused severe damages to tourist resorts and villages in the vicinity of this structure. In the last decade, a large number of shocks, sometimes in the form of swarms, linked to Pernicana–Provenzana Fault System movements have been detected by the permanent local seismic network operating in eastern Sicily. In this paper, we report on the detailed study of the seismic activity occurring during the 2000–2009 time span in the Pernicana–Provenzana Fault System area. Firstly, we located 407 earthquakes using a standard location code and a 1D crustal velocity model. We then applied two different approaches to calculate precise hypocenter locations of the events. In particular, a non-linear code was adopted to obtain an estimate of the a posteriori Probability Density Function in 3D space for the hypocenter location. Moreover, a relative location of correlated event pairs was performed, using the double-difference method. These two different location approaches allowed defining with good accuracy, the most active and hazarding sectors of the structure. The results of these precise locations showed a tighter clustering in the epicenters and in focal depths, in comparison with standard locations. Earthquakes are located along the Pernicana–Provenzana Fault System, and are mainly clustered in two zones, separated by an area with very low rate of earthquakes occurrence, but characterized by the highest energy release. Depths of the foci are very shallow, ranging between the surface and about 3 km b.s.l. Kinematics of the Pernicana–Provenzana Fault System, revealed by the fault plane solutions computed for the most energetic earthquakes, highlights a predominant dip–slip and left strike movements along E–W oriented fault planes, in agreement with field observations.
    Description: Published
    Description: 16-26
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; Pernicana–Provenzana Fault System ; Earthquakes ; Precise location ; Fault plane solutions ; Seismic strain release ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-09-03
    Description: Gas hazard was evaluated in the three most important cold gas emission zones on the flanks of the quiescent Colli Albani volcano. These zones are located above structural highs of the buried carbonate basement which represents the main regional aquifer and the main reservoir for gas rising from depth. All extensional faults affecting the limestone reservoir represent leaking pathways along which gas rises to the surface and locally accumulates in shallow permeable horizons forming pressurized pockets that may produce gas blowout when reached by wells. The gas, mainly composed by CO2 (〉90 vol.%), contains appreciable quantities of H2S (0.35-6 vol.%), and both represent a potentially high local hazard. Both gases are denser than air and accumulate near ground where they may reach hazardous concentrations, and actually lethal accidents frequently occur to animals watering at local ponds. In order to evaluate the rate of degassing and the related hazard, CO2 and H2S diffuse soil flux surveys have been repeatedly carried out by accumulation chamber. The viscous gas flux of some important discrete emissions has been also evaluated and the CO2 and H2S air concentration measured by portable devises and by Tunable Diode Laser profiles. The minimum potential lethal concentration of the two gases (250 ppm for H2S and 8 vol.% for CO2) is 320 times higher for CO2, whereas the CO2/H2S concentration ratio in the emitted natural gas is significantly lower (15-159). This explains why H2S reaches hazardous, even lethal, concentrations more frequently than CO2. A relevant hazard exists for both gases in the depressed zones (channels, excavations) particularly in the non-windy early hours of the day.
    Description: Published
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: partially_open
    Keywords: gas hazard ; hydrogen sulfide ; carbon dioxide ; Colli Albani volcano ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-03
    Description: After an earthquake, rapid, real-time assessment of hazards such as ground shaking and tsunami potential is important for early warning and emergency response. Tsunami potential depends on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of earthquake rupture. Currently, the primary discriminant for tsunami potential is the centroid-moment tensor magnitude, MwCMT, representing the seismic potency LWD, and estimated through an indirect, inversion procedure. The obtained MwCMT and the implied LWD value vary with the depth of faulting, assumed earth model and other factors, and is only available 30 min or more after an earthquake. The use of more direct procedures for hazard assessment, when available, could avoid these problems and aid in effective early warning. Here we present a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measures on P-wave seismograms – the dominant period on the velocity records, Td, and the likelihood that the high-frequency, apparent rupture-duration, T0, exceeds 50-55 sec. T0 can be related to the critical parameters L and z, while Td may be related to W, D or z. For a set of recent, large earthquakes, we show that the period-duration product TdT0 gives more information on tsunami impact and size than MwCMT and other currently used discriminants. All discriminants have difficulty in assessing the tsunami potential for oceanic strike-slip and back-arc or upper-plate, intraplate earthquake types. Our analysis and results suggest that tsunami potential is not directly related to the potency LWD from the “seismic” faulting model, as is assumed with the use of the MwCMT discriminant. Instead, knowledge of rupture length, L, and depth, z, alone can constrain well the tsunami potential of an earthquake, with explicit determination of fault width, W, and slip, D, being of secondary importance. With available real-time seismogram data, rapid calculation of the direct, period- duration discriminant can be completed within 6-10 min after an earthquake occurs and thus can aid in effective and reliable tsunami early warning.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Earthquake dynamics ; Earthquake source observations ; Seismic monitoring ; Body waves ; Early warning ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Stress can undergo rapid temporal changes in volcanic environments, and this is particularly true during eruptions. We use two independent methods, coda wave interferometry (CWI) and shear wave splitting (SWS) analysis to track stress related wave propagation effects during the waning phase of the 2002 NE fissure eruption at Mt Etna. CWI is used to estimate temporal changes in seismic wave velocity, while SWS is employed to monitor changes in elastic anisotropy. We analyse seismic doublets, detecting temporal changes both in wave velocities and anisotropy, consistent with observed eruptive activity. In particular, syn-eruptive wave propagation changes indicate a depressurization of the system, heralding the termination of the eruption, which occurs three days later.
    Description: Published
    Description: 1779-1788
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Interferometry ; Seismic anisotropy ; Volcano seismology ; Volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Mt. Etna, in Sicily (Italy), is one of the world’s most frequent emitters of volcanic plumes. During the last ten years, Etna has produced copious tephra emission and fallout that have damaged the inhabited and cultivated areas on its slopes and created serious hazards to air traffic. Recurrent closures of the Catania International airport have often been necessary, causing great losses to the local economy. Recently, frequent episodes of ash emission, lasting from a few hours to days, occurred from July to December 2006, necessitating a look at additional monitoring techniques, such as remote sensing. The combination of a ground monitoring system, with polar satellite data represents a novel approach to monitor Etna’s eruptive activity and makes Etna one of the few volcanoes for which this surveillance combination is routinely available. In this work, ash emission information derived from an integrated approach, based on comparing ground and NOAA-AVHRR polar satellite observations, is presented. This approach permits us to define the utility of real time satellite monitoring systems for both sporadic and continuous ash emissions. Using field data (visible observations, collection of tephra samples and accounts by local inhabitants), the duration and intensity of most of the tephra fallout events were evaluated in detail and, in some cases, the order of magnitude of the erupted volume was estimated. The ground data vs. satellite data comparison allowed us to define five different categories of Etna volcanic plumes according to their extension and length, while taking into account plume height and wind intensity. Using frequent and good quality satellite data in real time, this classification scheme could prove helpful for investigations into a possible correlation between eruptive intensity and the presence and concentration of ash in the volcanic plume. The development and improvement of this approach may constitute a powerful warning system for Civil Protection, thus preventing unnecessary airport closures.
    Description: FIRB B5 Italian project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali” funded by MIUR
    Description: Published
    Description: 135–147
    Description: JCR Journal
    Description: open
    Keywords: volcanic ash ; Mt. Etna ; ground monitoring ; NOAA–AVHRR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...