ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Nature  (309,853)
  • Wiley  (291,809)
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • National Academy of Sciences
  • Taylor & Francis
  • 2015-2019  (484,882)
  • 2005-2009  (204,122)
Collection
Publisher
Language
Years
Year
  • 1
    Publication Date: 2021-03-09
    Description: Mixed‐mode fluid‐filled cracks represent a common means of fluid transport within the Earth's crust. They often show complex propagation paths which may be due to interaction with crustal heterogeneities or heterogeneous crustal stress. Previous experimental and numerical studies focus on the interplay between fluid over-pressure and external stress but neglect the effect of other crack parameters. In this study, we address the role of crack length on the propagation paths in the presence of an external heterogeneous stress field. We make use of numerical simulations of magmatic dike and hydrofracture propagation, carried out using a two‐dimensional boundary element model, and analogue experiments of air‐filled crack propagation into a transparent gelatin block. We use a 3‐D finite element model to compute the stress field acting within the gelatin block and perform a quantitative comparison between 2‐D numerical simulations and experiments. We show that, given the same ratio between external stress and fluid pressure, longer fluid‐filled cracks are less sensitive to the background stress, and we quantify this effect on fluid‐filled crack paths. Combining the magnitude of the external stress, the fluid pressure, and the crack length, we define a new parameter, which characterizes two end member scenarios for the propagation path of a fluid‐filled fracture. Our results have important implications for volcanological studies which aim to address the problem of complex trajectories of magmatic dikes (i.e., to forecast scenarios of new vents opening at volcanoes) but also have implications for studies that address the growth and propagation of natural and induced hydrofractures.
    Description: Published
    Description: 2064–2081
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Magmatic dykes ; hydrofractures ; Numerical symulations ; Analogue experiments ; 04.08. Volcanology ; 05.05. Mathematical geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-25
    Description: Tsunami deposits present an important archive for understanding tsunami histories and dynamics. Most research in this field has focused on onshore preserved remains, while the offshore deposits have received less attention. In 2009, during a coring campaign with theItalian Navy Magnaghi, four 1 m long gravity cores (MG cores) were sampled from the northern part of Augusta Bay, along a transect in 60 to 110 m water depth. These cores were taken in the same area where a core (MS06) was collected in 2007 about 2.3 km offshore Augusta at a water depth of 72 m below sea level. Core MS06 consisted of a 6.7 m long sequence that included 12 anomalous intervals interpreted as the primary effect of tsunami backwash waves in the last 4500 years. In this study, tsunami deposits were identified, based on sedimentology and displaced benthic foraminifera (as for core MS06) reinforced by X-ray fluorescence data. Two erosional surfaces (L1 and L2) were recognized coupled with grain size increase, abundant Posidonia oceanica seagrass remains and a significant amount of Nubecularia lucifuga, an epiphytic sessile benthic foraminifera considered to be transported from the inner shelf. The occurrence of Ti/Ca and Ti/Sr increments, coinciding with peaks in organic matter (Mo inc/coh) suggests terrestrial run-off coupled with an input of organic matter. The L1 and L2 horizons were attributed to two distinct historical tsunamis (AD 1542 and AD 1693) by indirect age-estimation methods using 210Pb profiles and the comparison of Volume Magnetic Susceptibility data between MG cores and MS06 cores. One most recent bioturbated horizon (Bh), despite not matching the above listed interpretative features, recorded an important palaeoenvironmental change that may correspond to the AD 1908 tsunami. These findings reinforce the value of offshore sediment records as an underutilized resource for the identification of past tsunamis.
    Description: Published
    Description: 1553-1576
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Eastern Sicily ; tsunami ; foraminifera ; sedimentology ; XRF core scanning ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46(8), pp. 4288-4298, ISSN: 0094-8276
    Publication Date: 2021-02-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-29
    Description: Sedimentary architecture and morphogenetic evolution of a polar bay-mouth gravel-spit system are revealed based on topographic mapping, sedimentological data, radiocarbon dating and ground-penetrating radar investigations. Data document variable rates of spit progradation in reaction to atmospheric warming synchronous to the termination of the last glacial re-advance (LGR, 0.45–0.25 ka BP), the southern hemisphere equivalent of the Little Ice Age cooling period. Results show an interruption of spit progradation that coincides with the proposed onset of accelerated isostatic rebound in reaction to glacier retreat. Spit growth resumed in the late 19th century after the rate of isostatic rebound decreased, and continues until today. The direction of modern spit progradation, however, is rotated northwards compared with the growth axis of the early post-LGR spit. This is interpreted to reflect the shift and strengthening in the regional wind field during the last century. A new concept for the interplay of polar gravel-spit progradation and glacio-isostatic adjustment is presented, allowing for the prediction of future coastal evolution in comparable polar settings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46, ISSN: 0094-8276
    Publication Date: 2019-07-10
    Description: Here we evaluate five atmospheric reanalyses in an Arctic gateway during late summer. The reanalyses include ERA5, ERA-Interim, JRA-55, CFSv2 and MERRA-2. We use observations from 50 radiosondes launched in the Fram Strait around 79-80˚N, between 25 August – 11 September 2017. Crucially, data from 27 radiosondes were not transmitted to the Global Telecommunications System (GTS), and therefore not assimilated into any reanalysis. In most reanalyses, the magnitude of wind speed and humidity errors are similar for profiles with and without data assimilation. In cases without data assimilation, correlation coefficients (R) exceed 0.88 for temperature, wind speed and specific humidity, in all reanalyses. Overall, the newly released ERA5 has higher correlation coefficients than any other reanalyses as well as smaller biases and root mean square errors, for all three variables. The largest improvements identified in ERA5 are in its representation of the wind field, and temperature profiles over warm water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The importance of macrobenthos in benthic‐pelagic coupling and early diagenesis of organic carbon (OC) has long been recognized but has not been quantified at a regional scale. By using the southern North Sea as an exemplary area we present a modelling attempt to quantify the budget of total organic carbon (TOC) reworked by macrobenthos in seafloor surface sediments. Vertical profiles in sediments collected in the field indicate a significant but nonlinear correlation between TOC and macrobenthic biomass. A mechanistic model is used to resolve the bi‐directional interaction between TOC and macrobenthos. A novelty of this model is that bioturbation is resolved dynamically depending on variations in local food resource and macrobenthic biomass. The model is coupled to 3D hydrodynamic‐biogeochemical simulations to hindcast the mutual dependence between sedimentary TOC and macrobenthos from 1948 to 2015. Agreement with field data reveals a satisfactory model performance. Our simulations show that the preservation of TOC in the North Sea sediments is not only determined by pelagic conditions (hydrodynamic regime and primary production) but also by the vertical distribution of TOC, bioturbation intensity, and the vertical positioning of macrobenthos. Macrobenthos annually ingest 20%–35% and in addition vertically diffuse 11%–22% of the total budget of TOC in the upper‐most 30 cm sediments in the southern North Sea. This result indicates a central role of benthic animals in modulating the OC cycling at the sediment‐water interface of continental margins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Paleoceanography and Paleoclimatology, Wiley, 34, pp. 432-435
    Publication Date: 2019-06-23
    Description: Age control and paleoceanographic evidence of marine sediment records might be challenged if authors solely build their stratigraphy on visual correlation to apparently well‐dated records from the same ocean basin, using, for example, highly resolved X‐ray fluorescence‐based element‐count records and correlation tools such as AnalySeries. While per se perfectly reasonable, this approach bears the risk of missing stratigraphic gaps in the sedimentary record and thus might result in imprecise and/or flawed interpretations. Here we present a unique series of 14 planktic 14C ages from a 7‐cm section of East Pacific Rise core PS75/059‐2. The ages suggest a 14‐ky‐long period of low‐to‐zero deposition during Last Glacial Maximum, mainly marked by continuous redistribution of winnowed foraminifers, probably the result of enhanced bottom currents, moreover, by some bioturbational mixing. On the basis of this data we demonstrate the impact of the hiatus on a South Pacific transect of apparent benthic ventilation ages (ΔΔ14C values) and their meaning for estimates of CO2 stored in Last Glacial Maximum Pacific deep waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, ISSN: 0094-8276
    Publication Date: 2019-06-16
    Description: Satellite‐derived data suggest an increase in annual primary production following the loss of summer sea ice in the Arctic Ocean. The scarcity of field data to corroborate this enhanced algal production incited a collaborative project combining six annual cycles of sequential sediment trap measurements obtained over a 17‐year period in the Eurasian Arctic Ocean. Here we present microalgal fluxes measured at ~200 m to reflect the bulk of algal carbon production. Ice algae contributed to a large proportion of the microalgal carbon export before complete ice melt and possible detection of their production by satellites. In the northern Laptev Sea, annual microalgal carbon fluxes were lower during the 2007 minimum ice extent than in 2006. In 2012, early snowmelt led to early microalgal carbon flux in the Nansen Basin. Hence, a change in the timing of snowmelt and ice algae release may affect productivity and export over the Arctic basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-27
    Description: Sea ice dynamics determine the drift and deformation of sea ice. Nonlinear physics, usually expressed in a viscous‐plastic rheology, makes the sea ice momentum equations notoriously difficult to solve. At increasing sea ice model resolution the nonlinearities become stronger as linear kinematic features (leads) appear in the solutions. Even the standard elastic‐viscous‐plastic (EVP) solver for sea ice dynamics, which was introduced for computational efficiency, becomes computationally very expensive, when accurate solutions are required, because the numerical stability requires very short, and hence more, subcycling time steps at high resolution. Simple modifications to the EVP solver have been shown to remove the influence of the number of subcycles on the numerical stability. At low resolution appropriate solutions can be obtained with only partial convergence based on a significantly reduced number of subcycles as long as the numerical procedure is kept stable. This previous result is extended to high resolution where linear kinematic features start to appear. The computational cost can be strongly reduced in Arctic Ocean simulations with a grid spacing of 4.5 km by using modified and adaptive EVP versions because fewer subcycles are required to simulate sea ice fields with the same characteristics as with the standard EVP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-15
    Description: Quaternary East Asian winter monsoon (EAWM) evolution has long been attributed to high‐latitude Northern Hemisphere climate change. However, it cannot explain the distinct relationships of the EAWM in the northern and southern East Asian marginal sea in paleoclimatic records. Here we present an EAWM record of the northern East China Sea over the past 300 ka and a transient climate simulation with the Kiel Climate Model through the Holocene. Both proxy record and simulation suggest anticorrelated long‐term EAWM evolution between the northern East China Sea and the South China Sea. We suggest that this spatial discrepancy of EAWM can be interpreted as El Niño–Southern Oscillation (ENSO)‐like controlling, which generates cyclonic/anticyclonic wind anomalies in the northern/southern East Asian marginal sea. This research explains much of the controversy in nonorbital scale variability of Quaternary EAWM records in the East Asian marginal sea and supports a potent role of tropical forcing in East Asian winter climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-01
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide and global modeling efforts – thereby enhancing predictions of the WG in global ocean circulation and climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-07-02
    Description: The East Antarctic Ice Sheet (EAIS) is underlain by a series of low‐lying subglacial sedimentary basins. The extent, geology, and basal topography of these sedimentary basins are important boundary conditions governing the dynamics of the overlying ice sheet. This is particularly pertinent for basins close to the grounding line wherein the EAIS is grounded below sea level and therefore potentially vulnerable to rapid retreat. Here we analyze newly acquired airborne geophysical data over the Pensacola‐Pole Basin (PPB), a previously unexplored sector of the EAIS. Using a combination of gravity and magnetic and ice‐penetrating radar data, we present the first detailed subglacial sedimentary basin model for the PPB. Radar data reveal that the PPB is defined by a topographic depression situated ~500 m below sea level. Gravity and magnetic depth‐to‐source modeling indicate that the southern part of the basin is underlain by a sedimentary succession 2–3 km thick. This is interpreted as an equivalent of the Beacon Supergroup and associated Ferrar dolerites that are exposed along the margin of East Antarctica. However, we find that similar rocks appear to be largely absent from the northern part of the basin, close to the present‐day grounding line. In addition, the eastern margin of the basin is characterized by a major geological boundary and a system of overdeepened subglacial troughs. We suggest that these characteristics of the basin may reflect the behavior of past ice sheets and/or exert an influence on the present‐day dynamics of the overlying EAIS.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, ISSN: 0094-8276
    Publication Date: 2019-09-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46(8), pp. 4413-4420, ISSN: 0094-8276
    Publication Date: 2019-10-07
    Description: The Red Sea is a deep marine basin often considered as small‐scale version of the global ocean. Hydrographic observations and ocean‐atmosphere modeling indicate Red Sea deep water was episodically renewed by wintertime open‐ocean deep convections during 1982–2001, suggesting a renewal time on the order of a decade. However, the long‐term pacing of Red Sea deep water renewals is largely uncertain. We use an annually resolved coral oxygen isotope record of winter surface water conditions to show that the late twentieth century deep water renewals were probably unusual in the context of the preceding ~100 years. More frequent major events are detected during the late Little Ice Age, particularly during the early nineteenth century characterized by large tropical volcanic eruptions. We conclude that Red Sea deep water renewal time is on the order of a decade up to a century, depending on the mean climatic conditions and large‐scale interannual climate forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-01-07
    Description: Ocean heat transport through the Barents Sea Opening (BSO) has strong impacts on the Barents Sea ice extent and the climate. In this paper we quantified the contributions from different atmospheric forcing components to the trend and interannual variability of the BSO heat transport. Ocean‐ice model simulations were conducted in which the interannual variation of atmospheric forcing was maintained only in or outside the Arctic in two different simulations. The sum of their BSO heat transport anomalies reasonably replicated the trend and variability from a hindcast simulation. The upward trend of the BSO heat transport mainly stems from the increasing ocean temperature in the subpolar North Atlantic. For the interannual variability, the local wind and upstream forcing are similarly important. The location of the Atlantic Water boundary current in the Nordic Seas, influenced by the cyclonic atmospheric circulation, is crucial in determining part of the BSO inflow variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-12-28
    Description: Kelps are important providers and constituents of marine ecological niches, the coastal kelp forests. Kelp species have differing distribution ranges, but mainly thrive in temperate and arctic regions. Although the principal factors determining biogeographic distribution ranges are known, genomics could provide additional answers to this question. We sequenced DNA from two Laminaria species with contrasting distribution ranges, Laminaria digitata and Laminaria solidungula. Laminaria digitata is found in the Northern Atlantic with a southern boundary in Brittany (France) or Massachusetts (USA) and a northern boundary in the Arctic, whereas L. solidungula is endemic to the Arctic only. From the raw reads of DNA, we reconstructed both chloroplast genomes and annotated them. A concatenated data set of all available brown algae chloroplast sequences was used for the calculation of a robust phylogeny, and sequence variations were analyzed. The two Laminaria chloroplast genomes are collinear to previously analyzed kelp chloroplast genomes with important exceptions. Rearrangements at the inverted repeat regions led to the pseudogenization of ycf37 in L. solidungula, a gene possibly required under high light conditions. This defunct gene might be one of the reasons why the habitat range of L. solidungula is restricted to lowlight sublittoral sites in the Arctic. The inheritance pattern of single nucleotide polymorphisms suggests incomplete lineage sorting of chloroplast genomes in kelp species. Our analysis of kelp chloroplast genomes shows that not only evolutionary information could be gleaned from sequence data. Concomitantly, those sequences can also tell us something about the ecological conditions which are required for species well‐being.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Biologie in unserer Zeit, Wiley, 49(6), pp. 436-442, ISSN: 0045-205X
    Publication Date: 2019-12-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-02-16
    Description: A new global climate model setup using FESOM2.0 for the sea ice‐ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long‐term climate integrations using a locally eddy‐resolving ocean. Here it is evaluated in terms of (1) the mean state and long‐term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy‐resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin‐up. However, it is argued that the strategy of “de‐drifting” climate runs after the short spin‐up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy‐permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-01-27
    Description: The Central Asian Pamir Mountains (Pamirs) are a high‐altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial‐interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31‐kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. δD values of terrestrial biomarkers showed insolation‐driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive δD shifts driven by changes in precipitation seasonality were observed at ca. 31–30, 28–26, and 17–14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation‐evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-06-03
    Description: - We provide the first isotopic geochronological constraints on brittle deformation in the NA by illite K-Ar dating of brittle fault rocks - A combined structural-geochronological approach constrains a Late Miocene-Early Pliocene regional compressive stress state
    Description: The Northern Apennines (NA) orogenic wedge formed during Oligocene-Miocene convergence and westward subduction of Adria beneath the European Plate. Extension ensued in the Mid-Late Miocene in response to Adria roll-back, causing opening of the back-arc Northern Tyrrhenian Sea. Whether extension continues uninterrupted since the Mid-Late Miocene or it was punctuated by short-lived compressional events, remains, however, uncertain. We used the K-Ar method to date a set of brittle-ductile and brittle deformation zones from the Island of Elba to contribute to this debate. We dated the low-angle Zuccale Fault (ZF), the Capo Norsi-Monte Arco Thrust (CN-MAT), and the Calanchiole Shear Zone (CSZ). The CN-MAT and CSZ are moderately west dipping, top-to-the-east thrusts in the immediate footwall of the ZF. The CSZ slipped 6.14 ± 0.64 Ma (〈0.1 μm fraction) and the CN-MAT 4.90 ± 0.27 Ma ago (〈0.4 μm fraction). The ZF, although cutting the two other faults, yielded an older age of 7.58 ± 0.11 Ma (〈0.1 μm fraction). The ZF gouge, however, contains an illitic detrital contaminant from the Paleozoic age flysch deformed in its hanging wall and the age thus is a maximum faulting age. Removal of ~1% of a 300-Ma-old contaminant brings the ZF faulting age to 〈4.90 Ma. Our results provide the first direct dating of brittle deformation in the Apennines, constraining Late Miocene-Early Pliocene regional compression. They call for a refinement of current NA geodynamic models in the framework of the Northern Tyrrhenian Sea extension.
    Description: Published
    Description: 3229–3243
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: K-Ar dating fault gouge ; Northern Apennines ; Elba Island ; Neogene geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-03-06
    Description: On behalf of the authors and readers of Reviews of Geophysics, the American Geophysical Union, and the broader scientific community, the Editors wish to wholeheartedly thank those who reviewed the manuscripts for Reviews of Geophysics in 2017. The journal could not exist without your investment of time and effort, lending your expertise to ensure that the papers published in this journal meet the standards that the research community expects for it. We sincerely appreciate all that you do, and we are very grateful for your willingness and readiness to serve in this role.
    Description: Published
    Description: 566
    Description: 1VV. Altro
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-09-12
    Description: Changes in water level are commonly reported in regions struck by a seismic event. The sign and amplitude of such changes depend on the relative position of measuring points with respect to the hypocenter, and on the poroelastic properties of the rock. We apply a porous media flow model (TOUGH2) to describe groundwater flow and water‐level changes associated with the first ML5.9 mainshock of the 2012 seismic sequence in Emilia (Italy). We represent the earthquake as an instantaneous pressure step, whose amplitude was inferred from the properties of the seismic source inverted from geodetic data. The results are consistent with the evolution recorded in both deep and shallow water wells in the area and suggest that our description of the seismic event is suitable to capture both timing and magnitude of water‐level changes. We draw some conclusions about the influence of material heterogeneity on the pore pressure evolution, and we show that to reproduce the observed maximum amplitude it is necessary to take into account compaction in the shallow layer.
    Description: Published
    Description: 452–463
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: 2012 Emilia earthquake ; groundwaters ; isotropic stress ; permeability ; porosity ; water wells ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-10-28
    Description: On behalf of the authors and readers of Reviews of Geophysics, the American Geophysical Union (AGU), and the broader scientific community, the Editors wish to wholeheartedly thank those who reviewed the manuscripts for Reviews of Geophysics in 2018. Reviews of Geophysics is the top rated journal in Geophysics and Geochemistry and it could not exist without your investment of time and effort, lending your expertise to ensure that the papers published in this journal meet the standards that the research community expects for it. We sincerely appreciate the time spent reading and commenting on manuscripts, and we are very grateful for your willingness and readiness to serve in this role. Reviews of Geophysics published 20 review papers and an editorial in 2018, covering most of the AGU Section topics, and for this we were able to rely on the efforts of 85 dedicated reviewers from 20 countries. Many reviewers answered the call multiple times. Thank you again. We look forward to a 2019 of exciting advances in the field and communicating those advances to our community and to the broader public.
    Description: Published
    Description: 4
    Description: 5TM. Informazione ed editoria
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-02-16
    Description: The deglacial history of CO2 release from the deep North Pacific remains unresolved. This is due to conflicting indications about subarctic Pacific ventilation changes based on various marine proxies, especially for Heinrich Stadial 1 (HS-1) when a rapid atmospheric CO2 rise occurs. Here, we use a complex Earth System Model to investigate the deglacial North Pacific overturning and its control on ocean stratification. Our results show an enhanced intermediate-to-deep ocean stratification coeval with intensified North Pacific Intermediate Water (NPIW) formation during HS-1, compared to the Last Glacial Maximum. The stronger NPIW formation causes lower salinities and higher temperatures at intermediate depths. By lowering NPIW densities, this enlarges vertical density gradient and thus enhances intermediate-to-deep ocean stratification during HS-1. Physically, this process prevents the North Pacific deep waters from a better communication with the upper oceans, thus prolongs the existing isolation of glacial Pacific abyssal carbons during HS-1.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, ISSN: 0148-0227
    Publication Date: 2019-04-03
    Description: Peat plateaus and palsas are characteristic morphologies of sporadic permafrost, and the transition from permafrost to permafrost‐free ground typically occurs on spatial scales of meters. They are particularly vulnerable to climate change and are currently degrading in Fennoscandia. Here we present a spatially distributed data set of ground surface temperatures for two peat plateau sites in northern Norway for the year 2015–2016. Based on these data and thermal modeling, we investigate how the snow depth and water balance modulate the climate signal in the ground. We find that mean annual ground surface temperatures are centered around 2 to 2.5 °C for stable permafrost locations and 3.5 to 4.5 °C for permafrost‐free locations. The surface freezing degree days are characterized by a noticeable threshold around 200 °C.day, with most permafrost‐free locations ranging below this value and most stable permafrost ones above it. Freezing degree day values are well correlated to the March snow cover, although some variability is observed and attributed to the ground moisture level. Indeed, a zero curtain effect is observed on temperature time series for saturated soils during winter, while drained peat plateaus show early freezing surface temperatures. Complementarily, modeling experiments allow identifying a drainage effect that can modify 1‐m ground temperatures by up to 2 °C between drained and water accumulating simulations for the same snow cover. This effect can set favorable or unfavorable conditions for permafrost stability under the same climate forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-05-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Magnetic Resonance Materials in Physics, Biology and Medicine, Springer Nature, ISSN: 1352-8661
    Publication Date: 2019-05-27
    Description: An approach is presented for high-field MRI studies of the cardiovascular system (CVS) of a marine crustacean, the edible crab Cancer pagurus, submerged in highly conductive seawater. Structure and function of the CVS were investigated at 9.4 T. Cardiac motion was studied using self-gated CINE MRI. Imaging protocols and radio-frequency coil arrangements were tested for anatomical imaging. Haemolymph flow was quantified using phase-contrast angiography. Signal-to-noise-ratios and flow velocities in afferent and efferent branchial veins were compared with Student’s t test (n = 5). Seawater induced signal losses were dependent on imaging protocols and RF coil setup. Internal cardiac structures could be visualized with high spatial resolution within 8 min using a gradient-echo technique. Variations in haemolymph flow in different vessels could be determined over time. Maximum flow was similar within individual vessels and corresponded to literature values from Doppler measurements. Heart contractions were more pronounced in lateral and dorso-ventral directions than in the anterior–posterior direction. Choosing adequate imaging protocols in combination with a specific RF coil arrangement allows to monitor various parts of the crustacean CVS with exceptionally high spatial resolution despite the adverse effects of seawater at 9.4 T.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Atmospheres, Wiley, 124(2), pp. 858-869, ISSN: 0148-0227
    Publication Date: 2019-02-25
    Description: We characterize the differences in the upward planetary‐scale wave propagation during observed weak polar vortex (WPV) events between heavy‐ and light‐sea‐ice years in the Barents‐Kara Sea based on a composite analysis for the period of 1979–2015. Upward wave propagation during WPV events in heavy‐ice years is dominated by the wavenumber 1 component. In contrast, WPV events occurring in light‐ice years are characterized by stronger wavenumber 2 propagation, which is caused by the tropospheric wavenumber 2 response to sea‐ice reduction in the Barents‐Kara Sea. The above observed features are supported by an Atmospheric General Circulation Model experiment. Thus, under present climate conditions, Arctic sea‐ice loss is a possible factor modulating the wave propagation during the WPV events. We also find that the WPV events in light‐ice years have stronger stratosphere‐troposphere coupling, followed by colder midlatitude surface conditions particularly over Eurasia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 124, pp. 216-228, ISSN: 0148-0227
    Publication Date: 2019-08-14
    Description: This study assesses the response on ice dynamics of Petermann Glacier, a major outlet glacier in northern Greenland, to the 2012 and a possible future calving event. So far Petermann Glacier has been believed to be dynamically stable as another large calving event in 2010 had no significant impact on flow velocity or grounding line retreat. By analyzing a time series of remotely sensed surface velocities, we find an average acceleration of 10% between winter 2011/2012 and winter 2016/2017. This increase in surface velocity is not linear but can be separated into two parts, starting in 2012 and 2016 respectively. By conducting modeling experiments, we show that the first speedup can be directly connected to the 2012 calving event, while the second speedup is not captured. However, on recent remote sensing imagery newly developing fractures are clearly visible ∼12 km upstream from the terminus, propagating from the eastern fjord wall to the center of the ice tongue, indicating a possible future calving event. By including these fracture zones as a new terminus position in the modeling domain, we are able to reproduce the second speedup, suggesting that surface velocities remain on the 2016/2017 level after the anticipated calving event. This indicates that, from a dynamical point of view, the terminus region has already detached from the main ice tongue.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-11-25
    Description: The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community‐sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive‐specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom‐up and top‐down approaches.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-09-10
    Description: Microalgae are capable of acclimating to dynamic light environments, as they have developed mechanisms to optimize light harvesting and photosynthetic electron transport. When absorption of light exceeds photosynthetic capacity, various physiological protective mechanisms prevent damage of the photosynthetic apparatus. Xanthophyll pigments provide one of the most important photoprotective mechanisms to dissipate the excess light energy and prevent photoinhibition. In this study, we coupled a mechanistic model for phytoplankton photoinhibition with the global biogeochemical model Regulated Ecosystem Model version 2. The assumption that photoinhibition is small in phytoplankton communities acclimated to ambient light allowed us to predict the photoprotective needs of phytoplankton. When comparing the predicted photoprotective needs to observations of pigment content determined by high‐performance liquid chromatography, our results showed that photoprotective response seems to be mediated in most parts of the ocean by a variable ratio of xanthophyll pigments to chlorophyll. The variability in the ratio appeared to be mainly driven by changes in phytoplankton community composition. Exceptions appeared at high latitudes where other energy dissipating mechanisms seem to play a role in photoprotection and both taxonomic changes and physiological acclimation determine community pigment signature. Understanding the variability of community pigment signature is crucial for modeling the coupling of light absorption to carbon fixation in the ocean. Insights about how much of this variability is attributable to changes in community composition may allow us to improve the match between remotely sensed optical data and the underlying phytoplankton community.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115(52), (2018): E12275-E12284. doi: 10.1073/pnas.1805243115.
    Description: Diatoms are prominent eukaryotic phytoplankton despite being limited by the micronutrient iron in vast expanses of the ocean. As iron inputs are often sporadic, diatoms have evolved mechanisms such as the ability to store iron that enable them to bloom when iron is resupplied and then persist when low iron levels are reinstated. Two iron storage mechanisms have been previously described: the protein ferritin and vacuolar storage. To investigate the ecological role of these mechanisms among diatoms, iron addition and removal incubations were conducted using natural phytoplankton communities from varying iron environments. We show that among the predominant diatoms, Pseudo-nitzschia were favored by iron removal and displayed unique ferritin expression consistent with a long-term storage function. Meanwhile, Chaetoceros and Thalassiosira gene expression aligned with vacuolar storage mechanisms. Pseudo-nitzschia also showed exceptionally high iron storage under steady-state high and low iron conditions, as well as following iron resupply to iron-limited cells. We propose that bloom-forming diatoms use different iron storage mechanisms and that ferritin utilization may provide an advantage in areas of prolonged iron limitation with pulsed iron inputs. As iron distributions and availability change, this speculated ferritin-linked advantage may result in shifts in diatom community composition that can alter marine ecosystems and biogeochemical cycles.
    Description: We thank the captain and crew of the R/V Melville and the CCGS J. P. Tully as well as the participants of the IRNBRU (MV1405) cruise for the California-based data, particularly K. Ellis [University of North Carolina (UNC)], T. Coale (University of California, San Diego), F. Kuzminov (Rutgers), H. McNair [University of California, Santa Barbara (UCSB)], and J. Jones (UCSB). W. Burns (UNC), S. Haines (UNC), and S. Bargu (Louisiana State University) assisted with sample processing and analysis. This work was funded by the National Science Foundation Grants OCE-1334935 (to A.M.), OCE-1334632 (to B.S.T.), OCE-1333929 (to K.T.), OCE-1334387 (to M.A.B.), OCE-1259776 (to K.W.B), and DGE-1650116 (Graduate Research Fellowship to R.H.L).
    Description: 2019-06-11
    Keywords: phytoplankton ; iron limitation ; Pseudo-nitzschia ; ferritin ; metatranscriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gruen, D. S., Wolfe, J. M., & Fournier, G. P.. Paleozoic diversification of terrestrial chitin-degrading bacterial lineages. BMC Evolutionary Biology, 19, (2019): 34, doi:10.1186/s12862-019-1357-8.
    Description: Background Establishing the divergence times of groups of organisms is a major goal of evolutionary biology. This is especially challenging for microbial lineages due to the near-absence of preserved physical evidence (diagnostic body fossils or geochemical biomarkers). Horizontal gene transfer (HGT) can serve as a temporal scaffold between microbial groups and other fossil-calibrated clades, potentially improving these estimates. Specifically, HGT to or from organisms with fossil-calibrated age estimates can propagate these constraints to additional groups that lack fossils. While HGT is common between lineages, only a small subset of HGT events are potentially informative for dating microbial groups. Results Constrained by published fossil-calibrated studies of fungal evolution, molecular clock analyses show that multiple clades of Bacteria likely acquired chitinase homologs via HGT during the very late Neoproterozoic into the early Paleozoic. These results also show that, following these HGT events, recipient terrestrial bacterial clades likely diversified ~ 300–500 million years ago, consistent with established timescales of arthropod and plant terrestrialization. Conclusions We conclude that these age estimates are broadly consistent with the dispersal of chitinase genes throughout the microbial world in direct response to the evolution and ecological expansion of detrital-chitin producing groups. The convergence of multiple lines of evidence demonstrates the utility of HGT-based dating methods in microbial evolution. The pattern of inheritance of chitinase genes in multiple terrestrial bacterial lineages via HGT processes suggests that these genes, and possibly other genes encoding substrate-specific enzymes, can serve as a “standard candle” for dating microbial lineages across the Tree of Life.
    Description: This work was supported by a National Science Foundation (NSF) Graduate Research Fellowship Program Award to DSG., and Simons Collaboration on the Origins of Life Award #339603 and NSF Integrated Earth Systems Program Award #1615426 to GPF. The funding agencies for this study had no role in study design, data collection, data analysis and interpretation, or in writing the manuscript.
    Keywords: Horizontal gene transfer ; Chitinase ; Chitin ; Bacteria ; Fungi ; Arthropods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-10-10
    Description: Understanding the patterns and characteristics of sedimentary deposits on the conjugate Australian‐Antarctic margins is critical to reveal the Cretaceous‐Cenozoic tectonic, oceanographic, and climatic conditions in the basin. However, unraveling its evolution has remained difficult due to the different seismic stratigraphic interpretations on each margin and sparse drill sites. Here, for the first time, we collate all available seismic reflection profiles on both margins and use newly available offshore drilling data to develop a consistent seismic stratigraphic framework across the Australian‐Antarctic basins. We find sedimentation patterns similar in structure and thickness, prior to the onset of Antarctic glaciation, enabling the basinwide correlation of four major sedimentary units and their depositional history. We interpret that during the warm and humid Late Cretaceous (~83–65 Ma), large onshore river systems on both Australia and Antarctica resulted in deltaic sediment deposition offshore. We interpret that the onset of clockwise bottom currents during the early Paleogene (~58–48 Ma) formed prominent sediment drift deposits along both continental rises. We suggest that these currents strengthened and progressed farther east through the Eocene. Coevally, global cooling (〈48 Ma) and progressive aridification led to a large‐scale decrease in sediment input from both continents. Two major Eocene hiatuses recovered by the Integrated Ocean Discovery Program site U1356A at the Antarctic continental slope likely formed during this preglacial phase of low sedimentation and strong bottom currents. Our results can be used to constrain future paleo‐oceanographic modeling of this region and aid the understanding of the oceanographic changes accompanying the transition from a greenhouse to icehouse world.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-09-18
    Description: Increasing sea surface temperatures (SST) and blooms of lipid‐poor, filamentous cyanobacteria can change mesozooplankton metabolism and foraging strategies in marine systems. Lipid shortage and imbalanced diet may challenge the build‐up of energy pools of lipids and proteins, and access to essential fatty acids (FAs) and amino acids (AAs) by copepods. The impact of cyanobacterial blooms on individual energy pools was assessed for key species temperate Temora longicornis and boreal Pseudo‐/Paracalanus spp. that dominated field mesozooplankton communities isolated by sea‐sonal stratification in the central Baltic Sea during the hot and the cold summer. We looked at (a) total lipid and protein levels, (b) FA trophic markers and AA composition, and (c) compound‐specific stable carbon isotopes (δ13C) in bulk mesozooplankton and in a subset of parameters in particulate organic matter. Despite lipid‐poor cyanobacterial blooms, the key species were largely able to cover both energy pools, yet a tendency of lipid reduction was observed in surface animals. Omni‐ and car‐nivory feeding modes, FA trophic makers, and δ13C patterns in essential compounds emphasized that cyanobacterial FAs and AAs have been incorporated into meso‐zooplankton mainly via feeding on mixo‐ and heterotrophic (dino‐) flagellates and detrital complexes during summer. Foraging for essential highly unsaturated FAs from (dino‐) flagellates may have caused night migration of Pseudo‐/Paracalanus spp. from the deep subhalocline waters into the upper waters. Only in the hot summer (SST〉19.0°C) was T. longicornis submerged in the colder subthermocline water (~4°C). Thus, the continuous warming trend and simultaneous feeding can eventually lead to competition on the preferred diet by key copepod species below the thermocline in stratified systems. A comparison of δ13C patterns of essential AAs in surface meso‐zooplankton across sub‐basins of low and high cyanobacterial biomasses revealed the potential of δ13C‐AA isoscapes for studies of commercial fish feeding trails across the Baltic Sea food webs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-10-25
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-09-01
    Description: In the Northern Patagonian gulfs of Argentina (Golfo Nuevo and Golfo San José), blooms of toxigenic microalgae and the detection of their associated phycotoxins are recurrent phenomena. The present study evaluated the transfer of phycotoxins from toxigenic microalgae to mesozooplankton in Golfo Nuevo and Golfo San José throughout an annual cycle (December 2014–2015 and January 2015–2016, respectively). In addition, solid-phase adsorption toxin tracking (SPATT) samplers were deployed for the first time in these gulfs, to estimate the occurrence of phycotoxins in the seawater between the phytoplankton samplings. Domoic acid was present throughout the annual cycle in SPATT samplers, whereas no paralytic shellfish poisoning toxins were detected. Ten toxigenic species were identified: Alexandrium catenella, Dinophysis acuminata, Dinophysis acuta, Dinophysis tripos, Dinophysis caudata, Prorocentrum lima, Pseudo-nitzschia australis, Pseudo-nitzschia calliantha, Pseudo-nitzschia fraudulenta, and Pseudo-nitzschia pungens. Lipophilic and hydrophilic toxins were detected in phytoplankton and mesozooplankton from both gulfs. Pseudo-nitzschia spp. were the toxigenic species most frequent in these gulfs. Consequently, domoic acid was the phycotoxin most abundantly detected and transferred to upper trophic levels. Spirolides were detected in phytoplankton and mesozooplankton for the first time in the study area. Likewise, dinophysistoxins were found in mesozooplankton from both gulfs, and this is the first report of the presence of these phycotoxins in zooplankton from the Argentine Sea. The dominance of calanoid copepods indicates that they were the primary vector of phycotoxins in the pelagic trophic web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-10-25
    Description: Climate warming in regions of ice‐rich permafrost can result in widespread thermokarst development, which reconfigures the landscape and damages infrastructure. We present multisite time series observations which couple ground temperature measurements with thermokarst development in a region of very cold permafrost. In the Canadian High Arctic between 2003 and 2016, a series of anomalously warm summers caused mean thawing indices to be 150–240% above the 1979–2000 normal resulting in up to 90 cm of subsidence over the 12‐year observation period. Our data illustrate that despite low mean annual ground temperatures, very cold permafrost (〈−10 °C) with massive ground ice close to the surface is highly vulnerable to rapid permafrost degradation and thermokarst development. We suggest that this is due to little thermal buffering from soil organic layers and near‐surface vegetation, and the presence of near‐surface ground ice. Observed maximum thaw depths at our sites are already exceeding those projected to occur by 2090 under representative concentration pathway version 4.5.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, (46), pp. 9474-9482, ISSN: 0094-8276
    Publication Date: 2019-10-02
    Description: In the South Atlantic, a reorganization of the Mid‐Atlantic Ridge began before anomaly C34n (83.6 Ma) and ended before anomaly C30n (66.4 Ma), complicating tectonics of Rio Grande Rise and older Walvis Ridge (WR), which formed together at the Mid‐Atlantic Ridge. This reorganization is poorly understood because magnetic anomalies C30n‐C34n are poorly defined near WR. We interpreted these anomalies along westernWRto improve knowledge of Rio Grande Rise‐WRtectonic development. Anomaly trends indicate that Valdivia Bank has an E‐W age progression, perpendicular to that predicted by hot spot models. Anomaly spacing and width is irregular and anomalous near WR, implying a series of ridge jumps and possibly a microplate between anomalies C34n and C32n. Eastward ridge jumps transferred microplate lithosphere to the South American plate. This study shows that Late Cretaceous tectonic evolution of the Rio Grande Rise‐WRlarge igneous provinces was more complex than previously understood.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46(14), pp. 8289-8299, ISSN: 0094-8276
    Publication Date: 2019-10-07
    Description: The last interglacial (LIG; Marine Isotope Substage 5e, ~127–117 ka) experienced globally warmer than modern temperatures; however, profound differences in regional climate occurred that are relevant to the assessment of future climate change scenarios. Tropical Atlantic sea surface temperature (SST) and hydrology are intrinsic to the spatiotemporal evolution of past and future climate. We present eight monthly resolved coral Sr/Ca and δ18O records (130–118 ka) to reconstruct mean western tropical Atlantic SST and seawater δ18O changes during the LIG. Cooler and fresher than modern surface waters are indicated for the middle of the LIG at ~126 ka. This was followed by a rapid transition to modern‐like SSTs and salinities that characterized the remaining part of the LIG. Our results, which account for differences found among corals, proxies, and SST calibration uncertainties, agree with western tropical Atlantic sediment records. Together, they suggest that an oceanic regime existed that differed from today.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-12-02
    Description: Seismological findings show a complex scenario of plume upwellings from a deep thermo-chemical anomaly (superplume) beneath the East African Rift System (EARS). It is unclear if these geophysical observations represent a true picture of the superplume and its influence on magmatism along the EARS. Thus, it is essential to find a geochemical tracer to establish where upwellings are connected to the deep-seated thermo-chemical anomaly. Here we identify a unique non-volatile superplume isotopic signature (‘C’) in the youngest (after 10 Ma) phase of widespread EARS rift-related magmatism where it extends into the Indian Ocean and the Red Sea. This is the first sound evidence that the superplume influences the EARS far from the low seismic velocities in the magma-rich northern half. Our finding shows for the first time that superplume mantle exists beneath the rift the length of Africa from the Red Sea to the Indian Ocean offshore southern Mozambique
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geochemistry Geophysics Geosystems, Wiley, 20, ISSN: 1525-2027
    Publication Date: 2019-12-12
    Description: Ultraslow spreading ridges are poorly understood plate boundaries consisting of magmatic and amagmatic segments that expose mostly mantle peridotite and only traces of basalt and gabbro. The slowest part of the global spreading system is represented by the eastern Gakkel Ridge in the Central Arctic Ocean, where crustal accretion is characterized by extreme focusing of melt to discrete magmatic centers. Close to its eastern tip lies the unusual 5,310 m deep Gakkel Rift Deep (GRD) with limited sediment infill, which is in strong contrast to the broader sediment-filled rift valleys to the east and west. Here, we report an 40Ar/39Ar age of 3.65±0.01 Ma for a pillow basalt from a seamount located on the rim the GRD confirming ultraslow spreading rates of ~7 mm/yr close to the Laptev Sea as suggested from aeromagnetic data. Its geochemistry points to an alkaline lava, attributed to partial melting of a source that underwent prior geochemical enrichment. We note that the GRD extracts compositionally similar melts as the sparsely magmatic zone further west but at much slower spreading velocities of only ~6-7 mm/yr, indicating the widespread occurrence of similarly fertile mantle in the High Arctic. This enriched source differs from sub-continental lithospheric mantle that influences magmatism along the Western Volcanic Zone (Goldstein et al. 2008) and is similar to metasomatized mantle - shown to influence melt genesis along the Eastern Volcanic Zone.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-11-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46, ISSN: 0094-8276
    Publication Date: 2019-09-16
    Description: Coupled subseasonal forecast systems with dynamical sea ice have the potential of providing important predictive information in polar regions. Here, we evaluate the ability of operational ensemble prediction systems to predict the location of the sea ice edge in Antarctica. Compared to the Arctic, Antarctica shows on average a 30% lower skill, with only one system remaining more skillful than aclimatological benchmark up to ∼30 days ahead. Skill tends to be highest in the west Antarctic sectorduring the early freezing season. Most of the systems tend to overestimate the sea ice edge extent and fail to capture the onset of the melting season. All the forecast systems exhibit large initial errors. We conclude that subseasonal sea ice redictions could provide marginal support for decision-making only in selected seasons and regions of the Southern Ocean. However, major progress is possible through investments in model development, forecast initialization and calibration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-11-09
    Description: The Neotethyan oceanic Diamante-Terranova unit (DIATU; southern Apennines–Calabria–Peloritani Terrane system) includes basic rocks that during the Cenozoicwere subducted and metamorphosed to lawsonite-blueschist facies conditions.Petrological and structural observations (both at the meso- and micro-scale) showthat lawsonite growth was continuous during three distinctive ductile deformationstages (D1–D3).....
    Description: Published
    Description: 691-714
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the National Academy of Sciences.of the United States of America 116(36), (2019): 17934-17942, doi:10.1073/pnas.1910121116.
    Description: Plastid endosymbiosis has been a major force in the evolution of eukaryotic cellular complexity, but how endosymbionts are integrated is still poorly understood at a mechanistic level. Dinoflagellates, an ecologically important protist lineage, represent a unique model to study this process because dinoflagellate plastids have repeatedly been reduced, lost, and replaced by new plastids, leading to a spectrum of ages and integration levels. Here we describe deep-transcriptomic analyses of the Antarctic Ross Sea dinoflagellate (RSD), which harbors long-term but temporary kleptoplasts stolen from haptophyte prey, and is closely related to dinoflagellates with fully integrated plastids derived from different haptophytes. In some members of this lineage, called the Kareniaceae, their tertiary haptophyte plastids have crossed a tipping point to stable integration, but RSD has not, and may therefore reveal the order of events leading up to endosymbiotic integration. We show that RSD has retained its ancestral secondary plastid and has partitioned functions between this plastid and the kleptoplast. It has also obtained genes for kleptoplast-targeted proteins via horizontal gene transfer (HGT) that are not derived from the kleptoplast lineage. Importantly, many of these HGTs are also found in the related species with fully integrated plastids, which provides direct evidence that genetic integration preceded organelle fixation. Finally, we find that expression of kleptoplast-targeted genes is unaffected by environmental parameters, unlike prey-encoded homologs, suggesting that kleptoplast-targeted HGTs have adapted to posttranscriptional regulation mechanisms of the host.
    Description: We are grateful to Martin Kolisko and Fabien Burki for helpful discussion about and comments on the phylogenetic analysis; and Filip Husnik and Vittorio Boscaro for valuable comments on the manuscript. This work was supported by a grant from the National Science Foundation to R.J.G. and P.J.K. (PLR-1341362) and from the Natural Sciences and Engineering Research Council of Canada to P.J.K. (RGPIN-2014-03994).
    Description: 2020-02-19
    Keywords: plastid endosymbiosis ; kleptoplasty ; dinoflagellates ; plastid integration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Johnson, W. M., Longnecker, K., Soule, M. C. K., Arnold, W. A., Bhatia, M. P., Hallam, S. J., Van Mooy, B. A. S., & Kujawinski, E. B. Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. Limnology and Oceanography, (2019), doi:10.1002/lno.11255.
    Description: Marine sinking particles transport carbon from the surface and bury it in deep‐sea sediments, where it can be sequestered on geologic time scales. The combination of the surface ocean food web that produces these particles and the particle‐associated microbial community that degrades them creates a complex set of variables that control organic matter cycling. We use targeted metabolomics to characterize a suite of small biomolecules, or metabolites, in sinking particles and compare their metabolite composition to that of the suspended particles in the euphotic zone from which they are likely derived. These samples were collected in the South Atlantic subtropical gyre, as well as in the equatorial Atlantic region and the Amazon River plume. The composition of targeted metabolites in the sinking particles was relatively similar throughout the transect, despite the distinct oceanic regions in which they were generated. Metabolites possibly derived from the degradation of nucleic acids and lipids, such as xanthine and glycine betaine, were an increased mole fraction of the targeted metabolites in the sinking particles relative to surface suspended particles, while algal‐derived metabolites like the osmolyte dimethylsulfoniopropionate were a smaller fraction of the observed metabolites on the sinking particles. These compositional changes are shaped both by the removal of metabolites associated with detritus delivered from the surface ocean and by production of metabolites by the sinking particle‐associated microbial communities. Furthermore, they provide a basis for examining the types and quantities of metabolites that may be delivered to the deep sea by sinking particles.
    Description: The authors would like to thank the captain and crew of the R/V Knorr and R/V Atlantic Explorer, as well as Justin Ossolinski, Catherine Carmichael, and Sean Sylva for helping to make this data set possible. Special thanks to Colleen Durkin for sharing her data and providing feedback on the manuscript. Funding for this work came from the National Science Foundation (NSF Grant OCE‐1154320 to EBK and KL) and a WHOI Ocean Ventures Fund award to WMJ. The instruments in the WHOI FT‐MS Facility were purchased with support from the Gordon & Betty Moore Foundation and NSF. Support for WMJ was provided by a National Defense Science and Engineering Fellowship. Sequencing was performed under the auspices of the US Department of Energy (DOE) JGI Community Science Program (CSP) project (CSP 1685) supported by the Office of Science of US DOE Contract DE‐AC02‐ 05CH11231. Additional work related to sample collection and processing was supported by the G. Unger Vetlesen and Ambrose Monell Foundations, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institute for Advanced Study (CIFAR), and the Canada Foundation for Innovation through grants awarded to SJH. MPB was supported by a CIFAR Global Scholarship and NSERC postdoctoral fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Sutherland, K., Wankel, S. D., Burdige, D. J., & Zimmerman, R. C. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnology and Oceanography, (2019), doi:10.1002/lno.11299.
    Description: Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m−2 h−1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m−2 d−1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem‐scale estimates. Oxygen content comprised 20–40% of the captured bubble gas volume and correlated negatively with its δ18O values, consistent with a predominance of mixing between the higher δ18O of atmospheric oxygen in equilibrium with seawater and the lower δ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here.
    Description: Two anonymous reviewers provided thoughtful contributions that improved this manuscript. We thank Miraflor Santos, Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1633951 (to MHL) and 1635403 (to RCZ and DJB), NASA Fellowship NESSF NNX15AR62H (to KS), and a fellowship from the Hansewissenschaftskolleg (Institute for Advanced Studies; to SDW).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Diaz, J. M., Plummer, S., Hansel, C. M., Andeer, P. F., Saito, M. A., & McIlvin, M. R. NADPH-dependent extracellular superoxide production is vital to photophysiology in the marine diatom Thalassiosira oceanica. Proceedings of the National Academy of Sciences of the United States of America, 116 (33), (2019): 16448-16453, doi: 10.1073/pnas.1821233116.
    Description: Reactive oxygen species (ROS) like superoxide drive rapid transformations of carbon and metals in aquatic systems and play dynamic roles in biological health, signaling, and defense across a diversity of cell types. In phytoplankton, however, the ecophysiological role(s) of extracellular superoxide production has remained elusive. Here, the mechanism and function of extracellular superoxide production by the marine diatom Thalassiosira oceanica are described. Extracellular superoxide production in T. oceanica exudates was coupled to the oxidation of NADPH. A putative NADPH-oxidizing flavoenzyme with predicted transmembrane domains and high sequence similarity to glutathione reductase (GR) was implicated in this process. GR was also linked to extracellular superoxide production by whole cells via quenching by the flavoenzyme inhibitor diphenylene iodonium (DPI) and oxidized glutathione, the preferred electron acceptor of GR. Extracellular superoxide production followed a typical photosynthesis-irradiance curve and increased by 30% above the saturation irradiance of photosynthesis, while DPI significantly impaired the efficiency of photosystem II under a wide range of light levels. Together, these results suggest that extracellular superoxide production is a byproduct of a transplasma membrane electron transport system that serves to balance the cellular redox state through the recycling of photosynthetic NADPH. This photoprotective function may be widespread, consistent with the presence of putative homologs to T. oceanica GR in other representative marine phytoplankton and ocean metagenomes. Given predicted climate-driven shifts in global surface ocean light regimes and phytoplankton community-level photoacclimation, these results provide implications for future ocean redox balance, ecological functioning, and coupled biogeochemical transformations of carbon and metals.
    Description: This work was supported by a postdoctoral fellowship from the Ford Foundation (to J.M.D.), the National Science Foundation (NSF) under grants OCE 1225801 (to J.M.D.) and OCE 1246174 (to C.M.H.), a Junior Faculty Seed Grant from the University of Georgia Research Foundation (to J.M.D.), and a National Science Foundation Graduate Research Fellowship (to S.P.). The FIRe was purchased through a NSF equipment improvement grant (1624593).The authors thank Melissa Soule for assistance with LC/MS/MS analysis of peptide samples.
    Keywords: Reactive oxygen species ; Photosynthesis ; Oxidative stress ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Van Parijs, S. M., Corkeron, P. J., Hotchkin, C., Ball, K., Pelletier, L., Partan, J., Peters, D., Kemp, J., Pietro, J., Newhall, K., Stokes, A., Cole, T. V. N., Quintana, E., & Kraus, S. D. Persistent near real-time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation. Methods in Ecology and Evolution, 10(9), (2019): 1476-1489, doi: 10.1111/2041-210X.13244.
    Description: 1. Managing interactions between human activities and marine mammals often relies on an understanding of the real‐time distribution or occurrence of animals. Visual surveys typically cannot provide persistent monitoring because of expense and weather limitations, and while passive acoustic recorders can monitor continuously, the data they collect are often not accessible until the recorder is recovered. 2. We have developed a moored passive acoustic monitoring system that provides near real‐time occurrence estimates for humpback, sei, fin and North Atlantic right whales from a single site for a year, and makes those occurrence estimates available via a publicly accessible website, email and text messages, a smartphone/tablet app and the U.S. Coast Guard's maritime domain awareness software. We evaluated this system using a buoy deployed off the coast of Massachusetts during 2015–2016 and redeployed again during 2016–2017. Near real‐time estimates of whale occurrence were compared to simultaneously collected archived audio as well as whale sightings collected near the buoy by aerial surveys. 3. False detection rates for right, humpback and sei whales were 0% and nearly 0% for fin whales, whereas missed detection rates at daily time scales were modest (12%–42%). Missed detections were significantly associated with low calling rates for all species. We observed strong associations between right whale visual sightings and near real‐time acoustic detections over a monitoring range 30–40 km and temporal scales of 24–48 hr, suggesting that silent animals were not especially problematic for estimating occurrence of right whales in the study area. There was no association between acoustic detections and visual sightings of humpback whales. 4. The moored buoy has been used to reduce the risk of ship strikes for right whales in a U.S. Coast Guard gunnery range, and can be applied to other mitigation applications.
    Description: We thank Annamaria Izzi, Danielle Cholewiak and Genevieve Davis of the NOAA NEFSC for assistance in developing the analyst protocol. We are grateful to the NOAA NEFSC aerial survey observers (Leah Crowe, Pete Duley, Jen Gatzke, Allison Henry, Christin Khan and Karen Vale) and the NEAq aerial survey observers (Angela Bostwick, Marianna Hagbloom and Paul Nagelkirk). Danielle Cholewiak and three anonymous reviewers provided constructive criticism on earlier drafts of the manuscript. Funding for this project was provided by the NOAA NEFSC, NOAA Advanced Sampling Technology Work Group, Environmental Security Technology Certification Program of the U.S. Department of Defense, the U.S. Navy's Living Marine Resources Program, Massachusetts Clean Energy Center and the Bureau of Ocean Energy Management. Funding from NOAA was facilitated by the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158.
    Keywords: Acoustics ; Autonomous ; Buoy ; Conservation ; Mitigation ; Real‐time ; Ship strikes ; Whale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-10-26
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116(27), (2019): 13233-13238, doi: 10.1073/pnas.1904087116.
    Description: The overturning circulation of the global ocean is critically shaped by deep-ocean mixing, which transforms cold waters sinking at high latitudes into warmer, shallower waters. The effectiveness of mixing in driving this transformation is jointly set by two factors: the intensity of turbulence near topography and the rate at which well-mixed boundary waters are exchanged with the stratified ocean interior. Here, we use innovative observations of a major branch of the overturning circulation—an abyssal boundary current in the Southern Ocean—to identify a previously undocumented mixing mechanism, by which deep-ocean waters are efficiently laundered through intensified near-boundary turbulence and boundary–interior exchange. The linchpin of the mechanism is the generation of submesoscale dynamical instabilities by the flow of deep-ocean waters along a steep topographic boundary. As the conditions conducive to this mode of mixing are common to many abyssal boundary currents, our findings highlight an imperative for its representation in models of oceanic overturning.
    Description: The DynOPO project is supported by the UK Natural Environment Research Council (grants NE/K013181/1 and NE/K012843/1) and the US National Science Foundation (grants OCE-1536453 and OCE-1536779). A.C.N.G. acknowledges the support of the Royal Society and the Wolfson Foundation. S.L. acknowledges the support of award NA14OAR4320106 from the National Oceanic and Atmospheric Administration, US Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors, and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, or the US Department of Commerce. We are grateful to the scientific party, crew, and technicians on the RRS James Clark Ross for their hard work during data collection.
    Description: 2019-12-18
    Keywords: Ocean mixing ; Overturning circulation ; Submesoscale instabilities ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal (2019), doi:10.1038/s41396-019-0373-4.
    Description: The benthos in estuarine environments often experiences periods of regularly occurring hypoxic and anoxic conditions, dramatically impacting biogeochemical cycles. How oxygen depletion affects the growth of specific uncultivated microbial populations within these diverse benthic communities, however, remains poorly understood. Here, we applied H218O quantitative stable isotope probing (qSIP) in order to quantify the growth of diverse, uncultured bacterial populations in response to low oxygen concentrations in estuarine sediments. Over the course of 7- and 28-day incubations with redox conditions spanning from hypoxia to euxinia (sulfidic), 18O labeling of bacterial populations exhibited different patterns consistent with micro-aerophilic, anaerobic, facultative anaerobic, and aerotolerant anaerobic growth. 18O-labeled populations displaying anaerobic growth had a significantly non-random phylogenetic distribution, exhibited by numerous clades currently lacking cultured representatives within the Planctomycetes, Actinobacteria, Latescibacteria, Verrucomicrobia, and Acidobacteria. Genes encoding the beta-subunit of the dissimilatory sulfate reductase (dsrB) became 18O labeled only during euxinic conditions. Sequencing of these 18O-labeled dsrB genes showed that Acidobacteria were the dominant group of growing sulfate-reducing bacteria, highlighting their importance for sulfur cycling in estuarine sediments. Our findings provide the first experimental constraints on the redox conditions underlying increased growth in several groups of “microbial dark matter”, validating hypotheses put forth by earlier metagenomic studies.
    Description: This work was supported by a grant OR 417/1-1 from the Deutsche Forschungsgemeinschaft, and a Junior Researcher Fund grant from LMU Munich to WDO. This work was performed in part, through the Master’s Program in Geobiology and Paleontology (MGAP) at LMU Munich.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 124(4), pp. 920-937, ISSN: 0148-0227
    Publication Date: 2022-08-12
    Description: Thawing of subsea permafrost can impact offshore infrastructure, affect coastal erosion, and release permafrost organic matter. Thawing is usually modeled as the result of heat transfer, although salt diffusion may play an important role in marine settings. To better quantify nearshore subsea permafrost thawing, we applied the CryoGRID2 heat diffusion model and coupled it to a salt diffusion model. We simulated coastline retreat and subsea permafrost evolution as it develops through successive stages of a thawing sequence at the Bykovsky Peninsula, Siberia. Sensitivity analyses for seawater salinity were performed to compare the results for the Bykovsky Peninsula with those of typical Arctic seawater. For the Bykovsky Peninsula, the modeled ice‐bearing permafrost table (IBPT) for ice‐rich sand and an erosion rate of 0.25 m/year was 16.7 m below the seabed 350 m offshore. The model outputs were compared to the IBPT depth estimated from coastline retreat and electrical resistivity surveys perpendicular to and crossing the shoreline of the Bykovsky Peninsula. The interpreted geoelectric data suggest that the IBPT dipped to 15–20 m below the seabed at 350 m offshore. Both results suggest that cold saline water forms beneath grounded ice and floating sea ice in shallow water, causing cryotic benthic temperatures. The freezing point depression produced by salt diffusion can delay or prevent ice formation in the sediment and enhance the IBPT degradation rate. Therefore, salt diffusion may facilitate the release of greenhouse gasses to the atmosphere and considerably affect the design of offshore and coastal infrastructure in subsea permafrost areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46, ISSN: 0094-8276
    Publication Date: 2022-08-12
    Description: Permafrost is thawing extensively due to climate warming. When permafrost thaws, previously frozen organic carbon (OC) is converted into carbon dioxide (CO2) or methane, leading to further warming. This process is included in models as gradual deepening of the seasonal non‐frozen layer. Yet, models neglect abrupt OC mobilization along rapidly eroding Arctic coastlines. We mimicked erosion in an experiment by incubating permafrost with seawater for an average Arctic open‐water season. We found that CO2 production from permafrost OC is as efficient in seawater as without. For each gram (dry weight) of eroding permafrost, up to 4.3 ± 1.0 mg CO2 will be released and 6.2 ± 1.2% of initial OC mineralized at 4 °C. Our results indicate that potentially large amounts of CO2 are produced along eroding permafrost coastlines, onshore and within nearshore waters. We conclude that coastal erosion could play an important role in carbon cycling and the climate system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-06-06
    Description: We present the results of geological and structural investigation documenting the interaction between hydrothermal fluids and host rock leading to a vein-type ore mineralization at shallow crustal depths (〈7 km) in the mining district of the eastern Island of Elba (Italy). Sulfide- and iron-rich veins and breccia in addition to minor massive iron-ore bodies form the mineralized system. Structural mapping and analysis of vein systems, fractures, faults and associated fault rocks as well as fracture opening modes show that the main factors controlling the formation and distribution of the mineralization are lithology, deformation style and deformation intensity. Their interplay led to a positive feedback between the evolution of pore pressure through time, strain localization and the resulting mineralization. Inversion of fault and vein data defines an E-W extensional stress field at the time of faulting, which favoured fluid ingress and pervasive flow within the porous host sandstone, interstitial sulfide precipitation and reduction of the primary bulk porosity. Subsequently, cyclic channelized fluid flow during repeated fluid ingresses caused extensive veining and numerous episodes of breccia formation.
    Description: Published
    Description: 210-230
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Hydrothermalism ; Upper crust ; Faulting ; Fluids Island of Elba ; Structural analysis ; Island of Elba ; Northern Apennines ; deformation and hydrothermal fluid circulation in upper crust
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reid, E. C., DeCarlo, T. M., Cohen, A. L., Wong, G. T. F., Lentz, S. J., Safaie, A., Hall, A., & Davis, K. A. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnology and Oceanography, 64(5), (2019): 1949-1965, doi:10.1002/lno.11162.
    Description: Internal waves can influence water properties in coastal ecosystems through the shoreward transport and mixing of subthermocline water into the nearshore region. In June 2014, a field experiment was conducted at Dongsha Atoll in the northern South China Sea to study the impact of internal waves on a coral reef. Instrumentation included a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 4‐km cross‐reef section from the lagoon to 50‐m depth on the fore reef. Our observations show that during summer, internal waves shoaling on the shallow atoll regularly transport cold, nutrient‐rich water shoreward, altering near‐surface water properties on the fore reef. This water is transported shoreward of the reef crest by tides, breaking surface waves and wind‐driven flow, where it significantly alters the water temperature and nutrient concentrations on the reef flat. We find that without internal wave forcing on the fore reef, temperatures on the reef flat could be up to 2.0°C ± 0.2°C warmer. Additionally, we estimate a change in degree heating weeks of 0.7°C‐weeks warmer without internal waves, which significantly increases the probability of a more severe bleaching event occurring at Dongsha Atoll. Furthermore, using nutrient samples collected on the fore reef during the study, we estimated that instantaneous onshore nitrate flux is about four‐fold higher with internal waves than without internal waves. This work highlights the importance of internal waves as a physical mechanism shaping the nearshore environment, and likely supporting resilience of the reef.
    Description: We are grateful for the support of the Dongsha Atoll Research Station and the Dongsha Atoll Marine National Park, whose efforts made this research possible. The authors would also like to thank G. Lohmann from Woods Hole Oceanographic Institution and L. Hou, F. Shiah, and K. Lee from Academia Sinica for providing logistical and field support. We thank S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs, funded by the National Science Foundation (EAR awards 1440596 and 1440506), for timely and effective provision of experimental design support, logistical support, and equipment for the project. We thank R. Branch, University of Washington, and X. Pan, Ocean University of China, for their guidance and SST data that informed this study. Support to G. T. F. Wong is from the Ministry of Science and Technology, Taiwan, grant NSC98‐2611‐M‐001‐004‐MY3 and NSC100‐2611‐M‐001‐001 and from the Academia Sinica through grants titled “Atmospheric Forcing on Ocean Biogeochemistry (AFOBi)” and “Dongsha Ocean Acidification Study (DOcS)”. Support for S. Lentz is from National Science Foundation grant OCE‐1558343. Support for A. Cohen from NSF Grant No. 1220529, by the Academia Sinica (Taiwan) through a thematic project grant to G. Wong and A. Cohen. Support for E. Reid, A. Safaie, and K. A. Davis is from National Science Foundation grant OCE‐1753317, and support to E. Reid from the Environmental Engineering Henry Samueli Endowed Fellowship and the UCI Oceans Graduate Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trembath-Reichert, E., Butterfield, D. A., & Huber, J. A. Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. Isme Journal, 13(9), (2019): 2264-2279, doi: 10.1038/s41396-019-0431-y.
    Description: There are many unknowns regarding the distribution, activity, community composition, and metabolic repertoire of microbial communities in the subseafloor of deep-sea hydrothermal vents. Here we provide the first characterization of subseafloor microbial communities from venting fluids along the central Mariana back-arc basin (15.5–18°N), where the slow-spreading rate, depth, and variable geochemistry along the back-arc distinguish it from other spreading centers. Results indicated that diverse Epsilonbacteraeota were abundant across all sites, with a population of high temperature Aquificae restricted to the northern segment. This suggests that differences in subseafloor populations along the back-arc are associated with local geologic setting and resultant geochemistry. Metatranscriptomics coupled to stable isotope probing revealed bacterial carbon fixation linked to hydrogen oxidation, denitrification, and sulfide or thiosulfate oxidation at all sites, regardless of community composition. NanoSIMS (nanoscale secondary ion mass spectrometry) incubations at 80 °C show only a small portion of the microbial community took up bicarbonate, but those autotrophs had the highest overall rates of activity detected across all experiments. By comparison, acetate was more universally utilized to sustain growth, but within a smaller range of activity. Together, results indicate that microbial communities in venting fluids from the Mariana back-arc contain active subseafloor communities reflective of their local conditions with metabolisms commonly shared across geologically disparate spreading centers throughout the ocean.
    Description: This work was funded by the NOAA Ocean Exploration and Research (OER) Program, the NSF Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564), and NOAA/PMEL and JISAO under NOAA Cooperative Agreement NA15OAR4320063. ETR was supported by a NASA Postdoctoral Fellowship with the NASA Astrobiology Institute and a L’Oréal USA For Women in Science Fellowship. The data collected in this study includes work supported by the Schmidt Ocean Institute during cruise FK161129 aboard R/V Falkor. We thank the captains and crews of the R/V Falkor and ROV SuBastian. Critical support in cruise planning and sampling at sea was carried out by Andra Bobbitt, Bill Chadwick, Bob Embley, Ben Larson, and Kevin Roe. Caroline Fortunato, Connor Skennerton, Rika Anderson, Karthik Anantharaman, Jaclyn Saunders, Hank Yu, Lewis Ward, Elaina Graham, and Ben Tully aided bioinformatics pipeline development and Victoria Orphan and Yunbin Guan aided with NanoSIMS analysis. This is C-DEBI Contribution 470, JISAO Contribution 2018-0173, and PMEL Contribution 4867.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johns, C. T., Grubb, A. R., Nissimov, J. I., Natale, F., Knapp, V., Mui, A., Fredricks, H. F., Van Mooy, B. A. S., & Bidle, K. D. The mutual interplay between calcification and coccolithovirus infection. Environmental Microbiology, 21(6), (2019): 1896-1915, doi:10.1111/1462-2920.14362.
    Description: Two prominent characteristics of marine coccolithophores are their secretion of coccoliths and their susceptibility to infection by coccolithoviruses (EhVs), both of which display variation among cells in culture and in natural populations. We examined the impact of calcification on infection by challenging a variety of Emiliania huxleyi strains at different calcification states with EhVs of different virulence. Reduced cellular calcification was associated with increased infection and EhV production, even though calcified cells and associated coccoliths had significantly higher adsorption coefficients than non‐calcified (naked) cells. Sialic acid glycosphingolipids, molecules thought to mediate EhV infection, were generally more abundant in calcified cells and enriched in purified, sorted coccoliths, suggesting a biochemical link between calcification and adsorption rates. In turn, viable EhVs impacted cellular calcification absent of lysis by inducing dramatic shifts in optical side scatter signals and a massive release of detached coccoliths in a subpopulation of cells, which could be triggered by resuspension of healthy, calcified host cells in an EhV‐free, ‘induced media’. Our findings show that calcification is a key component of the E. huxleyi‐EhV arms race and an aspect that is critical both to the modelling of these host–virus interactions in the ocean and interpreting their impact on the global carbon cycle.
    Description: We thank Liti Haramaty for her guidance and assistance in culturing and infection experiments. This research was funded by the Gordon and Betty Moore Foundation (GBMF3301 to BVM and KDB and GBMF3789 to KDB) and the National Science Foundation (OCE‐1537951 and OCE‐1559179 to KDB).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of Springer Nature for personal use, not for redistribution. The definitive version was published in Zakroff, C., Mooney, T.A. & Wirth, C. Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system. Hydrobiologia, 808(1),(2018):83-106, doi:10.1007/s10750-017-3342-9.
    Description: Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2 levels in a dose-dependent manner ranging from 400 - 2200 ppm. Initial 2D experiments showed paralarvae in higher acidification environments spent more time at depth. In 3D experiments, velocity, particularly positive and negative vertical velocities, significantly decreased from 400 to 1000 ppm pCO2, but showed non-significant decreases at higher concentrations. Activity and horizontal velocity decreased linearly with increasing pCO2, indicating a subtle impact to paralarval energetics. Patterns may have been obscured by notable individual variability in the paralarvae. Responses were also seen to vary between trials on cohort or potentially annual scales. Overall, paralarval swimming appeared resilient to OA, with effects being slight. The newly developed 3D tracking system provides a powerful and accessible method for future studies to explore similar questions in the larvae of aquatic taxa.
    Description: We thank D. Remsen, the MBL Marine Resources Center staff, and MBL Gemma crew for their support in acquiring squid. R. Galat and the facilities staff of the WHOI ESL provided system support. D. McCorkle, KYK Chan, and M. White provided valuable insight on the OA system. E. Moberg, A. Beet, and A. Solow assisted in the development and coding of the 3D model system. We also thank E. Bonk, K. Hoering, M. Lee, D. Weiler, and A. Schlunk for their assistance and input with the experiments. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. This project is funded by NSF Grant No. 1220034.
    Keywords: Hypercapnia ; Cephalopod ; Larvae ; Movement analysis ; Stress physiology
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chen, R.; Park, H. A.; Mnatsakanyan, N.; Niu, Y.; Licznerski, P.; Wu, J.; Miranda, P.; Graham, M.; Tang, J.; Boon, A. J. W.; Cossu, G.; Mandemakers, W.; Bonifati, V.; Smith, P. J. S.; Alavian, K. N.; Jonas, E. A. Parkinson's disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death & Disease, 10(6), (2019):469, doi:10.1038/s41419-019-1679-x.
    Description: Familial Parkinson’s disease (PD) protein DJ-1 mutations are linked to early onset PD. We have found that DJ-1 binds directly to the F1FO ATP synthase β subunit. DJ-1’s interaction with the β subunit decreased mitochondrial uncoupling and enhanced ATP production efficiency while in contrast mutations in DJ-1 or DJ-1 knockout increased mitochondrial uncoupling, and depolarized neuronal mitochondria. In mesencephalic DJ-1 KO cultures, there was a progressive loss of neuronal process extension. This was ameliorated by a pharmacological reagent, dexpramipexole, that binds to ATP synthase, closing a mitochondrial inner membrane leak and enhancing ATP synthase efficiency. ATP synthase c-subunit can form an uncoupling channel; we measured, therefore, ATP synthase F1 (β subunit) and c-subunit protein levels. We found that ATP synthase β subunit protein level in the DJ-1 KO neurons was approximately half that found in their wild-type counterparts, comprising a severe defect in ATP synthase stoichiometry and unmasking c-subunit. We suggest that DJ-1 enhances dopaminergic cell metabolism and growth by its regulation of ATP synthase protein components.
    Description: The research was supported by NIH (NS081746) to E.A.J., W.M. and V.B. are supported by the Stichting Parkinson Fonds (The Netherlands).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 116(25), (2019):12343-12352, doi:10.1073/pnas.1901080116.
    Description: Genes encoding cytochrome P450 (CYP; P450) enzymes occur widely in the Archaea, Bacteria, and Eukarya, where they play important roles in metabolism of endogenous regulatory molecules and exogenous chemicals. We now report that genes for multiple and unique P450s occur commonly in giant viruses in the Mimiviridae, Pandoraviridae, and other families in the proposed order Megavirales. P450 genes were also identified in a herpesvirus (Ranid herpesvirus 3) and a phage (Mycobacterium phage Adler). The Adler phage P450 was classified as CYP102L1, and the crystal structure of the open form was solved at 2.5 Å. Genes encoding known redox partners for P450s (cytochrome P450 reductase, ferredoxin and ferredoxin reductase, and flavodoxin and flavodoxin reductase) were not found in any viral genome so far described, implying that host redox partners may drive viral P450 activities. Giant virus P450 proteins share no more than 25% identity with the P450 gene products we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique P450 genes in giant viruses remains unknown. If giant virus P450 genes were acquired from a host, we suggest it could have been from an as yet unknown and possibly ancient host. These studies expand the horizon in the evolution and diversity of the enormously important P450 superfamily. Determining the origin and function of P450s in giant viruses may help to discern the origin of the giant viruses themselves.
    Description: We thank Dr. David Nes (Texas Tech University) for providing sterols and Dr. Matthieu Legendre and Dr. Chantal Abergel (CNRS, Marseille) for access to the P. celtis sequences. Drs. Irina Arkhipova, Mark Hahn, Judith Luborsky, and Ann Bucklin commented on the manuscript. The research was supported by a USA-UK Fulbright Scholarship and a Royal Society grant (to D.C.L.), the Boston University Superfund Research Program [NIH Grant 5P42ES007381 (to J.J.S. and J.V.G.) and NIH Grant 5U41HG003345 (to J.V.G.)], the European Regional Development Fund and Welsh Government Project BEACON (S.L.K.), the Woods Hole Center for Oceans and Human Health [NIH Grant P01ES021923 and National Science Foundation Grant OCE-1314642 (to J.J.S.)], and NIH Grant R01GM53753 (to T.L.P.).
    Description: 2019-12-05
    Keywords: cytochrome P450 ; virus ; evolution ; domains of life ; redox partner
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Mills, K. E., Stamieszkin, K., Record, N. R., Hudak, C. A., Allyn, A., Diamond, A., Friedland, K. D., Golet, W., Henderson, M. E., Hernandez, C. M., Huntington, T. G., Ji, R., Johnson, C. L., Johnson, D. S., Jordaan, A., Kocik, J., Li, Y., Liebman, M., Nichols, O. C., Pendleton, D., Richards, R. A., Robben, T., Thomas, A. C., Walsh, H. J., & Yakola, K. It's about time: a synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography, 28(5), (2019): 532-566, doi: 10.1111/fog.12429.
    Description: The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological‐human systems; and (d) potential phenology‐focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events. The most common response was earlier timing, observed in spring onset, spring and winter hydrology, zooplankton abundance, occurrence of several larval fishes, and diadromous fish migrations. Later timing was documented for fall onset, reproduction and fledging in Atlantic puffins, spring and fall phytoplankton blooms, and occurrence of additional larval fishes. Changes in event duration generally increased and were detected in zooplankton peak abundance, early life history periods of macro‐invertebrates, and lobster fishery landings. Reduced duration was observed in winter–spring ice‐affected stream flows. Two studies projected phenological changes, both finding diapause duration would decrease in zooplankton under future climate scenarios. Phenological responses were species‐specific and varied depending on the environmental driver, spatial, and temporal scales evaluated. Overall, a wide range of baseline phenology and relevant modeling studies exist, yet surprisingly few document long‐term shifts. Results reveal a need for increased emphasis on phenological shifts in the Gulf of Maine and identify opportunities for future research and consideration of phenological changes in adaptation efforts.
    Description: This work was supported by the Department of the Interior Northeast Climate Adaptation Science Center (G14AC00441) for MDS, AJ, and KY; the National Science Foundation's Coastal SEES Program (OCE‐1325484) for KEM, ACT, MEH, and AA; the National Aeronautics and Space Administration (NNX16 AG59G) for ACT, KEM, NRR, and KSS; the USGS Climate Research and Development Program for TGH; National Science & Engineering Research Council of Canada, University of New Brunswick, Environment Canada, Sir James Dunn Wildlife Research Centre, and New Brunswick Wildlife Trust Fund for AD. We also thank the Regional Association for Research on the Gulf of Maine for support, and the Gulf of Maine Research Institute for hosting and providing in kind resources for a two day in‐person workshop in August 2016. We greatly appreciate contributions from K. Alexander, G. Calandrino, C. Feurt, I. Mlsna, N. Rebuck, J. Seavey, and J. Sun for helping shape the initial scope of the manuscript. We thank J. Weltzin and two anonymous reviewers for their constructive comments. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the views of the Northeast Climate Adaptation Science Center, U.S. Geological Survey, National Oceanographic and Atmospheric Administration, Fisheries and Oceans Canada or the US Environmental Protection Agency. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. None of the authors have conflicts of interest to declare in association with the contents of this manuscript.
    Keywords: coastal ; fish ; Gulf of Maine ; life cycle ; marine ; marine invertebrates ; marine mammals ; migration ; phenology ; phytoplankton ; seabirds ; seasonal ; timing ; zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schall, E., Di Iorio, L., Berchok, C., Filun, D., Bedrinana-Romano, L., Buchan, S. J., Van Opzeeland, I., Sears, R., & Hucke-Gaete, R. Visual and passive acoustic observations of blue whale trios from two distinct populations. Marine Mammal Science, (2019): 1-10, doi:10.1111/mms.12643.
    Description: Blue whale populations from both hemispheres are thought to undertake annual migrations between high latitude feeding grounds and low latitude breeding grounds (Mackintosh, 1966). For individuals of some populations these predetermined movements to and from wintering areas where calving occurs have been confirmed through photo‐identification, satellite‐tracking, and passive acoustic monitoring (Burtenshaw et al., 2004; Mate, Lagerquist, & Calambokidis, 1999; Sears & Perrin, 2002; Stafford, Nieukirk, & Fox, 1999a). However, for many blue whale populations no clear migratory behavior has been reported and locations of respective breeding grounds remain unclear (e.g., Hucke‐Gaete, Osman, Moreno, Findlay, & Ljungblad, 2004; Samaran et al., 2013; Stafford, Chapp, Bohnenstiel, & Tolstoy, 2011; Thomisch et al., 2016). On feeding grounds in the Gulf of St. Lawrence and along the coast of California, blue whales have been observed to form female–male pairs during summer, which can remain stable up to over several weeks, with the number of pairs increasing towards the end of summer (Sears & Perrin, 2002; Calambokidis, unpublished data;1 RS, unpublished data). These pairs are sometimes joined by a second male, forming a blue whale trio, which often is observed to engage in surface active behaviors lasting several minutes (Sears & Perrin, 2002; RS, unpublished data). The formation of blue whale trios is probably related to reproductive competition between male escorts and female choice (RS, unpublished data). Blue whale males produce population‐specific songs likely functioning as reproductive advertisement (Edds‐Walton, 1997; Oleson et al. 2007a; Stafford, Fox, & Clark, 1998). Several studies have reported song year‐round in low‐, mid‐, and high‐latitude waters, frequently with high song production rates during summer on the feeding grounds (e.g., Barlow et al., 2018; Buchan, Stafford, & Hucke‐Gaete, 2015; Samaran, Adam, & Guinett, 2010; Širović et al., 2004; Stafford, Nieukirk, & Fox, 1999b; Thomisch et al., 2016). Therefore, breeding activities in blue whales may be more opportunistic, i.e., not restricted to the breeding season or to a specific habitat.
    Description: ES thanks Prof. Dr. Per J. Palsbøll for the supervision of the initial Master research project, the Marco Polo fund, and the University Groningen for covering travel expenses. We thank the Melimoyu Ecosystem Research Institute, SNP Patagonia Sur, and the company Teledyne Reson for partially funding the acoustic data collection in southern Chile. RHG is thankful to WWF‐Germany/Chile for partially funding fieldwork through grants to Centro Ballena Azul. CLB thanks the team of the Mingan Island Cetacean Study for their logistical support of boats and lodging, access to the North Atlantic blue whale database, and field assistance; Yvon Bélanger for opening his home to her and RS's field crews; for financial support from the National Science Foundation (Graduate Fellowship), National Defense Industrial Association, American Museum of Natural History (Lerner Gray Fund for Marine Research Grant), Penn State Applied Research Laboratory, and private donors Jeff and Lynn Kraus; and graduate advisors at Penn State University David L. Bradley, Thomas B. Gabrielson, and Diana McCammon. LDI thanks the Croisières du Grand Héron and Center Mériscope for allowing and supporting fieldwork, the Animal Behavior Department of the University of Zurich (Switzerland), the Bioacoustics Research Program at Cornell University (USA) and Prof. M. Manser and C. W. Clark for supervising LDI's Ph.D. The work was supported by grants to LDI for her PhD from the Forschungskommission der Universität Zürich, Züricher Tierschutz, Basler Stiftung für Biologische Forschung, SCNAT, Zangger‐Weber‐Stiftung, SSVA. SJB thanks the Center for Oceanographic Research COPAS Sur‐Austral, CONICYT PIA PFB31, the Office of Naval Research Global (awards N62909‐16‐2214 and N00014‐17‐2606), and a grant to the Centro de Estudios Avanzados en Zonas Áridas from Programa Regional CONICYT R16A10003 for support during manuscript writing. We would like to thank the field crews (F. Viddi, J. Ruiz, A. Carpentier, M. Lessard, A. Liebschner, C. Ramp, S. Angel, K. Aucrenaz, T. Doniol‐Valcroze, J. LeBreus, B. Kot, and J. Puschock) for their immense commitment to blue whale research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. M., Coe, A., Gast, R. J., Plummer, S., Suffridge, C. P., Diaz, J. M., Bowman, J. S., Wankel, S. D., & Hansel, C. M. Extracellular superoxide production by key microbes in the global ocean. Limnology and Oceanography, (2019), doi:10.1002/lno.11247.
    Description: Bacteria and eukaryotes produce the reactive oxygen species superoxide both within and outside the cell. Although superoxide is typically associated with the detrimental and sometimes fatal effects of oxidative stress, it has also been shown to be involved in a range of essential biochemical processes, including cell signaling, growth, differentiation, and defense. Light‐independent extracellular superoxide production has been shown to be widespread among many marine heterotrophs and phytoplankton, but the extent to which this trait is relevant to marine microbial physiology and ecology throughout the global ocean is unknown. Here, we investigate the dark extracellular superoxide production of five groups of organisms that are geographically widespread and represent some of the most abundant organisms in the global ocean. These include Prochlorococcus, Synechococcus, Pelagibacter, Phaeocystis, and Geminigera. Cell‐normalized net extracellular superoxide production rates ranged seven orders of magnitude, from undetectable to 14,830 amol cell−1 h−1, with the cyanobacterium Prochlorococcus being the lowest producer and the cryptophyte Geminigera being the most prolific producer. Extracellular superoxide production exhibited a strong inverse relationship with cell number, pointing to a potential role in cell signaling. We demonstrate that rapid, cell‐number–dependent changes in the net superoxide production rate by Synechococcus and Pelagibacter arose primarily from changes in gross production of extracellular superoxide, not decay. These results expand the relevance of dark extracellular superoxide production to key marine microbes of the global ocean, suggesting that superoxide production in marine waters is regulated by a diverse suite of marine organisms in both dark and sunlit waters.
    Description: The authors would like to acknowledge their funding sources including NASA NESSF NNX15AR62H (K.M.S.), NASA Exobiology grant NNX15AM04G to S.D.W. and C.M.H., NSF‐OCE grant 1355720 to C.M.H., NSF‐OPP 1641019 (J.S.B), and Simons Foundation SCOPE Award ID 329108 (Sallie W. Chisholm). The authors would also like to thank the Harvey lab (Skidaway Institute of Oceanography) for use of their flow cytometer in this study. We thank Stephen Giovannoni and Sallie Chisholm for providing bacteria strains and laboratory facilities. Additional thanks to Marianne Acker, Rogier Braakman, and Aldo Arellano for assistance in lab and helpful conversations.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-26
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116 (35), (2019): 17187-17192, doi:10.1073/pnas.1903067116.
    Description: Mesoscale eddies are critical components of the ocean’s “internal weather” system. Mixing and stirring by eddies exerts significant control on biogeochemical fluxes in the open ocean, and eddies may trap distinctive plankton communities that remain coherent for months and can be transported hundreds to thousands of kilometers. Debate regarding how and why predators use fronts and eddies, for example as a migratory cue, enhanced forage opportunities, or preferred thermal habitat, has been ongoing since the 1950s. The influence of eddies on the behavior of large pelagic fishes, however, remains largely unexplored. Here, we reconstruct movements of a pelagic predator, the blue shark (Prionace glauca), in the Gulf Stream region using electronic tags, earth-observing satellites, and data-assimilating ocean forecasting models. Based on 〉2,000 tracking days and nearly 500,000 high-resolution time series measurements collected by 15 instrumented individuals, we show that blue sharks seek out the interiors of anticyclonic eddies where they dive deep while foraging. Our observations counter the existing paradigm that anticyclonic eddies are unproductive ocean “deserts” and suggest anomalously warm temperatures in these features connect surface-oriented predators to the most abundant fish community on the planet in the mesopelagic. These results also shed light on the ecosystem services provided by mesopelagic prey. Careful consideration will be needed before biomass extraction from the ocean twilight zone to avoid interrupting a key link between planktonic production and top predators. Moreover, robust associations between targeted fish species and oceanographic features increase the prospects for effective dynamic ocean management.
    Description: We thank D. McGillicuddy, G. Lawson, and G. Flierl for helpful discussions while developing this work and 2 anonymous reviewers whose feedback significantly improved the manuscript. We also thank C. Fischer and the OCEARCH team for their support of this research. This work was funded by awards to C.D.B. from the Martin Family Society of Fellows for Sustainability Fellowship at the Massachusetts Institute of Technology; the Grassle Fellowship and Ocean Venture Fund at the Woods Hole Oceanographic Institution; and the National Aeronatics and Space Administration (NASA) Earth and Space Science Fellowship. C.D.B. and P.G. acknowledge support from the NASA New Investigator Program Award 80NSSC18K0757, and P.G. acknowledges support from NSF Award OCE-1558809. This research is partially supported by funding to S.R.T. as part of the Audacious Project, a collaborative endeavor, housed at TED. We thank donors to the Woods Hole Oceanographic Institution (WHOI) ProjectWHOI crowdfunding campaign: The Secret Lives of Sharks. Computational support was provided by the Amazon Web Services Cloud Credits for Research program. Funding for the development of HYCOM has been provided by the National Ocean Partnership Program and the Office of Naval Research.
    Description: 2020-02-06
    Keywords: remote sensing ; oceanographic model ; satellite telemetry ; marine predator ; mesopelagic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-26
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116 (35), (2019): 17207-17212, doi:10.1073/pnas.1900325116.
    Description: It has been hypothesized that the overall size of—or efficiency of carbon export from—the biosphere decreased at the end of the Great Oxidation Event (GOE) (ca. 2,400 to 2,050 Ma). However, the timing, tempo, and trigger for this decrease remain poorly constrained. Here we test this hypothesis by studying the isotope geochemistry of sulfate minerals from the Belcher Group, in subarctic Canada. Using insights from sulfur and barium isotope measurements, combined with radiometric ages from bracketing strata, we infer that the sulfate minerals studied here record ambient sulfate in the immediate aftermath of the GOE (ca. 2,018 Ma). These sulfate minerals captured negative triple-oxygen isotope anomalies as low as ∼ −0.8‰. Such negative values occurring shortly after the GOE require a rapid reduction in primary productivity of 〉80%, although even larger reductions are plausible. Given that these data imply a collapse in primary productivity rather than export efficiency, the trigger for this shift in the Earth system must reflect a change in the availability of nutrients, such as phosphorus. Cumulatively, these data highlight that Earth’s GOE is a tale of feast and famine: A geologically unprecedented reduction in the size of the biosphere occurred across the end-GOE transition.
    Description: Olivia M. J. Dagnaud assisted during fieldwork. S. V. Lalonde and E. A. Sperling provided helpful comments on an early version of the manuscript. We thank N. J. Planavsky and an anonymous reviewer for their constructive feedback. M.S.W.H. was supported by an NSERC PGS-D and student research grants from National Geographic, the APS Lewis and Clark Fund, Northern Science Training Program, McGill University Graduate Research Enhancement and Travel Awards, Geological Society of America, Mineralogical Association of Canada, and Stanford University. P.W.C. acknowledges support from the University of Colorado Boulder, the Agouron Institute Geobiology postdoctoral Fellowship program, a Natural Sciences and Engineering Council of Canada Postgraduate Scholarship–Doctoral Program scholarship, and the NSTP. Y.P. was supported by the Strategic Priority Research Program of CAS (XDB26000000). T.J.H. thanks Maureen E. Auro for laboratory assistance and the NSF for supporting isotope research in the NIRVANA Labs.
    Description: 2020-02-12
    Keywords: Proterozoic ; primary productivity ; Great Oxidation Event ; triple-oxygen isotopes ; nutrient limitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-26
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116(45), (2019): 22518-22525, doi:10.1073/pnas.1913714116.
    Description: The Ganges–Brahmaputra (G-B) River system transports over a billion tons of sediment every year from the Himalayan Mountains to the Bay of Bengal and has built the world’s largest active sedimentary deposit, the Bengal Fan. High sedimentation rates drive exceptional organic matter preservation that represents a long-term sink for atmospheric CO2. While much attention has been paid to organic-rich fine sediments, coarse sediments have generally been overlooked as a locus of organic carbon (OC) burial. However, International Ocean Discovery Program Expedition 354 recently discovered abundant woody debris (millimeter- to centimeter-sized fragments) preserved within the coarse sediment layers of turbidite beds recovered from 6 marine drill sites along a transect across the Bengal Fan (∼8°N, ∼3,700-m water depth) with recovery spanning 19 My. Analysis of bulk wood and lignin finds mostly lowland origins of wood delivered episodically. In the last 5 My, export included C4 plants, implying that coarse woody, lowland export continued after C4 grassland expansion, albeit in reduced amounts. Substantial export of coarse woody debris in the last 1 My included one wood-rich deposit (∼0.05 Ma) that encompassed coniferous wood transported from the headwaters. In coarse layers, we found on average 0.16 weight % OC, which is half the typical biospheric OC content of sediments exported by the modern G-B Rivers. Wood burial estimates are hampered by poor drilling recovery of sands. However, high-magnitude, low-frequency wood export events are shown to be a key mechanism for C burial in turbidites.
    Description: This work was funded by National Science Foundation Grants OCE-1401217 and COL-T354A55 to S.J.F. and OCE-1400805 to V.G. Graduate student participation in the project received support from University of Southern California Provost’s Fellowship to H.L. Samples were provided by the International Ocean Discovery Program. We are grateful for the efforts of the Expedition 354 Science Party, Carl Johnson, and Zongguang Liu. C.F.-L. and A.G. were supported by IODP-France. We thank Colin Osborne and Maria Vorontsova for helpful discussions.
    Description: 2020-04-21
    Keywords: carbon cycle ; wood ; lignin ; Himalaya ; Bengal Fan
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Millette, N. C., Kelble, C., Linhoss, A., Ashby, S., & Visser, L. Using spatial variability in the rate of change of chlorophyll a to improve water quality management in a subtropical oligotrophic estuary. Estuaries and Coasts, 42(7), (2019): 1792-1803, doi:10.1007/s12237-019-00610-5.
    Description: Anthropogenic eutrophication threatens numerous aquatic ecosystems across the globe. Proactive management that prevents a system from becoming eutrophied is more effective and cheaper than restoring a eutrophic system, but detecting early warning signs and problematic nutrient sources in a relatively healthy system can be difficult. The goal of this study was to investigate if rates of change in chlorophyll a and nutrient concentrations at individual stations can be used to identify specific areas that need to be targeted for management. Biscayne Bay is a coastal embayment in southeast Florida with primarily adequate water quality that has experienced rapid human population growth over the last century. Water quality data collected at 48 stations throughout Biscayne Bay over a 20-year period (1995–2014) were examined to identify any water quality trends associated with eutrophication. Chlorophyll a and phosphate concentrations have increased throughout Biscayne Bay, which is a primary indicator of eutrophication. Moreover, chlorophyll a concentrations throughout the northern area, where circulation is restricted, and in nearshore areas of central Biscayne Bay are increasing at a higher rate compared to the rest of the Bay. This suggests increases in chlorophyll a are due to local nutrient sources from the watershed. These areas are also where recent seagrass die-offs have occurred, suggesting an urgent need for management intervention. This is in contrast with the state of Florida listing of Biscayne Bay as a medium priority impaired body of water.
    Description: Data provided by the SERC-FIU/SFWMD Water Quality Monitoring Network is supported by SFWMD/SERC Cooperative Agreement #4600000352 as well as EPA Agreement #X7-96410603-3. This research was also funded by a NOAA/Atlantic Oceanographic and Meteorological Laboratory grant to the Northern Gulf Institute (award number NA160AR4320199).
    Keywords: Chlorophyll a ; Eutrophication ; Oligotrophic ; Ecological indicators
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the National Academy of Sciences.of the United States of America 116(36), (2019): 17666-17672. doi:10.1073/pnas.1907871116.
    Description: The conditions of methane (CH4) formation in olivine-hosted secondary fluid inclusions and their prevalence in peridotite and gabbroic rocks from a wide range of geological settings were assessed using confocal Raman spectroscopy, optical and scanning electron microscopy, electron microprobe analysis, and thermodynamic modeling. Detailed examination of 160 samples from ultraslow- to fast-spreading midocean ridges, subduction zones, and ophiolites revealed that hydrogen (H2) and CH4 formation linked to serpentinization within olivine-hosted secondary fluid inclusions is a widespread process. Fluid inclusion contents are dominated by serpentine, brucite, and magnetite, as well as CH4(g) and H2(g) in varying proportions, consistent with serpentinization under strongly reducing, closed-system conditions. Thermodynamic constraints indicate that aqueous fluids entering the upper mantle or lower oceanic crust are trapped in olivine as secondary fluid inclusions at temperatures higher than ∼400 °C. When temperatures decrease below ∼340 °C, serpentinization of olivine lining the walls of the fluid inclusions leads to a near-quantitative consumption of trapped liquid H2O. The generation of molecular H2 through precipitation of Fe(III)-rich daughter minerals results in conditions that are conducive to the reduction of inorganic carbon and the formation of CH4. Once formed, CH4(g) and H2(g) can be stored over geological timescales until extracted by dissolution or fracturing of the olivine host. Fluid inclusions represent a widespread and significant source of abiotic CH4 and H2 in submarine and subaerial vent systems on Earth, and possibly elsewhere in the solar system.
    Description: We are indebted to J. Eckert for his support with FE-EMPA; to K. Aquinho and E. Codillo for providing samples from Zambales; to K. Aquinho for Raman analysis of some of the samples from Zambales and Mt. Dent; to H. Dick for providing access to his thin section collection; to the curators of the IODP core repositories for providing access to Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) samples; and to the captains and crews of the many cruises without whom the collection of these samples would not have been possible. Reviews by Peter Kelemen and an anonymous referee greatly improved this manuscript. This study is supported with funds provided by the National Science Foundation (NSF-OCE Award 1634032 to F.K. and J.S.S.).
    Description: 2020-02-19
    Keywords: Abiotic methane ; Fluid inclusions ; Serpentinization ; Methane seeps ; Carbon cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-10-26
    Description: Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 116(20), (2019):9925-9930, doi:10.1073/pnas.1818349116.
    Description: Microbial capacity to metabolize arsenic is ancient, arising in response to its pervasive presence in the environment, which was largely in the form of As(III) in the early anoxic ocean. Many biological arsenic transformations are aimed at mitigating toxicity; however, some microorganisms can respire compounds of this redox-sensitive element to reap energetic gains. In several modern anoxic marine systems concentrations of As(V) are higher relative to As(III) than what would be expected from the thermodynamic equilibrium, but the mechanism for this discrepancy has remained unknown. Here we present evidence of a complete respiratory arsenic cycle, consisting of dissimilatory As(V) reduction and chemoautotrophic As(III) oxidation, in the pelagic ocean. We identified the presence of genes encoding both subunits of the respiratory arsenite oxidase AioA and the dissimilatory arsenate reductase ArrA in the Eastern Tropical North Pacific (ETNP) oxygen-deficient zone (ODZ). The presence of the dissimilatory arsenate reductase gene arrA was enriched on large particles (〉30 um), similar to the forward bacterial dsrA gene of sulfate-reducing bacteria, which is involved in the cryptic cycling of sulfur in ODZs. Arsenic respiratory genes were expressed in metatranscriptomic libraries from the ETNP and the Eastern Tropical South Pacific (ETSP) ODZ, indicating arsenotrophy is a metabolic pathway actively utilized in anoxic marine water columns. Together these results suggest arsenic-based metabolisms support organic matter production and impact nitrogen biogeochemical cycling in modern oceans. In early anoxic oceans, especially during periods of high marine arsenic concentrations, they may have played a much larger role.
    Description: We thank John Baross and Rika Anderson for helpful discussions and feedback on this project. We also thank the chief scientists of the research cruise, Al Devol and Bess Ward, as well as the captain and crew of the R/V Thomas G. Thompson. This work was supported through a NASA Earth and Space Sciences Graduate Research Fellowship to J.K.S. and National Science Foundation Grant OCE-1138368 (to G.R.).
    Description: 2019-10-29
    Keywords: Oxygen deficient zones ; Arsenic ; Chemoautotrophy ; Dissimilatory arsenate reduction ; Marine metagenome
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-10-26
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116 (24), (2019):11646-11651, doi:10.1073/pnas.1900371116.
    Description: Measurements show large decadal variability in the rate of CO2 accumulation in the atmosphere that is not driven by CO2 emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of CO2 due to the ocean and the terrestrial biosphere. In this study, we compare three independent methods for estimating oceanic CO2 uptake and find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric CO2 accumulation. Data-based estimates of the ocean carbon sink from pCO2 mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean CO2 sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean CO2 uptake, but also demonstrate that the sensitivity of ocean CO2 uptake to climate variability may be too weak in models. Furthermore, all estimates point toward coherent decadal variability in the oceanic and terrestrial CO2 sinks, and this variability is not well-matched by current global vegetation models. Reconciling these differences will help to constrain the sensitivity of oceanic and terrestrial CO2 uptake to climate variability and lead to improved climate projections and decadal climate predictions.
    Description: We thank Rebecca Wright and Erik Buitenhuis at University of East Anglia, Norwich, for providing updated runs from the NEMO-PlankTOM5 model. T.D. was supported by NSF Grant OCE-1658392. C.L.Q. thanks the UK Natural Environment Research Council for supporting the SONATA Project (Grant NE/P021417/1). P.L. was supported by the Max Planck Society for the Advancement of Science. J.H. was supported under Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System (MarESys) Grant VH-NG-1301. S.B. and R.S. were supported by the H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, Knowledge, Dissemination and Outreach,” which received funding from the European Union’s Horizon 2020 research and innovation program under Grant No 641816. SOCAT is an international effort, endorsed by the International Ocean Carbon Coordination Project, the Surface Ocean-Lower Atmosphere Study, and the Integrated Marine Biosphere Research program, to deliver a uniformly quality-controlled surface ocean CO2 database. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions to SOCAT.
    Description: 2019-11-28
    Keywords: Carbon dioxide ; Ocean carbon sink ; Terrestrial carbon sink ; Climate variability ; Carbon budget
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Advances in Polar Ecology 2, The Ecosystem of Kongsfjorden, Svalbard, Switzerland, Springer Nature, 2, pp. 303-330, ISSN: 2468-5712
    Publication Date: 2023-06-21
    Description: Organisms in shallow waters at high latitudes are under pressure due to climate change. These areas are typically inhabited by microphytobenthos (MPB) communities, composed mainly of diatoms. Only sparse information is available on the ecophysiology and acclimation processes within MPBs from Arctic regions. The physico-chemical environment and the ecology and ecophysiology of benthic diatoms in Kongsfjorden (Svalbard, Norway) are addressed in this review. MPB biofilms cover extensive areas of sediment. They show high rates of primary production, stabilise sediment surfaces against erosion under hydrodynamic forces,and affect the exchange of oxygen and nutrients across the sediment-water interface. Additionally, this phototrophic community represents a key component in the functioning of the Kongsfjorden trophic web, particularly as a major food source for benthic suspension- or deposit-feeders. MPB in Kongsfjorden is confronted with pronounced seasonal variations in solar radiation, low temperatures, and hyposaline (meltwater) conditions in summer, as well as long periods of ice and snow cover in winter. From the few data available, it seems that these organisms can easily cope with these environmental extremes. The underlying physiological mechanisms that allow growth and photosynthesis to continue under widely varying abiotic parameters, along with vertical migration and heterotrophy, and biochemical features such as a pronounced fatty-acid metabolism and silicate incorporation are discussed. Existing gaps in our knowledge of benthic diatoms in Kongsfjorden, such as the chemical ecology of biotic interactions, need to be filled. In addition, since many of the underlying molecular acclimation mechanisms are poorly understood, modern approaches based on transcriptomics, proteomics, and/or metabolomics, in conjunction with cell biological and biochemical techniques, are urgently needed. Climate change models for the Arctic predict other multifactorial stressors, such as an increase in precipitation and permafrost thawing, with consequences for the shallow-water regions. Both precipitation and permafrost thawing are likely to increase nutrient-enriched, turbid freshwater runoff and may locally counteract the expected increase in coastal radiation availability. So far, complex interactions among factors, as well as the full genetic diversity and physiological plasticity of Arctic benthic diatoms, have only rarely been considered. The limited existing information is described and discussed in this review.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 9(1), pp. 12268-12268, ISSN: 2045-2322
    Publication Date: 2023-09-25
    Description: Identifying stabilizing factors in foodwebs is a long standing challenge with wide implications for community ecology and conservation. Here, we investigate the stability of spatially resolved meta-foodwebs with far-ranging super-predators for whom the whole meta-foodwebs appears to be a single habitat. By using a combination of generalized modeling with a master stability function approach, we are able to efficiently explore the asymptotic stability of large classes of realistic many-patch meta-foodwebs. We show that meta-foodwebs with far-ranging top predators are more stable than those with localized top predators. Moreover, adding far-ranging generalist top predators to a system can have a net stabilizing effect. These results highlight the importance of top predator conservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3German Research, Wiley, 41(2), pp. 8-13, ISSN: 0172-1526
    Publication Date: 2024-01-22
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Plate tectonics, volcanic activity and ocean floor spreading in the Arctic: Following several complex research expeditions and earthquake measurements, the Emmy Noether group MOVE has obtained some surprising findings about the formation and structure of the ocean lithosphere. A look at the results so far〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3BIOspektrum, Springer Nature, 25(1), pp. 50-57, ISSN: 0947-0867
    Publication Date: 2024-05-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-04-02
    Description: Bacteria are surrounded by a protective exoskeleton, peptidoglycan (PG), a cross-linked mesh-like macromolecule consisting of glycan strands interlinked by short peptides. Because PG completely encases the cytoplasmic membrane, cleavage of peptide cross-links is a prerequisite to make space for incorporation of nascent glycan strands for its successful expansion during cell growth. In most bacteria, the peptides consist of l-alanine, d-glutamate, meso-diaminopimelic acid (mDAP) and d-alanine (d-Ala) with cross-links occurring either between d-Ala and mDAP or two mDAP residues. In Escherichia coli, the d-Ala−mDAP cross-links whose cleavage by specialized endopeptidases is crucial for expansion of PG predominate. However, a small proportion of mDAP−mDAP cross-links also exist, yet their role in the context of PG expansion or the hydrolase(s) capable of catalyzing their cleavage is not known. Here, we identified an ORF of unknown function, YcbK (renamed MepK), as an mDAP−mDAP cross-link cleaving endopeptidase working in conjunction with other elongation-specific endopeptidases to make space for efficient incorporation of nascent PG strands into the sacculus. E. coli mutants lacking mepK and another d-Ala−mDAP–specific endopeptidase (mepS) were synthetic sick, and the defects were abrogated by lack of l,d-transpeptidases, enzymes catalyzing the formation of mDAP cross-links. Purified MepK was able to cleave the mDAP cross-links of soluble muropeptides and of intact PG sacculi. Overall, this study describes a PG hydrolytic enzyme with a hitherto unknown substrate specificity that contributes to expansion of the PG sacculus, emphasizing the fundamental importance of cross-link cleavage in bacterial peptidoglycan synthesis.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-11-12
    Description: As monofacial, single-junction solar cells approach their fundamental limits, there has been significant interest in tandem solar cells in the presence of concentrated sunlight or tandem bifacial solar cells with back-reflected albedo. The bandgap sequence and thermodynamic efficiency limits of these complex cell configurations require sophisticated numerical calculation. Therefore, the analyses of specialized cases are scattered throughout the literature. In this paper, we show that a powerful graphical approach called the normalized “Shockley–Queisser (S-Q) triangle” (i.e., imp=1−vmp) is sufficient to calculate the bandgap sequence and efficiency limits of arbitrarily complex photovoltaic (PV) topologies. The results are validated against a wide variety of specialized cases reported in the literature and are accurate within a few percent. We anticipate that the widespread use of the S-Q triangle will illuminate the deeper physical principles and design trade-offs involved in the design of bifacial tandem solar cells under arbitrary concentration and series resistance.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-02-14
    Description: Previous studies have shown that insulin and IGF-1 signaling in the brain, especially the hypothalamus, is important for regulation of systemic metabolism. Here, we develop mice in which we have specifically inactivated both insulin receptors (IRs) and IGF-1 receptors (IGF1Rs) in the hippocampus (Hippo-DKO) or central amygdala (CeA-DKO) by stereotaxic delivery of AAV-Cre into IRlox/lox/IGF1Rlox/loxmice. Consequently, both Hippo-DKO and CeA-DKO mice have decreased levels of the GluA1 subunit of glutamate AMPA receptor and display increased anxiety-like behavior, impaired cognition, and metabolic abnormalities, including glucose intolerance. Hippo-DKO mice also display abnormal spatial learning and memory whereas CeA-DKO mice have impaired cold-induced thermogenesis. Thus, insulin/IGF-1 signaling has common roles in the hippocampus and central amygdala, affecting synaptic function, systemic glucose homeostasis, behavior, and cognition. In addition, in the hippocampus, insulin/IGF-1 signaling is important for spatial learning and memory whereas insulin/IGF-1 signaling in the central amygdala controls thermogenesis via regulation of neural circuits innervating interscapular brown adipose tissue.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-17
    Description: The sunflower family, Asteraceae, comprises 10% of all flowering plant species and displays an incredible diversity of form. Asteraceae are clearly monophyletic, yet resolving phylogenetic relationships within the family has proven difficult, hindering our ability to understand its origin and diversification. Recent molecular clock dating has suggested a Cretaceous origin, but the lack of deep sampling of many genes and representative taxa from across the family has impeded the resolution of migration routes and diversifications that led to its global distribution and tremendous diversity. Here we use genomic data from 256 terminals to estimate evolutionary relationships, timing of diversification(s), and biogeographic patterns. Our study places the origin of Asteraceae at ∼83 MYA in the late Cretaceous and reveals that the family underwent a series of explosive radiations during the Eocene which were accompanied by accelerations in diversification rates. The lineages that gave rise to nearly 95% of extant species originated and began diversifying during the middle Eocene, coincident with the ensuing marked cooling during this period. Phylogenetic and biogeographic analyses support a South American origin of the family with subsequent dispersals into North America and then to Asia and Africa, later followed by multiple worldwide dispersals in many directions. The rapid mid-Eocene diversification is aligned with the biogeographic range shift to Africa where many of the modern-day tribes appear to have originated. Our robust phylogeny provides a framework for future studies aimed at understanding the role of the macroevolutionary patterns and processes that generated the enormous species diversity of Asteraceae.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-04-15
    Description: There is a gap between how many scientists communicate and how most people understand and interpret messages. This article argues that the extensive science communications literature needs to be joined by the health literacy literature and anthropological work on cultural variations in hearing and understanding messages. Rapid changes and differences in how people in the United States get information are also discussed. Better understanding of how people get and perceive messages, and how access to information and to health services affects their behavior, should be an iterative and interdisciplinary effort. Community involvement in developing communication strategies is strongly encouraged.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-09-30
    Description: Distantly related species entering similar biological niches often adapt by evolving similar morphological and physiological characters. How much genomic molecular convergence (particularly of highly constrained coding sequence) contributes to convergent phenotypic evolution, such as echolocation in bats and whales, is a long-standing fundamental question. Like others, we find that convergent amino acid substitutions are not more abundant in echolocating mammals compared to their outgroups. However, we also ask a more informative question about the genomic distribution of convergent substitutions by devising a test to determine which, if any, of more than 4,000 tissue-affecting gene sets is most statistically enriched with convergent substitutions. We find that the gene set most overrepresented (q-value = 2.2e-3) with convergent substitutions in echolocators, affecting 18 genes, regulates development of the cochlear ganglion, a structure with empirically supported relevance to echolocation. Conversely, when comparing to nonecholocating outgroups, no significant gene set enrichment exists. For aquatic and high-altitude mammals, our analysis highlights 15 and 16 genes from the gene sets most affected by molecular convergence which regulate skin and lung physiology, respectively. Importantly, our test requires that the most convergence-enriched set cannot also be enriched for divergent substitutions, such as in the pattern produced by inactivated vision genes in subterranean mammals. Showing a clear role for adaptive protein-coding molecular convergence, we discover nearly 2,600 convergent positions, highlight 77 of them in 3 organs, and provide code to investigate other clades across the tree of life.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-09-16
    Description: Cilia, the hair-like protrusions that beat at high frequencies to propel a cell or move fluid around are composed of radially bundled doublet microtubules. In this study, we present a near-atomic resolution map of the Tetrahymena doublet microtubule by cryoelectron microscopy. The map demonstrates that the network of microtubule inner proteins weaves into the tubulin lattice and forms an inner sheath. From mass spectrometry data and de novo modeling, we identified Rib43a proteins as the filamentous microtubule inner proteins in the protofilament ribbon region. The Rib43a–tubulin interaction leads to an elongated tubulin dimer distance every 2 dimers. In addition, the tubulin lattice structure with missing microtubule inner proteins (MIPs) by sarkosyl treatment shows significant longitudinal compaction and lateral angle change between protofilaments. These results are evidence that the MIPs directly affect and stabilize the tubulin lattice. It suggests that the doublet microtubule is an intrinsically stressed filament and that this stress could be manipulated in the regulation of ciliary waveforms.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-01
    Description: Aberrant MYC oncogene activation is one of the most prevalent characteristics of cancer. By overlapping datasets of Drosophila genes that are insulin-responsive and also regulate nucleolus size, we enriched for Myc target genes required for cellular biosynthesis. Among these, we identified the aminoacyl tRNA synthetases (aaRSs) as essential mediators of Myc growth control in Drosophila and found that their pharmacologic inhibition is sufficient to kill MYC-overexpressing human cells, indicating that aaRS inhibitors might be used to selectively target MYC-driven cancers. We suggest a general principle in which oncogenic increases in cellular biosynthesis sensitize cells to disruption of protein homeostasis.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-21
    Description: Organic electrosynthesis can transform the chemical industry by introducing electricity-driven processes that are more energy efficient and that can be easily integrated with renewable energy sources. However, their deployment is severely hindered by the difficulties of controlling selectivity and achieving a large energy conversion efficiency at high current density due to the low solubility of organic reactants in practical electrolytes. This control can be improved by carefully balancing the mass transport processes and electrocatalytic reaction rates at the electrode diffusion layer through pulsed electrochemical methods. In this study, we explore these methods in the context of the electrosynthesis of adiponitrile (ADN), the largest organic electrochemical process in industry. Systematically exploring voltage pulses in the timescale between 5 and 150 ms led to a 20% increase in production of ADN and a 250% increase in relative selectivity with respect to the state-of-the-art constant voltage process. Moreover, combining this systematic experimental investigation with artificial intelligence (AI) tools allowed us to rapidly discover drastically improved electrosynthetic conditions, reaching improvements of 30 and 325% in ADN production rates and selectivity, respectively. This powerful AI-enhanced experimental approach represents a paradigm shift in the design of electrified chemical transformations, which can accelerate the deployment of more sustainable electrochemical manufacturing processes.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-04-08
    Description: In most environments, the visual system is confronted with many relevant objects simultaneously. That is especially true during reading. However, behavioral data demonstrate that a serial bottleneck prevents recognition of more than one word at a time. We used fMRI to investigate how parallel spatial channels of visual processing converge into a serial bottleneck for word recognition. Participants viewed pairs of words presented simultaneously. We found that retinotopic cortex processed the two words in parallel spatial channels, one in each contralateral hemisphere. Responses were higher for attended than for ignored words but were not reduced when attention was divided. We then analyzed two word-selective regions along the occipitotemporal sulcus (OTS) of both hemispheres (subregions of the visual word form area, VWFA). Unlike retinotopic regions, each word-selective region responded to words on both sides of fixation. Nonetheless, a single region in the left hemisphere (posterior OTS) contained spatial channels for both hemifields that were independently modulated by selective attention. Thus, the left posterior VWFA supports parallel processing of multiple words. In contrast, activity in a more anterior word-selective region in the left hemisphere (mid OTS) was consistent with a single channel, showing (i) limited spatial selectivity, (ii) no effect of spatial attention on mean response amplitudes, and (iii) sensitivity to lexical properties of only one attended word. Therefore, the visual system can process two words in parallel up to a late stage in the ventral stream. The transition to a single channel is consistent with the observed bottleneck in behavior.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-24
    Description: Genomic analyses of patients with congenital heart disease (CHD) have identified significant contribution from mutations affecting cilia genes and chromatin remodeling genes; however, the mechanism(s) connecting chromatin remodeling to CHD is unknown. Histone H2B monoubiquitination (H2Bub1) is catalyzed by the RNF20 complex consisting of RNF20, RNF40, and UBE2B. Here, we show significant enrichment of loss-of-function mutations affecting H2Bub1 in CHD patients (enrichment 6.01,P= 1.67 × 10−03), some of whom had abnormal laterality associated with ciliary dysfunction. InXenopus, knockdown ofrnf20andrnf40results in abnormal heart looping, defective development of left–right (LR) asymmetry, and impaired cilia motility. Rnf20, Rnf40, and Ube2b affect LR patterning and cilia synergistically. Examination of global H2Bub1 level inXenopusembryos shows that H2Bub1 is developmentally regulated and requires Rnf20. To examine gene-specific H2Bub1, we performed ChIP-seq of mouse ciliated and nonciliated tissues and showed tissue-specific H2Bub1 marks significantly enriched at cilia genes including the transcription factorRfx3. Rnf20 knockdown results in decreased levels ofrfx3mRNA inXenopus, and exogenousrfx3can rescue the Rnf20 depletion phenotype. These data suggest that Rnf20 functions at theRfx3locus regulating cilia motility and cardiac situs and identify H2Bub1 as an upstream transcriptional regulator controlling tissue-specific expression of cilia genes. Our findings mechanistically link the two functional gene ontologies that have been implicated in human CHD: chromatin remodeling and cilia function.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-12-16
    Description: Plasticity theory aims at describing the yield loci and work hardening of a material under general deformation states. Most of its complexity arises from the nontrivial dependence of the yield loci on the complete strain history of a material and its microstructure. This motivated 3 ingenious simplifications that underpinned a century of developments in this field: 1) yield criteria describing yield loci location; 2) associative or nonassociative flow rules defining the direction of plastic flow; and 3) effective stress–strain laws consistent with the plastic work equivalence principle. However, 2 key complications arise from these simplifications. First, finding equations that describe these 3 assumptions for materials with complex microstructures is not trivial. Second, yield surface evolution needs to be traced iteratively, i.e., through a return mapping algorithm. Here, we show that these assumptions are not needed in the context of sequence learning when using recurrent neural networks, diverting the above-mentioned complications. This work offers an alternative to currently established plasticity formulations by providing the foundations for finding history- and microstructure-dependent constitutive models through deep learning.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-12
    Description: Two-dimensional monolayer materials, with thicknesses of up to several atoms, can be obtained from almost every layer-structured material. It is believed that the catalogs of known 2D materials are almost complete, with fewer new graphene-like materials being discovered. Here, we report 2D graphene-like monolayers from monoxides such as BeO, MgO, CaO, SrO, BaO, and rock-salt structured monochlorides such as LiCl, and NaCl using first-principle calculations. Two-dimensional materials containing d-orbital atoms such as HfO, CdO, and AgCl are predicted. Adopting the same strategy, 2D graphene-like monolayers from mononitrides such as scandium nitride (ScN) and monoselenides such as cadmium selenide (CdSe) are discovered. Stress engineering is found to help stabilize 2D monolayers, through canceling the imaginary frequency of phonon dispersion relation. These 2D monolayers show high dynamic, thermal, kinetic, and mechanic stabilities due to atomic hybridization, and electronic delocalization.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-03-08
    Description: Materials that can be switched between low and high thermal conductivity states would advance the control and conversion of thermal energy. Employing in situ time-domain thermoreflectance (TDTR) and in situ synchrotron X-ray scattering, we report a reversible, light-responsive azobenzene polymer that switches between high (0.35 W m−1K−1) and low thermal conductivity (0.10 W m−1K−1) states. This threefold change in the thermal conductivity is achieved by modulation of chain alignment resulted from the conformational transition between planar (trans) and nonplanar (cis) azobenzene groups under UV and green light illumination. This conformational transition leads to changes in the π-π stacking geometry and drives the crystal-to-liquid transition, which is fully reversible and occurs on a time scale of tens of seconds at room temperature. This result demonstrates an effective control of the thermophysical properties of polymers by modulating interchain π-π networks by light.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-05-01
    Description: The Hippo pathway is involved in regulating contact inhibition of proliferation and organ size control and responds to various physical and biochemical stimuli. It is a kinase cascade that negatively regulates the activity of cotranscription factors YAP and TAZ, which interact with DNA binding transcription factors including TEAD and activate the expression of target genes. In this study, we show that the palmitoylation of TEAD, which controls the activity and stability of TEAD proteins, is actively regulated by cell density independent of Lats, the key kinase of the Hippo pathway. The expression of fatty acid synthase and acetyl-CoA carboxylase involved in de novo biosynthesis of palmitate is reduced by cell density in an Nf2/Merlin-dependent manner. Depalmitoylation of TEAD is mediated by depalmitoylases including APT2 and ABHD17A. Palmitoylation-deficient TEAD4 mutant is unstable and degraded by proteasome through the activity of the E3 ubiquitin ligase CHIP. These findings show that TEAD activity is tightly controlled through the regulation of palmitoylation and stability via the orchestration of FASN, depalmitoylases, and E3 ubiquitin ligase in response to cell contact.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-02-19
    Description: Foraging is a goal-directed behavior that balances the need to explore the environment for resources with the need to exploit those resources. InDrosophila melanogaster, distinct phenotypes have been observed in relation to theforaginggene (for), labeled the rover and sitter. Adult rovers explore their environs more extensively than do adult sitters. We explored whether this distinction would be conserved in humans. We made use of a distinction from regulatory mode theory between those who “get on with it,” so-called locomotors, and those who prefer to ensure they “do the right thing,” so-called assessors. In this logic, rovers and locomotors share similarities in goal pursuit, as do sitters and assessors. We showed that genetic variation inPRKG1, the human ortholog offor, is associated with preferential adoption of a specific regulatory mode. Next, participants performed a foraging task to see whether genetic differences associated with distinct regulatory modes would be associated with distinct goal pursuit patterns. Assessors tended to hug the boundary of the foraging environment, much like behaviors seen inDrosophilaadult sitters. In a patchy foraging environment, assessors adopted more cautious search strategies maximizing exploitation. These results show that distinct patterns of goal pursuit are associated with particular genotypes ofPRKG1, the human ortholog offor.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-09-23
    Description: Mutational signatures can reveal properties of underlying mutational processes and are important when assessing signals of selection in cancer. Here, we describe the sequence characteristics of mutations induced by ultraviolet (UV) light, a major mutagen in several human cancers, in terms of extended (longer than trinucleotide) patterns as well as variability of the signature across chromatin states. Promoter regions display a distinct UV signature with reduced TCG 〉 TTG transitions, and genome-wide mapping of UVB-induced DNA photoproducts (pyrimidine dimers) showed that this may be explained by decreased damage formation at hypomethylated promoter CpG sites. Further, an extended signature model encompassing additional information from longer contextual patterns improves modeling of UV mutations, which may enhance discrimination between drivers and passenger events. Our study presents a refined picture of the UV signature and underscores that the characteristics of a single mutational process may vary across the genome.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-02-27
    Description: Drugs that reverse epigenetic silencing, such as the DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (AZA), have profound effects on transcription and tumor cell survival. AZA is an approved drug for myelodysplastic syndromes and acute myeloid leukemia, and is under investigation for different solid malignant tumors. AZA treatment generates self, double-stranded RNA (dsRNA), transcribed from hypomethylated repetitive elements. Self dsRNA accumulation in DNMTi-treated cells leads to type I IFN production and IFN-stimulated gene expression. Here we report that cell death in response to AZA treatment occurs through the 2′,5′-oligoadenylate synthetase (OAS)-RNase L pathway. OASs are IFN-induced enzymes that synthesize the RNase L activator 2-5A in response to dsRNA. Cells deficient in RNase L or OAS1 to 3 are highly resistant to AZA, as are wild-type cells treated with a small-molecule inhibitor of RNase L. A small-molecule inhibitor of c-Jun NH2-terminal kinases (JNKs) also antagonizes RNase L-dependent cell death in response to AZA, consistent with a role for JNK in RNase L-induced apoptosis. In contrast, the rates of AZA-induced and RNase L-dependent cell death were increased by transfection of 2-5A, by deficiencies in ADAR1 (which edits and destabilizes dsRNA), PDE12 or AKAP7 (which degrade 2-5A), or by ionizing radiation (which induces IFN-dependent signaling). Finally, OAS1 expression correlates with AZA sensitivity in the NCI-60 set of tumor cell lines, suggesting that the level of OAS1 can be a biomarker for predicting AZA sensitivity of tumor cells. These studies may eventually lead to pharmacologic strategies for regulating the antitumor activity and toxicity of AZA and related drugs.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-09-12
    Description: Analyses of thermal diffusivity data on complex insulators and on strongly correlated electron systems hosted in similar complex crystal structures suggest that quantum chaos is a good description for thermalization processes in these systems, particularly in the high-temperature regime where the many phonon bands and their interactions dominate the thermal transport. Here we observe that for these systems diffusive thermal transport is controlled by a universal Planckian timescale τ∼ℏ/kBT and a unique velocity vE. Specifically, vE≈vph for complex insulators, and vph≲vE≪vF in the presence of strongly correlated itinerant electrons (vph and vF are the phonon and electron velocities, respectively). For the complex correlated electron systems we further show that charge diffusivity, while also reaching the Planckian relaxation bound, is largely dominated by the Fermi velocity of the electrons, hence suggesting that it is only the thermal (energy) diffusivity that describes chaos diffusivity.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-03-12
    Description: SalmonellaTyphimurium can invade and survive within macrophages where the bacterium encounters a range of host environmental conditions. Like many bacteria,S.Typhimurium rapidly responds to changing environments by the use of second messengers such as cyclic di-GMP (c-di-GMP). Here, we generate a fluorescent biosensor to measure c-di-GMP concentrations in thousands of individual bacteria during macrophage infection and to define the sensor enzymes important to c-di-GMP regulation. Three sensor phosphodiesterases were identified as critical to maintaining low c-di-GMP concentrations generated after initial phagocytosis by macrophages. Maintenance of low c-di-GMP concentrations by these phosphodiesterases was required to promote survival within macrophages and virulence for mice. Attenuation ofS. Typhimurium virulence was due to overproduction of c-di-GMP−regulated cellulose, as deletion of the cellulose synthase machinery restored virulence to a strain lacking enzymatic activity of the three phosphodiesterases. We further identified that the cellulose-mediated reduction in survival was constrained to a slow-replicating persister population ofS.Typhimurium induced within the macrophage intracellular environment. As utilization of glucose has been shown to be required forS.Typhimurium macrophage survival, one possible hypothesis is that this persister population requires the glucose redirected to the synthesis of cellulose to maintain a slow-replicating, metabolically active state.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-05-24
    Description: IgA is the most abundantly produced antibody in the body and plays a crucial role in gut homeostasis and mucosal immunity. IgA forms a dimer that covalently associates with the joining (J) chain, which is essential for IgA transport into the mucosa. Here, we demonstrate that the marginal zone B and B-1 cell-specific protein (MZB1) interacts with IgA through the α-heavy-chain tailpiece dependent on the penultimate cysteine residue and prevents the intracellular degradation of α-light-chain complexes. Moreover, MZB1 promotes J-chain binding to IgA and the secretion of dimeric IgA. MZB1-deficient mice are impaired in secreting large amounts of IgA into the gut in response to acute inflammation and develop severe colitis. Oral administration of a monoclonal IgA significantly ameliorated the colitis, accompanied by normalization of the gut microbiota composition. The present study identifies a molecular chaperone that promotes J-chain binding to IgA and reveals an important mechanism that controls the quantity, quality, and function of IgA.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-02-25
    Description: Raindrop impact on infected plants can disperse micron-sized propagules of plant pathogens (e.g., spores of fungi). Little is known about the mechanism of how plant pathogens are liberated and transported due to raindrop impact. We used high-speed photography to observe thousands of dry-dispersed spores of the rust fungus Puccinia triticina being liberated from infected wheat plants following the impact of a single raindrop. We revealed that an air vortex ring was formed during the raindrop impact and carried the dry-dispersed spores away from the surface of the host plant. The maximum height and travel distance of the airborne spores increased with the aid of the air vortex. This unique mechanism of vortex-induced dispersal dynamics was characterized to predict trajectories of spores. Finally, we found that the spores transported by the air vortex can reach beyond the laminar boundary layer of leaves, which would enable the long-distance transport of plant pathogens through the atmosphere.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-11-18
    Description: The avian predentary is a small skeletal structure located rostral to the paired dentaries found only in Mesozoic ornithuromorphs. The evolution and function of this enigmatic element is unknown. Skeletal tissues forming the predentary and the lower jaws in the basal ornithuromorph Yanornis martini are identified using computed-tomography, scanning electron microscopy, and histology. On the basis of these data, we propose hypotheses for the development, structure, and function of this element. The predentary is composed of trabecular bone. The convex caudal surface articulates with rostromedial concavities on the dentaries. These articular surfaces are covered by cartilage, which on the dentaries is divided into 3 discrete patches: 1 rostral articular cartilage and 2 symphyseal cartilages. The mechanobiology of avian cartilage suggests both compression and kinesis were present at the predentary–dentary joint, therefore suggesting a yet unknown form of avian cranial kinesis. Ontogenetic processes of skeletal formation occurring within extant taxa do not suggest the predentary originates within the dentaries, nor Meckel’s cartilage. We hypothesize that the predentary is a biomechanically induced sesamoid that arose within the soft connective tissues located rostral to the dentaries. The mandibular canal hosting the alveolar nerve suggests that the dentary teeth and predentary of Yanornis were proprioceptive. This whole system may have increased foraging efficiency. The Mesozoic avian predentary apparently coevolved with an edentulous portion of the premaxilla, representing a unique kinetic morphotype that combined teeth with a small functional beak and persisted successfully for ∼60 million years.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-01-17
    Description: Human feet have evolved to facilitate bipedal locomotion, losing an opposable digit that grasped branches in favor of a longitudinal arch (LA) that stiffens the foot and aids bipedal gait. Passive elastic structures are credited with supporting the LA, but recent evidence suggests that plantar intrinsic muscles (PIMs) within the foot actively contribute to foot stiffness. To test the functional significance of the PIMs, we compared foot and lower limb mechanics with and without a tibial nerve block that prevented contraction of these muscles. Comparisons were made during controlled limb loading, walking, and running in healthy humans. An inability to activate the PIMs caused slightly greater compression of the LA when controlled loads were applied to the lower limb by a linear actuator. However, when greater loads were experienced during ground contact in walking and running, the stiffness of the LA was not altered by the block, indicating that the PIMs’ contribution to LA stiffness is minimal, probably because of their small size. With the PIMs blocked, the distal joints of the foot could not be stiffened sufficiently to provide normal push-off against the ground during late stance. This led to an increase in stride rate and compensatory power generated by the hip musculature, but no increase in the metabolic cost of transport. The results reveal that the PIMs have a minimal effect on the stiffness of the LA when absorbing high loads, but help stiffen the distal foot to aid push-off against the ground when walking or running bipedally.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-05-08
    Description: Scalable nanomanufacturing enables the commercialization of nanotechnology, particularly in applications such as nanophotonics, silicon photonics, photovoltaics, and biosensing. Nanoimprinting lithography (NIL) was the first scalable process to introduce 3D nanopatterning of polymeric films. Despite efforts to extend NIL’s library of patternable media, imprinting of inorganic semiconductors has been plagued by concomitant generation of crystallography defects during imprinting. Here, we use an electrochemical nanoimprinting process—called Mac-Imprint—for directly patterning electronic-grade silicon with 3D microscale features. It is shown that stamps made of mesoporous metal catalysts allow for imprinting electronic-grade silicon without the concomitant generation of porous silicon damage while introducing mesoscale roughness. Unlike most NIL processes, Mac-Imprint does not rely on plastic deformation, and thus, it allows for replicating hard and brittle materials, such as silicon, from a reusable polymeric mold, which can be manufactured by almost any existing microfabrication technique.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...