ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Condensed Matter: Electronic Properties, etc.  (2,711)
  • Meteorology and Climatology  (2,455)
  • Polymer and Materials Science  (2,009)
  • Electronics and Electrical Engineering
  • 2015-2019  (4,429)
  • 2005-2009  (2,044)
  • 1950-1954  (2,011)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-05-07
    Description: In order to tackle and solve the prediction problem of the lifetime of Li-ion batteries, it is essential to have awareness of the current state and health of the battery pack. To be able to accurately predict the future state of any system, one must possess knowledge of its current and future operations. Using derived models of the current and future system behavior, a model-based prognostics approach can be implemented as a solution to the prediction problem. As more and more autonomous electric vehicles progressively emerge in our daily life, a very critical challenge lies in accurate prediction of remaining useful life of the systems/subsystems. Batteries, power electronics conditioning systems, and motors are integrated to form the powertrain in electric vehicles; one of the most critical systems. In the case of electric aircrafts, computing remaining flying time is critical for safety, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastropheThis presentation covers a physics-based modeling approach implemented for case studies in capacitor and battery prognostics which are an integral part of an electrical powertrain system. The general approach of model-based prognostics will be examined as a potential solution for safety critical problems related to battery state of charge and state of health.
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN64822 , IEEE Power Electronics Society Lecture; Santa Clara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-06
    Description: Emerging power metal-oxide semiconductor field-effect transistor (MOSFETs) based on silicon carbide and gallium nitride technology are finding widespread use in many electronic applications such as motor control and DC/DC converters due to their higher voltage, higher temperature tolerance, and higher frequency switching capabilities. To utilize these power devices and to meet circuit/system compactness, modularity, and operational functionality, gate drivers that provide unique attributes, such as fast switching and high-current handling capability, are needed. In addition, power systems geared for use in space mission applications require on-board devices to withstand exposure to extreme temperatures and wide thermal swings. Very little data, however, exist on the performance of such devices and circuits under extreme temperatures. In this work, the performance of a high-speed gate driver with potential use in controlling power-level transistors was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to assess performance for potential use of this device in space exploration missions under extreme temperature conditions.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN68254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-21
    Description: Transport from the Northern Hemisphere (NH) midlatitudes to the Arctic plays a crucial role in determining the abundance of trace gases and aerosols that are important to Arctic climate via impacts on radiation and chemistry. Here we examine this transport using an idealized tracer with a fixed lifetime and predominantly midlatitude land-based sources in models participating in the Chemistry Climate Model Initiative (CCMI). We show that there is a 25%-45% difference in the Arctic concentrations of this tracer among the models. This spread is correlated with the spread in the location of the Pacific jet, as well as the spread in the location of the Hadley Cell (HC) edge, which varies consistently with jet latitude. Our results suggest that it is likely that the HC-related zonal-mean meridional transport rather than the jet-related eddy mixing is the major contributor to the inter-model spread in the transport of land-based tracers into the Arctic. Specifically, in models with a more northern jet, the HC generally extends further north and the tracer source region is mostly covered by surface southward flow associated with the lower branch of the HC, resulting in less efficient transport poleward to the Arctic. During boreal summer, there are poleward biases in jet location in free-running models, and these models likely underestimate the rate of transport into the Arctic. Models using specified dynamics do not have biases in the jet location, but do have biases in the surface meridional flow, which may result in differences in transport into the Arctic. In addition to the land-based tracer, the midlatitude-to-Arctic transport is further examined by another idealized tracer with zonally uniform sources. With equal sources from both land and ocean, the inter-model spread of this zonally uniform tracer is more related to variations in parameterized convection over oceans rather than variations in HC extent, particularly during boreal winter. This suggests that transport of land-based and oceanic tracers or aerosols towards the Arctic differs in pathways and therefore their corresponding inter-model variabilities result from different physical processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68258 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 8; 5511-5528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-22
    Description: An analysis was set up to model the temperature of the advanced modular power system (AMPS) power distribution cards when installed within the electronics enclosure case. The analysis was used to determine the steady-state temperature distribution of the cards within the case. To verify the analysis, an experiment was set up and conducted to simulate the operation of the cards within the enclosure. Four tests were conducted. The tests varied the position of the cold plate and evaluated the use of a thermal compound to reduce the contact resistance between the joints within the thermal path between the cards and the cold plate. Three of the four cases examined showed very good agreement between the analysis and the experiment with a less than 1-percent variation in the predicated temperatures determined through the analysis and the experimentally derived temperatures. In the remaining case, the difference between the analysis and experiment was approximately 12 percent. Both the experiment and analysis showed that the modular power conditioning cards can be maintained within their desired maximum operating temperature range of 40 to 45 C through thermal conduction to a cold plate when operating with their estimated maximum heat output of 16 W per card.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN61712 , NASA/TM-2019-220011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-29
    Description: We analyze the atmospheric processes that explain the large changes in radiative feed-backs between the two latest climate configurations of the Hadley Centre Global Environmental model. We use a large set of atmosphere-only climate-change simulations (amip and amip-p4K) to separate the contributions to the differences in feedback parameter from all the atmospheric model developments between the two latest model configurations. We show that the differences are mostly driven by changes in the shortwave cloud radiative feedback in the midlatitudes, mainly over the Southern Ocean. Two new schemes explain most of the differences: the introduction of a new aerosol scheme; and the development of a new mixed-phase cloud scheme. Both schemes reduce the strength of the pre-existing shortwave negative cloud feedback in the midlatitudes. The new aerosol scheme dampens a strong aerosol-cloud interaction, and it also suppresses a negative clear-sky shortwave feedback. The mixed-phase scheme increases the amount of cloud liquid water path (LWP) in the present-day, thereby reducing the radiative effciency of the increase of LWP in the warmer climate. It also enhances a strong, pre-existing, positive cloud fraction feedback. We assess the realism of the changes by comparing present-day simulations against observations, and discuss avenues that could help constrain the relevant processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70134 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-15
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M19-7317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-25
    Description: The association between climate variability and episodic events, such as the antecedent moisture conditions prior to wildfire or the cooling following volcanic eruptions, is commonly assessed using Superposed Epoch Analysis (SEA). In SEA the epochal response is typically calculated as the average climate conditions prior to and following all event years or their deviation from climatology. However, the magnitude and significance of the inferred climate association may be sensitive to the selection or omission of individual key years, potentially resulting in a biased assessment of the relationship between these events and climate. Here we describe and test a modified double-bootstrap SEA that generates multiple unique draws of the key years and evaluates the sign, magnitude, and significance of event-climate relationships within a probabilistic framework. This multiple resampling helps quantify multiple uncertainties inherent in conventional applications of SEA within dendrochronology and paleoclimatology. We demonstrate our modified SEA by evaluating the volcanic cooling signal in a Northern Hemisphere tree-ring temperature reconstruction and the link between drought and wildfire events in the western United States. Finally, we make our Matlab and R code available to be adapted for future SEA applications.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68850 , Dendrochronologia (ISSN 1125-7865); 55; 119-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-02
    Description: GPM (Global Precipitation Measurement) Products. Includes information on these two programs that integrate GPM data: Multi-Radar/Multi-Sensor (MRMS) and Integrated Multi-satellitE Retrievals for GPM (IMERG).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71369 , Weather and Air Quality Forecasting Applications Workshop; Jul 22, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-23
    Description: The water vapor is a relevant greenhouse gas in the Earth's climate system, and satellite products become one of the most effective way to characterize and monitor the columnar water vapor (CWV) content at global scale. Recently, a new product (MCD19) was released as part of MODIS (Moderate Resolution Imaging Spectroradiometer) Collection 6 (C6). This operational product from the Multi-Angle Implementation for Atmospheric Correction (MAIAC) algorithm includes a high 1-kilometer resolution CWV retrievals. This study presents the first global validation of MAIAC C6 CWV obtained from MODIS MCD19A2 product. This evaluation was performed using Aerosol Robotic Network (AERONET) observations at 265 sites (2000-2017). Overall, the results show a good agreement between MAIAC/AERONET CWV retrievals, with correlation coefficient higher than 0.95 and RMS (Root Mean Square) error lower than 0.250 centimeters. The binned error analysis revealed an underestimation (approximately 10 percent) of Aqua CWV retrievals with negative bias for CWV higher than 3.0 centimeters. In contrast, Terra CWV retrievals show a slope of regression close to unity and a low mean bias of 0.075 centimeters. While the accuracy is relatively similar between 1.0 and 5.0 centimeters for both sensor products, Terra dataset is more reliable for applications in humid tropical areas (less than 5.0 centimeters). The expected error was defined as plus or minus 15 percent, with less than 68 percent of retrievals falling within this envelope. However, the accuracy is regionally dependent, and lower error should be expected in some regions, such as South America and Oceania. Since MODIS instruments have exceeded their design lifetime, time series analysis was also presented for both sensor products. The temporal analysis revealed a systematic offset of global average between Terra and Aqua CWV records. We also found an upward trend (approximately 0.2 centimeters per decade) in Terra CWV retrievals, while Aqua CWV retrievals remain stable over time. The sensor degradation influences the ability to detect climate signals, and this study indicates the need for revisiting calibration of the MODIS bands 17-19, mainly for Terra instrument, to assure the quality of the MODIS water vapor product. Finally, this study presents a comprehensive validation analysis of MAIAC CWV over land, raising the understanding of its overall quality.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68951 , Atmospheric Research (ISSN 0169-8095 ); 225; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-19
    Description: This presentation illustratively communicates how to SPICE model silicon carbide (SiC) SiC junction field effect transistors (JFETs) for designing circuits for NASA GRC's upcoming prototype fabrication of SiC JFET IC Version 12.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN68630
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-11
    Description: While the increase of computer power mobilizes a part of the community towards models with explicit convection or based on machine learning, we review the part of the literature dedicated to convective parameterization development for large-scale forecast and climate models. Recent findings: Many developments are underway to overcome endemic limitations of traditional convective parameterizations, either in unified or multi-object frameworks: scale-aware and stochastic approaches, new prognostic equations or representations of new components such as cold pools. Understanding their impact on the emergent properties of a model remains challenging, due to subsequent tuning of parameters and the limited understanding given by traditional metrics. Summary: Further effort still needs to be dedicated to the representation of the life cycle of convective systems, in particular their mesoscale organization and associated cloud cover. The development of more process-oriented metrics based on new observations is also needed to help quantify model improvement and better understand the mechanisms of climate change.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68302 , Current Climate Change Reports; 5; 2; 95-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-11
    Description: This presentation illustratively communicates integrated circuit (IC) mask design and layout rules for NASA GRC's upcoming prototype fabrication of SiC JFET IC Version 12.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN68170
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-03
    Description: This presentation provides an overview of common mode conducted emissions (CMCE) measurements on power and signal cables. The presentation focuses on how such measurements directly apply to electromagnetic compatibility at the system level and provides a discussion of different techniques for performing them correctly and accurately.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN70541 , 2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity; Jul 22, 2019 - Jul 26, 2019; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: The Atmospheric Infrared Sounder (AIRS) is the hyperspectral infrared sounder onboard NASA's Aqua satellite, launched in 2002. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the Aqua AIRS mission and the subsequent Suomi-National Polar-orbiting Partnership Cross-track Infrared Sounder (CrIS) mission. The Planetary Boundary Layer (PBL) Height is a new variable added in the AIRS Version 6 support product. It is derived based on gradients of the retrieved atmospheric thermodynamic profile, and gives the pressure at the top of PBL over the ocean. The GES DISC also provides services for the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product generated by the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system. The monthly PBL Height variable has been available in the Giovanni system, which is a Web-based application developed by the GES DISC providing a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. In this work, we will present the monthly PBL Height data from AIRS and MERRA-2 and the services to support data intercomparison, such as access, plotting, subsetting, re-gridding, and generation of a multi-year monthly mean. We will also show intercomparison results, and evaluate whether (over the ocean) AIRS can observe PBL features similar to the reanalysis product at monthly and longer-term scales.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65014 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-20
    Description: Emission sources of trace gases and aerosol particles in the South American (SA)and African (Af) continents have a strong seasonal and space variability associated with the extensive vegetation fires activities. In both continents, during the austral winter, the fires affect mainly tropical forest and savannah-type biomes and are mostly associated with deforestation and agricultural/pasture land management. Smoke aerosol particles, on average, contribute to at least 90% of the total aerosol optical depth (AOD) in the visible spectrum in the case of the South America regional smoke. Smoke aerosols also act as cloud condensation nuclei affecting cloud microphysics properties and therefore, changing the radiation budget, hydrological cycle and global circulation patterns over disturbed areas (Kaufman, 1995; Rosenfeld, 1999; Andreae,et al., 2004; Koren et al., 2004, Zhang, 2008; Ott et al., 2010; Randles et al., 2013). This study aims to evaluate and quantify the impact of including a comprehensive emission field of biomass burning aerosol on the performance of a seasonal climate forecast system, not only regarding the AOD itself but mainly on the meteorological state variable (e.g., precipitation and temperature). To address the questions put above, we designed two numerical experiments: 1- named"AERO_CTL" which applies the Quick Fire Emissions Dataset (QFED) emissions estimated with intra-diurnal variation (hereafter, BBE), and 2- named "AERO_CLM" where the sourcee mission is based on a climatology of the QFED emissions, with only monthly variation(hereafter, BBCLIM). Hindcast simulations were produced using the Goddard Earth ObservingSystem global circulation model, version 5, sub-seasonal to seasonal (GEOS5-S2S) system with a nominal spatial resolution of 56km (Rienecker et al., 2008). In both experiments, the aerosol feedbacks from cloud developments and radiation interactions were accounted. The two experiments consisted of 4 members each and ran from June to November spanning over the years 2000 to 2015. Model performance was evaluated by calculating statistical metrics on the mean area of SA and Af. Our results demonstrated that the skill model in predicting AOD is significantly improve when BBE source emission is applied over SA, but not over the Afcontinent. Over SA, the correlation between the AERO_CTL model configuration and MERRA-2 is 0.93 (R2= 0.86, RMS=0.02, BIAS=0.01), while the AERO_CLM model presents a value of0.81 (R2= 0.65, RMS=0.04, BIAS=0.06). However, the AERO_CTL experiment better represents the inter-annual variability of the AOS in both regions. The gain of the skill in predicting the AOD by the AERO_CTL experiment is also seen in some meteorological variables. We observed an increase in the model skill in predicting the 2-meter temperature and precipitation of up to 0.3 for the AERO_CTL experiment in comparison to the AERO_CLM. AERO_CLM. According to the analyzed hindcast, we inferred that representing the BBE more realistically implies in a significant gain of skills in the seasonal climate forecasting over SA and Af continents.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64697 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-20
    Description: We developed and implemented a simple representation of a cold pool in the Grell-Freitas (GF) convection parameterization. The cold pool parameterization is based on the observation that convective-scale downdrafts produce a local deficit of the moist static energy (MSE). This information is advected and becoming downwind available to trigger and intensify new convection. The cold pool is dissipated by a simple exponential decay using a lifetime of a few hours, or by interacting with the underneath surface by exchanging latent and sensible heat fluxes. Preliminary results show some improvement of the simulation of the diurnal cycle of the precipitation over the land, mainly during the nighttime.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64710 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (milli-seconds for O1D to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a chemistry model. We have investigated a machine learning approach to emulate the chemistry instead of solving the differential equations numerically. From a one-month simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry. This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, etc. We discuss speed and accuracy of our approach, and highlight some potential future directions for improving it.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67517 , European Geosciences Union General Assembly (EGU); Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-20
    Description: Analysis of multispectral (red-green-blue, RGB) satellite image composites can be used to improve understanding of thermodynamic and / or dynamic features associated with the development of significant weather events (cyclones, hurricanes, intense convection, turbulence, etc.) The enhanced water vapor imaging capabilities of the Advanced Baseline Imager on GOES-16 and GOES-17 satellites provide a unique opportunity to demonstrate this capability through a comparison of the Air Mass (AM) and Differential Water Vapor (DWV) RGB image products for several case studies.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64361 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64237 , Annual Meeting of the American Meteorological Society; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64174 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64396 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-20
    Description: Conclusions: GLM (Geostationary Lightning Mapper) flash rates were 2 to 5 times lower than LMA (Lightning Mapping Array) in an Alabama supercell that was tracked using a combination of GLM flash initiation density and VIL (Vertically Integrated Liquid); Since most lightning was initiating at 8-9 kilometers (and not at low levels) according to LMA, flash height does not appear to be a primary factor in low GLM flash rates; When (LMA-GLM) flash rate differences were largest, the LMA observed flash areas were relatively small (and vice versa); Flash size may be a primary factor in low GLM flash rates due to detectability and/or flash clustering issues with small flashes within the coarse 8 kilometers by 8 kilometers resolution; High cloud liquid water droplet concentrations were inferred indirectly from riming necessary for large radar MESH (Maximum Expected Size of Hail), VIL and hail/graupel volumes. High cloud water droplet concentrations in supercells may decrease GLM detection efficiency due to optical extinction of near IR (near Infrared) emitted by lightning as it moves through cloud; Despite large flash rate differences, GLM & LMA lightning jumps during robust supercell generally agreed with each other and radar trends in HID (Radar Reflectivity and Hydrometeor Identification), MESH and VIL.However, more LMA jumps (than GLM) in developing supercell and more GLM jumps (than LMA) in weak to decaying supercell. Future work: improve GLM tracking.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64184 , AMS 2019-1018 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN63728 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-20
    Description: We propose a novel Bayesian Monte Carlo Integration (BMCI) technique to retrieve the profiles of temperature, water vapor, and cloud liquid/ice water content from microwave cloudy measurements in the presence of tropical cyclones (TC). These retrievals then can either be directly used by meteorologists to analyze the structure of TCs or be assimilated into numerical models to provide accurate initial conditions for the NWP (Numerical Weather Prediction) models. The BMCI technique is applied to the data from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) and Global Precipitation Measurement (GPM) Microwave Imager (GMI). The retrieved profiles are then assimilated into Hurricane WRF (Weather Research and Forecasting) using the GSI (Gridpoint Statistical Interpolation) data assimilation system.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66775 , Meteorology, Ocean Engineering and Marine Sciences Seminar; Apr 17, 2019; Melborne, FL; United States|University of Maryland Departmental Seminar Series: AOSC 494: Atmospheric and Oceanic Science Seminar; Mar 14, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64526 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67432 , NASA Atmospheric Infrared Sounder (AIRS) Spring Science Team Meeting 2019; Apr 03, 2019 - Apr 05, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64336 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-20
    Description: Outline: Collaborative Partners; What is the Geostationary Lightning Mapper (GLM)?; Initial observations (Density Products); Lightning safety with GLM; The 30-minute lightning hazard product; Goal - Basic understanding of and how to use the lightning hazard product.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64243 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN66424 , European Geosciences Union (EGU) General Assembly 2019; Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67155 , Workshop on Predictability, Dynamics and Applications Research Using the TIGGE and S2S Ensembles; Apr 02, 2019 - Apr 05, 2019; Reading; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-20
    Description: Glacialinterglacial variations in CO2 (exp) and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (〉40N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66093 , Proceedings of the National Academy of Sciences; 116; 11; 4822-4827
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-20
    Description: Data quality looks better than Suomi-NPP (Suomi National Polar-orbiting Partnership): similar biases. Smaller standard deviation of first guess departures and diagnosed observation errors. Weaker striping signal than Suomi-NPP ATMS (Advanced Technology Microwave Sounder). Improved first guess fits to: temperature observations (AMSU-A (Advanced Microwave Sounding Unit-A), CrIS (Cross-track Infrared Sounder), GPSRO (Global Positioning System Radio Occultation)); Humidity observations (MHS (Microwave Humidity Sounder), GEO CSRs (Geostationary Orbit Clear Sky Radiances)). Indicates improved accuracy of short range temperature and humidity forecasts. Neutral to slightly positive forecast scores.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66556 , Annual Meeting Global Space-based Inter-Calibration System (GSICS 2019); Mar 04, 2019 - Mar 08, 2019; Frascati; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-20
    Description: At the NASA Goddard Earth Sciences (GES) Data and Information Service Center (DISC), we have archived and distributed more than 2,400 Earth science data products, from different missions or projects containing more than 100 M data files/granules with a total volume size nearly 2 PB that broadly serve user needs in science areas such as Atmospheric Composition, Water & Energy Cycles and Climate Variability. To date, GES DISC has developed many pertinent services to facilitate the usage of data products by our research communities, represented by approximately 24,000 registered users. We are facing the big data with increasingly archival volume and data types, moreover, we also encounter increasing users' demands and the demands are more diversified. It is still a challenge for us to better understand exactly what our users' needs are, even after developing more than 70 services, including well-known online tools such as Giovanni and MERRA subsetter. In this presentation, we will try to address how we can accommodate the users' needs from two applicational user communities, Air Quality and Wind Energy, from data or service discovery to guide them properly utilize the data and services to fit their needs.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65771 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64434 , American Meteorological Society Conference; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-20
    Description: Observational data are essential for Earth science research and applications. Traditional ground-based observations suffer from many limitations (e.g. costly deployment). As a result, data are often sparse and inconsistent, especially over vast oceans that cover nearly 71% of the Earth's surface, and for remote continents. Precipitation is one of the important physical parameters in the global hydrological cycle and other disciplines. Each year, severe floods and droughts happen in different parts of the world and cause significant damage to the economy, as well as human casualties (e.g. Hurricane Katrina, the Dust Bowl). Accurate and timely precipitation observations and predictions are important for research and applications. However, ground-based precipitation observations are quite limited, especially in remote and mountainous regions. Since the satellite era began, satellite-based precipitation products have gained popularity in Earth science research, applications, and education. Accessing satellite products can be a daunting task to many users, especially those who do not have prior experience or knowledge with satellite data. Recognizing this obstacle, the NASA Goddard Earth Sciences and Data and Information Services Center (GES DISC), home to data archives for the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM), has developed data services including an online visualization and analysis tool, Giovanni (the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), enabling users at different levels to access, explore, and evaluate NASA satellite-based data products without downloading either data and software, or requiring coding. Currently, global and regional precipitation products from different satellite missions (TRMM, GPM) and projects (e.g. the Modern Era Retrospective-analysis for Research and Applications Version 2 (MERRA-2), and the North American Land Data Assimilation System (NLDAS)), ranging from half-hourly to monthly temporal resolution, are available in Giovanni. There are over 1900 variables in Giovanni, covering measurements in precipitation, hydrology, atmospheric dynamics, atmospheric chemistry, etc. In this poster presentation, we will provide a live demonstration of Giovanni and its latest development, including precipitation-related variables, and new basic features such as polar projections. The session will also provide a Q&A opportunity for attendees.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64638 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-20
    Description: The Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to data archives of the NASA-JAXA Global Precipitation Measurement (GPM), the Tropical Rainfall Measuring Mission (TRMM), and other NASA missions and projects. To maximize the use of NASA data products in scientific research and applications as well as for societal benefits, we provide data and information services that make datasets easy to find and use through simplification of data access for users at all levels around the world. Over the years, user-friendly data services have been developed at GES DISC, including data subsetting, format conversion, online visualization and analysis (i.e. Giovanni), user support system, etc. We routinely analyze questions, feedback, and use cases from users and algorithm developers around the world as well as best practices and new technology to improve existing services and formulate new data services. Interaction between users and algorithm developers is an important process for identifying issues in products, collecting user requirements, and improving product quality and usability. Staff members regularly communicate with algorithm developers with user questions and concerns through conferences and workshops. We publish peer-reviewed papers and articles in major Earth science journals and book chapters to describe NASA global and regional precipitation datasets and services with examples. News articles about GPM and TRMM datasets associated with significant events are regularly posted in the GES DISC Web portal and social media. We also actively participate in training activities. In this presentation, we present our latest activities about GPM and TRMM data services, data/service metrics, and future plans at GES DISC.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64656 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-20
    Description: High latitude weather forecasts, on scales ranging from mesoscale to synoptic, present difficulties due, in part, to the sparsity of conventional observations. In addition, the prevalence of extended low-level stratus cloud cover limits the use of infrared data, which are operationally assimilated only in areas unaffected by clouds. Use of cloud-cleared AIRS (Atmospheric Infrared Sounder) radiances (AIRS CCR), allows the assimilation of infrared information in cloudy regions, permitting data ingestion in regions usually undersampled. This study explores the sensitivity of planetary boundary layer height and related atmospheric dynamics to the assimilation of these data in the Goddard Earth Observing System (GEOS, version 5) data assimilation and forecast system during the boreal fall 2014 season using observing system experiments (OSEs). Examined here are comparisons between the current, operational approach of assimilating AIRS clear-sky radiances against the assimilation of CCR. Assimilation of hyperspectral infrared information from AIRS over the Arctic region slightly modifies the lower midtropospheric temperature structure, which in turn contributes to adjustments in geopotential height, affecting the baroclinic instability properties over the entire hemisphere and explaining the overall improvement in global forecast skill.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64778 , Arctic Year of Polar Prediction (YOPP) Science Workshop; Jan 14, 2019 - Jan 16, 2019; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-20
    Description: The Fertile Crescent, its hilly flanks and surrounding drylands has been a critical region for studying how climate has influenced societal change, and this review focuses on the region over the last 20,000 years. The complex social, economic, and environmental landscapes in the region today are not new phenomena and understanding their interactions requires a nuanced, multidisciplinary understanding of the past. This review builds on a history of collaboration between the social and natural palaeoscience disciplines. We provide a multidisciplinary, multiscalar perspective on the relevance of past climate, environmental, and archaeological research in assessing present day vulnerabilities and risks for the populations of southwest Asia. We discuss the complexity of palaeoclimatic data interpretation, particularly in relation to hydrology, and provide an overview of key time periods of palaeoclimatic interest. We discuss the critical role that vegetation plays in the humanclimateenvironment nexus and discuss the implications of the available palaeoclimate and archaeological data, and their interpretation, for palaeonarratives of the region, both climatically and socially. We also provide an overview of how modelling can improve our understanding of past climate impacts and associated change in risk to societies. We conclude by looking to future work, and identify themes of scale and seasonality as still requiring further focus. We suggest that by appreciating a given locale's place in the regional hydroscape, be it an archaeological site or palaeoenvironmental archive, more robust links to climate can be made where appropriate and interpretations drawn will demand the resolution of factors acting across multiple scales.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65528 , WIREs Water; 6; 2; e1330
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M18-7128 , Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64453 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-25
    Description: Following over 3 decades of gradual but uneven increases in sea ice coverage, the yearly average Antarctic sea ice extents reached a record high of 12.8 by 10 (sup 6) square kilometers in 2014, followed by a decline so precipitous that they reached their lowest value in the 40-year 1979-2018 satellite multichannel passive-microwave record, 10.7 by 10 (sup 6) square kilometers, in 2017. In contrast, it took the Arctic sea ice cover a full 3 decades to register a loss that great in yearly average ice extents. Still, when considering the 40-year record as a whole, the Antarctic sea ice continues to have a positive overall trend in yearly average ice extents, although at 11,300 plus or minus 5,300 square kilometers per year, this trend is only 50 percent of the trend for 1979-2014, before the precipitous decline. Four of the 5 sectors into which the Antarctic sea ice cover is divided all also have 40-year positive trends that are well reduced from their 2014-2017 values. The one anomalous sector in this regard,the Bellingshausen/Amundsen Seas, has a 40-year negative trend, with the yearly average ice extents decreasing overall in the first 3 decades, reaching a minimum in 2007, and exhibiting an overall upward trend since 2007 (i.e., reflecting a reversal in the opposite direction from the other 4 sectors and the Antarctic sea ice cover as a whole).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70817 , PNAS (Proceedings of the National Academy of Sciences) (ISSN 0027-8424) (e-ISSN 1091-6490); 116 ; 29 ; 14414-14423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-23
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Type: M19-7428 , NASA Electronic Parts and Packaging Electronic Technology Workshop; Jun 17, 2019 - Jun 20, 2019; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64212 , American Meteorological society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-20
    Description: GMAO Sub/Seasonal prediction system (S2S) has recently been upgraded. A complete set (1981-2016) of 9-months hindcasts for the previous and current versions (S2S-1.0 and S2S-2.1 respectively) allows for the evaluation of the forecast skill and a study of various characteristics of the ensemble forecasts in particular. We compared the intra-seasonal, interannual and intra-ensemble SST variability of the two systems against the observed. Focusing on the ENSO SST indices, we analyzed the consistency of the forecasts ensembles by studying rank histograms and comparing the ensemble spread with the standard error of the estimate.The S2S-2.1 ensemble appears to be more consistent with observations in Nio1+2 region compared to S2S-1.0, while in the central equatorial Pacific ocean this measure is comparably good for both systems. The S2S-1.0 system tends to be under dispersive, while the new system is under dispersive only at very short lead times, but tends to be over dispersive at long leads and for forecasts verifying in spring in Nio 3.4 region.Overall, the new system has greater skill in predicting ENSO. The evaluation techniques tested here will be applied for testing of the next generation sub/seasonal forecast system under development.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64576 , American Astronomical Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64477 , Annual Meeting of the American Meteorological Society; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64370 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67174 , Science Theme Meeting: Career Day for the Science and Tech Program, Eleanor Roosevelt High School; Mar 14, 2019; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-20
    Description: NASA Electronic Parts and Packaging (NEPP) Program Overview and Technology Highlights The NEPP Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test, and reliable use of electrical, electronic, and electromechanical parts by NASA, in collaboration with other government agencies and industry. The NASA Electronic Parts Assurance Group (NEPAG) is a core portion of NEPP. This presentation highlights key focus areas for 2019.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN66532 , European Organization for Nuclear Research (CERN); Mar 19, 2019; Geneva; Switzerland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-20
    Description: Previous work by this team (Reale et al. 2018) has found that the current assimilation of AIRS (Atmospheric InfraRed Sounder) radiances on a regularly spaced thinning grid is suboptimal, probably because of horizontal error correlation over meteorologically inactive areas. Moreover, cloud-cleared radiances appear to be a better product than clear-sky radiances, but need to be assimilated at a much lower density globally, because of the higher information content. Specifically: 1. Assimilation of AIRS cloud-cleared radiances at a density of about one quarter of the clear-sky radiances improves global forecast skill; 2. An adaptive thinning strategy assimilating cloud-cleared radiances at reduced density globally except around tropical cyclones (TCs), leads to substantial improvement in the structure and intensity forecast of TCs without damaging global skill.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66629 , Arctic Year of Polar Prediction (YOPP 2019) Science Workshop; Jan 14, 2019 - Jan 16, 2019; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64559 , Cyclone Global Navigation Satellite System (CYGNSS) Science Team Meeting; Jan 15, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-20
    Description: The goal of this study was to perform an independent investigation of single event destructive and transient susceptibility of the Microsemi RTG4 device. The devices under test were the Microsemi RTG4 field programmable gate array (FPGA) Rev C. The devices under test will be referenced as the DUT or RTG4 Rev C throughout this document. The DUT was configured to have various test structures that are geared to measure specific potential susceptibilities of the device. DesignDevice susceptibility was determined by monitoring the DUT for Single Event Transient (SET) and Single Event Upset (SEU) induced faults by exposing the DUT to a heavy ion beam. Potential Single Event Latch-up (SEL) was checked throughout heavy-ion testing by monitoring device current.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN44754
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-20
    Description: The United States Air Force (USAF) operates two space launch ranges, the Eastern Range (ER) and the Western Range (WR). The ER is primarily located at the Cape Canaveral Air Force Station (CCAFS) and the WR is located at the Vandenberg Air Force Base (VAFB). Multiple systems are used to measure the atmosphere at both ranges, including a suite of 915-Mhz (megahertz) Doppler Radar Wind Profilers (DRWP). The 915-MHz DRWPs are used to measure winds in the lowest few kilometers of the atmosphere, primarily in the boundary layer. Boundary layer winds are important during launch, and observations of such can be used as input to toxic dispersion and low-level abort trajectory models. However, these 915-MHz systems are nearing the end of their service life and need to be replaced by systems with similar, or greater, capabilities. The USAF funded evaluations of two systems: a 449-MHz DRWP and a Lidar. Both systems were stationed at each range for separate periods of approximately three months from November 2017 through May 2018. The USAF also funded NASAs Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) to evaluate wind output from the two systems. MSFC NE conducted analysis to demonstrate the systems wind accuracy relative to measurements from the Automated Meteorological Profiling System (AMPS) (Divers et al., 2000), data availability, and Effective Vertical Resolution (EVR).
    Keywords: Meteorology and Climatology
    Type: M19-7165 , Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States|Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-20
    Description: Earth-GRAM (Earth-Global Reference Atmospheric Model) Overview: Provides monthly statistics at any point in the atmosphere; Monthly, geographic, altitude variation; Current Version - Earth-GRAM 2016, C++; Output Includes - pressure, density, temperature, horizontal and vertical winds, speed of sound, atmospheric constituents; Used by engineering community to create atmospheric dispersions at a rapid runtime; Not a forecast model. MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2) Background: Developed by NASA Goddard Modelling and Assimilation Office; Horizontal Resolution: 0.625 degrees by 0.5 degrees longitude-by-latitude grid (NCEP (National Centers for Environmental Prediction) reanalysis I vs. 2.5 degrees by 2.5 degrees currently used in Earth-GRAM); Vertical resolution: 72 model layers or interpolated to 42 pressure levels to 0.1 hectopascals (hPa) (NCEP reanalysis I, surface to 10hPa at 17 pressure levels).
    Keywords: Meteorology and Climatology
    Type: M18-7141 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-20
    Description: Weather balloons have been a longstanding asset to NASA and Aerospace meteorology. Balloons are used from launch vehicle design to day-of-launch operations. One of the most valuable assets from these balloons is wind data from the surface up to 30 kilometers. Due to aloft winds, the balloons may drift downrange of the launch site and vehicle flight path. A 2017 study found balloons at Kennedy Space Center (KSC) can drift as far as 200 kilometers from the launch site (Decker 2017). To obtain robust launch vehicle wind assessments, it is highly desirable to characterize the wind environment along the flight path. This study looks into the errors associated with spatial separation of wind measurements using the North American Regional Reanalysis (NARR).
    Keywords: Meteorology and Climatology
    Type: M18-7121 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States|Conference on Aviation, Range, and Aerospace Meteorology; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-20
    Description: Microsemi (Microchip) RTG4 embedded triple modular redundant (TMR) phase-locked-loop (PLL) SEU data is presented. SEU data analysis includes: 1) Evaluation of heavy-ion beam angular effects (rectangular parallel pipe (RPP) or no RPP), 2) Importance of finding linear energy transfer (LET) onset (L0), 3) Comparison of prediction rate techniques.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN65147 , Microelectronics Reliability and Qualification Workshop (MRQW); Feb 05, 2019 - Feb 07, 2019; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-25
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Type: M19-7451 , 2019 NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop; Jun 17, 2019 - Jun 20, 2019; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: The Community Coordinated Modeling Center (CCMC) provides a variety of services to the space science community. The mission for the CCMC's Space Weather Forecasting team is to address the space weather needs of NASA's robotic mission by conducting customized space weather services to NASA end-users. The team leverages CCMC tools/resources, carries out prototyping activities for the next generation space weather tools and follows communications/interactions with the users. We provide space weather forecasts, notifications, analysis and also education. This presentation will describe the team's concepts of operations, notification processes, anomaly analysis, and the tools used for space weather forecasting. The tools include a system that are completely open and available to the public's use like the Integrated Space Weather Analysis (iSWA) tool and the Database of Notifications, Knowledge and Information (DONKI). We will also discuss the education and training activities and how events like solar eclipses are important for the improvement and validation of different space weather models.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67624 , UK Solar Physics Workshop; Jul 02, 2019 - Jul 07, 2019; San Juan; Argentina
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: With the development of wide band-gap (WBG) technology, the switching speed of power semiconductor devices is increased, which makes circuits more sensitive to parasitics. For three-level active neutral point clamped (3L-ANPC) converters, the over-voltage of non-conducting switches can be an issue. This paper analyzes the multiple commutation loops in 3L-ANPC converter and summarizes the impact factors of the over-voltage for the non-conducting switch. It is found that the nonlinearity of the output capacitance of the device can significantly influence the over-voltage. A simple control without introducing any additional hardware circuit is proposed to attenuate the impact of the nonlinearity. With the proposed control, the peak over-voltage of the non-conducting switch can be reduced significantly. Multi-pulse test is conducted for a 3L- ANPC converter built with silicon carbide (SiC) MOSFETs. The testing results show that the peak over-voltage decreases from 892 V to 624 V with the proposed control. More detailed analysis and experimental results will be provided in the final paper.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN68148 , IEEE COMPEL 2019; Jun 17, 2019 - Jun 20, 2019; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: This presentation illustratively communicates how to SPICE model integrated silicon carbide (SiC) SiC resistors for designing circuits for NASA GRC's upcoming prototype fabrication of SiC JFET IC Version 12.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN68636 , HOTTech Microelectronics and Sensors Subgroup Monthly Meeting; May 24, 2019; Online
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Nuclear fission power offers an attractive alternative to solar electric or radioisotope power systems for certain applications on the Moon, Mars, and deep space science missions. The advantages of independence from solar irradiance, high energy density, and abundance of fuel allow fission power systems to enable novel, high power mission architectures. While NASA has had numerous fission power programs throughout its history, few have gone far beyond the design phase. The recent test campaign called the Kilopower Reactor Using Stirling Technology project (KRUSTY) focused on a low power, kilowatt-scale design for simplicity and reduced cost, with the driving motivation to perform a full nuclear hardware prototype test. Following the successful completion of the KRUSTY nuclear hardware test in March of 2018, NASA has begun the formulation process for a Technology Demonstration Mission (TDM) using the Kilopower reactor technology. In support of NASA's lunar surface initiatives, the Kilopower TDM will target a 1-3 kW fission electric power system that can survive the lunar night and operate for one year. The system will be heavily influenced by the KRUSTY reactor design, using a solid Uranium metal core with high temperature heat pipes and Stirling engine power conversion. During this formulation phase, continued engineering efforts are ongoing to improve heat transfer efficiency in the system, examine fission radiation damage effects, and begin to address the thermal and structural requirements of a Kilopower flight system.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN68456 , The Interagency Advanced Power Group (IAPG) Mechanical Working Group (MWG); May 14, 2019 - May 16, 2019; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Recent studies have shown that, in response to a surface warming, the marine tropical low-cloud cover (LCC) as observed by passive-sensor satellites substantially decreases, therefore generating a smaller negative value of the top-of-the-atmosphere (TOA) cloud radiative effect (CRE). Here we study the LCC and CRE interannual changes in response to sea surface temperature (SST) forcings in the GISS model E2 climate model, a developmental version of the GISS model E3 climate model, and in 12 other climate models, as a function of their ability to represent the vertical structure of the cloud response to SST change against 10 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) observations. The more realistic models (those that satisfy the observational constraint) capture the observed interannual LCC change quite well ([delta]LCC]/[delta]SST= -3.491.01%K [negative 1 superscript] vs. [delta]LCC/[delta]SST[subscript obs]= -3.590.28%K[negative 1 superscript]) while the others largely underestimate it ([delta]LCC/[delta]SST= -1.321.28%K[negative 1 superscript]). Consequently, the more realistic models simulate more positive shortwave (SW) feedback ([delta]CRE/[delta]SST=2.601.13Wm[negative 2 superscript] K[negative 1 superscript]) than the less realistic models (CRE/SST=0.872.63Wm2K1), in better agreement with the observations ([delta]CRE/[delta]SST[subscript obs]=30.26Wm[negative 2 superscript] K[negative 1 superscript] ), although slightly underestimated. The ability of the models to represent moist processes within the planetary boundary layer (PBL) and produce persistent stratocumulus (Sc) decks appears crucial to replicating the observed relationship between clouds, radiation and surface temperature. This relationship is different depending on the type of low clouds in the observations. Over stratocumulus regions, cloud-top height increases slightly with SST, accompanied by a large decrease in cloud fraction, whereas over trade cumulus (Cu) regions, cloud fraction decreases everywhere, to a smaller extent.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66347 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 5; 2813–2832
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Accurate knowledge of soil moisture at the continental scale is important for improving predictions of weather, agricultural productivity and natural hazards, but observations of soil moisture at such scales are limited to indirect measurements, either obtained through satellite remote sensing or from meteorological networks. Land surface models simulate soil moisture processes, using observation-based meteorological forcing data, and auxiliary information about soil, terrain and vegetation characteristics. Enhanced estimates of soil moisture and other land surface variables, along with their uncertainty, can be obtained by assimilating observations of soil moisture into land surface models. These assimilation results are of direct relevance for the initialization of hydro-meteorological ensemble forecasting systems. The success of the assimilation depends on the choice of the assimilation technique, the nature of the model and the assimilated observations, and, most importantly, the characterization of model and observation error. Systematic differences between satellite-based microwave observations or satellite-retrieved soil moisture and their simulated counterparts require special attention. Other challenges include inferring root-zone soil moisture information from observations that pertain to a shallow surface soil layer, propagating information to unobserved areas and downscaling of coarse information to finer-scale soil moisture estimates. This chapter summarizes state-of-the-art solutions to these issues with conceptual data assimilation examples, using techniques ranging from simplified optimal interpolation to spatial ensemble Kalman filtering. In addition, operational soil moisture assimilation systems are discussed that support numerical weather prediction at ECMWF and provide value-added soil moisture products for the NASA Soil Moisture Active Passive mission.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65540 , Handbook of Hydrometeorological Ensemble Forecasting; 701-743
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: The rationale for using multi-model ensembles in climate change projections and impacts research is often based on the expectation that different models constitute independent estimates; therefore, a range of models allows a better characterisation of the uncertainties in the representation of the climate system than a single model. However, it is known that research groups share literature, ideas for representations of processes, parameterisations, evaluation data sets and even sections of model code. Thus, nominally different models might have similar biases because of similarities in the way they represent a subset of processes, or even be near-duplicates of others, weakening the assumption that they constitute independent estimates. If there are near-replicates of some models, then treating all models equally is likely to bias the inferences made using these ensembles. The challenge is to establish the degree to which this might be true for any given application. While this issue is recognised by many in the community, quantifying and accounting for model dependence in anything other than an ad-hoc way is challenging. Here we present a synthesis of the range of disparate attempts to define, quantify and address model dependence in multi-model climate ensembles in a common conceptual framework, and provide guidance on how users can test the efficacy of approaches that move beyond the equally weighted ensemble. In the upcoming Coupled Model Intercomparison Project phase 6 (CMIP6), several new models that are closely related to existing models are anticipated, as well as large ensembles from some models. We argue that quantitatively accounting for dependence in addition to model performance, and thoroughly testing the effectiveness of the approach used will be key to a sound interpretation of the CMIP ensembles in future scientific studies.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65616 , Earth System Dynamics (ISSN 2190-4979) (e-ISSN 2190-4987); 10; 1; 91-105
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Type: M19-7326 , Annual CMSE Components for Military & Space Electronics Conference & Exhibition; Apr 16, 2019 - Apr 18, 2019; Los Angels, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: NASA Electronic Parts and Packaging (NEPP) Program Overview Mission Statement: Provide NASA's leadership for developing and maintaining guidance for the screening, qualification, test, and reliable use of EEE parts by NASA, in collaboration with other government agencies and industry. The NASA Electronic Parts Assurance Group (NEPAG) is a core portion of NEPP.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN65660 , GSFC-E-DAA-TN65262 , GSFC-E-DAA-TN65146 , European Space Components Conference ESCCON 2019; Mar 11, 2019 - Mar 13, 2019; Noordwijk; Netherlands|2019 Space Parts Working Group (SPWG); Apr 30, 2019 - May 01, 2019; Torrance, CA; United States|Microelectronics Reliability and Qualification Workshop (MRQW); Feb 07, 2019; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The profound changes in global SO[subscript 2] emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and europe. europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and east Asia. the uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. the agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65103 , Scientific Reports (e-ISSN 2045-2322); 9; 953
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Earth system models are complex and represent a large number of processes, resulting in a persistent spread across climate projections for a given future scenario. Owing to different model performances against observations and the lack of independence among models, there is now evidence that giving equal weight to each available model projection is suboptimal. This Perspective discusses newly developed tools that facilitate a more rapid and comprehensive evaluation of model simulations with observations, process-based emergent constraints that are a promising way to focus evaluation on the observations most relevant to climate projections, and advanced methods for model weighting. These approaches are needed to distil the most credible information on regional climate changes, impacts, and risks for stakeholders and policy-makers.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65080 , Nature Climate Change (ISSN 1758-678X) (e-ISSN 1758-6798); 9; 102-110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot-scale climate data from 15 active-warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs.unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 Celsius degrees (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1Celsius degrees (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 Celsius degrees (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non-temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design,and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species' responses.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65060 , Ecology Letters (ISSN 1461-023X) (e-ISSN 1461-0248)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-24
    Description: Multidecadal "megadroughts" were a notable feature of the climate of the American Southwest over the Common era, yet we still lack a comprehensive theory for what caused these megadroughts and why they curiously only occurred before about 1600 CE. Here, we use the Paleo Hydrodynamics Data Assimilation product, in conjunction with radiative forcing estimates, to demonstrate that megadroughts in the American Southwest were driven by unusually frequent and cold central tropical Pacific sea surface temperature (SST) excursions in conjunction with anomalously warm Atlantic SSTs and a locally positive radiative forcing. This assessment of past megadroughts provides the first comprehensive theory for the causes of megadroughts and their clustering particularly during the Medieval era. This work also provides the first paleoclimatic support for the prediction that the risk of American Southwest megadroughts will markedly increase with global warming.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71642 , Science Advances; 5; 7; eaax0087
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-24
    Description: The U.S. Global Precipitation Measurement mission (GPM) science team is developing a long-term dataset based on intercalibrated estimates from the international constellation of precipitation-relevant satellites and other data. The Integrated Multi-satellitE Retrievals for GPM (IMERG) merged precipitation product (IMERG) is computed at the half hour, 0.1 x 0.1 resolution globally in three "Runs" Early, Late, and Final (4 hours, 14 hours, and 3.5 months after observation time, respectively). The longer latencies increase the available input data for the resulting estimates, most notably the use of monthly precipitation gauge analyses in the Final run. The Early and Late runs use a climatological gauge adjustment as a proxy for the monthly gauge analyses. At meeting time GPM should be well into computing the new Version 06, which will be the first time IMERG covers the last two decades and routinely provides morphed estimates in polar regions where the surface is snow- and ice-free. In this talk a few salient features of the IMERG algorithm will be summarized, then representative examples of IMERG products will be shown. This starts with basic results, such as animations of near-real-time maps, then extends to preliminary analyses of dataset characteristics. For example, the accumulations during Hurricane Harvey around Houston, Texas, USA, tended to be low, while accumulations along the Texas/Louisiana border to the northeast tended to be high. Furthermore, these opposite-sign differences occurred more or less simultaneously over much of the accumulation period. The working hypothesis is that there were systematic differences in the convective "regime" in the two places. The talk will end with a quick summary of the processing status and the future course of IMERG development.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71420 , Annual Meeting Asia Oceania Geosciences Society ; Jul 28, 2019 - Aug 02, 2019; Singapore; Singapore
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-24
    Description: A multi-layer wireless sensor construct is provided. The construct includes a first dielectric layer adapted to be attached to a portion of a first surface of an electrically-conductive material. A layer of mu metal is provided on the first dielectric layer. A second dielectric layer is provided on the layer of mu metal. An electrical conductor is provided on the second dielectric layer wherein the second dielectric layer separates the electrical conductor from the layer of mu metal. The electrical conductor has first and second ends and is shaped to form an unconnected open-circuit that, in the presence of a time-varying magnetic field, resonates to generate a harmonic magnetic field response having a frequency, amplitude and bandwidth.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-17
    Description: NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding and develop onboard weather radar processing to detect regions of high ice water content ahead of an aircraft and enable tactical avoidance of the potentially hazardous conditions. Both High Ice Water Content (HIWC) RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory which was equipped with a Honeywell RDR-4000 weather radar and icing instruments to characterize the ice crystals clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results.
    Keywords: Meteorology and Climatology
    Type: GRC-E-DAA-TN69115 , SAE International Conference on Icing of Aircraft, Engines, and Structures; Jun 17, 2019 - Jun 21, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-13
    Description: Why is monitoring extreme weather events important? The HKH (Hindu Kush Himalaya region experiences many extreme weather events, such as thunderstorms, especially during monsoon season. These events can cause economic hardship and loss of life. Monitoring Extreme Weather in the HKH Region is a service in development through SERVIR-Hindu Kush Himalaya that aims to develop a customized numerical weather prediction toolkit to assess these high impact events in this relatively data-sparse region. The High Impact Weather Assessment Toolkit (HIWAT) consists of an ensemble Weather Research and Forecasting (WRF)model, threat assessments based on the Global Precipitation Measurement (GPM) missions, and impact assessments based on Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. In spring 2019, we began validation of forecasted precipitation using station data in Bangladesh and Climate Hazards Group InfraRed with Station data (CHIRPS).
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN69175 , Esri User Conference 2019; Jul 08, 2019 - Jul 12, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-13
    Description: This talk describes recent progress assimilating constituent observations into the Goddard Earth Observing System (GEOS). It also will discuss how this work might be integrated into the Joint Effort for Data assimilation Integration (JEDI) framework in the future.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70181 , Joint Center for Satellite Data Assimilation Technical Review Meeting and Science Workshop (JCSDA 2019); May 29, 2019 - May 31, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-13
    Description: Gradient Features identified in ASCAT (Advanced Scatterometer) data correspond well to observed CYGNSS (Cyclone Global Navigation Satellite System) wind shifts: Comparing ASCAT and CYGNSS winds near tropical convection. Gradient wind magnitude in ASCAT observations has been recently shown to be a useful proxy for the presence of tropical convection cold pools. To help confirm this in the vicinity of precipitation we perform a comparison with the L-band CYGNSS wind dataset. Integrated Multi-satellite Retrievals for GPM (Global Precipitation Measurement)) IMERG.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN68950 , International Ocean Vector Winds Science Team Meeting: Scatterometry & Ocean Vector Winds Satellite Studies (OVWST 2019); May 29, 2019 - May 31, 2019; Portland, ME; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-13
    Description: The Icing Research Tunnel (IRT) at NASA Glenn Research Center follows the recommended practice for icing tunnel calibration outlined in SAE's ARP5905 document. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within in the specifications presented to customers that the variation is within +/- 10% of the calibrated, target measurement. With recent measurements and instrumentation errors, a more thorough assessment of error source was desired. By constructing statistical process control charts, the ability to determine how the instrument varies in the short term, mid term, and long term was gained. The control charts offer a view of instrument error, facility error, or installation changes. It was discovered that there was a shift from target to mean baseline thus leading to the study of the overall capability indices of the liquid water content measuring instrument to perform within specifications defined in the IRT. This presentation describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, Chauvenet's Criterion for rejection of data, distribution check of data, and mean, median and mode for construction of control charts. Further data is presented to describe the repeatability of the IRT with the Multi-Element Sensor and the ability to maintain a stable process for the defined calibration schedule.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN67428 , DATAWorks 2019 (Defense and Aerospace Test and Analysis Workshop); Apr 09, 2019 - Apr 11, 2019; Springfield, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-13
    Description: We present a new high-resolution global composition forecast system produced by NASA's Global Modeling and Assimilation Office. The NASA Goddard Earth Observing System (GEOS) model has been expanded to provide global near-real-time 5-day forecasts of atmospheric composition at unprecedented horizontal resolution of 0.25 degrees (~25 km). This composition forecast system (GEOS-CF) system combines the operational GEOS weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 12) to provide detailed analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). Satellite observations are assimilated into the system for improved representation of weather and smoke.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68670 , International GEOS-Chem Meeting (IGC9); May 06, 2019 - May 09, 2019; Cambridge, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-13
    Description: ISO-26262, the road vehicle functional safety standard, underwent a major overhaul that was released in December 2018. Radiation effects, and single-event effect (SEE) hazards in particular, play an important role in autonomous vehicle safety. This connection will only increase as the level of driving automation goes from "hands off," to "eyes off," to "mind off." This translates to increased coupling with space climate and weather in addition to other traditional terrestrial radiation sources like thorium and uranium contamination in process and packaging materials. We will focus on autonomous vehicle radiation effects and present both benefits and challenges to the space weather and radiation engineering communities.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN68831 , Applied Space Environments Conference (ASEC 2019); May 13, 2019 - May 17, 2019; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN67480 , 2019 IMPACTS Science Team Meeting; Apr 15, 2019 - Apr 17, 2019; Wallops Island, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-29
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72479 , International Precipitation Conference (IPC12); Jun 19, 2019 - Jun 21, 2019; Irvine, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-30
    Description: Because of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both largescale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between largescale ocean and atmospheric circulation and smallerscale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotopeenabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850-2005 period, iCESM1 correctly captures the latetwentiethcentury structure of (exp 18)O and D over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater (exp 18)O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotopeenabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72198 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-28
    Description: An integrated circuit (IC) chip with a self-contained fluid sensor and method of making the chip. The sensor is in a conduit formed between a semiconductor substrate and a non-conductive cap with fluid entry and exit points through the cap. The conduit may be entirely in the cap, in the substrate or in both. The conduit includes encased temperature sensors at both ends and a central encased heater. The temperature sensors may each include multiple encased diodes and the heater may include multiple encased resistors.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-28
    Description: A high-voltage power transmission system is used as an extremely large antenna to extract spatiotemporal space, physical, and geological information from geomagnetically induced currents (GIC). A differential magnetometer method is used to measure GIC and involves acquiring line measurements from a first fluxgate magnetometer under a high-voltage transmission line, acquiring natural field measurements from a reference magnetometer nearby but not under the transmission line, subtracting the natural field measurements from the line measurements, and determining the GIC-related Biot-Savart field from the difference. NASA warning and alarm systems can be triggered based on determinations of GIC amplitude levels that exceed a set threshold value.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-09-04
    Description: Tabular icebergs are almost unique to the Southern Ocean because they originate from large ice shelves or ice tongues that are now nearly absent in the Northern Hemisphere. Their evolution from calving to drift to eventual disintegration illustrates many interesting aspects of both glaciology and oceanography. Several events in 2018 highlighted these iceberg processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72847 , Bulletin of the American Meteorological Society (BAMS); 100; 9; 181-182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-30
    Description: Increasing the power density and efficiency of electric machines (motors and generators) is integral to bringing Electrified Aircraft (EA) to commercial realization. To that end an effort to create a High Efficiency Megawatt Motor (HEMM) with a goal of exceeding 98% efficiency and 1.46 MW of power has been undertaken at the NASA Glenn Research Center. Of the motor components the resistive losses in the stator windings are by far the largest contributor (34%) to total motor loss. The challenge is the linear relationship between resistivity and temperature, making machine operation sensitive to temperature increases. In order to accurately predict the thermal behavior of the stator the thermal conductivity of the Litz wire-potting-electrical insulation system must be known. Unfortunately, this multi material system has a wide range of thermal conductivities (0.1 W/m-K 400 W/m-K) and a high anisotropy (axial vs transverse) making the prediction of the transverse thermal conductivity an in turn the hot spot temperatures in the windings is difficult. In order to do this a device that simulates the thermal environment found in the HEMM stator was designed. This device is not unlike the motorettes (little motors) that are described in IEEE standards for testing electrical insulation lifetimes or other electric motor testing. However, because the HEMM motor design includes significant rotor electrical and thermal considerations the term motorette was not deemed appropriate. Instead statorette (or little stator) was adopted as the term for this test device. This paper discussed the design, thermal heat conjugate analysis (thermal model), manufacturing and testing of HEMM's statorette. Analysis of the results is done by thermal resistance network model and micro thermal model and is compared to analytical predictions of thermal conductivity of the insulated and potted Litz wire system.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN70196 , AIAA/IEEE Electric Aircraft Technologies Symposium (EATS); Aug 22, 2019 - Aug 24, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-29
    Description: While the idea that downdraft vertical velocity is influenced by thermodynamic stability may seem obvious, there remains a gap in the scientific literature surrounding the interaction between downdrafts and stable layers. A number of questions remain unanswered. Can a stable layer stop the downward progression of a downdraft or merely slow its velocity? Related to this, can a stable layer stop the injection of low entropy air into the boundary layer? Do downdrafts modify the environment in a way that removes pre-existing stable layers (limiting the influence of the stable layer)? Is it possible for evaporative cooling to generate and maintain a stable layer that is sufficiently strong to stop the downward progression of downdrafts?The present study aims to answer these questions using a combination of high-altitude airborne radar and dropsonde observations, both collected within four tropical cyclones (Gaston, Hermine, Karl, and Matthew) during the 2016 NOAA SHOUT field campaign, as well as idealized simulations of tropical deep convection. This presentation will focus on the potential for a stable layer to halt the downward progression of a downdraft (and the associated low entropy air) with particular attention given to conditions and processes that might enhance or mitigate the influence of the stable layer.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72152 , Conference on Mesoscale Processes; Jul 29, 2019 - Aug 01, 2019; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-29
    Description: The GPROF algorithm is used to retrieve precipitation values from all the GPM mission partner radiometers (i.e. GMI, MHS, ATMS, SSMIS, AMSR2). GPM produces two precipitation retrieval products (processing at level 2) using the GPROF algorithm. One has the type designation 2A and the other the designation 2A-CLIM. As a result understanding the difference between the two products is important for using and understanding them. Both of these GPROF products use exactly the same algorithm and a-priori databases. The only difference between the two types is the ancillary products used in the initial processing step. In the case of the 2A-CLIM products, ECMWF ERA-I is used as ancillary data. In the case of the 2A products, JMA's GANAL product is used as ancillary data. This presentation will provide a comparison between the two products using zonal mean comparisons. It will provide comparisons separately for land and ocean retrievals. It will compare the GMI differences over the entire current GPM mission life. As the only difference between the two products is the ancillary information used to create them, the comparison provides an elementary sensitivity study of the variables used from the reanalysis products and their impact on the GPROF retrieval. The purpose of the presentation is to provide users with an insight into the two GPROF products and provide them key information useful when using either of the products in scientific studies. Lastly, the presentation also discusses the reasons why only the 2A-CLIM product can be produced for the 17+ years of TRMM era data products.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72396 , 2019 EGU General Assembly; Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-11-02
    Description: The spring dry season occurring in an arid region of the Southwest United States, which receives both winter storm track and summer monsoon precipitation, is investigated. Bimodal precipitation and vegetation growth provide an opportunity to assess multiple climate mechanisms and their impact on hydroclimate and ecosystems.We detect multiple shifts from wet to drier conditions in the observational record and land surface model output. Focusing on the recent dry period, a shift in the late 1990s resulted in earlier and greater spring soil moisture draw down, and later and reduced spring vegetation green-up, compared to a prior wet period (1979 - 1997). A simple soil moisture balance model shows this shift is driven by changes in winter precipitation.The recent post-1999 dry period, as well as an earlier one from 1948 - 1966, are both related to the cool tropics phase of Pacific decadal variability which influences winter precipitation. In agreement with other studies for the Southwest United States, we find the recent drought cannot be explained in terms of precipitation alone, but also is due to the rising influence of temperature, thus highlighting the sensitivity of this region to warming temperatures. Future changes in the spring dry season will therefore be affected by how tropical decadal variability evolves, and also by emerging trends due to human-driven warming.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN73615 , Journal of Hydrometeorology (ISSN 1525-755X) (e-ISSN 1525-7541); 20; 6; 1081–1102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-10-31
    Description: Solar neutrons are the tell-tale of highly energetic processes (e.g. solar flares) at the Sun in which particle acceleration is taking place over a broad range in energy. Unlike charged radiation, neutrons escape unscathed from the ambient magnetic fields, providing a view of particle acceleration unhindered by the effects of transport. High-energy neutrons are challenging to measure with the traditional double scatter technique based on time-of-flight (ToF). This technique is limited by the finite flight path and active scintillator sizes required by small satellite platforms. The new SOlar Neutron TRACking (SONTRAC) concept, based on scintillating-fiber bundles, will provide high resolution imaging of fast neutrons at energies where the bulk of solar and magnetospheric neutrons resides. Recent development of the new SONTRAC instrument concept's advanced electronics and processing algorithms are presented.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN73731 , 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC); Oct 26, 2019 - Nov 02, 2019; Manchester; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-10-25
    Description: This presentation highlights NASA AFRCs wireless systems development plans as well as technological needs and airworthiness challenges for flight test/research applications. The presentation discusses desired wireless sensing and wireless data communication methodologies for specific aircraft areas such as wings, tail, engines, and landing gears. The presentation also provides information for potential industry partners seeking to collaborate in the development of sensors through various means as well as to verify and validate wireless sensors and systems through flight at AFRC.
    Keywords: Electronics and Electrical Engineering
    Type: AFRC-E-DAA-TN73584 , Annual IEEE International Conference on Wireless for Space and Extreme Environments (WISEE 2019); Oct 16, 2019 - Oct 18, 2019; Ottawa; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-10-03
    Description: The WMOs World Weather Research Program (WWRP) Research and Development and Forecast Demonstration Projects (RDP/FDP). Taken place during the Winter Olympics (February-March) of 2018. Focused on the measurement, physics, and improved prediction of heavy orographic snow in the Pyeong Chang region of South Korea.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN73593 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-10-09
    Description: The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at the Jet Propulsion Laboratory (JPL), provides processing, archiving, and distribution services for remotely-sensed data acquired by satellite sounders. Supported data sets begin chronologically with the legacy TIROS Operational Vertical Sounder (TOVS) Pathfinder, continue to the Atmospheric Infrared Sounder (AIRS), a modern hyperspectral sounder onboard the Aqua satellite, and are followed by data from the subsequent Suomi-National Polar-orbiting Partnership Cross-track Infrared Sounder (CrIS) mission and the Joint Polar Satellite System (JPSS) series CrIS missions. These satellite sounders provide long-term global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. Applications of sounder data products cover a broad range of fields, including meteorology climatology, hydrology, and air quality. The GES DISC has developed many services to assist users, including simplified and efficient methods for searching, accessing, downloading, and analytically exploring these satellite sounder data products. We have also developed the Giovanni system, a broadly used Web-based application, which provides a simple and intuitive way to visualize, analyze, and access Earth science remote sensing data. In this presentation, we will introduce the standard and near-real time sounder data products, and demonstrate our services through some use cases. Highlights of our service capabilities include data subset, vertical profile plot, inter-comparison, multi-year monthly/seasonal mean, interannual monthly/seasonal time series, and anomaly analysis.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN73831 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-10-09
    Description: After more than a decade of moderate seasonal deviations from the expected climate, it is easy to forget that California is actually prone to instabilities in precipitation patterns that occur on various scales. Using modern satellite and reanalysis data we reassess certain aspects of the precipitation climate in California from the past three decades. California has a well-pronounced rain season that peaks in December-February. However, the 95% confidence interval around the climatological precipitation during these months imply that deviations on the order of 60% of the expected amounts are very likely during the most important period of the rain season. While these positive and negative anomalies alternate almost every year and tend to cancel each other, severe multi-year declines of precipitation in California seem to appear on decadal scales. The 1986-1994 decline of precipitation was similar to the current one that started in 2011, and is apparent in the reanalysis data. In terms of accumulated deficits of precipitation, that episode was no less severe than the current one. While El Nio (the warm phase of the El Nio Southern Oscillation, ENSO) is frequently cited as the natural forcing expected to bring a relief, our assessment is that ENSO has been driving at best only 6% of precipitation variability in California in the past three decades. It means El Nio needs to be stronger and longer, in order to have a higher likelihood of a positive impact, and the current one does not match these criteria. Using fractional risk analysis of precipitation populations during normal and dry periods, we show that the likelihood of losing the most intensive precipitation events drastically increases during the multi-year drying events. Since storms delivering up to 50% of precipitation in California are driven by atmospheric rivers making landfall, thus the importance of their suppression and blockage by persistent ridges of atmospheric pressure in the northeast Pacific.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN73845 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-10-09
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN73626 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-10-08
    Description: Total ionizing dose (TID) and single-event effect (SEE) room-temperature radiation test results are presented for developmental prototype 4H-SiC junction field effect transistor (JFET) semiconductor integrated circuits (ICs) that have demonstrated prolonged operation in extremely high-temperature (500 C) environments. The devices tested demonstrated over 7 Mrad(Si) TID tolerance and no destructive SEE susceptibility.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN70540 , IEEE Nuclear and Space Radiation Effects Conference (NSREC); Jul 08, 2019 - Jul 12, 2019; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-10-08
    Description: Total ionizing dose, displacement damage dose, and single-event effect testing were performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, bipolar devices, and FPGAs.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN70538 , IEEE Nuclear and Space Radiation Effects Conference (NSREC); Jul 08, 2019 - Jul 12, 2019; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-10-08
    Description: Total ionizing dose, displacement damage dose, and single-event effect testing were performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, bipolar devices, and FPGAs.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN70510 , IEEE Nuclear and Space Radiation Effects Conference (NSREC); Jul 08, 2019 - Jul 12, 2019; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-10-05
    Description: Radiative heating rates computed with cloud properties derived from passive and active sensors are investigated. Zonal monthly radiative heating rate anomalies computed using both active and passive sensors show that larger variability in longwave cooling exists near the tropical tropopause and near the top of the boundary layer between ~50N to ~50S. Aerosol variability contributes to increases in shortwave heating rate variability. When zonal monthly mean cloud effects on the radiative heating rate computed with both active and passive sensors and those computed with passive sensor only are compared, the latter shows cooling and heating peaks corresponding to cloud top and base height ranges used for separating cloud types. The difference of these two sets of cloud radiative effect on heating rates in the middle to upper troposphere is larger than the radiative heating rate uncertainty estimated based on the difference of two active sensor radiative heating rate profile data products. In addition, radiative heating rate contribution to generation of eddy available potential energy is also investigated. Although radiation contribution to generation of eddy available potential energy averaged over a year and the entire globe is small, radiation increases the eddy available potential energy in the northern hemisphere during summer. Two key elements that longwave radiation contribute to the generation of eddy potential energy are (1) longitudinal temperature gradient in the atmosphere associated with land and ocean surface temperatures contrasts and absorption of longwave radiation emitted by the surface and (2) cooling near the cloud top of stratocumulus clouds.
    Keywords: Meteorology and Climatology
    Type: NF1676L-32348 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 124; 3; 1720-1740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-12-03
    Description: The algorithm for the Surface Reference Technique (SRT) has been updated from version V6A to version V6X. The modified algorithm is designed to process dual-frequency radar data which are now available over the full swath. Comparisons between V6A and V6X show that the dual-wavelength version of the SRT (DSRT) eliminates some of the overestimates of path attenuation in the outer swath that occurred in the earlier version of the algorithm when dual-frequency data was unavailable in the outer swath. However, the DSRT is not reliable in cases of light rain rates where only the Ku-band channel detects rain, nor is it reliable in high rain rate cases where the Ka-band surface signal is lost through attenuation. A modified hybrid algorithm is planned for version 7 that can combine the best features of single- and dual-frequency path attenuation methods.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75817 , PMM 2019 Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-11-30
    Description: Understanding the connection between microphysical properties of falling snow and remote sensing observations requires detailed models of snow particles and the related electromagnetic scattering properties. To this end, we have created a database of synthetically-grown snow particles along with electromagnetic scattering properties calculated using advanced computational methods. We showcase the breadth of the catalog, current work, applications of the catalog, and future plans.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75693 , Precipitation Measurement Missions (PMM) Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...