ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12)
  • 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism  (6)
  • 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution  (6)
  • 04.06. Seismology
  • Creep observations and analysis
  • community assembly
  • Geological Society of America  (12)
  • American Geophysical Union (AGU)
  • EGU - Copernicus
  • Egu-Copernicus
  • Frontiers Media S.A.
  • Wiley
  • Wiley-AGU
  • 2015-2019  (3)
  • 2010-2014  (9)
Collection
  • Articles  (12)
Source
Keywords
Years
Year
  • 1
    Publication Date: 2021-05-17
    Description: Earthquakes occur along faults in response to plate tectonic movements, but paradoxically, are not widely recognized in the geological record, severely limiting our knowledge of earthquake physics and hampering accurate assessments of seismic hazard. Light-reflective (so-called mirror like) fault surfaces are widely observed geological features, especially in carbonate-bearing rocks of the shallow crust. Here we report on the occurrence of mirror-like fault surfaces cutting dolostone gouges in the Italian Alps. Using friction experiments, we demonstrate that the mirror-like surfaces develop only at seismic slip rates (∼1 m/s) and for applied normal stresses and sliding displacements consistent with those estimated on the natural faults. Under these experimental conditions, the frictional power density dissipated in the samples is comparable to that estimated for natural earthquakes (1–10 MW/m2). Our results indicate that mirror-like surfaces in dolostone gouges are a signature of seismic faulting, and can be used to estimate power dissipation during ancient earthquake ruptures.
    Description: Published
    Description: 1175-1178
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquakes ; Faults ; Carbonates ; Rock Mechanics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We describe a set of seismological observations on the foreshock sequence preceding the April 6th 2009, Mw 6.3, L’Aquila earthquake. The dense configuration of the seismic network in the epicenter area and the occurrence of a long foreshock sequence provide the opportunity for a detailed reconstruction of the preparatory phase of the main shock. Approaching the earthquake, we observe clear variations of the seismic wave propagation properties. The elastic properties of rocks in the fault region undergo a sharp change about a week before the earthquake. From our observations we infer that a complex sequence of dilatancy-diffusion processes takes place and that fluids play a key role in the fault failure process.
    Description: Published
    Description: 1015–1018
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic Velocity ; Seismic Anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Earthquake slip is facilitated by a number of thermally activated physicochemical processes that are triggered by temperature rise during fast fault motion, i.e., frictional heating. Most of our knowledge on these processes is derived from theoretical and experimental studies. However, additional information can be provided by direct observation of ancient faults exposed at the Earth’s surface. Although fault rock indicators of earthquake processes along ancient faults have been inferred, the only unambiguous and rare evidence of seismic sliding from natural faults is solidifi ed friction melts or pseudotachylytes. Here we document a gamut of natural fault rocks produced by thermally activated processes during earthquake slip. These processes occurred at 2–3 km depth, along a thin (0.3–1.0 mm) principal slip zone of a regional thrust fault that accommodated several kilometers of displacement. In the slip zone, composed of ultrafi ne-grained fault rocks made of calcite and minor clays, we observe the presence of relict calcite and clay, numerous vesicles, poorly crystalline/amorphous phases, and newly formed calcite skeletal crystals. These observations indicate that during earthquake rupture, frictional heating induced calcite decarbonation and phyllosilicate dehydration. These microstructures may be diagnostic for recognizing ancient earthquakes along exhumed faults.
    Description: Published
    Description: 927-930
    Description: 2R. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: Thermal decomposition ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In the past few years, a wealth of paleomagnetic data gathered from Neogene sediments consistently showed that since ca. 10 Ma the Calabria terrane coherently drifted ~500 km ESE-ward from the Sardinian margin, and rotated 15°–20° clockwise (CW) as a rigid microplate between 2 and 1 Ma. Here we report on a high-resolution paleomagnetic investigation of the Crotone forearc basin of northern Calabria. The integrated calcareous plankton biostratigraphy indicates early Pliocene (Zanclean) to late early Pleistocene (Calabrian) ages for 29 successful paleomagnetic sites and/or sections. Unexpectedly, four domains undergoing distinct rotations are documented. Two blocks have undergone a CW rotation statistically undistinguishable, for both timing and magnitude, from the rigid Calabria rotation documented in the past. Two additional ~10-km-wide blocks yielded a 30.8° ± 22.5° and 32.0° ± 9.2° post–1.2 Ma counterclockwise rotation, likely due to left-lateral shear along two NW-SE fault zones. We infer that since advanced early Pleistocene times, after the end of the uniform CW rotation, left-lateral strike-slip tectonics disrupted the Calabria terrane, overwhelming a widespread extensional regime accompanying the Calabria drift since late Miocene times. Seismological evidence reveals that only the southern part of the Ionian slab subducting below Calabria is continuous, while beneath northern Calabria a slab window between 100 and 200 km depth is apparent. We suggest that the partial breakoff of the Ionian slab after 1 Ma induced the fragmentation of the Calabria wedge, and that strike-slip faults from the Crotone basin decoupled “inactive” northern Calabria from southern Calabria, still drifting towards the trench.
    Description: In press
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Calabria ; Crotone basin ; paleomagnetism ; rotations ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The northeast-striking, dextral-reverse Alpine fault transitions into the Marlborough Fault System near Inchbonnie in the central South Island, New Zealand. New slip-rate estimates for the Alpine fault are presented following a reassessment of the geomorphology and age of displaced late Holocene alluvial surfaces of the Taramakau River at Inchbonnie. Progressive avulsion and abandonment of the Taramakau floodplain, aided by fault movements during the late Holocene, have preserved a left-stepping fault scarp that grows in height to the northeast. Surveyed dextral (22.5 ± 2 m) and vertical (4.8 ± 0.5 m) displacements across a left stepover in the fault across an alluvial surface are combined with a precise maximum age from a remnant tree stump (≥1590–1730 yr) to yield dextral, vertical, and reverse-slip rates of 13.6 ± 1.8, 2.9 ± 0.4, and 3.4 ± 0.6 mm/yr, respectively. These values are larger (dextral) and smaller (dip slip) than previous estimates for this site, but they refl ect advances in the local chronology of surfaces and represent improved time-averaged results over 1.7 k.y. A geological kinematic circuit constructed for the central South Island demonstrates that (1) 69%–89% of the Australian-Pacific plate motion is accommodated by the major faults (Alpine-Hope-Kakapo) in this transitional area, (2) the 50% drop in slip rate on the Alpine fault between Hokitika and Inchbonnie is taken up by the Hope and Kakapo faults at the southwestern edge of the Marlborough Fault System, and (3) the new slip rates are more compatible with contemporary models of strain partitioning presented from geodesy.
    Description: Published
    Description: 139-152
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: reserved
    Keywords: Alpine fault ; plate boundary ; slip rate ; New Zealand ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-16
    Description: Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fl uid can provide unique insights into these interactions. We report the fi rst results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fl uids (H2 O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some fi eld observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (fl ash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.
    Description: Published
    Description: 27-30
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: carbonates faults ; hydro-elasto-dynamics ; earthquake nucleation ; friction ; rock mechanics ; fluid-rcok interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Geological Society of America
    Publication Date: 2022-06-14
    Description: In central Italy, the geometry, kinematics, and tectonic evolution of the late Neogene Umbrian Arc, which is one of the main thrusts of the northern Apennines, have long been studied. Documented evidence for orogenic curvature includes vertical axis rotations along both limbs of the arc and a positive orocline test along the entire arc. The cause of the curvature is, however, still unexplained. In this work, we focus our attention on the southern portion of the Umbrian Arc, the so-called Olevano- Antrodoco thrust. We analyze, in particular, gravity and seismic-reflection data and consider available paleomagnetic, stratigraphic, structural, and topographic evidence from the central Apennines to infer spatial extent, attitude, and surface effects of a midcrustal anticlinorium imaged in the CROP-11 deep seismic profile. The anticlinorium has horizontal dimensions of ~50 by 30 km, and it is located right beneath the Olevano- Antrodoco thrust. Stratigraphic, structural, and topographic evidence suggests that the anticlinorium produced a surface uplift during its growth in early Pliocene times. We propose an evolutionary model in which, during late Neogene time, the Olevano- Antrodoco thrust developed in an out-of sequence fashion and underwent ~16° of clockwise rotation when the thrust ran into and was then raised and folded by the growing anticlinorium (late Messinian–early Pliocene time). This new model suggests a causal link between midcrustal folding and surficial orogenic curvature that is consistent with several available data sets from the northern and central Apennines; more evidence is, however, needed to fully test our hypothesis. Additionally, due to the occurrence of midcrustal basement-involved thrusts in other orogens, this model may be a viable mechanism for arc formation elsewhere.
    Description: Published
    Description: 1409-1420
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: oroclines ; Apennines ; fold and thrust belts ; gravity anomalies ; seismic reflection profiles ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-14
    Description: In the past few years, a wealth of paleomagnetic data gathered from Neogene sediments consistently showed that since ca. 10 Ma the Calabria terrane coherently drifted ~500 km ESE-ward from the Sardinian margin, and rotated 15 –20 clockwise (CW) as a rigid microplate between 2 and 1 Ma. Here we report on a high-resolution paleomagnetic investigation of the Crotone forearc basin of northern Calabria. The integrated calcareous plankton biostratigraphy indicates early Pliocene (Zanclean) to late early Pleistocene (Calabrian) ages for 29 successful paleomagnetic sites and/or sections. Unexpectedly, four domains undergoing distinct rotations are documented. Two blocks have undergone a CW rotation statistically undistinguishable, for both timing and magnitude, from the rigid Calabria rotation documented in the past. Two additional ~10-km-wide blocks yielded a 30.8 ± 22.5 and 32.0 ± 9.2 post–1.2 Ma counterclockwise rotation, likely due to left-lateral shear along two NW-SE fault zones. We infer that since advanced early Pleistocene times, after the end of the uniform CW rotation, left-lateral strike-slip tectonics disrupted the Calabria terrane, overwhelming a widespread extensional regime accompanying the Calabria drift since late Miocene times. Seismological evidence reveals that only the southern part of the Ionian slab subducting below Calabria is continuous, while beneath northern Calabria a slab window between 100 and 200 km depth is apparent. We suggest that the partial breakoff of the Ionian slab after 1 Ma induced the fragmentation of the Calabria wedge, and that strike-slip faults from the Crotone basin decoupled “inactive” northern Calabria from southern Calabria, still drifting towards the trench.
    Description: Published
    Description: 925–933
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Calabria ; Crotone basin ; paleomagnetism ; rotations ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-14
    Description: Paleoenvironmental and paleoclimate changes that occurred during the late postevaporitic stage of the Mediterranean Basin in the Messinian foreland domain of the Adriatic region offer a new perspective on the relationship between orbital forcing and climate response. The magnetic susceptibility record of the Fonte dei Pulcini A section (Maiella Mountains, Italy) allows us to orbitally tune the record between 5.394 and 5.336 Ma and to temporally constrain the paleoenvironmental and paleoclimate changes evidenced by quantitative paleontological (palynomorphs, ostracods, and calcareous nannofossils), stable isotope (δ18O and δ13C), and X-ray diffraction (XRD) analyses. The base of the Fonte dei Pulcini A section is characterized by Paratethyan ostracods and dinocysts, which point to the late Messinian Lago-Mare biofacies (Loxocorniculina djafarovi zone) of the Mediterranean Messinian stratigraphy. From paleontological and geochemical (δ18O) analyses, there is no evidence of a marine incursion in the Fonte dei Pulcini A section. The major changes in terms of paleodepth, paleosalinity, evaporation versus precipitation, aridity versus humidity, and reworking processes occurred in the upper part of the Fonte dei Pulcini A section, during the last Messinian insolation cycle (i-cycle 511/512), which is characterized by high-amplitude oscillations. In contrast, the lower part of the Fonte dei Pulcini A section, which was deposited during relatively low-amplitude insolation cycles, is characterized by more stable environmental conditions. Comparing summer insolation with the paleoenvironmental changes at the Fonte dei Pulcini A section, we identify delays of several thousands of years between orbital forcing and climate response.
    Description: Published
    Description: 499-516
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Messinian stage ; Lago-Mare event ; Maiella ; Apennines ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-14
    Description: In 2007, the Antarctic Geological Drilling Program (ANDRILL) drilled 1138.54 m of strata ~10 km off the East Antarctic coast, includ ing an expanded early to middle Miocene succession not previously recovered from the Antarctic continental shelf. Here, we pre sent a facies model, distribution, and paleoclimatic interpretation for the AND-2A drill hole, which enable us, for the fi rst time, to reconstruct periods of early and middle Miocene glacial advance and retreat and paleo environmental changes at an ice-proximal site. Three types of facies associations can be recognized that imply signifi cantly different paleoclimatic interpretations. (1) A diamictite-dominated facies association represents glacially dominated depositional environments, including subglacial environments, with only brief intervals where ice-free coasts existed, and periods when the ice sheet was periodically larger than the modern ice sheet. (2) A stratified diamictite and mudstone facies association includes facies characteristic of open-marine to iceberg-infl uenced depositional environments and is more consistent with a very dynamic ice sheet, with a grounding line south of the modern position. (3) A mudstone-dominated facies association generally lacks diamictites and was produced in a glacially infl uenced hemipelagic depositional environment. Based on the distribution of these facies associations, we can conclude that the Antarctic ice sheets were dynamic, with grounding lines south of the modern location at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma and during the Miocene climatic optimum, ca. 17.6–15.4 Ma, with ice-sheet and sea-ice minima at ca. 16.5–16.3 Ma and ca. 15.7–15.6 Ma. While glacial minima at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma were characterized by temperate margins, an increased abundance of gravelly facies and diatomaceous siltstone and a lack of meltwater plume deposits suggest a cooler and drier climate with polythermal conditions for the Miocene climatic optimum (ca. 17.6–15.4 Ma). Several periods of major ice growth with a grounding line traversing the drill site are recognized between ca. 20.2 and 17.6 Ma, and after ca. 15.4 Ma, with evidence of cold polar glaciers with ice shelves. The AND-2A core provides proximal evidence that during the middle Miocene climate transition, an ice sheet larger than the modern ice sheet was already present by ca. 14.7 Ma, ~1 m.y. earlier than generally inferred from deep-sea oxygen isotope records. These fi ndings highlight the importance of high-latitude ice-proximal records for the interpretation of far-fi eld proxies across major climate transitions.
    Description: Published
    Description: 2352-2365
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: ANDRILL-SMS ; Miocene ; Ross Sea ; Antarctica ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...