ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (17,996)
  • Life and Medical Sciences  (13,303)
  • ASTROPHYSICS  (9,206)
  • Engineering General  (4,521)
  • METEOROLOGY AND CLIMATOLOGY  (4,088)
  • 2020-2024  (1)
  • 1990-1994  (23,693)
  • 1980-1984  (13,042)
  • 1960-1964  (4,354)
  • 1955-1959  (3,741)
  • 1925-1929  (4,283)
Collection
Keywords
Publisher
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-04
    Description: The Frontiers in Chemistry Editorial Office team are delighted to present the inaugural “Frontiers in Chemistry: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the chemical sciences, and presents advances in theory, experiment and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Chemistry Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank our Chief Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact.
    Keywords: Green and Sustainable Chemistry ; Analytical Chemistry ; Theoretical and Computational Chemistry ; Polymer Chemistry ; Medicinal and Pharmaceutical Chemistry ; Organic Chemistry ; Nanoscience ; Catalysis and Photocatalysis ; Supramolecular Chemistry ; Electrochemistry ; Inorganic Chemistry ; Chemical Biology ; thema EDItEUR::P Mathematics and Science::PD Science: general issues
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Millisecond pulsars are galactic objects that exhibit a very stable spinning period. Several tens of these celestial clocks have now been discovered, which opens the possibility that an average time scale may be deduced through a long-term stability algorithm. Such an ensemble average makes it possible to reduce the level of the instabilities originating from the pulsars or from other sources of noise, which are unknown but independent. The basis for such an algorithm is presented and applied to real pulsar data. It is shown that pulsar time could shortly become more stable than the present atomic time, for averaging times of a few years. Pulsar time can also be used as a flywheel to maintain the accuracy of atomic time in case of temporary failure of the primary standards, or to transfer the improved accuracy of future standards back to the present.
    Keywords: ASTROPHYSICS
    Type: NASA. Goddard Space Flight Center, The 24th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 73-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: We study the transfer of momentum from photons to dust grains to (molecular) gas in the outflow around cool giants (carbon-stars, Mira variables and OH/IR stars) beyond the radius where the dust grains condense. The problem is circular: radiation pressure determines the outflow velocity of the dust and thus also the dust density; on the other hand the dust density determines, via radiative transfer effects, the spectrum of the photons and thus the effective radiation pressure. This circular problem is solved by a rapidly converging iterative procedure. We compare our predictions with observed properties of a large sample of OH/IR stars and of Miras and find a good qualitative and quantitative agreement. We confirm a conclusion by Wood et al. (1993) that very luminous OH/IR stars in the Large Magellanic Cloud (LMC) owe their low outflow velocity to the low dust-to-gas ratio, a consequence of the low metallicity of the LMC. Similarly we consider a sample of about 100 OH/IR stars within 200 pc from the galactic center that has an average asymptotic giant branch (AGB) luminosity and an uncommonly high value of v(sub out); we conclude that these stars are probably very metal rich, perhaps even more than the stars in the Baade window studied by Rich (1990).
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 286; 2; p. 523-534
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: EOS (ISSN 0096-3941); 75; 1; p. 1, 5-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Magnetic field data measured by the MAGMA instrument in the Martian magnetotail lobes are compared with the ram pressure of the upstream solar wind observed by the TAUS instrument in the circular orbits of the Phobos 2 spacecraft. High correlation was found between the magnetic field intensity in the Martian magnetotail lobes and the solar wind ram pressure. From this relationship the average flaring angle of the Martian magnetotail was determined as approximately 13 deg, and the average magnetosonic Mach number was estimated as approximately 5. The observed relationship between the Martian magnetotail magnetic field intensity and the solar wind magnetic field reflects the correlation of the solar wind magnetic field to the ram pressure providing a value of approximately 7 for the average Alfvenic Mach number. The flaring angle obtained for the Martian magnetotail was found to be an intermediate value between the flaring angle of the magnetotail of the Earth and that of Venus at comparable distances.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,199-17,204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D12; p. 25631-25654
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: We present a model of the focused transport of approximately 1 MeV solar energetic protons through interplanetary Alfven waves that the protons themselves amplify or damp. It is based on the quasi-linear theory but with a phenomenological pitch angle diffusion coefficient in the 'resonance gap.' For initial Alfven wave distributions that give mean free paths greater than approximately 0.5 AU for approximately 1 MeV protons in the inner heliosphere, the model predicts greater than roughly an order of magnitude amplification (damping) in the outward (inward) propagating resonant Alfven waves at less than or approximately equal to o.3 AU heliocentric distance. As the strength of proton source is increased, the peak differential proton intensity at approximately 1 MeV at 1 AU increases to a maximum of approximately 250 particles (/(sq cm)(s)(sr)(MeV)) and then decreases slowly. It may be attenuated by a factor of 5 or more relative to the case without wave evolution, provided that the proton source is sufficiently intense that the resulting peak differential intensity of approximately 1 MeV protons at 1 AU exceeds approximately 200 particles (/(sq cm)(s)(sr)(MeV)). Therefore, in large solar proton events, (1) one may have to take into account self-amplified waves in studying solar particle propagation, (2) the number of accelerated protons escaping from a flare or interplanetary shock may have been underestimated in past studies by a significant factor, and (3) accelerated protons escaping from a traveling interplanetary shock at r less than or approximately equal to 0.3 AU should amplify the ambient hydromagnetic waves siginificantly to make the shock an efficient accelerator, even if initially the mean free path is greater than or approximately equal to 1 AU.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 424; 2; p. 1032-1048
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Direct one-photon annihilation rate of positrons with a bound atomic electron is evaluated in the nonrelativistic limit. The K- and L-shell contributions are estimated including the screening and effective Coulomb repulsion effects. The annihilation rate of thermal positrons is calculated for various temperatures. The total number of one-photon annihilation events in the interstellar medium is discussed. These results provide the directional and structural information for cosmic gamma-ray sources.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 424; 2; p. 988-990
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D9; p. 18,627-18,638
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment First ISCCP Regional Experiment Phase 2 (FIRE 2). Includede in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 20 min measurements of brightness temperature (T(sub b) with calculations of T(sub b) that were based on the Liebe and Layton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D9; p. 18,695-18,702
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This paper describes the validation of the International Satellite Cloud Climatology project (ISCCP)cloud detections by verifying the accuracy of the infrared clear-sky radiances. Comparison of retrieved surface temperatures to other measurements shows that bias errors are less than 2 K and random errors are about 2 K for sea surface (monthly means at 280-km scales) and that bias errors are less than 2 K and random errors are about 4 K for land surfaces (3 hourly at 280-km scales). Bias errors over a few persistently cloudy locations are sometimes -(2-4) K and over winter sea ice may be about +2 K. Surface reflectances are confirmed to be within 3% of other measurements and models for ocean, except for sun glint geometries, and to be within 3%-5% for land surfaces. Sufficiently accurate validation data are not avilable for visible reflectances of sea ice and snow-covered land, but some tests of specific cases suggest that errors are approximately 10%. These errors in clear-sky radiances suggest uncertainties in the ISCCP cloud detections of about 10% with a small (3%-6%) negative bias over land. Some specific regions exhibit both larger rms uncertainties and somewhat larger biases in cloud amount approaching 10%. ISCCP cloud detections are more in error over the polar regions than anywhere else. Based on comparisons with an anlysis of radiances measured at other wavelengths, the ISCCP analysis appears to miss 15%-25% of the clouds in summer but only 5%-10% of the winter clouds.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 6; 12; p. 2370-2390
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Water vapor concentrations obtained by the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and collocated temperatures provided by the National Meteorological Center (NMC) from 1986 to 1990 are used to deduce seasonally and zonally averaged acidity, density, and refractive index of stratospheric aerosols. It is found that the weight percentage of sulfuric acid in the aerosols increases from about 60 just above the tropopause to about 86 at 35 km. The density increases from about 1.55 to 1.85 g/cu cm between the same altitude limits. Some seasonal variations of composition and density are evident at high latitudes. The refractive indices at 1.02, 0.694, and 0.532 micrometers increase, respectively, from about 1.425, 1.430, and 1.435 just above the tropopause to about 1.445, 1.455, and 1.458 at altitudes above 27 km, depending on the season and latitude. The aerosol properties presented can be used in models to study the effectiveness of heterogeneous chemistry, the mass loading of stratospheric aerosols, and the extinction and backscatter of aerosols at different wavelengths. Computed aerosol surface areas, rate coefficients for the heterogeneous reaction ClONO2 + H2O yields HOCl + HNO3 and aerosol mass concentrations before and after the Pinatubo eruption in June 1991 are shown as sample applications.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D2; p. 3727-3738
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: The global distribution of ozone during the October 31, 1978, to May 6, 1993, observing lifetime of the Nimbus 7 total ozone mapping spectrometer (TOMS) is described, with emphasis on the low ozone amounts observed during 1992 and 1993. Ozone amount time series are extended beyong May 6, 1993, to the end of July 1993 using preliminary Meteor 3 TOMS data. Time series for zonally averaged ozone amounts show that there has not been a significant shift in the seasonal patterns of ozone maxima and minima caused by the Mount Pinatubo eruption or by the onset of very low ozone values during 1992 and 1993. There has been a relatively slow, nearly linear decrease in the amount of ozone over the entire globe from 1979 to the end of 1991, with rates ranging from no change at the equator to a 4 - 6% decrease per decade at midlatitudes and a 10 - 12% decrease per decade at higher latitudes. After the eruption of Mount Pinatubo during June 1991, the ozone amount decreased in the equatorial latitudes (10 deg S to 10 deg N) for about 6 months (-10 Dobson units (DU) between 0 deg and 10 deg S and -3 DU between 0 deg and 10 deg N). During 1992 and continuing into 1993, the rate of ozone decrease deviated from the previously linear trend with the onset of changes that were large in comparison with the historical range of ozone values from 1979 to 1991. The first of the large decreases in ozone amount occurred earlier, in February 1990 to May 1990, at 50 deg - 70 deg N. At high northern latitudes, the 1993 decreased ozone amounts were about 12.5% below the envelope of historical values; at midlatitudes they were about 7% lower; and at low latitudes they were about 4% lower. Area-weighted averages in the northern and southern hemispheres show that most of the 1992 - 1993 ozone losses have occurred in the northern hemisphere. The 1993 global average (70 deg S to 70 deg N) ozone amount is 3% below the 1979 to 1991 minimum, 5% below the historical envelope in the northern hemisphere, and near the lower boundary of the historical envelope in the southern hemisphere. In the 70 deg - 60 deg S latitude band, the ozone losses between 1979 and 1993 have reduced the annual minimum amount to values below those seen in the equatorial regions.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D2; p. 3483-3496
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The origin of tektites has been obscure because of the following dilemma. The application of physical principles to the data available on tektites points strongly to origin from one or more lunar volcanoes; but few glasses of tektite composition have hitherto been reported from the lunar samples. Instead, the lunar silicic glasses consist chiefly of a material very rich in K2O and poor in MgO. The ratio of K2O/MgO is higher in these glasses than in any tektites reported. The solution of the dilemma seems to come from the study of some recently discovered terrestrial deposits of tektite glass with high values of K2O/MgO at the Cretaceous Tertiary boundary. These glasses are found to be very vulnerable to crystallization into sandine or to alteration to smectite. These end products are known and are more abundant than any terrestrial deposits of tektite glass. It seems possible that, in fact, the moon produces tektite glass, mostly of the high K2O-low MgO type; but on Earth these deposits are destroyed. The much less abundant deposits with lower K and higher Mg are observed because they survive. Other objections to the lunar origin hypothesis appear to be answerable.
    Keywords: ASTROPHYSICS
    Type: Meteoritics (ISSN 0026-1114); 29; 1; p. 73-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: A new 8-year global cloud climatology has been produced by the International Satellite Cloud Climatology Project (ISCCP) that provides information every 3 h at 280-km spatial resolution covering the period from July 1983 through June 1991. If cloud detection errors and differences in area sampling are neglected, individual ISCCP cloud amounts agree with individual surface observations to within 15% rms with biases of only a few percent. When measurements of small-scale, broken clouds are isolated in the comparison, the rms differences between satellite and surface cloud amounts are about 25%, similar to the rms difference between ISCCP and Landsat determinations of cloud amount. For broken clouds, the average ISCCP cloud amounts are about 5% smaller than estimated by surface observers (difference between earth cover and sky cover), but about 5% larger than estimated from very high spatial resolution satellite observations (overestimate due to low spatial resolution offset by underestimate due to finite radiance thresholds). Detection errors caused by errors in the ISCCP clear-sky radiances or incorrect radiance threshold magnitudes, are the dominant source of error in monthly average cloud amounts. The ISCCP cloud amounts appear to be too low over land by about 10%, somewhat less in summer and somewhat more in winter, and about right (maybe slightly low) over oceans. In polar regions, ISCCP cloud amounts are probably too low by about 15%-25% in summer and 5%-10% in winter. Comparison of the ISCCP climatology to three other cloud climatologies shows excellent agreement in the geographic distribution and seasonal variation of cloud amounts; there is little agreement about day/night contrasts in cloud amount. Notable results from ISCCP are that the gobal annual mean cloud amount is about 63%, being about 23% higher over oceans than over land, that it varies by less than 1% rms from month to month, and that it has varied by about 4% on a time scale approximately equal to 2-4 years. The magnitude of interannual variations of local (280-km scale) monthly mean cloud amounts is about 7%-9%. Longitudinal contrasts in cloud amount are just as large as latitudinal contrasts. The largest seasonal variation of cloud amount occurs in the tropics, being larger in summer than in winter; the seasonal variation in the middle latitudes has the opposite phase. Polar regions may have little seasonable variability in cloud amount. The ISCCP results show slightly more nightime than daytime cloud amount over oceans and more daytime than nightime cloud amount over land.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 6; 12; pp. 2394-2418
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: This paper, the first of three, describes the cloud detection part of the International Satellite Cloud Climatology Project (ISCCP) analysis. Key features of the cloud detection alogrithm are (1) use of space and time radiance variation tests over several different space and time domains to account for the global variety of cloudy and clear characteristics, (2) estimation of clear radiance values for every time and place, and, (3) use of radiance thresholds that vary with the type of surface and climate regime. Design of the detection algorithm was supported by global, multiyear surveys of the statistical behavior of satellite-measured infrared and visible radiances to determine those characteristics that differentiate cloudy and clear scenes and how these characteristics vary among climate regimes. A summary of these statistical results is presented to illustrate how the cloud detection method works in a variety of circumstances. The sensitivity of the results to changing test parameter values is determined to provide a first estimate of the uncertainty of ISCCP cloud amounts. These test results (which exclude polar regions) suggest detection uncertainties of about 10% with possible negative biases of 5% (especially at night).
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 6; 12; p. 2341-2369
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: We investigate the radiative shock overstability for finite-sized objects. We follow the analysis of Chevalier & Imamura (1982), but we take into account the transverse flow of material out of the potshock region. The mass loss from the postshock region stabilizes the flow. As a rough estimate, the shock radiative instability takes place when the shock wave position with no radiative cooling (only mass loss present) is larger than the shock position with no mass loss (only radiative cooling present). For typical conditions of planetary nebulae we find that in order for the shock radiative overstability to occur, the nebular radius should be R approximately less than 10(exp 19) n(sub a)(exp -1) cm, where n(sub alpha) is the total number density of the interstellar medium (in units of cm(exp -3). We give several examples of interacting planetary nebulae in light of this condition.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 434; 1; p. 262-267
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: We compare model predictions of cometary water group ion densities and the solar wind slow down with measurements made by the Giotto Johnstone plasma analyzer implanted ion sensor at the encounter with comet Grigg-Skjellerup (G-S) on July 10, 1992. The observed slope of the ion density profile on approach to the comet is unexpectedly steep. Possible explanations for this are discussed. We present also a preliminary investigation of the quasilinear velocity-space diffusion of the implanted heavy ion population at G-S using a transport equation including souce, convection, adiabatic compression, and velocity diffusion terms. Resulting distributions are anisotropic, in agreement with observations. We consider theoretically the waves that may be generated by the diffusion process for the observed solar wind conditions. At initial ion injections, waves are generated at omega approximately Omega(sub i) the ion gyrofrequency, and lower frequencies are predicted for diffusion toward a bispherical shell.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A12; p. 20,995-21,002
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: Large-amplitude ultralow-frequency wave structure observed on both sides of the magnetic pileup boundary of comet P/Halley during the flyby of the Giotto spacecraft have been analyzed using suprathermal electron density and magnetic field observations. Upstream of the boundary, electron density and magnetic field magnitude variations are anticorrelated, while in the pileup region these quantities are clearly correlated. Both in front of and behind the pileup boundary the observed waves are quasi-perpendicular wave structures as a minimum variance analysis shows. A detailed comparison of our observations in the prepileup region with theoretical and numerical results shows that the mirror mode mode waves may have been generated by a mirror instability driven by the pressure anisotropy of the ring-type distributions of the heavy (water group) pickup cometary ions.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A12; p. 20,955-20,964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: The Chicxulub impact crater in Mexico is the site of the impact purported to have caused mass extinctions at the Cretaceous/Tertiary (K/T) boundary. 2-D hydrocode modeling of the impact, coupled with studies of the impact site geology, indiate that between 0.4 and 7.0 x 10(exp 17) g of sulfur were vaporized by the impact into anhydrite target rocks. A small portion of the sulfur was released as SO3 or SO4, which converted rapidly into H2SO4 aerosol and fell as acid rain. A radiative transfer model, coupled with a model of coagulation indicates that the aerosol prolonged the initial blackout period caused by impact dust only if the aerosol contained impurities. A larger portion of sulfur was released as SO2, which converted to aerosol slowly, due to the rate-limiting oxidation of SO2. Our radiative transfer calculations, combined with rates of acid production, coagulation, and diffusion indicate that solar transmission was reduced to 10-20% of normal for a period of 8-13 yr. This reduction produced a climate forcing (cooling) of -300 W/sq.m, which far exceeded the +8 W/sq.m greenhouse warming, caused by the CO2 released through the vaporization of carbonates, and therefore produced a decade of freezing and near-freezing temperatures. Several decades of moderate warming followed the decade of severe cooling due to the long residence time of CO2. The prolonged impact winter may have been a major cause of the K/T extinctions.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Earth and Planetary Science Letters (ISSN 0012-821X); 128; 3-4; p. 719-725
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: The energy spectra of the black-hole candidate GX 339-4 in the low-intensity state were observed on four occasions through 1989 to 1991 with the Large Area Counter on board the Ginga satellite. The spectra showed significant deviations from a power-law, with an iron K(sub alpha) emission line at approximetaly 6.4 keV and a broad iron K-edge structure above approximately 7 keV. The enrgy spectra above approximately 4 keV were successfully explained with a reflection model, in which part of the incident X-rays with a power-law spectrum is Compton reflected by optically thick matter, resulting in a harder continuum component with iron K-edge absorption and an iron flourescent line. The line equivalent width with respect to the reflection component decreases as the source flux increases. This is consistent with an increase in the ionization state of the material, so that resonant absorption followed by Auger ionization depletes the line. The photon-index of the power-law component was clearly variable, and it correlated with the relative amount of the reflection component. Such a correlation may be explained in the context of the anisotropic Comptonization models of Haardt et al. (1993), or by a variation of the relative geometry of the source and disk.
    Keywords: ASTROPHYSICS
    Type: PASJ: Publications of the Astronomical Society of Japan (ISSN 0004-6264); 46; 1; p. 107-115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: We suggest that prior to its impact with Jupiter, comet Shoemaker-Levy 9 will behave as an electrical generator in the Jovian magnetosphere, converting planetary rotational energy to electrical energy via a dust/plasma interaction. This electrical energy will then be deposited in the dayside auroral region where it may drive various auroral phenomena including cyclotron radio emission. Such emission could be detected by spacecraft like Ulysses and Galileo many hours prior to the actual comet impact with the upper atmosphere. We apply the theory originally developed to explain the spokes in Saturn's rings. This theory allows us to quantify the driving potential associated with the comet and, consequently, to determine the radio power created in the auroral region. We conclude that if enough fine dust is present in the cometary system, comet-induced auroral radio emissions will reach detectable levels. This emission should be observable in the dayside hemisphere about 12-24 hours prior to each fragment impact.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 11; p. 1067-1070
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 445-449
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: Theoretical O I density-sensitive emission-line ratios R = I(2s(sup 2))(2p(sup 4))((sup 3)P(sub 0))-((2s(sup 2))(2p(sup 4))((sup 3)P(sub 1)))/I((2s(sup 2))(2p(sup 4))((sup 3)P(sub 1))-(2s(sup 2))(2p(sup 4))((sup 3)P(sub 2))) = I(146 micrometers)/I(63 micrometers) are presented for a range of temperatures (T = 100-10,000 K), neutral hydrogen densities (N(sub H) = 10(exp -2) to 10(exp 7)/cu cm) and radiation fields (G(sub 0) = 1-10(exp 6)) applicable to both photodissociation regions (PDRs) and H II regions and the diffuse ionized medium (DIM). The observed values of R for several PDRs, measured from far-infrared spectra obtained with the Kuiper Airborne Observatory (KAO), imply hydrogen densities which are in good agreement with those determined using other methods. This provides observational support for the validity of the theoretical O I line ratios, and hence the atomic data used in their derivation.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 434; 2; p. 811-815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: The 1.6-1.8 micron spectrum of the planetary nebula, IRAS 21282+5050, a strong emitter of the unidentified interstellar bands, contains a 0.02 micron wide eimission feature centered at 1.680 micron, which is well matched by laboratory spectra of the 0-2 CH stretching mode in polycyclic aromatic hydrocarbons (PAHs). We identify the new feature as the overtone of the well-known 3.3 micron band. In view of the high excitation required for emission in this band, the identification indicates that the emission is by free molecules rather than molecular moieties in solid dust grains. Modeling of the intensity ratio of the 2-0 to 1-0 band implied that the PAHs emitting in these bands contain about 60 carbon atoms. It is inferred that the nu = 2-1 hot band of the CH stretching mode occurs at about 3.43 micron and contributes to the long-wavelength shoulder of the 3.40 micron feature. The main 3.40 micron feature probably is due to aliphatic sidegroups on PAH molecules.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 434; 1; p. L15-L18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: Weakly nonlinear Magneto Hydrodynamic (MHD) stability of the Halley cometosheath determined by the balance between the outward ion-neutral drag force and the inward Lorentz force is investigated including the transverse plasma motion as observed in the flanks with the help of the method of multiple scales. The eigenvalues and the eigenfunctions are obtained for the linear problem and the time evolution of the amplitude is obtained using the solvability condition for the solution of the second order problem. The diamagnetic cavity boundary and the adjacent layer of about 100 km thickness is found unstable for the travelling waves of certain wave numbers. Halley ionopause has been observed to have strong ripples with a wavelength of several hundred kilometers. It is found that nonlinear effects have stabilizing effect.
    Keywords: ASTROPHYSICS
    Type: Astrophysics and Space Science (ISSN 0004-640X); 222; 1-2; p. 113-125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: Clear-sky albedos and outgoing longwave radiation (OLR) determined from Earth Radiation Budget Experiment (ERBE) scanners on board the earth radiation budget satellite and NOAA-9 spacecraft were analyzed for three target sites for the months February 1985-January 1987. The targets were oceans, deserts, and a multiscene site covering half the earth's surface. Year-to-year ratios of the monthly albedos and OLR were within the 0.98-1.02 range with a standard error of about 1%. The data indicate that ERBE scanner measurements were stable to within a few tenths of a percent for the two-year periods.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 10; 6; p. 827-832
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: A set of system simulations has been performed to evaluate candidate scanner designs for an Earth Radiation Budget Instrument (ERBI) for the Earth Observing System (EOS) of the late 1990s. Five different instruments are considered: (1) the Active Cavity Array (ACA), (2) the Clouds and Earth's Radiant Energy System-Instrument (CERES-I), (3) the Conically Scanning Radiometer (CSR), (4) the Earth Radiation Budget Experiment Cross-Track Scanner (ERBE), and (5) the Nimbus-7 Biaxial Scanner (N7). Errors in instantaneous, top-of-the-atmosphere (TOA) satellite flux estimates are assumed to arise from two measurement problems: the sampling of space over a given geographic domain, and sampling in angle about a given spatial location. When angular sampling errors vanish due to the application of correct angular dependence models (ADMs) during inversion, the accuracy of each scanner design is determined by the instrument's ability to map the TOA radiance field in a uniform manner. In this regard, the instruments containing a cross-track scanning component (CERES-I and ERBE) do best. As errors in ADMs are encountered, cross-track instruments incur angular sampling errors more rapidly than biaxial instruments (N7, ACA, and CSR) and eventually overtake the biaxial designs in their total error amounts. A latitude bias (north-south error gradient) in the ADM error of cross-track instruments also exists. This would be objectionable when ADM errors are systematic over large areas of the globe. For instantaneous errors, however, cross-track scanners outperform biaxial or conical scanners for 2.5 deg latitude x 2.5 deg longitude target areas, providing that the ADM error is less than or equal to 30%. A key issue is the amount of systematic ADM error (departures from the mean models) that is present at the 2.5 deg resolution of the ERBE target areas. If this error is less than 30%, then the CERES-I, ERBE, and CSR, in order of increasing error, provide the most accurate instantaneous flux estimates, within 2-3 W/sq m of each other in reflected shortwave flux. The magnitude of this error is near the 10 W/sq m accuracy requirement of the user community. Longwave flux errors have been found to have the same space and time characteristics as errors in shortwave radiation, but only about 25% as large.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 10; 6; p. 809-826
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: We have developed a radiative transfer model of the dust and gas envelopes around late-type stars. The gas kinetic temperature for each star is calculated by solving equations of motion and the energy balance simultaneously. The main processes include viscous heating and adiabatic and radiative cooling. Heating is dominated by viscosity as the grains stream outward through the gas, with some contribution in oxygen-rich stars by near-IR pumping of H2O followed by collisional de-excitation in the inner envelope. For O-rich stars, rotational H2O cooling is a dominant mechanism in the middle part of the envelope, with CO cooling being less significant. We have applied our model to three well-studied oxygen-rich red giant stars. The three stars cover a wide range of mass-loss rates, and hence they have different temperature structures. The derived temperature structures are used in calculating CO line profiles for these objects. Comparison of the dust and gas mass-loss rates suggests that mass-loss rates are not constant during the asymptotic giant branch phase. In particular, the results show that the low CO 1-0 antenna temperatures of OH/IR stars reflect an earlier phase of much lower mass-loss rate.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 435; 2; p. 852-863
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: This paper briefly reviews several single-frequency rain profiling methods for an airborne or spaceborne radar. The authors describe the different methods from a unified point of view starting from the basic differential equation. This facilitates the comparisons between the methods and also provides a better understanding of the physical and mathematical basis of the methods. The application of several methods to airborne radar data taken during the Convective and Precipitation/Electrification Experiment is shown. Finally, the authors consider a hybrid method that provides a smooth transition between the Hitschfeld-Bordan method, which performs well at low attenuations, and the surface reference method, for which the relative error decreases with increasing path attenuation.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 11; 6; p. 1507-1516
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: An analysis of a spontaneous sudden stratospheric warming that occurred during a 2-year integration of the Langley Research Center (LaRC) Atmospheric Simulation Model is presented. The simulated warming resembles observed 'wave 1' warmings in the Northern Hemisphere stratosphere and provides an opportunity to investigate the radiative and dynamical processes occurring during the warming event. Isentropic analysis of potential vorticity sources and sinks indicates that dynamically induced departures from radiative equilibrium play an important role in the warming event. Enhanced radiative cooling associated with a series of upper stratospheric warm pools leads to radiative dampening within the polar vortex. Within the 'surf zone' large-scale radiative cooling leads to diabatic advection of high potential vorticity air from aloft. Lagrangian area diagnostics of the simulated warming agree well with Limb Infrared Monitor of the Stratosphere (LIMS) analyses. Dynamical mixing is shown to account for the majority of the decrease in the size of the polar vortex during the simulated warming. An investigation of the nonlinear deformation of material lines that are initially coincident with diagnosed potential vorticity isopleths is conducted to clarify the relationship between the Lagrangian area diagnostics and potential vorticity advection during wave breaking events.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 50; 23; p. 3829-3851
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Solid state SiS2 is proposed as the material responsible for the recently discovered 21 micrometer emission feature that is observed in the carbon-rich circumstellar shells of certain protoplanetary nebulae. Sulfurized SiC, or SiS2 mantles on grains of either SiC or a:C-H are discussed as possible forms for which no spectroscopic laboratory observations yet exist. The identification with a relatively minor species and required special abundance ratios are consistent with the low incidence rate that the 21 micrometer feature presents in the population of carbon rich objects. It is also consistent with the lack of a good correlation between the 21 micrometer feature and the other solid-state spectroscopic features that have been observed in protoplanetaries that would be expected if the feature arose from molecules composed of H, C, N, and O. SiS2 condensate is consistent with the circumstellar shell temperature range, T(sub CS) approximately equal to or less than 150 K, at which the feature appears, and the available mass of SiS2, M(sub SiS2) approx. = 5 x 10(exp -6) solar mass, that is possible in the circumstellar shell.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 278; 1; p. 226-230
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: We have studied the spectacular 1991 June X-class flares using gamma-ray data from the Charged Particle Detectors (CPDs) of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) and 80 GHz millimeter data from Nobeyama, Japan. The CPDs were the only CGRO instrument that did not saturate during the extremely intense 1991 June 4 flare. We have shown that for this flare the CPDs respond to MeV photons, most of which are due to bremsstrahlung produced by relativistic electrons at the Sun. We have further shown that the gamma-ray and millimeter observations agree numerically if the 80 GHz radiation is gyrosynchrotron radiation produced by trapped electrons and the gamma rays are thick-target bremsstrahlung due to electrons precipitating out of the trap. The requirement that the trapping time obtained from the numerical comparison be consistent with the observed time profiles implies a magnetic field between about 200 and 300 G and an electron spectral index between about 3 to 5. By comparing the CPD observations with both the 80 GHz data and nuclear line data from the Energetic Gamma Ray Experiment Telescope (EGRET) and the Oriented Scintillation Spectroscopy Experiment (OSSE) on CGRO for the flares of June 4, 6, 9, and 11, we found that the ratio of the CPD counts to both the millimeter flux densities and the nuclear line fluences decreases with decreasing flare heliocentric angle. All of these flares were produced in the same active region. We interpreted this result in terms of a loop model in which the gyrosynchrotron emission is produced in the coronal portion of the loop where the electrons are kept isotropic by pitch angle scattering due to plasma turbulence, while the bremsstrahlung is produced by precipitating electrons that interact anisotropically. We found that the trapping time in the coronal portion is time dependent, reaching a minimum of about 10 s at the peak of the CPD count rate. We suggested the damping of the turbulence as a possible reason for the variation of the trapping time. turbulence as a possible reason for the variation of the trapping time.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 436; 2; p. 941-949
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: Several possible models have been suggested to explain the observed distribution of gamma-ray bursts: heliocentric distributions such as the Oort cloud, large galactic halos, and cosmological models. We report here on an investigation into the implications of the Burst and Transient Source Experiment (BATSE) gamma-ray burst distribution (Meegan et al. 1992a) data on the possible helocentric origin of gamma-ray bursts. We find no statistically significant anisotropy in the angular distribution of the bursts in a Sun-referenced coordinate system; there is no dipole moment in the direction of the Sun, and no quardrupole moment associated with the ecliptic plane. We have employed direct analytic calculations and Monte Carlo simulations of sources in the Oort cloud to constrain possible helicentric burst distributions. These can produce distributions consistent with the observed angular isotropy, the meal value of V/V(sub max), and the observed C/C(sub min) distribution of BATSE, and provide limits to burst energy of a few times approximately 10(exp 27) ergs. However, the agreement of the heliocentric C/C(sub min) distributions with the BATSE data is attributable to the relatively limited sampling of strong, nearby bursts. These bursts are known from observation to be homogeneously distributed, yet the density of sources in the Oort cloud is not constant in this region. Integral number-intensity distributions from the Oort cloud for larger numbers of bursts cannot reproduce the known homogeneity of the strong bursts without modification to the computed cometary number density and are therefore unlikely explanations of the gamma-ray burst distribution.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 429; 1; p. 319-324
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: We report the first X-ray observations of the Seyfert 1 galaxy MCG-6-30-15 obtained at medium spectral resolution. The partially-ionized, 'warm' absorber is resolved and shown to be due to O VII and O VIII. The main absorption edge agrees with that of O VII at the redshift of the galaxy to within 1%. The column density of the absorbing material is greater by a factor of 2 in the first of our two obsevations, which were 3 weeks apart, while the mean flux is slightly lower and the ionization parameter slightly higher. We also discuss the flourescent iron emssion line seen in the source, which is at 6.40 keV. The line is significantly broadened, with a Full Width at Half Maximum (FWHM) of about 0.4 keV.
    Keywords: ASTROPHYSICS
    Type: PASJ: Publications of the Astronomical Society of Japan (ISSN 0004-6264); 46; 3; p. L59-L63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.
    Keywords: ASTROPHYSICS
    Type: Astrophysics and Space Science (ISSN 0004-640X); 220; 1; p. 65-74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: Calculations of the quasi biennial oscillation (QBO) signal in Stratospheric Aerosol and Gas Experiment (SAGE) II O3 and NO2 data between 1984 and 1991 are presented and have been investigated by using a two-dimensional model. The isentropic 2D model is a fully interactive radiative-dynamical-chemical model in which the eddy fluxes of chemical species are calculated in a consistent manner. The QBO in the model has been forced by relaxing the equatorial zonal wind toward the observations at Singapore allowing the comparison of the model with observations from specific years. The model reproduces the observed vertical structure of the equatorial ozone anomaly with the well-known transition from dynamical to photochemical control at around 28km. The model also reproduces the observed vertical structure of the SAGE II observed NO2 anomaly. The model studies have shown that it is the QBO modulation of NO2 which the main cause of QBO signal in O3 above 30 km. The model also reproduces the observed latitudinal structure of the QBO signals in O3 and NO2. Due to the differing horizontal distribution of O3 and NO(y) the ozone signal shows a distinct phase change in the subtropics whereas the NO2 anomaly gives a broader signal.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 7; p. 589-592
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: A generalized form of the second-order van Leer transport scheme is derived. Several constraints to the implied subgrid linear distribution are discussed. A very simple positive-definite scheme can be derived directly from the generalized form. A monotonic version of the scheme is applied to the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) for the moisture transport calculations, replacing the original fourth-order center-differencing scheme. Comparisons with the original scheme are made in idealized tests as well as in a summer climate simulation using the full GLA GCM. A distinct advantage of the monotonic transport scheme is its ability to transport sharp gradients without producing spurious oscillations and unphysical negative mixing ratio. Within the context of low-resolution climate simulations, the aforementioned characteristics are demonstrated to be very beneficial in regions where cumulus convection is active. The model-produced precipitation pattern using the new transport scheme is more coherently organized both in time and in space, and correlates better with observations. The side effect of the filling algorithm used in conjunction with the original scheme is also discussed, in the context of idealized tests. The major weakness of the proposed transport scheme with a local monotonic constraint is its substantial implicit diffusion at low resolution. Alternative constraints are discussed to counter this problem.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 122; 7; p. 1575-1593
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: A model is presented to compute the turbulent kinetic energy dissipation length scale l(sub epsilon) in a stably stratified shear flow. The expression for l(sub epsilon) is derived from solving the spectral balance equation for the turbulent kinetic energy. The buoyancy spectrum entering such equation is constructed using a Lagrangian timescale with modifications due to stratification. The final result for l(sub epsilon) is given in algebraic form as a function of the Froude number Fr and the flux Richardson number R(sub f), l(sub epsilon) = l(sub epsilon)(Fr, R(sub f). The model predicts that for R(sub f) less than R(sub fc), l(sub epsilon) decreases with stratification. An attractive feature of the present model is that it encompasses, as special cases, some seemingly different models for l(sub epsilon) that have been proposed in the past by Deardorff, Hunt et al., Weinstock, and Canuto and Minotti. An alternative form for the dissipation rate epsilon is also discussed that may be useful when one uses a prognostic equation for the heat flux. The present model is applicable to subgrid-scale models, which are needed in large eddy simulations (LES), as well as to ensemble average models. The model is applied to predict the variation of l(sub epsilon) with height z in the planetary boundary layer. The resulting l(sub epsilon) versus z profile reproduces very closely the nonmonotonic profile of l(sub epsilon) exhibited by many LES calculations, beginning with the one by Deardorff in 1974.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 51; 16; p. 2384-2396
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: Two stratospheric warmings during February and March 1993 are described using United Kingdom Meteorological Office (UKMO) analyses, calculated potential vorticity (PV) and diabetic heating, and N2O observed by the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument on the Upper Atmosphere Research Satellite (UARS). The first warming affected temperatures over a larger region, while the second produced a larger region of reversed zonal winds. Tilted baroclinic zones formed in the temperature field, and the polar vortex tilted westward with height. Narrow tongues of high PV and low N2O were drawn off the polar vortex, and irreversibly mixed. Tongues of material were drawn from low latitudes into the region between the polar vortex and the anticyclone; diabatic descent was also strongest in this region. Increased N2O over a broad region near the edge of the polar vortex indicates the importance of horizontal transport. N2O decreased in the vortex, consistent with enhanced diabatic descent during the warmings.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 9; p. 813-816
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: If, as many believe, Sgr A* is a massive black hole at the Galactic center, one should expect it to be a source of X-ray and gamma-ray activity, behaving basically as a scaled-down active galactic nucleus. An unavoidable source of accretion is the wind from IRS 16, a nearby group of hot, massive stars. Since the density and velocity of the accreting matter are known from observations, the accretion rate is basically a function of the putative black hole mass, M(sub h), only; this value represents a reliable lower limit to a real rate, given the other possible sources of accreting matter. Based on this and on the theories about shock acceleration in active galactic nuclei, we have estimated the expected production of relativistic particles and their hard radiation. These values turn out to be a function of M(sub h) as well. Comparing our results with available X-ray and gamma-ray observations which show Sgr A* to have a relatively low activity level, we conclude tentatively that the putative black hole in the Galactic center cannot have a mass greater than approximately 6 x 10(exp 3) solar mass. This conclusion is consistent with the upper limits to the black hole mass found by different methods earlier, although much more work is needed to make calculations of shock acceleration around black holes more reliable.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 426; 2; p. 599-603
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: The light curve of the Type Ia supernova SN 1937C (in IC 4182) is important because Sandage et al. have measured a distance to the host galaxy by means of Cepheid variables and thus have derived the Hubble constant. However, the peak brightness of SN 1937C has only been derived with the relatively poor original comparison star brightnesses and without regard to a large body of data in the literature. In this paper, I will correct these and other procedural difficulties. I find that the late time photographic light curve appears to have a broken exponential decay with equivalent half-lives of 46 and 58 days with the break near 300 days after maximum. I also find that the peak B-magnitude was 8.71 +/- 0.14 on JD 2428770.0 +/- 1.0 at which time the B-V was -0.03 +/- 0.13. With these improved peak brightnesses, the distance modulus of Sandage et al., and peak absolute magnitudes in the center of the range of modern estimates, I derive the Hubble constant to be 50 km/s Mpc.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 426; 2; p. 493-501
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: In this paper, preliminary results in using orthogonal and continuous wavelet transform (WT) to identify period doubling and time-frequency localization in both synthetic and real data are presented. First, the Haar WT is applied to synthetic time series derived from a simple nonlinear dynamical system- a first-order quadratic difference equation. Second, the complex Morlet WT is used to study the time-frequency localization of tropical convection based on a high-resolution Japanese Geostationary Meteorological Satellite infrared (IR) radiance dataset. The Haar WT of the synthetic time series indicates the presence and distinct separation of multiple frequencies in a period-doubling sequence. The period-doubling process generates a multiplicity of intermediate frequencies, which are manifested in the nonuniformity in time with respect to the phase of oscillations in the lower frequencies. Wavelet transform also enables the detection of extremely weak signals in high-order subharmonics resulting from the period-doubling bifurcations. These signals are either undetected or considered statistically insignificant by traditional Fourier analysis. The Morlet WT of the IR radiance dataset indicates the presence of multiple timescales, which are localized in both frequency and time. There are two regimes in the variation of IR radiance, corresponding to the wet and dry periods. Multiple timescales, ranging from semidiurnal, diurnal, synoptic, to intraseasonal with embedding structures, are active in the wet regime. In particular, synoptic variability is more prominent during the wet phase of an intensive intraseasonal cycle. These are not only consistent with, but also show more details than, previous findings by using other techniques. The phase-locking relationships among the oscillations with different time-scales suggest that both synoptic and intraseasonal variations may be mixed oscillations due to the interaction of self-excited oscillations in the tropical atmosphere and external forcings such as annual and diurnal solar radiation variations. Both examples show that WT is a powerful tool for analysis of phenomena involving multiscale interactions that exhibit localization in both frequency and time. A discussion on the caveats in the use of WT in geophysical data analysis is also presented.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 51; 7; p. 2523-2541
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: Observations of upper tropospheric relative humidity obtained from Raman lidar and Cross-chain Loran Atmospheric Sounding System (CLASS) sonde instruments obtained during the First ISCCP Regional Experiment (FIRE) Cirrus-II field program are compared with satellite measurements from the GOES 6.7-micron channel. The 6.7-micron channel is sensitive to water vapor integrated over a broad layer in the upper troposphere (roughly 500-200 mbar). Instantaneous measurements of the upper tropospheric relative humidity from GOES are shown to agree to within roughly 6% of the nearest lidar observations and 9% of the nearest CLASS observations. The CLASS data exhibit a slight yet systematic dry bias in upper tropospheric humidity, a result which is consistent with previous radiosonde intercomparisons. Temporal stratification of the CLASS data indicates that the magnitude of the bias is dependent upon the time of day, suggesting a solar heating effect in the radiosonde sensor. Using CLASS profiles, the impact of vertical variability in relative humidity upon the GOES upper tropospheric humidity measurements is also examined. The upper tropospheric humidity inferred from the GOES 6.7-micron channel is demonstrated to agree to within roughly 5% of the relative humidity vertically averaged over the depth of atmosphere to which the 6.7-micron channel is sensitive. The results of this study encourage the use of satellite measurements in the 6.7-micron channel to quantitatively describe the distribution and temporal evolution of the upper tropospheric humidity field.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 21,005-21,016
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: Published estimates of cloud liquid water path (LWP) from satellite-measured microwave radiation show little agreement, even about the relative magnitudes of LWP in the tropics and midlatitudes. To understand these differences and to obtain more reliable estimate, optical and microwave LWP retrieval methods are compared using the International Satellite Cloud Climatology Project (ISCCP) and special sensor microwave/imager (SSM/I) data. Errors in microwave LWP retrieval associated with uncertainties in surface, atmosphere, and cloud properties are assessed. Sea surface temperature may not produce great LWP errors, if accurate contemporaneous measurements are used in the retrieval. An uncertainty of estimated near-surface wind speed as high as 2 m/s produces uncertainty in LWP of about 5 mg/sq cm. Cloud liquid water temperature has only a small effect on LWP retrievals (rms errors less than 2 mg/sq cm), if errors in the temperature are less than 5 C; however, such errors can produce spurious variations of LWP with latitude and season. Errors in atmospheric column water vapor (CWV) are strongly coupled with errors in LWP (for some retrieval methods) causing errors as large as 30 mg/sq cm. Because microwave radiation is much less sensitive to clouds with small LWP (less than 7 mg/sq cm) than visible wavelength radiation, the microwave results are very sensitive to the process used to separate clear and cloudy conditions. Different cloud detection sensitivities in different microwave retrieval methods bias estimated LWP values. Comparing ISCCP and SSM/I LWPs, we find that the two estimated values are consistent in global, zonal, and regional means for warm, nonprecipitating clouds, which have average LWP values of about 5 mg/sq cm and occur much more frequently than precipitating clouds. Ice water path (IWP) can be roughly estimated from the differences between ISCCP total water path and SSM/I LWP for cold, nonprecipitating clouds. IWP in the winter hemisphere is about 3 times the LWP but only half the LWP in the summer hemisphere. Precipitating clouds contribute significantly to monthly, zonal mean LWP values determined from microwave, especially in the intertropical convergence zone (ITCZ), because they have almost 10 times the liquid water (cloud plus precipitation) of nonprecipitating clouds on average. There are significant differences among microwave LWP estimates associated with the treatment of precipitating clouds.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,907-20,927
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth's radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,847-20,862
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: Temperature variations in the stratosphere from 1979 to 1992 are investigated using 365-day running mean of the National Meteorological Center gridded analysis temperature data. Significant variations are seen at all levels between 70 and 1 mbar. The middle stratosphere shows temperature peaks during 1982 and 1983. The upper stratosphere has significant temperature declines between 1 and 10 mbar from 1981 to 1984. Temperatures at all levels recover to near their prior values after 1984, with the 5-mbar temperatures requiring the greatest time to fully recover. The temperature declines at 1 mbar occur in both hemispheres, over all longitudes, and in every month of the year. The decreases are largest in the middle latitudes and the polar regions and during the fall and the winter months. Such temperature variations, which appear to be of natural origin, must be taken into consideration when searching for temperature trends caused by the increase of CO2 or other greenhouse gases which affect the radiative balance of the Earth-atmosphere system or stratospheric ozone.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,701-20,712
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: We have found a new way to make Thorne-Zytkow objects, which are massive stars with degenerate neutron cores. The asymmetric kick given to the neutron star formed when the primary of a massive tight binary system explodes as a supernova sometimes has the appropriate direction and amplitude to place the newly formed neutron star into a bound orbit with a pericenter distance smaller than the radius of the secondary. Consequently, the neutron star becomes embedded in the secondary. Thorne-Zytkow objects are expected to look like extreme M-type supergiants, assuming that they can avoid a runaway neutrino instability. Accretion onto the embedded neutron star will produce either an isolated, spun-up neutron star (possibly a short-period pulsar) or a black hole. Whether neutron star or black hole remnants predominate depends on the lifetime of Thorne-Zytkow objects, the accretion rates involved, and the maximum neutron star mass, none of which are definitively understood.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 423; 1; p. L19-L22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.
    Keywords: ASTROPHYSICS
    Type: Astronomical Journal (ISSN 0004-6256); 107; 2; p. 747-750
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The giant radio galaxy NGC 6251 is a particularly good object for observational tests of relativistic jet models. Due to its high declination and approximately 0.5 Jy radio nucleus, high-quality Very Long Baseline Interferometry (VLBI) images of the central regions of the source can be made with northern hemisphere arrays. In addition, the large-scale radio morphology strongly suggests that the radio axis lies close to the plane of the sky, so Doppler boosting should be less extreme than in the core-dominated superluminal sources. Earlier 18 cm VLBI observations of NGC 6251 revealed an unexpectedly large jet/counterjet brightness ratio and small transverse motion of a feature in the parsec-scale jet. These early results are difficult to reconcile with the simplest symmetric relativistic jet models. In this paper we present a third-epoch 18 cm VLBI image of the parsec-scale radio jet in NGC 6251, and compare jet morphology over a 5 year time span. The jet shows a minor brightness peak at nearly the same distance from the core as the '25 mas knot' seen in the first- and second-epoch VLBI images. This feature is much less pronounced in the third epoch, and a relatively bright, new knot has appeared approximately 12 mas from the core. If this new component had a constant brightness during the 5 years separating the first and third observing epochs, then it must have moved away from the core with an apparent speed of at least 1.2c (compared with an upper limit of 0.23c for motion of the 25 mas knot). However, we cannot yet rule out a local brightening of the inner jet in favor of a new moving component. We determine a lower limit for the jet/couterjet brightness ratio of 100:1 within 6 mas of the core. We also present a new Very Large Array (VLA) image of the kpc-scale jet with 3 sec resolution, made from data obtained during the VLBI observations. The rate of decrease in jet surface brightness from parsec to kiloparsec scales is similar to jets in known superluminal radio sources.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 427; 1; p. 221-226
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: This paper presents a comparison of the water vapor distribution obtained from two general circulation models, the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM), with satellite observations of total precipitable water (TPW) from Special Sensor Microwave/Imager (SSM/I) and upper tropospheric relative humidity (UTH) from GOES. Overall, both models are successful in capturing the primary features of the observed water vapor distribution and its seasonal variation. For the ECMWF model, however, a systematic moist bias in TPW is noted over well-known stratocumulus regions in the eastern subtropical oceans. Comparison with radiosonde profiles suggests that this problem is attributable to difficulties in modeling the shallowness of the boundary layer and large vertical water vapor gradients which characterize these regions. In comparison, the CCM is more successful in capturing the low values of TPW in the stratocumulus regions, although it tends to exhibit a dry bias over the eastern half of the subtropical oceans and a corresponding moist bias in the western half. The CCM also significantly overestimates the daily variability of the moisture fields in convective regions, suggesting a problem in simulating the temporal nature of moisture transport by deep convection. Comparison of the monthly mean UTH distribution indicates generally larger discrepancies than were noted for TPW owing to the greater influence of large-scale dynamical processes in determining the distribution of UTH. In particular, the ECMWF model exhibits a distinct dry bias along the Intertropical Convergence Zone (ITCZ) and a moist bias over the subtropical descending branches of the Hadley cell, suggesting an underprediction in the strength of the Hadley circulation. The CCM, on the other hand, demonstrates greater discrepancies in UTH than are observed for the ECMWF model, but none that are as clearly correlated with well-known features of the large-scale circulation.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1187-1210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative agreement but are less diffusive than when driven with instantaneous winds sampled at half-hour intervals. Simulations with the off-line and 2-D models are quite similar in the middle and upper stratosphere but behave quite differently in the lower stratosphere, where the 3-D model has a substantially more vigorous circulation. The off-line model is quite realistic in its simulation of C-14. While there are still systematic differences between the 3-D calculation and the observations, the differences seem to be substantially reduced when compared with the body of 2-D simulations documented in the above mentioned NASA intercomparison, particularly at 31 deg N.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 999-1017
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: SEASAT synthetic aperture radar (SAR) echoes from the sea have previously been shown to be the result of rain and winds produced by convective stroms; rain damps the surface waves and causes ech-free holes, while the diverging winds associated with downdraft generate waves and associated echoes surrounding the holes. Gust fronts are also evident. Such a snapshot from 8 July 1978 has been examined in conjunction with ground-based radar. This leads to the conclusion that the SAR storm footprints resulted from storm processes that occurred up to an hour or more prior to the snapshot. A sequence of events is discerned from the SAR imagery in which new cell growth is triggered in between the converging outflows of two preexisting cells. In turn, the new cell generates a mini-squall line along its expanding gust front. While such phenomena are well known over land, the spaceborne SAR now allows important inferences to be made about the nature and frequency of convective storms over the oceans. The storm effects on the sea have significant implications for spaceborne wind scatterometry and rainfall measurements. Some of the findings herein remain speculative because of the great distance to the Miami weather radar-the only source of corroborative data.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 75; 7; p. 1183-1190
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: Time average climatology and low-frequency variabilities of the global hydrologic cycle (GHC) in the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) were investigated in the present work. A 730-day experiment was conducted with the GLA GCM forced by insolation, sea surface temperature, and ice-snow undergoing climatological annual cycles. Ifluences of interactive soil moisture on time average climatology and natural variability of the GHC were also investigated by conducting 365-day experiments with and without interactive soil moisture. Insolation, sea surface temperature, and ice-snow were fixed at their July levels in the latter two experiments. Results show that the model's time average hydrologic cycle variables for July in all three experiments agree reasonably well with observations. Except in the case of precipitable water, the zonal average climates of the annual cycle experiment and the two perpetual July experiments are alike, i.e., their differences are within limits of the natural variability of the model's climate. Statistics of various components of the GHC, i.e., water vapor, evaporation, and precipitation, are significantly affected by the presence of interactive soil moisture. A long-term trend is found in the principal empirical modes of variability of ground wetness, evaporation, and sensible heat. Dominant modes of variability of these quantities over land are physically consistent with one another and with land surface energy balance requirements. The dominant mode of precipitation variability is found to be closely related to organized convection over the tropical western Pacific Ocean. The precipitation variability has timescales in the range of 2 to 3 months and can be identified with the stationary component of the Madden-Julian Oscillation. The precipitation mode is not sensitive to the presence of interactive soil moisture but is closely linked to both the rotational and divergent components of atmospheric moisture transport. The present results indicate that globally coherent natural variability of the GHC in the GLA GCM has two basic timescales in the absence of annual cycles of external forcings: a long-term trend associated with atmosphere-soil moisture interaction which affects the model atmosphere mostly over midlatitude continental regions and a large-scale 2- to 3-month variability associated with atmospheric moist processes over the western Pacific Ocean.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1329-1345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-24
    Description: Climatologies of convective precipitation were derived from passive microwave observations from the Special Sensor Microwave Imager using a scattering-based algorithm of Adler et al. Data were aggregated over periods of 3-5 months using data from 4 to 5 years. Data were also stratified by satellite overpass times (primarily 06 00 and 18 00 local time). Four regions (Mexico, Amazonia, western Africa, and the western equatorial Pacific Ocean (TOGA COARE area) were chosen for their meteorological interest and relative paucity of conventional observations. The strong diurnal variation over Mexico and the southern United States was the most striking aspect of the climatologies. Pronounced morning maxima occured offshore, often in concativities in the coastline, the result of the increased convergence caused by the coastline shape. The major feature of the evening rain field was a linear-shaped maximum along the western slope of the Sierra Madre Occidental. Topography exerted a strong control on the rainfall in other areas, particularly near the Nicaragua/Honduras border and in Guatemala, where maxima in excess of 700 mm/month were located adjacent to local maxima in terrain. The correlation between the estimates and monthly gage data over the southern United States was low (0.45), due mainly to poor temporal sampling in any month and an inadequate sampling of the diurnal cycle. Over the Amazon Basin the differences in morning versus evening rainfall were complex, with an alternating series of morning/evening maxima aligned southwest to northeast from the Andes to the northeast Brazilian coast. A real extent of rainfall in Amazonia was slightly higher in the evening, but a maximum in morning precipitation was found on the Amazon River just east of Manaus. Precipitation over the water in the intertropical convergence zone (ITCZ) north of Brazil was more pronounced in the morning, and a pronounced land-/sea-breeze circulation was found along the northeast coast of Brazil. Inter-comparison of four years revealed 1992 to be the driest over Amazonia, with about a 23% decrease in mean rate compared to the 4-year mean estimated rain rate.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 75; 7; p. 1165-1182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: We compute the three-point temperature correlation function of the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) first-year sky maps to search for non-Gaussian temperature fluctuations. The level of fluctuations seen in the computed correlation function are too large to be attributable solely to instrument noise. However the fluctuations are consistent with the level expected to result from a superposition of istrument noise and sky signal arising from a Gaussian power-law model of initial fluctuations, with a quadrupole normalized amplitude of 17 micro K and a power-law spectral index n = 1. We place limits on the amplitude of intrinsic three-point correlations with a variety of predicted functional forms.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 431; 1; p. 1-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-08-24
    Description: The Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory detected 260 cosmic gamma-ray bursts during the period 19 Apr 1991 to 5 Mar 1992. This paper presents the occurrence times, locations, peak count rates, peak fluxes, fluences, durations, and plots of time histories for these bursts. The angular distribution is consistent with isotropy. The intensity distribution shows a deficit in the number of weak bursts, which is not consistent with a homogeneous distribution of burst sources in Euclidean space. The duration distribution shows evidence for a separate class of bursts with durations less than about 2 seconds.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal Supplement Series (ISSN 0067-0049); 92; 1; p. 229-283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-24
    Description: A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 431; 1; p. 91-103
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-24
    Description: Electric dipole transition matrix elements for rovibrational transitions in the X (sup 1)Sigma(sup +) state of the CO minor isotopes (14)C(16)O and (13)C(17)O are calculated for the first time for all the delta v = +1, +2, and +3 transitions for which v less than or equal to 20 and J less than or equal to 150. Improved electric dipole transition matrix elements are also calculated for the minor isotopes (12)C(17)O, (12)C(18)O, (13)C(18)O. We have fitted polynomials to these matrix elements as a function of the parameter m which is defined in terms of the lower state angular momentum quantum number J; the convenient to use polynomial representations are given in tabular form. These results for the minor species of CO complement those previously reported by us for (12)C(16)O and (13)C(16)O.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal Supplement Series (ISSN 0067-0049); 92; 1; p. 311-321
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-24
    Description: Ample evidence supports the significance of the high-latitude ionospheric contribution to magnetospheric plasma. Assuming flux conservation along a flux tube, the upward field-aligned ion flows observed in the magnetosphere require high-latitude ionospheric field-aligned ion upflows of the order of 10(exp 8) to 10(exp 9)/sq cm/s. Since radar and satellite observations of high-latitude F region flows at times exceed this flux requirement by an order of magnitude, the thermal ionospheric upflows are not simply the ionospheric response to a magnetospheric flux requirement. Several ionospheric ion upflow mechanisms have been proposed, but simulations based on fluid theory do not reproduce all the observed features of ionospheric ion upflows. Certain asymmetries in the statistical morphology of high-latitude F region ion upflows suggest that the ion upflows may be generated by ion-neutral frictional heating. We developed a single-component (O(+)), time-dependent gyro-kinetic model of the high-latitude F region response to frictional heating in which the neutral exobase is a discontinuous boundary between fully collisional and collisionless plasmas. The concept of a discontinuous neutreal exobase and the assumption of a constant and uniform polarization electric field reduce the ion velocity distribution function, from which we can compute the ion density, parallel velocity, parallel and perpendicular temperature, and parallel flux. Using our model, we simulated the response of a convecting flux tube between 500 km and 2500 km to various frictional heating inputs; the results were both qualitatively and quantitatively different from fluid model results, which may indicate an inadequacy of the fluid theory approach. The gyro-kinetic frictional heating model responses to the various simulations were qualitatively similar: (1) initial perturbations of all the modeled parameters propagated rapidly up the flux tube, (2) transient values of the ion parallel velocity, temperature, and flux exceeded 3 km/s, 2 x 10(exp 4) K, and 10(exp 9)/sq cm/s, respectively, (3) a second transient regime developed wherein the parallel temperature drops to very low values (a few hundred Kelvins), and (4) well after heating ceased, large parallel temperatures and large downward parallel velocities and fluxes developed as the flux tube slowly returned to diffusive equilibrium. The ion velocity distributions during the simulation are often non-Maxwellian and are sometimes composed of two distinct ion populations.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,429-17,451
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-24
    Description: We present six ROSAT Position-Sensitive Proportional Counter (PSPC) observations of Seyfert 1 galaxies chosen to have low Galactic line-of-sight absorption (N(sub H) approx. = 10(exp 20)/sq cm). As expected, it is found that all of these sources possess significantly steeper spectra below approximately 1 keV, than that observed at higher X-ray energies. In addition we find evidence for soft X-ray spectral features, which are best parameterized as line emission at approximately 0.63 keV in NGC7469 and approximately 0.75 keV in ESO198-G24. We examine these results in the light of the accuracy of the PSPC spectral calibration. We suggest that Seyfert galaxies are a class of object whose spectra are similar to the diffuse X-ray background in the soft X-ray band. We suggest these data provide the first direct evidence that the sources which dominate the background differ as a function of energy.
    Keywords: ASTROPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 13; 12; p. (12)387-(12)390
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-08-24
    Description: NASA's Cosmic Background Explorer (COBE) carries three scientific instruments to make precise measurements of the spectrum and anisotropy of the cosmic microwave background (CMB) radiation on angular scales greater than 7 deg and to conduct a search for a diffuse cosmic infrared background (CIB) radiation with 0.7 deg angular resolution. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the CMB is that of a blackbody of temperature T = 2.73 +/- 0.06 K, with no deviation from a blackbody spectrum greater than 0.25% of the peak brightness. The first year of data from the Differential Microwave Radiometers (DMR) show statistically significant CMB anisotropy. The anisotropy is consistent with a scale invariant primordial density fluctuation spectrum. Infrared sky brightness measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the CIB. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the CIB limits.
    Keywords: ASTROPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 13; 12; P. (12)409-(12)423
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-24
    Description: We report on the evolution in the X-ray spectrum of the transient X-ray pulsar EXO 2030+375 during part of an outburst in 1985 May-August. The overall continuum spectral shape is similar to that of other accreting pulsars and can be represented by a power-law spectrum modified at low energies by significant absorption and at high-energies either by an exponential cut-off or by the effects of cyclotron scattering. As the luminosity decreased by a factor of approximately 100, the X-ray spectrum became harder with the photon index decreasing from 1.83 +/- 0.01 to 1.29 +/- 0.01. In addition, the high-energy cutoff decreased from 20 to 10 keV during the same interval. If the cutoff is interpreted in terms of cyclotron resonance scattering, then this implies a magnetic field strength that decreased from 2.6 x 10(exp 12) G to 1.3 x 10(exp 12) G. This variation implies that the cutoff energy does not provide a reliable measure of the surface magnetic field strength in this system.
    Keywords: ASTROPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 13; 12; p. (12)-355-(12)360
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A more appropriate title for this talk would have been 'Measurements of Large Scale Structure from X-ray Background Fluctuations'. While it has long been recognized that the X-ray Background (XRB) is primarily of a cosmological origin (with z less than a few), it has recently become apparent that surface brightness fluctuations in the surveys of the XRB can be used to trace the distribution of matter in much the same way as complete catalogs of individual objects. The distance which is probed is related to the angular resolution of the detector; for the HEAO-1 A2 experiment, which provides the best all-sky data base for the XRB in the 2-20 keV band, the effective depth is a few 100 Mpc.
    Keywords: ASTROPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 13; 12; p. (12)231-(12)240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-24
    Description: The observational selection bias properties of the large Mathewson-Ford-Buchhorn (MFB) sample of axies are demonstrated by showing that the apparent Hubble constant incorrectly increases outward when determined using Tully-Fisher (TF) photometric distances that are uncorreted for bias. It is further shown that the value of H(sub 0) so determined is also multivlaued at a given redshift when it is calculated by the TF method using galaxies with differenct line widths. The method of removing this unphysical contradiction is developed following the model of the bias set out in Paper II. The model developed further here shows that the appropriate TF magnitude of a galaxy that is drawn from a flux-limited catalog not only is a function of line width but, even in the most idealistic cases, requires a triple-entry correction depending on line width, apparent magnitude, and catalog limit. Using the distance-limited subset of the data, it is shown that the mean intrinsic dispersion of a bias-free TF relation is high. The dispersion depends on line width, decreasing from sigma(M) = 0.7 mag for galaxies with rotational velocities less than 100 km s(exp-1) to sigma(M) = 0.4 mag for galaxies with rotational velocities greater than 250 km s(exp-1). These dispersions are so large that the random errors of the bias-free TF distances are too gross to detect any peculiar motions of individual galaxies, but taken together the data show again the offset of 500 km s(exp-1) fond both by Dressler & Faber and by MFB for galaxies in the direction of the putative Great Attractor but described now in a different way. The maximum amplitude of the bulk streaming motion at the Local Group is approximately 500 km s(exp-1) but the perturbation dies out, approaching the Machian frame defined by the CMB at a distance of approximately 80 Mpc (v is approximately 4000 km s(exp -1)). This decay to zero perturbation at v is approximately 4000 km s(exp -1) argues against existing models with a single attraction at approximately 4500 km s(exp -1) (the Great Attactor model) pulling the local region. Rather, the cause of the perturbation appears to be the well-known clumpy mass distribution within 4000 km s(exp -1) in the busy directions of Hydra, Centaurus, Antila and Dorado, as postulated earlier (Tammann & Sandage 1985).
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 430; 1; p. 29-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-08-24
    Description: The meteorological satellite program began in the United States as the result of the actions taken by a very small but dedicated group of people from the late 1940s to 1960. This paper provides firsthand accounts by two of these dedicated individuals. Their remarks provide an insight into the trials and tribulations they and the program encountered during these very early years. Those now active in the program, many of whom do not recall this time, might appreciate the effort of these pioneers and the legacy they left for us.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 75; 12; p. 2295-2302
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-08-24
    Description: The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods being selected within the two time intervals. Data are being archived at NASA Langley Research Center and, once there, are readily available to the international scientific community. This article describes the scale of the study in terms of its international involvement and in the range of data being recorded. Lidar observations of cloud height and backscatter coefficient have been taken from a number of ground-based stations spread around the globe. Solar shortwave and infrared longwave fluxes and infrared beam radiance have been measured at the surface wherever possible. The observations have been tailored to occur around the overpass times of the NOAA weather satellites. This article describes in some detail the various retrieval methods used to obtain results on cloud-base height, extinction coefficient, and infrared emittance, paying particular attention to the uncertainties involved.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 75; 9; p. 1635-1654
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-08-24
    Description: Nonthermal radio emission has been observed from some of the most luminous hot star winds. It is understood to be synchrotron radiation of the relativistic electrons in the winds. To understand how the electrons are accelerated to such high energies and to correctly explain the observed radio flux and spectra require an exhaustive investigation of all the relevant physical processes involved and possibly point to a complex wind structure. In this paper we discuss the logical path toward a comprehensive model of the nonthermal radio emission from hot star winds. Based on the available observational data and fundamental theoretical considerations, we found that the only physically viable and self-consistent scenario is: the nonthermal radio emission is synchrotron radiation of relativistic electrons the electrons are accelerated by shocks via the first-order Fermi mechanism the acceleration has to be in situ in the radio emitting region and the shocks formed at the base of the winds have to propagate to beyond the radio photosphere.
    Keywords: ASTROPHYSICS
    Type: Astrophysics and Space Science (ISSN 0004-640X); 221; 1-2; p. 259-272
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-08-24
    Description: Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10(exp -5) solar mass/yr and possibly as large as 9 x 10(exp -5) solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10(exp -6) solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10(exp -7) solar mass/yr. The disk mass is approximately equal 6 x 10(exp -3) solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB stars, probably as a result of enhancement of the CN and HCO(+) abundances due to photochemistry induced by the stellar UV. The CS J = 2-1, SiO J = 2-1 (v = 0), and SiS J = 6-5 lines were not detected to low levels. For the high-excitation molecules, adequate collisional excitation of rotational levels and survival against photodissociation by the UV radiation requires significant clumping of the molecular gas into clumps with H2 densities approximately 10(exp 5)/cu cm. The IRAS fluxes of M1-16, assuming negligible contribution from line emission, imply the presence of about (1.7-0.4) x 10(exp -3) solar mass of cool dust (temperature around 50 K) and a smaller quantity, (2.7-3.1) x 10(exp -6) solar mass, of warmer dust (temperature around 125 K) for a power-law emissivity index p = 1-2. The evolutionary nature of M1-16 cannot be explained by existing single-star models of post-AGB evolution. The very high (13)C/(12)C abundance ratio in M1-16 suggests a possible evolutionary connection between M1-16 and the rare class of J-type silicate-carbon stars which also have high (13)C/(12)C ratios and are thought to be binary systems with accretion disks.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 428; 1; p. 237-249
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-08-24
    Description: We have observed the C91 alpha radio recombination line toward the Orion H II region. This narrow (approximately 3-5 km per sec full width at half maximum (FWHM)) line is spatially very extended (approximately 8 arcmin or 1 pc). These charateristics compare well with the observed characteristics of the C II fine structure line at 158 microns. Thus, the C91 alpha line originates in the predominantly neutral photodissociation regions separating the H II region from the molecular cloud. We have developed theoretical models for the C II radio recombination lines from photodissociation regions. The results show that the I(C91 alpha)/I(C158) intensity ratio is a sensitive function of the temperature and density of the emitting gas. We have also extended theoretical models for photodissociation regions to include the C II recombination lines. Comparison with these models show that, in the central portion of the Orion region, the C91 alpha line originates in dense (10(exp 6) per cu cm), warm (500-1000 K) gas. Even at large projected distances (approximately 1 pc), the inferred density is still high (10(exp 5) per cu cm) and implies extremely high thermal pressures. As in the case of the (C II) 158 microns line, the large extent of the C91 alpha line shows that (FUV) photons can penetrate to large distances from the illuminating source. The decline of the intensity of the incident radiation field with distance from Theta(sup 1) C seems to be dominated by geometrical dilution, rather than dust extinction. Finally, we have used our models to calculate the intensity of the 9850 A recombination line of C II. The physical conditions inferred from this line are in good agreement with those determined from the radio recombination and the far-infrared fine-structure lines. We show that the ratio of the 9850 A to the C91 alpha lines is a very good probe of very high density clumps.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 428; 1; p. 209-218
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-08-24
    Description: In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 12; p. 1157-1160
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-08-24
    Description: The probability of polar stratospheric cloud (PSC) occurrence in the Antarctic and Arctic has been estimated using Stratospheric Aerosol Measurement (SAM) II aerosol extinction data from 1978 to 1989. Antarctic PSCs are typically observed by SAM II from mid-May to early November, with a maximum zonal average probability of about 0.6 at 18-20 km in August. The typical Arctic PSC season extends only from late November to early March, with a peak zonal average probability of about 0.1 in early February at 20-22 km. There is considerable year-to-year variability in Arctic PSC sightings because of changes in the dynamics of the northern polar vortex. Year-to-year variability in Antarctic sightings is most prominent in the number of late season clouds. Maximum PSC sighting probabilities in both polar regions occur in the region from 90 deg W through the Greenwich meridian to 90 deg E, where temperatures are coldest on average. Arctic sighting probabilities approach zero outside this region, but clouds have been sighted in the Antarctic at all longitudes during most months. Inferred PSC formation temperatures remain constant throughout the Arctic winter and are similar to those in early Antarctic winter. PSC formation temperatures in the Antarctic drop markedly in the 15 to 20-km region by September, a pattern consistent with the irreversible loss of HNO3 and H2O vapor in sedimenting PSC particles.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D6; p. 13,083-13,089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-08-24
    Description: Statistical uncertainties in determining the temperatures of hot (0.5-10 keV) coronal plasmas are investigated. The statistical presicion of various spectral temperature diagnostics is established by analyzing synthetic ASCA solid-state imaging spectrometer (SIS) CCD spectra. The diagnostics considered are the ratio of hydrogen-like to helium-like line complexes of Z greater than or = 14 elements, line-free portions of the continuum, and the entire spectrum. While fits to the entire spectrum yield the highest statistical precision, it is argued that fits to the line-free continuum are less susceptible to atomic data uncertainties but lead to a modest increase in statistical uncertainty over full spectral fits. Temperatures deduced from line ratios can have similar accuracy, but only over a narrow range of temperatures. Convenient estimates of statistical accuracies for the various temperature diagnostics are provided which may be used in planning ASCA SIS observations.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 435; 2; p. L149-L152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-24
    Description: A one-speed Boltzmann transport theory, with diffusion approximations, is applied to study the radiative transfer properties of lightning in optically thick thunderclouds. Near-infrared (lambda = 0.7774 micrometers) photons associated with a prominent oxygen emission triplet in the lightning spectrum are considered. Transient and spatially complex lightning radiation sources are placed inside a rectangular parallelepiped thundercloud geometry and the effects of multiple scattering are studied. The cloud is assumed to be composed of a homogeneous collection of identical spherical water droplets, each droplet a nearly conservative, anisotropic scatterer. Conceptually, we treat the thundercloud like a nuclear reactor, with photons replaced by neutrons, and utilize standard one-speed neutron diffusion techniques common in nuclear reactor analyses. Valid analytic results for the intensity distribution (expanded in spherical harmonics) are obtained for regions sufficiently far from sources. Model estimates of the arrival-time delay and pulse width broadening of lightning signals radiated from within the cloud are determined and the results are in good agreement with both experimental data and previous Monte Carlo estimates. Additional model studies of this kind will be used to study the general information content of cloud top lightning radiation signatures.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D7; p. 14,361-14,371
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-08-24
    Description: The shape of the velocity distribution of water group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates of ionization, energy diffusion, and loss in the midcometosheath. The model includes the effect of rapid pitch angle scattering into a bispherical shell distribution as well as the effect of the magnetization of the plasma on the charge exchange loss rate. It is found that the average rate of ionization of cometary neutrals in this region of the cometosheath appears to be of the order of a factor 3 faster than the `standard' rates approx. 1 x 10(exp -6)/s that are generally assumed to model the observations in most regions of the comet environment. For the region of the coma studied in the present work (approx. 1 - 2 x 10(exp 5) km from the nucleus), the inferred energy diffusion coefficient is D(sub 0) approx. equals 0.0002 to 0.0005 sq km/cu s, which is generally lower than values used in other models. The empirically obtained loss rate appears to be about an order of magnitude greater than can be explained by charge exchange with the `standard' cross section of approx. 2 x 10(exp -15)sq cm. However such cross sections are not well known and for water group ion/water group neutral interactions, rates as high as 8 x 10(exp -15) sq cm have previously been suggested in the literature. Assuming the entire loss rate is due to charge exchange yields a rate of creation of fast neutral atoms of the order of approx. 10(exp -4)/s or higher, depending on the level of velocity diffusion. The fast neutrals may, in turn, be partly responsible for the higher-than-expected ionization rate.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A10; p. 19,245-19,254
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-08-24
    Description: HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 435; 2; p. L145-L148
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-08-24
    Description: The Giotto ion mass spectrometer high-intensity spectrometer (IMS-HIS) measured fluxes of ions from about 260,000 km before (1008:37 UT spacecraft time) to about 86,000 km after (1701:33 UT spacecraft time) closest approach to comet P/Grigg-Skjellerup during the encounter on July 10, 1992. Although the HIS sensor was not designed to measure protons, these ions were measured far from the comet. Close in to the comet, the ions observed were probably also protons, although heavier ions cannot be completely ruled out. Considerable temporal structure appears in the data, well-correlated with the data of other instruments onboard, especially those of the magnetometer. In particular, the ion count rate correlates with the direction of the magnetic field. This strong modulation at the water group ion cyclotron period (approx. 90 s) inside the inbound bow wave indicates a very narrow ion pitch angle distribution. Hence at Grigg-Skjellerup the ions appear to experience very little pitch angle scattering. This may result from strong compression in the rapidly increasing magnetic field.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A10; p. 19,255-19,265
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: In 1970 the International Astronomical Union (IAU) defined any object's north pole to be that axis of rotation which lies north of the solar system's invariable plane. A competing definition in widespread use at some institutions followed the 'right hand rule' whereby the 'north' axis of rotation was generally said to be that of the rotational angular momentum. In the case of the latter definition, the planet Neptune and its satellite Triton would have their 'north' poles in opposite hemispheres because Triton's angular momentum vector is in the hemisphere opposite from that of Neptune's rotation angular momentum. The IAU resolutions have been somewhat controversial in some quarters ever since their adoption. A Working Group has periodically updated the recommended values of planet and satellite poles and rotation rates in accordance with the IAU definition of north and the IAU definition of prime meridian. Neither system is completely satisfactory in the perception of all scientists, and some confusion has been generated by publishing data in the two different systems. In this paper we review the IAU definitions of north and of the location of prime meridian and we present the algorithm which has been employed in determining the rotational parameters of the natural satellites. The IAU definition of the prime meridian contains some ambiguities which in practice have been 'specified' by the numerical values published by the IAU working group but which have not yet been explicitly documented. The purpose of this paper is to explicitly document the algorithm employed by the IAU working group in specifying satellite poles and rotation rates.
    Keywords: ASTROPHYSICS
    Type: Celestial Mechanics and Dynamical Astronomy (ISSN 0923-2958); 57; 3; p. 473-491
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-24
    Description: Measurements of the very broadband structure in the visual part of the extinction curve are compared to IUE extinction curve parameters in the scheme of Fitzpatrick and Massa. The correlation of Very-broadband-structure (VBS) depth with FUV rise found by Reimann & Friedemann (1991) is shown to be a correlation with linear rise and not with far UV non-linear rise. The correlation with linear rise suggests that the VBS is due to an onset of extinction at about 1.8/micrometer, rather than what has previously been suggested: due to luminescence or the presence of two extinction components longward and shortward of the VBS. The optical properties inferred for the linear rise carrier are consistent with some amorphous solid with a large optical gap. Small carbonaceous grains may be the carrier of the linear rise in extinction, because the erosion of core-mantle particles is expected to produce many of such small grains and offers a natural mechanism for the existence of the inferred two populations of big (a approximately 0.13 micrometer) and small (a approximately 0.005 micrometer) grains.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 284; 1; p. 227-232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-08-24
    Description: The modulated light in the Intermediate Polar FO Aqr at the three periods P(sub spin) = 20.9 min, P(sub orb) = 4.85 hr and P(sub beat) = 22.5 min is studied in different spectral ranges to derive information on their nature. In this system the accretion geometry, with or without an accretion disk, is still a matter of debate (Hellier 1991; Norton et al. 1992). The different orbital behavior of phase coherence between the spin and beat pulses in the X-rays (Norton et al. 1992) and in the optical/IR regions cannot be easily accounted for by only a diskless dominated geometry where the accretion flow is switching from one pole to the other each half of the beat period. We therefore propose an accretion scenario where a non-axisymmetric disk is present. In such a non-standard accretion disk an azimuthal structure provides not only the source of variable mass transfer to the white dwarf, but also a reprocessing site which is mainly viewing the X-ray emission from the lower pole. Our spectral analysis shows that reprocessing is also occurring at the surface of the secondary star. The spin pulsation in the optical and IR continua can be explained by the so-called 'accretion curtain' model (Rosen et al. 1988) though an additional reprocessing component at the spin period cannot be excluded. In contrast to the X-rays, the beat optical/IR modulation is not intrinsic. Reprocessing at the surface of the secondary star and at the thickened part of the disk can also account for the orbital modulation in the UV, optical and IR regions.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 284; 1; p. 125-137
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-08-24
    Description: We present Vela 5B observations of the Small Magellanic Cloud (SMC) region obtained during the years 1969 - 1979. We detect the 3.89 day orbital modulation of SMC X-1 with a false alarm probability of 4.3 x 10(exp -3) and observe a high state beginning in 1970 September and lasting approximately 100 days. We also detect three outbursts by a transient source consistent with the position of the candidate Be-neutron star system H0107-750 (= 1H 0103-762). These events occur roughly 100 days apart and last for approximately 35 days. No detections of SMC X-2 or SMC X-3 are apparent above a limit of approximately 7 x 10(exp 37) ergs/s.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 437; 2; p. 841-844
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-24
    Description: The hard X-ray transient, GRO J1008-57, was discovered during a bright outburst in 1993 July by the Burst and Transient Source Experiment (BATSE) instrument on board the Compton Gamme-Ray Observatory (CGRO). There are no published reports of previous emission from this 93.6 sec X-ray pulsar. Recent optical results have suggested a Be star as the companion. A search of the EXOSAT archives shows that an ME observation centered on the star HD 88661 includes GRO J1008-57 within the field of view. The characteristics of the medium-energy detection including a hard spectrum and pulsed emission at 91.36 sec (with chance probability of 3 x 10(exp -4)) indicates that EXOSAT detected GRO J1008-57 rather than the field star. The estimated flux is 2.4 x 10(exp -11) ergs/cm sq/sec for a luminosity of 1.1 x 10(exp 34) (D/2 kpc)(exp 2) ergs/sec. The X-ray spectrum is hard (photon index approximately equals 1.2) and highly absorbed (N(sub H) approximately equals 0.7 x 10(exp 22)). The detection of this transient suggests that there is a pulse shape dependence on luminosity, a spectral shape independent of luminosity, a large period derivative of P-dot/P = 2.3 x 10(exp -3)/yr, and a dynamic range of at least 100 in L(sub chi). We discuss GRO J1008-57 data in the context of wind-accretion models for this new member of the Be class of X-ray binaries.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 437; 2; p. 845-850
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-08-24
    Description: In 1991 and 1992, the dust detector onboard the Ulysses spacecraft detected several dust streams apparently originating from the jovian system. The timing and measured speeds of the final two dust streams are compatible with dust from comet Shoemaker-Levy 9's (SL9) disruption in 1992. Our further investigations of stream characteristics and dust acceleration mechanisms, however, shed some doubt that two of the eleven dust streams are of SL9 origin. In July 1994 when SL9 impacts Jupiter, the Galileo spacecraft will be about 3500 jovian radii away from the planet. Submicronsized dust released into, and accelerated by, the jovian magnetosphere during this event may reach Galileo and impact its dust detector between September and November 1994. We also discuss the possibility of directly sampling dust from SL9 during Galileo's orbital tour.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 11; p. 1035-1038
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-08-24
    Description: Five years of meteorological and hydrological data from a typical New England watershed where winter snow cover is significant were used to drive and validate two off-line land surface schemes suitable for use in the Goddard Institute for Space Studies (GISS) general circulation model (GCM): a baseline scheme that does not model the physics of a snowpack and therefore, neglects the insulating properties of snow cover; and a modified scheme in which a three-layer snowpack is modeled. Comparing baseline model results with validation data reveals several model deficiencies. Surface radiation temperatures could not adequately be modeled and the ground froze to unreasonable depths. Furthermore, because of ground cooling resulting from large surface heat fluxes to the atmosphere from the uninsulated surface, deeper model layers did not unfreeze until midsummer. As such, the normal hydrologic processes of runoff, ground water infiltration, and movement, etc., are compromised for a good part of the year. With the inclusion of a simple three-layer snow model into the baseline model, not only are the ground and surface radiation temperatures adequately modeled but all the features of snowpack ripening that characterize pack growth/ablation are simulated.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 7; 12; p. 1842-1855
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-08-24
    Description: We have investigated the influence of the color temperature of the illuminating radiation field on the chemical and thermal structure of photon-dominated regions (PDRs). We present the results of a study of the photoelectric efficiency of heating by large molecules such as polycyclic aromatic hydrocarbons (PAHs) and very small grains for radiation fields characterized by different effective temperatures. We show that the efficiency for cooler (T(sub eff) approximately = 6000-10,000 K) stars is at most an order of magnitude smaller than that for hotter (T(sub eff) approximately = 20,000-30,000 K) stars. While cooler radiation fields result in less ultraviolet photons capable of heating, the efficiency per absorbed photon is higher, because the grains become less positively charged. We also present detailed calculations of the chemistry and thermal balance for generic PDRs (n(sub 0) approximately = 10(exp 3), G(sub 0) approximately = 10(exp 3)). For cooler radiation fields, the H/H2 and C(+)/C/CO transition layers shift toward the surface of the PDR, because fewer photons are available to photodissociate H2 and CO and to ionize C. The dominant cooling lines are the (C II) 158 micron and the (O I) 63 micron lines for the hotter radiation fields, but cooling by CO becomes dominant for a color temperature of 6000 K or lower. The (C II)/CO and (O I)/CO ratios are found to be very good diagnostics for the color temperature of the radiation field.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 437; 1; p. 270-280
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-08-24
    Description: The theory of spectral formation in thermal X-ray sources, where the effects of Comptonization and Klein-Nishina corrections are important, is presented. Analytical expressions are obtained for the produced spectrum as a function of such input parameters as the plasma temperature, the optical depth of the plasma cloud and the injected soft photon spectrum. The analytical theory developed here takes into account the dependence of the scattering opacity on the photon energy. It is shown that the plasma temperature as well as the asymptotic rate of photon escape from the plasma cloud determine the shape of the upscattered hard tail in the emergent spectra, even in the case of very small optical depths. The escape distributions of photons are given for any optical depth of the plasma cloud and their asymptotic dependence for very small and large optical depths are examined. It is shown that this new generalized approach can fit spectra for a large variety of hard X-ray sources and determine the plasma temperature in the region of main energy release in Cyg X-1 and the Seyfert galaxy NGC 4151.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 434; 2; p. 570-586
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-08-24
    Description: A three-year climatology of satellite-estimated rainfall for the warm season for the southwest United States and Mexico has been derived from data from the Special Sensor Microwave Imager (SSM/I). The microwave data have been stratified by month (June, July, August), year (1988, 1989, 1990), and time of day (morning and evening orbits). A rain algorithm was employed that relates 86-GHz brightness temperatures to rain rate using a coupled cloud-radiative transfer model. Results identify an early evening maximum in rainfall along the western slope of the Sierra Madre Occidental during all three months. A prominent morning rainfall maximum was found off the western Mexican coast near Mazatlan in July and August. Substantial differences between morning and evening estimates were noted. To the extent that three years constitute a climatology, results of interannual variability are presented. Results are compared and contrasted to high-resolution (8 km, hourly) infrared cloud climatologies, which consist of the frequency of occurrence of cloud colder than -38 C and -58 C. This comparison has broad implications for the estimation of rainfall by simple (cloud threshold) techniques. By sampling the infrared data to approximate the time and space resolution of the microwave, we produce ratios (or adjustment factors) by which we can adjust the infrared rain estimation schemes. This produces a combined microwave/infrared rain algorithm for monthly rainfall. Using a limited set of raingage data as ground truth, an improvement (lower bias and root-mean-square error) was demonstrated by this combined technique when compared to either method alone. The diurnal variability of convection during July 1990 was examined using hourly rain estimates from the Geostationary Operational Environmental Satellite (GOES) precipitation index and the convective stratiform technique, revealing a maximum in estimated rainfall from 1800 to 2100 local time. It is in this time period when the SSM/I evening orbit occurs. A high-resolution topographic database was available to aid in interpreting the influence of topography on the rainfall patterns.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 6; 11; p. 2144-2161
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-08-24
    Description: We have measured the spectra of H and He isotopes during the 1987 solar minimum with the cosmic-ray detector system (CRS) on the Voyager 2 spacecraft. By carrying out the measurement near solar minimum and at large heliospheric distances, the effects of solar modulations were reduced. In particular, the adiabatic energy losses were smaller, and these results from 23 AU over the solar minimum period of cycle 21 represent observations at energies not accessible from previous measurements near 1 AU. The modulated spectra with the diffusion coefficient constant k(sub 0) = 3.15 x 10(exp 22) sq cm/s (which corresponds to a solar modulation parameter of 360 MV at 23 AU and 500 MV at 1 AU) agree well with both our data at 23 AU and the previous solar minimum measurements at 1 AU. The measured H-1 and H-2 spectra are both consistent with the calculated spectra, using standard Galactic and heliospheric propagation models without invoking an anomalous hydrogen component. With the fixed modulation parameter of 360 MV, the mean pathlengths, source spectra, and cross sections were varied to study the effects of different input parameters on the spectra and relative abundances. At this stage of our work, we have not found any strong evidence from the low-energy H-2 and He-3 data that H-1 and He-4 should have a different propagation history, or different types of source spectra from the heavier cosmic-ray nuclei.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 432; 2; p. 656-664
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-08-24
    Description: An advanced Microwave Precipitation Radiometer (AMPR) has been developed and flown in the NASA ER-2-high-altitude aircraft for imaging various atmospheric and surface processes, primarily the internal structure of rain clouds. The AMPR is a scanning four-frequency total power microwave radiometer that is externally calibrated with high-emissivity warm and cold loads. Separate antenna systems allow the sampling of the 10.7- and 19.35-GHz channels at the same spatial resolution, while the 37.1- and 85.5-GHz channels utilize the same multifrequency feedhorn as the 19.35-GHz channel. Spatial resolutions from an aircraft altitude of 20-km range from 0.6 km at 85.5 GHz to 2.8 km at 19.35 and 10.7 GHz. All channels are sampled every 0.6 km in both along-track and cross-track directions, leading to a contiguous sampling pattern of the 85.5-GHz 3-dB beamwidth footprints, 2.3X oversampling of the 37.1-GHz data, and 4.4X oversampling of the 19.35- and 10.7-GHz data. Radiometer temperature sensitivities range from 0.2 to 0.5 C. Details of the system are described, including two different calibration systems and their effect on the data collected. Examples of oceanic rain systems are presented from Florida and the tropical west Pacific that illustrate the wide variety of cloud water, rainwater, and precipitation-size ice combinations that are observable from aircraft altitudes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 11; 4, pt; p. 849-857
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-08-24
    Description: Significant differences are found in the IRAS color-color diagrams of small regions (2 min x 2 min, or 0.4 x 1.8 kpc) within the disk of M31 compared to Galactic cirrus, most noticeably demonstrated by a trend of low 60 to 100 micrometer surface brightness ratio and high 12 to 25 micrometer ratio. Based on physical arguments, we conclude that these color differences are best explained by assuming that 'very small grains' (VSG; but not polycylic aromatic hydrocarbons) are only half as abundant in M31 as they are in Galactic cirrus. We confirm this conclusion and test its detailed agreement with data by using the phenomenological model of Desert et al. (1990). In particular, we show that the data cannot be explained by postulating weaker UV heating in the disk of M31. We also show that the VSG-deficient model predicts correctly the correspondence between the IRAS colors and the 100 micrometer emissivity per H I atom in the outer disk of M31. 'Very small grains' are a leading candidate for the carrier of the 2175 A bump in the extinction curve. Our suggested VSG deficiency in M31 is thus consistent with recent Hubble Space Telescope (HST) observations which show evidence for a weaker and narrower 2175 A bump on the M31 extinction curve. Some speculation is offered as to possible links between very small grains and the low rate of current star formation in M31.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 426; 1; p. 109-115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-08-24
    Description: A general circulation model (GCM) is used to model global lightning distributions and frequencies. Both total and cloud-to-ground lightning frequencies are modeled using parameterizations that relate the depth of convective clouds to lightning frequencies. The model's simulations of lightning distributions in time and space show good agreement with available observations. The model's annual mean climatology shows a global lightning frequency of 77 flashes per second, with cloud-to-ground lightning making up 25% of the total. The maximum lightning activity in the GCM occurs during the Northern Hemisphere summer, with approximately 91% of all lightning occurring over continental and coastal regions.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 122; 8; p. 1930-1939
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-08-24
    Description: We present a model for explaining the recent combined X-ray and low-energy gamma-ray observations of the Seyfert galaxy NGC 4151. According to this model, soft photons become Comptonized in a hot spot producing simultaneously the low-energy power law as observed by Ginga and the high-energy cutoff observed by the Oriented Scintillation Spectrometer Experiment (OSSE). Implementing recently developed theoretical calculations toward a generalized theory of Comptonization, we were able to find fits to the observations using only two parameters which characterize the physical quantities of the emission region: the plasma cloud optical depth and its temperature. We find that there is no need for additional nonthermal, reflection, or higher temperature thermal components to fit the aforementioned OSSE and Ginga observations. We derive in addition the size of the photon region and the temperature of the upscattered soft photons. We should emphasize, also, that any attempt at fitting only the high-energy parts of the spectrum (photon energies greater than 60 keV) by the Sunyaev & Titarchuk (1980) nonrelativistic Comptonization model leads to an underestimate of the Comptonization parameter y (or, equivalently, to an overestimation of the X-ray power-law spectral slope) and leads, as a result, to incorrect proportions between the low-energy and high-energy parts of the spectrum.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 433; 1; p. L33-L36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Observational data for Population I stars have shown that blue loops on the Hertzsprung-Russell (H-R) diagram form for stellar masses as low as approximately 4 solar mass. However, current state-of-the-art stellar models, unlike the older ones that were based on smaller opacities, fail to loop out of the red-giant region during core helium burning for masses less than 7 solar mass. A possible explanation is that the currently used Livermore opacities need to be further increased, by at least 70%, at temperatures characteristic of the base of the outer convection zone, around 1 x 10(exp 6) K. Indeed, no other suggested remedy seems to yield a blue loop at the lowest observed loop luminosities.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 421; 2; p. L91-L93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-08-24
    Description: The recent development of trapped-ion frequency standards, which offer high stability over long time periods, provides us with a potential new method for detecting unseen matter in the outer solar system. A distribution of matter or a planetary body could produce a measurable gravitational redshift of the radio signal received from a spacecraft equipped with an ultrastable frequency standard. Trapped-ion standards have a potential frequency stability of 1 part in 10(exp 16) or better over long time periods (greater than 10(exp 6) s). We consider the potential improvements this method could yield over conventional dynamical tests for unseen matter in the outer solar system possible now or anticipated in the near future.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 433; 2; p. 666-669
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The intensities and optical depths of the (1, 1), (2, 2), and (2, 1) inversion transitions of ammonia can be calculated quite accurately without solving the equations of statistical equilibrium. A two-temperature partition function suffices. The excitation of the K-ladders can be approximated by using a temperature obtained from a two-level model with the (2, 1) and (1, 1) levels. Distribution of populations between the ladders is described with the kinetic temperature. This enables one to compute the (1, 1) and (2, 1) inversion transition excitation temperatures and optical depths. To compute the (2, 2) brightness temperatures, the fractional population of the (2, 2) doublet is computed from the population of the (1, 1) doublet using the 'true rotation temperature,' which is calculated using a three-level model with the (2, 1), (2, 2), and (1, 1) levels. In spite of some iterative steps, the calculation is quite fast.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 433; 2; p. 712-718
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-08-24
    Description: We report a 1.7 day ASCA X-ray observation of the 2.87 day binary Algol (Beta Per), centered on the secondary eclipse. Spectra accumulated for different intensity states show a prominent He-like iron K line at 6.7 keV. A two-temperature variable abundance plasma model applied to the spectra yielded temperatures of approximately 8 and approximately 30 MK. The modeled coronal abundances of Fe, O, Mg, Si, S, Ar, and Ca were a factor of 2-3 below the solar photospheric value, and N less than 0.1. These model abundance anomalies are similar to those found from the ASCA spectra of other late-type stars and may indicate either true deviations from solar abundances or problems with the assumptions and atomic physics of the plasma models. The X-ray light curve shows a factor of 2 increase in flux over 13 hr beginning in the middle of the secondary eclipse, with a shallow eclipse centered on phase 0.45. The orbital light curve is similar to that observed by ROSAT 1 year earlier. The rise in flux is caused by an increase in the emission measure of the higher temperature component. The intensity variation is not associated with any major change in the abundances or temperature of the two components.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 436; 1; p. L83-L86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-08-24
    Description: We present our analysis of ASCA PV phase observations of the elliptical galaxies NGC 1404 and NGC 4374 (M84). The average metallicities in the hot gas derived from the SIS spectra are exceptionally low, Z approximately 0.15 solar, while the temperatures are 'typical,' kT approximately 0.75 keV. We also place upper limits on intrinsic column densities. The low abundances lend support to the theory of Fe enrichment of intracluster media by protogalactic Type II supernova-driven winds and raise the possibility of a fundamental connection between baryon fraction, dissipation, and abundances in elliptical galaxies.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 436; 1; p. L75-L78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-24
    Description: This work is directed toward approximating the evolution of forecast error covariances for data assimilation. The performance of different algorithms based on simplification of the standard Kalman filter (KF) is studied. These are suboptimal schemes (SOSs) when compared to the KF, which is optimal for linear problems with known statistics. The SOSs considered here are several versions of optimal interpolation (OI), a scheme for height error variance advection, and a simplified KF in which the full height error covariance is advected. To employ a methodology for exact comparison among these schemes, a linear environment is maintained, in which a beta-plane shallow-water model linearized about a constant zonal flow is chosen for the test-bed dynamics. The results show that constructing dynamically balanced forecast error covariances rather than using conventional geostrophically balanced ones is essential for successful performance of any SOS. A posteriori initialization of SOSs to compensate for model - data imbalance sometimes results in poor performance. Instead, properly constructed dynamically balanced forecast error covariances eliminate the need for initialization. When the SOSs studied here make use of dynamically balanced forecast error covariances, the difference among their performances progresses naturally from conventional OI to the KF. In fact, the results suggest that even modest enhancements of OI, such as including an approximate dynamical equation for height error variances while leaving height error correlation structure homogeneous, go a long way toward achieving the performance of the KF, provided that dynamically balanced cross-covariances are constructed and that model errors are accounted for properly. The results indicate that such enhancements are necessary if unconventional data are to have a positive impact.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 122; 11; p. 2530-2557
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-24
    Description: The rate of occurrence of interplanetary discontinuities (ROID) is examined using Ulysses magnetic field and plasma data from 1 to 5 AU radial distance from the Sun and at high heliographic latitudes. We find two regions where the ROID is high: in stream-stream interaction regions and in Alfven wave trains. This latter feature is particularly obvious at high latitudes when Ulysses enters a high speed stream associated with a polar coronal hole. These streams are characterized by the presence of continuous, large-amplitude (Delta (vector 13)/absolute value of B is about 1-2 Alfven waves and an extraordinarily high ROID value (approximately 150 discontinuities/day). In a number of intervals examined, it is found that (rotational) discontinuities are an integral part of the Alfven waves. The nonlinear Alfven waves are spherically polarized, i.e., the tip of the perturbation vector resides on the surface of a sphere (a consequence of constant absolute value of B). The slowly rotating part of the wave rotates approximately 270 deg in phase. There is a slight arc in the B(sub 1) - B(sub 2) hodogram, suggesting an almost linear polarization. The phase rotation associated with the discontinuity is about 90 deg, lies in the same plane as the slowly rotaing part of the Alfven wave, and therefore completes the 360 deg phase rotation. The best description of the overall Alfven wave plus discontinuity is a spherical, arc-polarized, phase-steepened wave.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 21; p. 2267-2270
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Gamma-ray bursts have always been intriguing sources to study in terms of particle acceleration, but not since their discovery two decades ago has the theory of these objects been in such turmoil. Prior to the launch of Compton Gamma-Ray Observatory and observations by Burst and Transient Source Experiment (BATSE), there was strong evidence pointing to magnetized Galactic neutron stars as the sources of gamma-ray bursts. However, since BATSE the observational picture has changed dramatically, requiring much more distant and possibly cosmological sources. I review the history of gamma-ray burst theory from the era of growing consensus for nearby neutron stars to the recent explosion of halo and cosmological models and the impact of the present confusion on the particle acceleration problem.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal Supplement Series (ISSN 0067-0049); 90; 2; p. 863-868
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...