ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (24)
  • 04.08. Volcanology  (16)
  • 04.07. Tectonophysics  (5)
  • 01.01. Atmosphere  (4)
  • Elsevier  (22)
  • American Geophysical Union  (2)
  • American Institute of Physics
  • Wiley-Blackwell
  • 2020-2022  (24)
  • 1950-1954
Collection
  • Articles  (24)
Source
Publisher
Years
Year
  • 1
    Publication Date: 2021-02-22
    Description: Radon monitoring represents an important investigation tool for environmental changes assessment and geochemical hazard surveillance. Despite anomalous radon emissions are commonly observed prior to earthquakes or volcanic eruptions, radon monitoring alone is not yet successful in correctly predicting these catastrophic events because contrasting radon signals are unexpectedly measured by lithologically distinct areas. This contribution aims to summarize and integrate natural and laboratory studies pertaining to the transport behavior of radon in different rock types experiencing variable stress and thermal regimes at subvolcanic conditions. The final purpose is to ignite novel and pioneer experimental researches exploring the causes and consequences of radon anomalous emissions, in order to elucidate in full the relationship between the physicochemical changes in substrate rocks and the radon signal.
    Description: Published
    Description: 309-328
    Description: 4V. Processi pre-eruttivi
    Keywords: deformation experiments ; radon monitoring ; radon signal and rock physicochemical changes ; radon transport and geochemical anomalies ; thermal experiments ; volcanic surveillance ; 04.08. Volcanology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-19
    Description: Multiparametric observations integrate signals from different techniques into a unified time and space frame, and are key in understanding and monitoring the evolution of volcanic systems and eruptive activity. Mafic explosive eruptions, with a relatively high frequency of occurrence and low intensity, allow for detailed multiparametric observations at a relatively close distance. Typically, pyroclast ejection in these eruptions is not steady, but is characterized by the occurrence of ejection pulses, linked to pressure release events and featuring a characteristic nonlinear decay of pyroclasts exit velocity. Pulse frequency, duration, and exit velocity define the dominant eruptive style, function of the volume and pressure of the released gas, conduit size, and magma rheological-mechanical properties. No important differences in pressure and velocity divide eruptions with different magnitude and style. Ejection pulses influence the geophysical signature, plume development, and the emplacement of ballistic volcanic projectiles at eruptions from Strombolian to Vulcanian styles.
    Description: Published
    Description: 379-411
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Mafic eruption, Multiparametric monitoring, Eruption imaging, Volcano acoustic, Strombolian, Plume, Vent, Ballistic ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-22
    Description: Major, minor and rare earth elements were analyzed in the acid sulphate - chloride thermal springs associated to Puracé volcano – hydrothermal system. The waters of Puracé were classified in 2 different groups as a function of the physico-chemical parameters and element distributions. Group 1 is characterized by the highest pH (⁓ 3.5), an outlet temperature of ⁓ 81 °C and a strong depletion of Fe, Al, Si and Ba with respect to the isochemical dissolution of the average volcanic local rock. Group 2 waters have lower pH values ⁓ 1.9 and temperature (⁓ 48 °C) compared with Group 1. Moreover, Group 2 is not characterized by a typical pathway representing the congruent dissolution of the rock and shows a distribution of major and minor elements that is more close to the near-congruent dissolution of the average volcanic local rock with respect to Group 1. These geochemical features of major and minor elements allow to propose that the chemical composition of the waters of Group 1 is strongly affected by the precipitation of secondary minerals such as alunite, jarosite, kaolinite, barite and polymorphs of SiO2. The grouping of waters is also supported by the distribution of dissolved REE normalized to the average volcanic local rock. Group 1 shows REE patterns strongly depleted in light rare earth elements (LREE), typical of water that formed alunitic and/or kaolinitic rocks. On the contrary, Group 2 is characterized by flat patterns, in according to the near-congruent dissolution of the rocks. REE dissolved in waters of Puracé were compared with REE in the acidic waters of Nevado del Ruiz and Azufral Colombian volcanoes and with REE in minerals recognized in advanced argillic alteration (alunite, gypsum and kaolinite). Precipitation of secondary minerals is proposed as a common process depleting LREE in acidic sulphate – chlorine waters in volcano – hydrothermal systems. Furthermore, the chemical fractionation of the major and minor elements was interpreted together with the corresponding distributions of REE in order to trace the water – rock interaction processes. Saturation indexes of most common secondary minerals identified in advanced argillic alterations were calculated using PHREEQC software in a range of temperature from 25 to 250 °C. This geochemical approach allows to identify the possible mineral precipitation or dissolution of secondary minerals as well as the temperature at which the water reached equilibrium with a given set of minerals. In Group 1, the precipitation of secondary minerals LREE enriched (alunite minerals and kaolinite) was traced at temperature of precipitation higher than ⁓ 101 °C.
    Description: Published
    Description: 107106
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Puracé volcano Acidic waters Rare Earth elements fractionation Advanced argillic alteration Alunite Kaolinite ; 04.08. Volcanology ; 05. General ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-26
    Description: Hydrothermally-altered rocks collected at Solfatara volcano, Campi Flegrei caldera complex, Italy, are comparable to zones of steam-heated alterations found at low sulfidation epithermal deposits, and volcanic gases collected at Solfatara have temperatures and C-O-H isotopic compositions akin to those forming low sulfidation epithermal deposits. By contrast, hydrothermal alterations collected at La Fossa volcano, Vulcano island, Italy, are comparable to zones of residual vuggy silica formed in high sulfidation epithermal deposits, and volcanic gases collected at La Fossa have temperatures and C-O-H isotopic compositions comparable to those forming high sulfidation epithermal deposits. At Solfatara, amorphous and hydrous opal-A is responsible for shifts in δ7Li values, from +2.2‰ in fresher rocks, to −3.6‰ in most altered rocks, with increases in Au and Cu concentrations (up to 3 ppb and 96 ppm). The increase in Au and Cu concentrations in progressively-altered rocks resulted from the transport of Cu-Au in magmatic-hydrothermal fluids and their partitioning into pyrite, Fe oxides, phyllosilicates, sulfates, and/or opal-A. It is proposed that the combination of opal-A, decreases in δ7Li values, and increases in Cu and Au concentrations represent an exploration vector for low sulfidation epithermal veins. At La Fossa, α-cristobalite is responsible for shifts in δ7Li values, ranging from −0.9‰ in least-altered rocks, to +4.7‰ in most altered rocks, with decreases in Au-Cu concentrations. The decrease in Au and Cu concentrations in progressively-altered rocks may have resulted from the metasomatism of pyrite and Fe oxides, the dissolution of clinopyroxene and opal, and the invasion of the samples by α-cristobalite. The combination of α-cristobalite, increases in δ7Li values, and decreases in Cu and Au concentrations are proposed as proxies for potential high sulfidation epithermal disseminations. Alternating phases of high eruptive activity and quiescent degassing at volcanoes generally, and at Solfatara and La Fossa specifically, suggest that the physicochemical conditions of individual subvolcanic hydrothermal systems should also be alternating, between conditions that are characteristic of low- and high sulfidation epithermal ore-forming environments, and that the related zones of silicification should be alternating between low δ7Li and high Cu-Au values dominated by opal-A, and higher δ7Li and lower Cu-Au values dominated by α-cristobalite.
    Description: Published
    Description: 103934
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Active ore-forming processes ; Opalization and cristobalization ; Lithium isotopes ; High and low sulfidation epithermal Au-Cu ore deposits ; La Fossa, Vulcano, Italy ; Solfatara, Campi Flegrei, Italy ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-18
    Description: Anthropogenic emissions of greenhouse gases (GHGs) co-occur with emissions of these gases from volcanic and urban environments. Therefore, it remains a challenge for the scientific community to identify the contamination sources and quantify the specific contributions. Stable isotopes have many applications in different fields under geosciences, including volcanology, environmental surveying, and climatology. Isotopic surveys allow identification of photosynthetic fractionation in tree forests and gas sources in urban zones, and tracking of volcanic degassing. Thus, the stable isotopic composition of the local GHGs allows the evaluation of the environmental impacts and assists in mitigating the emissions. The present study aimed to distinguish the tropospheric sources of CO2 in the different ecosystems based on the stable isotopic composition of CO2. The study relies on field experiments performed in both volcanic and urban zones of the Mediterranean region. Experiments to identify the CO2 origins in the field were designed and conducted in the laboratory. The CO2 in the air in Palermo, the soil CO2 released at Vulcano (Aeolian Islands, Italy), and the CO2 emitted at Cava dei Selci (Rome, Italy) were selected for conducting case studies. Isotope surveying of the CO2-containing air in Palermo revealed that the CO2 content was correlated to human activity. Mobile-based measurements of carbon isotope were conducted to distinguish the different sources of CO2 at the district scale. In particular, the isotopic surveying process distinguished landfill-related CO2 emissions from the fossil fuel burning ones. The underlying geological reservoir was identified as the main source of air CO2 at Cava dei Selci. Finally, partitioning of soil CO2 enabled estimation of the geological CO2 estimation in the Vulcano Porto settled zones. The results of the present study revealed that detailed investigations on stable isotopes assist in tracking the CO2 sources and the fate of gas emissions. The fine-tuned experimental solutions assisted in broadening the research perspectives. In addition, deeper insights into the carbon cycle were obtained.
    Description: Published
    Description: 118446
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Stable isotopes ; Carbon dioxide ; Greenhouse gas emissions ; Volcanic gases ; Mediterranean region ; 01.01. Atmosphere ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-24
    Description: The possibility of constraining the composition and evolution of specific portions of the Sub-Continental Lithospheric Mantle (SCLM) by means of an integrated study of petrography, mineral chemistry, and concentrations of volatiles in fluid inclusions (FI) is a novel approach that can provide clues on the recycling of volatiles within the lithosphere. This approach is even more important in active or dormant volcanic areas, where the signature of the gaseous emissions at the surface can be that of the underlying lithospheric mantle domains. In this respect, the ultramafic xenoliths brought to the surface in West Eifel (~0.5–0.01 Ma) and Siebengebirge (~30–6 Ma) volcanic fields (Germany) are ideal targets, as they provide direct information on one of the most intriguing portions of SCLM beneath the Central European Volcanic Province (CEVP). Five distinct populations from these localities were investigated using petrographic observations, mineral phase analyses and determination of He, Ne, Ar and CO2 contents in olivine-, orthopyroxene-, and clinopyroxene-hosted FI. The most refractory Siebengebirge rocks have highly forsteritic olivine, high-Mg#, low-Al pyroxene, and spinel with high Cr#, reflecting high extents (up to 30%) of melt extraction. In contrast, xenoliths from West Eifel are modally and compositionally heterogeneous, as indicated by the large forsterite range of olivine (Fo83–92), the Cr# range of spinel (0.1–0.6), and the variable Al and Ti contents of pyroxene. Equilibration temperatures vary from 870 ◦C to 1070 ◦C in Siebengebirge, and from ⁓900 ◦C to ⁓1190 ◦C in West Eifel xenoliths, at oxygen fugacity values generally between 􀀀 0.5 and + 1.3 ΔlogƒO2 [FMQ]. In both areas, the FI composition was dominated by CO2, with clinopyroxene, and most of the orthopyroxene had the highest concentrations of volatiles, while olivine was gas-poor. The noble gas and CO2 distributions suggest that olivine is representative of a residual mantle that experienced one or more melt extraction episodes. The 3He/4He ratio corrected for air contamination (Rc/Ra values) varied from 6.8 Ra in harzburgitic lithotypes to 5.5 Ra in lherzolites and cumulate rocks, indicating that the original MORB-like mantle signature was progressively modified by interaction with crustal-related components and melts having 3He/4He and 4He/40Ar* values consistent with those published for magmatic gaseous emissions. The Ne and Ar isotope systematics indicated that most of the data were consistent with mixing between a recycled atmospheric component and a MORB-like mantle, which does not necessarily require the involvement of a lower mantle plume beneath this portion of the CEVP. The major element distribution in mineral phases from West Eifel and Siebengebirge, together with the systematic variations in FI composition, the positive correlation between Al enrichment in pyroxene and equilibration temperatures, and the concomitant Rc/Ra decrease with increasing temperature, suggest that the SCLM beneath Siebengebirge represented the Variscan lithosphere in CEVP prior to the massive infiltration of melts/fluids belonging to the Quaternary Eifel volcanism. In contrast, West Eifel xenoliths reflect multiple heterogeneous metasomatism/refertilisation events that took place in the regional SCLM between ~6 and ~ 0.5 Ma.
    Description: Published
    Description: 120400
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Eifel ; Siebengebirge ; Noble gas and CO2 measurements ; Fluid inclusions ; Mantle xenoliths ; European SCLM ; Partial melting ; Metasomatism ; Refertilisation ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-12
    Description: InSAR images allow to detect the coseismic deformation, delimiting the epicentral area where the larger displacement has been concentrated. By inspecting the InSAR fringe patterns it is commonly recognized that, for dip-slip faults, the most deformed area is elliptical, or quadrilobated for strike-slip faults. This area coincides with the surface projection of the volume coseismically mobilized in the hanging wall of thrusts and normal faults, or the crustal walls adjacent to strike-slip faults. In the present work we analyzed a dataset of 32 seismic events, aiming to compare the deformation fields in terms of shape, spatial extents, and amount of deformed rock volumes, and the corresponding earthquake type and magnitudes. The dimension of the deformed area detected by InSAR scales with the magnitude of the earthquake, and we found that for M ≥ 6 is always larger than 100 km2, increasing to more than 550 km2 for M ≈ 6.5. Moreover, the comparison between InSAR and Peak Ground Accelerations documents the larger shaking within the areas suffering higher vertical deformation. As well established, the seismic epicenter rarely coincides with the area of larger shaking. Instead, the higher macro- seismic intensity often corresponds to the area of larger vertical displacement (either downward or upward), apart local site amplification effects. Outside this area, the vertical displacement is drastically lower, determining the strong attenuation of seismic waves and the decrease of the peak ground acceleration in the surrounding far- field area. Indeed, the segment of the activated fault constrains the area where the vertical oscillations are larger, allowing the contemporaneous maximum freedom degree of the crustal volume affected by horizontal maximum shaking, i.e., the near-field or epicentral area; therefore, the epicentral area and volume are active, i.e., they coseismically move and are contemporaneously crossed by seismic waves (active volume and surface active domain) where trapped waves and constructive interference are expected, whereas the surrounding far-field area is mainly fixed and passively crossed by seismic waves (passive volume and surface passive domain). All these considerations point out that InSAR images of areas affected by earthquakes are a powerful tool representing the fingerprint of the epicentral area where the largest shaking has taken place during an earthquake. Seismic hazard assessments should primarily rely on the expected future active domains.
    Description: Published
    Description: 103667
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: InSAR coseismic vertical deformation ; Constructive waves inferference ; Seismic hazard assessment ; Earthquake epicentral area ; Near-field active domain ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-31
    Description: We analyze the gross crustal structure of the Atlantic Ocean passive continental margins from north to the south, comparing eleven sections of the conjugate margins. As a general result, the western margins show a sharper continental-ocean transition with respect to the eastern margins that rather show a wider stretched and thinner margin. The Moho is in average about 5.7 ±1 dipping toward the interior of the continent on the western side, whereas it is about 2.7 ±1 in the eastern margins. Moreover, the stretched continental crust is on average 244 km wide on the western side, whereas it is up to about 439 km on the eastern side of the Atlantic. This systematic asymmetry reflects the early stages of the diachronous Mesozoic to Cenozoic continental rifting, which is inferred as the result of a polarized westward motion of both western and eastern plates, being Greenland, Northern and Southern Americas plates moving westward faster with respect to Scandinavia, Europe and Africa, relative to the underlying mantle.
    Description: Published
    Description: 101205
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Passive continental margin ; Westward drift of the lithosphere ; Moho dip Continental-ocean transition ; Asymmetric rift ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-09-21
    Description: We compare differences and similarities in the annual stratospheric HNO3 cycle derived from ground‐based measurements at the South Pole during 1993 and 1995, after correcting an error in earlier published profile retrievals for 1993 which led to under estimation of mixing ratios. The data series presented here provide profiling over the range ∼16–48 km, and cover the fall‐winter‐spring cycle in the behavior of HNO3 in the extreme Antarctic with a large degree of temporal overlap. With the exception of one gap of 20 days, the combined data sets cover a full annual cycle. The record shows an increase in HNO3 above 30 km occurring about 20 days before sunset, which appears to be the result of higher altitude heterogeneous conversion of NOx as photolysis diminishes. Both years show a strong increase in HNO3 beginning about polar sunset, in a layer peaking at about 25 km, as additional NOx is heterogeneously converted to nitric acid. When temperatures drop to the polar stratospheric cloud (PSC) formation range near the end of May, gas phase HNO3 is rapidly reduced in the lower stratosphere, although at least 2–3 weeks of temperatures ≤192 K appear to be required to complete most of the gas‐phase removal at the upper end of the depletion range (22–25 km). Despite a significant difference in residual sulfate loading from the explosion of Mount Pinatubo, there appears to be little gross difference in the timing and effects of PSC formation in removing gas phase HNO3 in these 2 years, though removal may be more rapid in 1995. Incorporation of gas phase HNO3 into PSCs appears to be nearly complete up to ∼25 km by midwinter. We also see a repeat of the formation of gas phase HNO3 in the middle stratosphere in early midwinter of 1995 with about the same timing as in 1993, suggesting that this phenomenon is driven by a repetition of dynamical transport and appropriate temperatures and pressures in the polar night, and not (as has been suggested) by ion‐based heterogeneous chemistry that requires triggering by large relativistic electron fluxes. High‐altitude HNO3 production peaks during a period of ∼20 days, but appears to persist for up to ∼40 days in the 40–45 km range, ceasing well before sunrise. This HNO3 descends rapidly throughout the production period, at a rate in good agreement with theoretically determined midwinter subsidence rates. As noted in earlier studies, later warming of this region above PSC evaporation temperatures does not cause reappearance of large amounts of HNO3, indicating that most PSCs gravitationally sink out of the stratosphere before early spring. We present evidence that smaller PSCs do evaporate to ∼1 to 3.5 ppbv of HNO3 in the lower stratosphere, however, working downward from ∼25 km as temperatures rise during the late winter. There is a delay of ∼15 days after sunrise before photolysis causes significant depletion in the altitude range below ∼30 km, where subsidence has carried virtually all higher‐altitude HNO3 by polar sunrise. Some continued subsidence and photolysis combine to keep mixing ratios less than ∼5 ppbv below 30 km until the final breakdown of the vortex in November brings larger amounts of HNO3 with air from lower latitudes.
    Description: Published
    Description: 17739-17750
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: ozone depletion ; HNO3 ; Antarctic stratosphere ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-09-07
    Description: While mantle convection is a fundamental ingredient of geodynamics, the driving mechanism of plate tectonics remains elusive. Are plates driven only from the thermal cooling of the mantle or are there further astronomical forces acting on them? GPS measurements are now accurate enough that, on long baselines, both secular plate motions and periodic tidal displacements are visible. The now 〉20 year-long space geodesy record of plate motions allows a more accurate analysis of the contribution of the horizontal component of the body tide in shifting the lithosphere. We review the data and show that lithospheric plates retain a non-zero horizontal component of the solid Earth tidal waves and their speed correlates with tidal harmonics. High-frequency semidiurnal Earth's tides are likely contributing to plate motions, but their residuals are still within the error of the present accuracy of GNSS data. The low-frequency body tides rather show horizontal residuals equal to the relative motion among plates, proving the astronomical input on plate dynamics. Plates move faster with nu- tation cyclicities of 8.8 and 18.6 years that correlate to lunar apsides migration and nodal precession. The high- frequency body tides are mostly buffered by the high viscosity of the lithosphere and the underlying mantle, whereas low-frequency horizontal tidal oscillations are compatible with the relaxation time of the low-velocity zone and can westerly drag the lithosphere over the asthenospheric mantle. Variable angular velocities among plates are controlled by the viscosity anisotropies in the decoupling layer within the low-velocity zone. Tidal oscillations also correlate with the seismic release.
    Description: Published
    Description: 103179
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Body tide ; Plate tectonics ; Geeodynamics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-10-16
    Description: Many long-term monitoring sites in Antarctic regions, which deploy ground-based stratospheric remote sensors and fly radiosondes or ozonesondes on balloons, supported the Airborne Polar Experiment in September and October 1999. Support consisted of supplying data to the campaign in real time, and in some cases by increasing the frequency of measurements during the campaign. The results will strengthen scientific conclusions from the airborne measurements. But results from these sites are allowing important scientific studies of new aspects of the ozone hole in their own right, because like the aircraft and its campaign, many sites traverse the vortex edge and are close to the largest source of lee waves, or measure infrequently observed trace gases such as HNO3. Examples of such studies are the behaviour and value of NO2 in midwinter, ozone filamentation with no apparent horizontal advection, the frequency and amplitude of gravity waves over the Antarctic Peninsula, mixing in the lowest stratosphere in Antarctic spring, the mechanism and frequency of HNO3 enhancement above the ozone peak in midwinter, and trends in UV dose in southern South America.
    Description: Published
    Description: 835–845
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: ozone depletion ; APE-GAIA ; Antarctic stratosphere ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-12-14
    Description: In the last few decades, advanced monitoring networks have been extended to the main active volcanoes, providing warnings for variations in volcano dynamics. However, one of the main tasks of modern volcanology is the correct interpretation of surface-monitored signals in terms of magma transfer through the Earth's crust. In this frame, it is crucial to investigate decompression-induced magma degassing as it controls magma ascent towards the surface and, in case of eruption, the eruptive style and the atmospheric dispersal of tephra and gases. Understanding the degassing behaviour is particularly intriguing in the case of poorly explored evolved alkaline magmas. In fact, these melts frequently feed hazardous, highly explosive volcanoes (e.g., Campi Flegrei, Somma-Vesuvius, Colli Albani, Tambora, Azores and Canary Islands), despite their low viscosity that usually promotes effusive and/or weakly explosive eruptions. Decompression experiments, together with numerical models, are powerful tools to examine magma degassing behaviour and constrain field observations from natural eruptive products and monitoring signals. These approaches have been recently applied to evolved alkaline melts, yet numerous open questions remain. To cast new light on the degassing dynamics of evolved alkaline magmas, in this study we present new results from decompression experiments, as well as a critical review of previous experimental works. We achieved a comprehensive dataset of key petrological parameters (i.e., 3D textural data for bubbles and microlites using X-ray computed microtomography, glass volatile contents and nanolite occurrence) from experimental samples obtained through high temperature-high pressure isothermal decompression experiments on trachytic alkaline melts at super-liquidus temperature. We explored systematically a range of final pressures (from 200 to 25 MPa), decompression rates (from 0.01 to 1 MPa s−1), and volatile (H2O and CO2) contents. On these grounds, we integrated coherently literature data from decompression experiments on evolved alkaline (trachytic and phonolitic) melts under various conditions, with the aim to fully constrain the degassing mechanisms and timescales in these magmas. Finally, we simulated numerically the experimental conditions to evaluate strengths and weaknesses in decrypting degassing behaviour from field observations. Our results highlight that bubble formation in evolved alkaline melts is primarily controlled by the initial volatile (H2O and CO2) content during magma storage. In these melts, bubble nucleation needs low supersaturation pressures (≤ 50–112 MPa for homogeneous nucleation, ≤ 13–25 MPa for heterogeneous nucleation), resulting in high bubble number density (~ 1012–1016 m−3), efficient volatile exsolution and thus in severe rheological changes. Moreover, the bubble number density is amplified in CO2-rich melts (mole fraction XCO2 ≥ 0.5), in which continuous bubble nucleation predominates on growth. These conditions typically lead to highly explosive eruptions. However, moving towards slower decompression rates (≤ 10−1 MPa s−1) and H2O-rich melts, permeable outgassing and inertial fragmentation occur, promoting weakly explosive eruptions. Finally, our findings suggest that the exhaustion of CO2 at deep levels, and the consequent transition to a H2O-dominated degassing, can crucially enhance magma vesiculation and ascent. In a hazard perspective, these constraints allow to postulate that time-depth variations of unrest signals could be significantly weaker/shorter (e.g., minor gas emissions and short-term seismicity) during major eruptions than in small-scale events.
    Description: Published
    Description: 103402
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-03-30
    Description: The dichotomy between explosive volcanic eruptions, which produce pyroclasts, and effusive eruptions, which produce lava, is defined by the presence or absence of fragmentation during magma ascent. For lava fountains the distinction is unclear, since the liquid phase in the rising magma may remain continuous to the vent, fragment in the fountain, then re-weld on deposition to feed rheomorphic lava flows. Here we use a numerical model to constrain the controls on basaltic eruption style, using Kilauea and Etna as case studies. Based on our results, we propose that lava fountaining is a distinct style, separate from effusive and explosive eruption styles, that is produced when magma ascends rapidly and fragments above the vent, rather than within the conduit. Sensitivity analyses of Kilauea and Etna case studies show that high lava fountains (〉50 m high) occur when the Reynolds number of the bubbly magma is greater than ∼0.1, the bulk viscosity is less than 10^6, and the gas is well-coupled to the melt. Explosive eruptions (Plinian and sub-Plinian) are predicted over a wide region of parameter space for higher viscosity basalts, typical of Etna, but over a much narrower region of parameter space for lower viscosity basalts, typical of Kilauea. Numerical results show also that the magma that feeds high lava fountains ascends more rapidly than the magma that feeds explosive eruptions, owing to its lower viscosity. For the Kilauea case study, waning ascent velocity is predicted to produce a progressive evolution from high to weak fountaining, to ultimate effusion; whereas for the Etna case study, small changes in parameter values lead to transitions to and from explosive activity, suggesting that eruption transitions may occur with little warning.
    Description: RCUK NERC DisEqm project
    Description: Published
    Description: 116658
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-06-22
    Description: Rare Earth Elements (REE; lanthanides and yttrium) are elements with high economic interest because they are critical elements for modern technologies. This study mainly focuses on the geochemical behavior of REE in hyperacid sulphate brines in volcanic-hydrothermal systems, where the precipitation of sulphate minerals occurs. Kawah Ijen lake, a hyperacid brine hosted in the Ijen caldera (Indonesia), was used as natural laboratory. ∑REE concentration in the lake water is high, ranging from 5.86 to 6.52 mg kg-1. The REE pattern of lake waters normalized to the average local volcanic rock is flat, suggesting isochemical dissolution. Minerals spontaneously precipitated in laboratory at 25 °C from water samples of Kawah Ijen were identified by XRD as gypsum. Microprobe analyses and the chemical composition of major constituents allow to identify possible other minerals precipitated: jarosite, Al-sulphate and Sr, Ba-sulphate. ∑REE concentration in minerals precipitated (mainly gypsum) range from 59.53 to 78.64 mg kg-1. The REE patterns of minerals precipitated normalized to the average local magmatic rock show enrichment in LREE. The REE distribution coefficient (KD), obtained from a ratio of its concentration in the minerals precipitated (mainly gypsum) and the lake water, shows higher values for LREE than HREE. KD-LREE/KD-HREE increases in the studied samples when the concentrations of BaO, MgO, Fe2O3, Al2O3, Na2O and the sum of total oxides (except SO3 and CaO) decrease in the solid phase. The presence of secondary minerals different than gypsum can be the cause of the distribution coefficient variations. High concentrations of REE in Kawah Ijen volcanic lake have to enhance the interest on these environments as possible REE reservoir, stimulating future investigations. The comparison of the KD calculated for REE after mineral precipitation (mainly gypsum) from Kawah Ijen and Poás hyperacid volcanic lakes allow to generalize that the gypsum precipitation removes the LREE from water.
    Description: Published
    Description: 140133
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Gypsum precipitation ; Rare Earth Elements ; Hyperacid crater lake ; Kawah Ijen volcano ; Poás volcano ; REE fractionation ; Geochemistry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-10-06
    Description: The partitioning of carbon dioxide (CO〈sub〉2〈/sub〉) released by soils at Vulcano Island (Aeolian Islands, Italy) was performed by combining the CO〈sub〉2〈/sub〉 flux and the carbon isotope measurements. Based on this method, the amount of CO〈sub〉2〈/sub〉 of volcanic origin was quantified six times during the period 2015–2018. The data analysis allowed us to establish the correlation between CO〈sub〉2〈/sub〉 soil degassing and changes in the contribution of volcanic fluids. Carbon isotope determinations were performed in situ to enhance the coverage of data collection in space and time. These data were combined with both the CO〈sub〉2〈/sub〉 contents in the ground gases and the soil CO〈sub〉2〈/sub〉 flux. The amount of volcanic CO〈sub〉2〈/sub〉 was distinguished from that of biogenic origin by implementing a three-component mixing model. The results of this study indicate that the increase in CO〈sub〉2〈/sub〉 output in September 2018 reflects the increase in volcanic gas emissions. The measurement method and analysis presented in this work are sufficiently general to be applicable to the monitoring programs of active volcanoes.
    Description: Published
    Description: 106972
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Carbon dioxide ; CO2 flux ; CO2 isotope composition ; Volcano monitoring ; Volcanic unrest ; Volcanic degassing ; 04. Solid Earth ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-11-23
    Description: In the world, volcanic systems exhibit a wide range of eruption styles threatening the lives of millions of people. Relatively slow effusive eruptions generate lava flows (low viscosity magma) and lava domes (high viscosity magma) and tend to evolve over days to decades. Alternatively, explosive eruptions can inject very large volumes of fragmented magma and volcanic gas high into the atmosphere over shorter periods (minutes to weeks to months). Mitigation of the associated risk to populations, the built environment, and the cultural heritage relies upon our ability to accurately assess volcanic hazards, and this, in turn, depends on our understanding of the processes that control the style and scale of volcanic eruptions. To this end, technological developments over the last couple of decades have greatly improved our ability to characterize magmatic systems and detect precursors at high spatial and temporal resolution through the use of analytical and observational volcanology, including monitoring-derived data, and volcano geophysics. Numerical modeling of magma ascent can serve to link all of these data and processes to build effective near-real-time strategies. The complexity of the volcanic system, derived from the multiphase, multicomponent character of the magmatic mixtures and from their interaction dynamics with the surrounding host rocks, is however manifested in the complexity of its mathematical representation, and numerical models able to describe several interdependent processes, eventually at disequilibrium conditions, are required to capture the nature of volcanic systems with fidelity. In this chapter, we present the main equations governing magma ascent, highlighting the multiphase and disequilibrium nature of volcanic flows, and the presence of complex feedback mechanisms between gas exsolution, outgassing, and crystallization that are able to influence the most important characteristics of the resulting volcanic events. Then, a suite of numerical simulations is described to show the effect of some parameters and processes in controlling eruption style and scale, and thus the potential eruption hazard.
    Description: Published
    Description: 239-284
    Description: 5V. Processi eruttivi e post-eruttivi
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-11-25
    Description: Active lava lakes – as the exposed upper part of magmatic columns – are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake in order to determine the mechanism sustaining its activity. We found that while fluctuations are apparent in all datasets, none shows a stable periodic behaviour. These observations suggest a continuous influx of volatiles and magma to the Villarrica lava lake. We suggest that ascending volatile-rich and descending degassed magmas are efficiently mixed within the volcanic conduit, resulting in no clear periodic oscillations in the plume composition and flux. We compare our findings to those of other lava lakes where equivalent gas emission time-series have been acquired, and suggest that gas flux, magma viscosity and conduit geometry are key parameters determining which flow mechanism operates in a given volcanic conduit. The range of conduit flow regimes inferred from the few studied lava lakes gives a glimpse of the potentially wide spectrum of conduit flow dynamics operating at active volcanoes.
    Description: This research was conducted as part of the “Trail By Fire” expedition (PI: Y. Moussallam). The project was supported by the Royal Geographical Society (with the Institute of British Geographers) with the Land Rover Bursary; the Deep Carbon Observatory DECADE Initiative; Ocean Optics; Crowcon; Air Liquide; Thermo Fisher Scientific; Santander; Cactus Outdoor; Turbo Ace and Team Black Sheep. We thank Sebastien Carretier and Rose-Marie Ojeda together with IRD South-America personnel for all their logistical help. We further thank the CONAF and DGAC for their help. YM acknowledges support from the Scripps Institution of Oceanography Postdoctoral Fellowship program. CIS acknowledges a research startup grant from Victoria University of Wellington
    Description: Published
    Description: 237-247
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanic degassing ; Multi-GAS ; UAV ; Trail By Fire ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-06-25
    Description: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. Such a rock uplift rate pattern is at odds with the horizontal velocity eld, characterized by shortening and crustal thickening in the Eastern Alps and very limited deformation in the Central and Western Alps. Proposed me- chanisms of rock uplift rate include isostatic response to the last deglaciation, long-term erosion, detachment of the Western Alpine slab, as well as lithospheric and surface de ection due to mantle convection. Here, we assess previous work and present new estimates of the contributions from these mechanisms. Given the large range of model estimates, the isostatic adjustment to deglaciation and erosion are su cient to explain the full observed rate of uplift in the Eastern Alps, which, if correct, would preclude a contribution from horizontal shortening and crustal thickening. Alternatively, uplift is a partitioned response to a range of mechanisms. In the Central and Western Alps, the lithospheric adjustment to deglaciation and erosion likely accounts for roughly half of the rock uplift rate, which points to a noticeable contribution by mantle-related processes such as detachment of the European slab and/or asthenospheric upwelling. While it is di cult to independently constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at present, future data should provide additional insights. Regardless, interacting tectonic and surface mass redistribution processes, rather than an individual forcing, best explain ongoing Alpine elevation changes.
    Description: Published
    Description: 589-604
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04. Solid Earth ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-09-21
    Description: [1] We present the first intercomparison between the two most comprehensive records of gas‐phase HNO3 profiles in the Antarctic stratosphere, covering the greater part of 1993 and 1995. We compare measurements by the Stony Brook Ground‐Based Millimeter‐wave Spectrometer (GBMS) at the South Pole with Version 5 HNO3 data from the Microwave Limb Sounder (MLS) aboard the Upper Atmospheric Research Satellite. Trajectory tracing was used to select MLS measurements in the 70°–80°S latitude band that sampled air observed by the GBMS during passage over the Pole. When temperatures were near the HNO3 condensation range, additional screening was performed to select MLS measurements that sampled air parcels within 1.5 K of the temperature they experienced over the Pole. Quantitative comparisons are given at 7 different potential temperature levels spanning the range ∼19–30 km. Agreement between the data sets is quite good between 465 and 655 K (∼20–25 km) during a large fraction of the year. Agreement is best during winter and spring, when seasonally averaged differences are generally within 1 ppbv below ∼25 km. At higher altitudes, and during summer and fall, the agreement becomes worse, and GBMS measurements can exceed MLS values by more than 3 ppbv. We provide evidence that differences occurring in the lower stratosphere during fall are due to lack of colocation between the two data sets during a period of strong poleward gradients in HNO3. Remaining discrepancies between GBMS and MLS V5 HNO3 measurements are thought to be due to instrumental or retrieval biases.
    Description: Published
    Description: id 4809
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: MLS ; Nitric acid ; polar stratosphere ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-10-16
    Description: Individual volcanoes can produce both effusive and explosive eruptions. A transition between these two eruption styles dramatically changes the hazards and can occur either between distinct eruption events or within one eruption episode. The causes of these transitions are difficult to determine due to the number of system parameters that can influence whether or not magma fragments in a runaway process. We apply a numerical model of magma ascent in a volcanic conduit to isolate and test the effects of key parameters related to magma rheology and system geometry. We find that for a given volcanic system, parameters that control magma viscosity, such as initial water mass fraction, initial crystal volume fraction, and temperature, have the greatest influence on whether or not magma fragments during ascent and erupts explosively. We also define a ‘critical condition’ for the full set of initial parameters under which a transition in eruption style, from effusive to explosive or the reverse, is more likely to occur. Under these conditions, small heterogeneities in the water or crystal content of the magma, or small perturbations to the conduit pressure gradient due to magma chamber overpressure or dome growth or collapse, can disrupt the magmatic conditions and cause a transition in eruption style. The 2010 VEI 4 eruption of Merapi Volcano included both effusive and explosive phases and was larger by an order of magnitude than its eruptions during the previous century. We constrain our model for the Merapi system using published literature values and show that between the previous eruption in 2006 and the 2010 eruption, the shallow magmatic system at Merapi reached critical conditions due to the ascent from depth of a large, hotter, more volatile-rich magma. Under these critical conditions and according to our model results, small changes in the volatile content of the magma, small dome collapses, subtle changes in degassing rate, or the addition of CO2 to the magma through decarbonation of the bedrock, are all feasible mechanisms for triggering rapid transitions between effusive and explosive activity during the 2010 eruption period.
    Description: Published
    Description: 106767
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Merapi ; Explosive-effusive transitions ; Eruption rate ; Fragmentation ; Lava domes ; Explosive eruptions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-12-18
    Description: Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla’s monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (δ13C, δD and δ18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions. Hekla’s quiescent gas composition was CO2-dominated (0.8 mol fraction) and the δ13C signature was consistent with published values for Icelandic magmas. The gas is poor in H2O and S compared to hydrothermal manifestations and syn-eruptive emissions from other active volcanic systems in Iceland. The total CO2 flux from Hekla central volcano (diffuse soil emissions) is at least 44 T d−1, thereof 14 T d−1 are sourced from a small area at the volcano’s summit. There was no detectable gas flux at other craters, even though some of them had higher ground temperatures and had erupted more recently. Our measurements are consistent with a magma reservoir at depth coupled with a shallow dike beneath the summit. In the current quiescent state, the composition of the exsolved gas is substantially modified along its pathway to the surface through cooling and interaction with wall-rock and groundwater. The modification involves both significant H2O condensation and scrubbing of S-bearing species, leading to a CO2-dominated gas emitted at the summit. We conclude that a compositional shift towards more S- and H2O-rich gas compositions if measured in the future by the permanent MultiGAS station should be viewed as sign of imminent volcanic unrest on Hekla.
    Description: The research leading to these results has received funding from the Icelandic Centre for Research (RANNIS, grant number 110002-0031); the European Community’s Seventh Framework Programme under Grant Agreement No. 308377 (Project FUTUREVOLC); and the International Civil Aviation Organization.
    Description: Published
    Description: 80-99
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Hekla ; Multi-GAS ; degassing ; volcanic unrest ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-06-10
    Description: Understanding how long-term subduction dynamics relates to the short-term seismicity and crustal tec tonics is a challenging but crucial topic in seismotectonics. We attempt to address this issue by linking long-term geodynamic evolution with short-term seismogenic deformation in the Northern Apennines. This retreating subduction orogen displays tectonic and seismogenic behaviors on various spatiotemporal scales that also characterize other subduction zones in the Mediterranean area. We use visco-elasto-plastic seismo-thermo-mechanical (STM) modeling with a realistic 2D setup based on available geological and geophysical data. The subduction dynamics and seismicity are coupled in the numerical modeling, and driven only by buoyancy forces, i.e., slab pull. Our results suggest that lower crustal rheology and lithospheric mantle temperature modulate the crustal tectonics of the Northern Apennines, as inferred by previous studies. The observed spatial distribution of upper crustal tectonic regimes and surface displacements requires buoyant, highly ductile material in the subduction channel beneath the internal part of the orogen. This allows protrusion of the asthenosphere in the lower crust and lithospheric delamination associated with slab retreat. The resulting surface velocities and principal stress axes generally agree with present-day observations, suggesting that slab delamination and retreat can explain the dynamics of the orogen. Our simulations successfully reproduce the type and overall distribution of seismicity with thrust faulting events in the external part of the orogen and normal faulting in its internal part. Slab temperatures and lithospheric mantle stiffness affect the cumulative seismic moment release and spatial distribution of upper crustal earthquakes. The properties of deep, sub-crustal material are thus shown to influence upper crustal seismicity in an orogen driven by slab retreat, even though the upper crust is largely decoupled from the lithospheric mantle. Our simulations therefore highlight the effect of deep lower crustal rheologies, self-driven subduction dynamics and mantle properties in controlling shallow deformation and seismicity.
    Description: Published
    Description: 228481
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Numerical modeling ; Geodynamics ; Seismotectonics orogen ; Delamination ; Northern Apennines ; 04.06. Seismology ; 04.03. Geodesy ; 05.01. Computational geophysics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-03-02
    Description: Volcanic activity atMt. Etna in the last decade hasmostly beenmanifested by sequences of short paroxysmal episodes characterised by powerful lava fountains and high eruption columns. On the 23 February 2013, an exceptionally intense episode occurred at the New South-East Crater, producing a fountain N800 m high (among the highest ever recorded at Etna) and a ~9 km eruption column that dispersed ash N400 kmfromthe vent. Textural and petrographic analyses of lapilli revealed that magma erupted during the high-intensity phase is characterised by lowmicrolite contents (b7 area%), high vesicularity (76–83%), and high vesicle number densities (6–8.2 × 106 cm−3). The short-lived initial Strombolian explosions removed viscous magma from the conduit, enabling the rapid ascent of gas-rich, microlite-poor magma and the eruption of an 800 mhigh fountain and 9 kmhigh eruption column. For the 23 February eruption, the high vesicularity and lowmicrolite content of the pyroclasts support the hypothesis that volatile-rich magma was the driver of the high intensity lava fountain. This eruptive event, along with three other recent events at Etna over the last 15 years, can be defined as subplinian based on eruption rate and column height, but also generated incandescent 800–1000 m fountains. For these reasons, we propose to term this event, and others at Etna characterised by similar eruption features and parameters, as subplinian fountaining events.
    Description: Published
    Description: 241-250
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Eruption dynamics - 23 February 2013 - lava fountain - subplinian ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-06-30
    Description: Quantification of the CO2 released by the volcanoes to the atmosphere is relevant for the evaluation of the balance between deep-derived, biogenic and anthropogenic contributions. The current study estimates the CO2 released from Furnas do Enxofre degassing area (Terceira Island, Azores archipelago) by applying an approach that integrates the flux of CO2 fromthe soilwith the δ13C-CO2 values. A deep-derived CO2 output of 2.54 t d−1 is estimated for an area of ~23,715 m2. High biogenic-derived CO2 flux values (~45 g m−2 d−1) associated with light carbon isotopic content (δ13C=−28‰±1.1‰) are detected and explained by the type of vegetation that characterizes the study site. Carbon isotopic compositions of the CO2 (−6.4‰±1.2‰) measured in olivine-hosted fluid inclusions of the Terceira basalts are presented for the first time and contribute to defining the mantle-CO2 signature. Differences between these values and heavier carbon isotope values from gas in fumaroles at Furnas do Enxofre (−4.66‰to−4.27‰) are explained by the carbon isotopic fractionation occurring when CO2 reacts to form calcite in the geothermal reservoir at temperatures N180 °C. A clear correlation between the soil temperature and deep CO2 fluxes is observed and the integration of the diffuse degassing information with the composition of the fumarolic emissions allows estimating a thermal energy flux of 1.1 MW.
    Description: Published
    Description: 106968
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Soil diffuse degassing ; CO2 fluxes ; Carbon isotopic composition ; Hydrothermal systems ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...