ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 647, doi:10.3389/fmicb.2014.00647.
    Description: The Southern Ocean is currently subject to intense investigations, mainly related to its importance for global biogeochemical cycles and its alarming rate of warming in response to climate change. Microbes play an essential role in the functioning of this ecosystem and are the main drivers of the biogeochemical cycling of elements. Yet, the diversity and abundance of microorganisms in this system remain poorly studied, in particular with regards to changes along environmental gradients. Here, we used amplicon sequencing of 16S rRNA gene tags using primers covering both Bacteria and Archaea to assess the composition and diversity of the microbial communities from four sampling depths (surface, the maximum and minimum of the oxygen concentration, and near the seafloor) at 10 oceanographic stations located in Bransfield Strait [northwest of the Antarctic Peninsula (AP)] and near the sea ice edge (north of the AP). Samples collected near the seafloor and at the oxygen minimum exhibited a higher diversity than those from the surface and oxygen maximum for both bacterial and archaeal communities. The main taxonomic groups identified below 100 m were Thaumarchaeota, Euryarchaeota and Proteobacteria (Gamma-, Delta-, Beta-, and Alphaproteobacteria), whereas in the mixed layer above 100 m Bacteroidetes and Proteobacteria (mainly Alpha- and Gammaproteobacteria) were found to be dominant. A combination of environmental factors seems to influence the microbial community composition. Our results help to understand how the dynamic seascape of the Southern Ocean shapes the microbial community composition and set a baseline for upcoming studies to evaluate the response of this ecosystem to future changes.
    Description: This work was supported by the Brazilian National Counsel of Technological and Scientific Development (Polar Canion CNPq 556848/2009-8, ProOasis CNPq 565040/2010-3, Interbiota CNPq 407889/2013-2 and INCT-MAR-COI). Alex Enrich-Prast received a CNPq Productivity fellowship. Camila N. Signori was supported by a WHOI Mary Sears Visitor Award (for the microbial community analyses) and by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for the “Doctorate Sandwich” scholarship (n. 18835/12-0).
    Keywords: Antarctica ; Pyrosequencing ; Microbial community structure ; Environmental factors ; Microbial oceanography ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 104, doi:10.3389/fmicb.2015.00104.
    Description: Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.
    Description: This work was supported by funding from the University of Massachusetts Amherst to DeAngelis and the National Science Foundation Long-term Ecological Research (LTER) Program.
    Keywords: Climate change ; Microbial ecology ; Ribosomal RNA ; rrn operon copy number ; Trophic strategy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gewirtzman, J., Tang, J., Melillo, J. M., Werner, W. J., Kurtz, A. C., Fulweiler, R. W., & Carey, J. C. Soil warming accelerates biogeochemical silica cycling in a temperate forest. Frontiers in Plant Science, 10, (2019): 1097, doi:10.3389/fpls.2019.01097.
    Description: Biological cycling of silica plays an important role in terrestrial primary production. Soil warming stemming from climate change can alter the cycling of elements, such as carbon and nitrogen, in forested ecosystems. However, the effects of soil warming on the biogeochemical cycle of silica in forested ecosystems remain unexplored. Here we examine long-term forest silica cycling under ambient and warmed conditions over a 15-year period of experimental soil warming at Harvard Forest (Petersham, MA). Specifically, we measured silica concentrations in organic and mineral soils, and in the foliage and litter of two dominant species (Acer rubrum and Quercus rubra), in a large (30 × 30 m) heated plot and an adjacent control plot (30 × 30 m). In 2016, we also examined effects of heating on dissolved silica in the soil solution, and conducted a litter decomposition experiment using four tree species (Acer rubrum, Quercus rubra, Betula lenta, Tsuga canadensis) to examine effects of warming on the release of biogenic silica (BSi) from plants to soils. We find that tree foliage maintained constant silica concentrations in the control and warmed plots, which, coupled with productivity enhancements under warming, led to an increase in total plant silica uptake. We also find that warming drove an acceleration in the release of silica from decaying litter in three of the four species we examined, and a substantial increase in the silica dissolved in soil solution. However, we observe no changes in soil BSi stocks with warming. Together, our data indicate that warming increases the magnitude of silica uptake by vegetation and accelerates the internal cycling of silica in in temperate forests, with possible, and yet unresolved, effects on the delivery of silica from terrestrial to marine systems.
    Description: This research was supported by the National Science Foundation (NSF PLR-1417763 to JT), the Geological Society of America (Stephen G. Pollock Undergraduate Research Grant to JG), the Institute at Brown for Environment and Society, and the Marine Biological Laboratory. Sample analysis and Fulweiler’s involvement were supported by Boston University and a Bullard Fellowship from Harvard University. The soil warming experiment was supported by the National Science Foundation (DEB-0620443) and Department of Energy (DE-FC02-06-ER641577 and DE-SC0005421).
    Keywords: Silica ; Climate change ; Soil ; Warming ; Phytoliths ; Plants ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Newman, L., Heil, P., Trebilco, R., Katsumata, K., Constable, A., van Wijk, E., Assmann, K., Beja, J., Bricher, P., Colemans, R., Costa, D., Diggs, S., Farneti, R., Fawcett, S., Gille, S. T., Hendry, K. R., Henley, S., Hofmann, E., Maksym, T., MazIoff, M., Meijers, A., Meredith, M. M., Moreau, S., Ozsor, B., Robertson, R., Schloss, I., Schofield, O., Shi, J., Sikes, E., Smith, I. J., Swart, S., Wahlin, A., Williams, G., Williams, M. J. M., Herraiz-Borreguero, L., Kern, S., Liesers, J., Massom, R. A., Melbourne-Thomas, J., Miloslavich, P., & Spreen, G. Delivering sustained, coordinated, and integrated observations of the Southern Ocean for global impact. Frontiers in Marine Science, 6, (2019): 433, doi:10.3389/fmars.2019.00433.
    Description: The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths 〉2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.
    Description: PH was supported by the Australian Government’s Cooperative Research Centers Program through the Antarctica Climate and Ecosystems Cooperative Research Centre, and the International Space Science Institute’s team grant #406. This work contributes to the Australian Antarctica Science projects 4301 and 4390.
    Keywords: Southern Ocean ; observations ; modeling ; ocean–climate interactions ; ecosystem-based management ; long-term monitoring ; international coordination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Turk, D., Wang, H., Hu, X., Gledhill, D. K., Wang, Z. A., Jiang, L., & Cai, W. Time of Emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design. Frontiers in Marine Science, 6, (2019):91, doi:10.3389/fmars.2019.00091.
    Description: Time of Emergence (ToE) is the time when a signal emerges from the noise of natural variability. Commonly used in climate science for the detection of anthropogenic forcing, this concept has recently been applied to geochemical variables, to assess the emerging times of anthropogenic ocean acidification (OA), mostly in the open ocean using global climate and Earth System Models. Yet studies of OA variables are scarce within costal margins, due to limited multidecadal time-series observations of carbon parameters. ToE provides important information for decision making regarding the strategic configuration of observing assets, to ensure they are optimally positioned either for signal detection and/or process elicitation and to identify the most suitable variables in discerning OA-related changes. Herein, we present a short overview of ToE estimates on an OA variable, CO2 fugacity f(CO2,sw), in the North American ocean margins, using coastal data from the Surface Ocean CO2 Atlas (SOCAT) V5. ToE suggests an average theoretical timeframe for an OA signal to emerge, of 23(±13) years, but with considerable spatial variability. Most coastal areas are experiencing additional secular and/or multi-decadal forcing(s) that modifies the OA signal, and such forcing may not be sufficiently resolved by current observations. We provide recommendations, which will help scientists and decision makers design and implement OA monitoring systems in the next decade, to address the objectives of OceanObs19 (http://www.oceanobs19.net) in support of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) (https://en.unesco.org/ocean-decade) and the Sustainable Development Goal (SDG) 14.3 (https://sustainabledevelopment.un.org/sdg14) target to “Minimize and address the impacts of OA.”
    Description: HW was partially supported by an NSF grant (OCE#1654232) while being a research associate at TAMUCC.
    Keywords: Ocean acidification ; CO2 fugacity ; Time of emergence ; Climate change ; Novel statistical approaches ; Observing system optimization ; Decision making tool
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, N., Kessler, W. S., Cravatte, S., Sprintall, J., Wijffels, S., Cronin, M. F., Sutton, A., Serra, Y. L., Dewitte, B., Strutton, P. G., Hill, K., Sen Gupta, A., Lin, X., Takahashi, K., Chen, D., & Brunner, S. Tropical pacific observing system. Frontiers in Marine Science, 6, (2019):31, doi:10.3389/fmars.2019.00031.
    Description: This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs.
    Description: BD thanks LEFE-GMMC for financial support. JS participation in this study was supported by NOAA’s Global Ocean Monitoring and Observing Program through Award NA15OAR4320071. NOAA’s Ocean Observing and Monitoring Division has supported NS and WK and the TPOS 2020 Distributed Project Office.
    Keywords: Ocean observing ; Tropical Pacific ; TPOS 2020 ; User requirements ; Variable requirements ; Design ; Tropical moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Speich, S., Lee, T., Muller-Karger, F., Lorenzoni, L., Pascual, A., Jin, D., Delory, E., Reverdin, G., Siddorn, J., Lewis, M. R., Marba, N., Buttigieg, P. L., Chiba, S., Manley, J., Kabo-Bah, A. T., Desai, K., & Ackerman, A. Editorial: Oceanobs19: An ocean of opportunity. Frontiers in Marine Science, 6, (2019): 570, doi:10.3389/fmars.2019.00570.
    Description: The OceanObs conferences are held once every 10 years for the scientific, technical, and operational communities involved in the planning, implementation, and use of ocean observing systems. They serve to communicate progress, promote plans, and to define advances in ocean observing in response to societies' needs. Each conference provides a forum for the community to review the state of the ocean observing science and operations, and to define goals and plans to achieve over the next decade.
    Description: The organizers of the OceanObs'19 conference thank the authors that conceived and jointly crafted the Community White Papers for their tremendous efforts, extensive international collaborations, and community wisdom. The organizers also thank the hundreds of reviewers of the CWPs for their dedication, and the time invested in reviewing the papers. The organizers of the OceanObs'19 conference wish to thank the chief editor of the journal, Dr. Carlos Duarte, and the Frontiers Marine Science staff, for their professionalism and support in this process.
    Keywords: OceanObs'19 ; Ocean observing ; Innovation ; Information ; Integration ; Interoperability ; Governance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foltz, G. R., Brandt, P., Richter, I., Rodriguez-Fonsecao, B., Hernandez, F., Dengler, M., Rodrigues, R. R., Schmidt, J. O., Yu, L., Lefevre, N., Da Cunha, L. C., Mcphaden, M. J., Araujo, M., Karstensen, J., Hahn, J., Martin-Rey, M., Patricola, C. M., Poli, P., Zuidema, P., Hummels, R., Perez, R. C., Hatje, V., Luebbecke, J. F., Palo, I., Lumpkin, R., Bourles, B., Asuquo, F. E., Lehodey, P., Conchon, A., Chang, P., Dandin, P., Schmid, C., Sutton, A., Giordani, H., Xue, Y., Illig, S., Losada, T., Grodsky, S. A., Gasparinss, F., Lees, T., Mohino, E., Nobre, P., Wanninkhof, R., Keenlyside, N., Garcon, V., Sanchez-Gomez, E., Nnamchi, H. C., Drevillon, M., Storto, A., Remy, E., Lazar, A., Speich, S., Goes, M., Dorrington, T., Johns, W. E., Moum, J. N., Robinson, C., Perruches, C., de Souza, R. B., Gaye, A. T., Lopez-Paragess, J., Monerie, P., Castellanos, P., Benson, N. U., Hounkonnou, M. N., Trotte Duha, J., Laxenairess, R., & Reul, N. The tropical Atlantic observing system. Frontiers in Marine Science, 6(206), (2019), doi:10.3389/fmars.2019.00206.
    Description: he tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Description: MM-R received funding from the MORDICUS grant under contract ANR-13-SENV-0002-01 and the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236). GF, MG, RLu, RP, RW, and CS were supported by NOAA/OAR through base funds to AOML and the Ocean Observing and Monitoring Division (OOMD; fund reference 100007298). This is NOAA/PMEL contribution #4918. PB, MDe, JH, RH, and JL are grateful for continuing support from the GEOMAR Helmholtz Centre for Ocean Research Kiel. German participation is further supported by different programs funded by the Deutsche Forschungsgemeinschaft, the Deutsche Bundesministerium für Bildung und Forschung (BMBF), and the European Union. The EU-PREFACE project funded by the EU FP7/2007–2013 programme (Grant No. 603521) contributed to results synthesized here. LCC was supported by the UERJ/Prociencia-2018 research grant. JOS received funding from the Cluster of Excellence Future Ocean (EXC80-DFG), the EU-PREFACE project (Grant No. 603521) and the BMBF-AWA project (Grant No. 01DG12073C).
    Keywords: Tropical Atlantic Ocean ; Observing system ; Weather ; Climate ; Hurricanes ; Biogeochemistry ; Ecosystems ; Coupled model bias
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trowbridge, J., Weller, R., Kelley, D., Dever, E., Plueddemann, A., Barth, J. A., & Kawka, O. TThe Ocean Observatories Initiative. Frontiers in Marine Science, 6, (2019):74, doi:10.3389/fmars.2019.00074.
    Description: The Ocean Observatories Initiative (OOI) is an integrated network that enables scientific investigation of interlinked physical, chemical, biological and geological processes throughout the global ocean. With near real-time data delivery via a common Cyberinfrastructure, the OOI instruments two contrasting ocean systems at three scales. The Regional Cabled Array instruments a tectonic plate and overlying ocean in the northeast Pacific, providing a permanent electro-optical cable connecting multiple seafloor nodes that provide high power and bandwidth to seafloor sensors and moorings with instrumented wire crawlers, all with speed-of-light interactive capabilities. Coastal arrays include the Pioneer Array, a relocatable system currently quantifying the New England shelf-break front, and the Endurance Array, a fixed system off Washington and Oregon with connections to the Regional Cabled Array. The Global Arrays host deep-ocean moorings and gliders to provide interdisciplinary measurements of the water column, mesoscale variability, and air-sea fluxes at critical high latitude locations. The OOI has unique aspects relevant to the international ocean observing community. The OOI uses common sensor types, verification protocols, and data formats across multiple platform types in diverse oceanographic regimes. OOI observing is sustained, with initial deployment in 2013 and 25 years of operation planned. The OOI is distributed among sites selected for scientific relevance based on community input and linked by important oceanographic processes. Scientific highlights include real-time observations of a submarine volcanic eruption, time-series observations of methane bubble plumes from Southern Hydrate Ridge off Oregon, observations of anomalous low-salinity pulses off Oregon, discovery of new mechanisms for intrusions of the Gulf Stream onto the shelf in the Middle Atlantic Bight, documentation of deep winter convection in the Irminger Sea, and observations of extreme surface forcing at the most southerly surface mooring in the world ocean.
    Description: This work was supported by NSF funded Construction and Initial Operation of the OOI under Award 0957938 and Management and Operation of the OOI under Award 1743430.
    Keywords: Ocean observing ; Marine geology and geophysics ; Physical oceanography ; Biological oceanography ; Chemical oceanography ; Ocean engineering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Swart, S., Gille, S. T., Delille, B., Josey, S., Mazloff, M., Newman, L., Thompson, A. F., Thomson, J., Ward, B., du Plessis, M. D., Kent, E. C., Girton, J., Gregor, L., Heil, P., Hyder, P., Pezzi, L. P., de Souza, R. B., Tamsitt, V., Weller, R. A., & Zappa, C. J. Constraining Southern Ocean air-sea-ice fluxes through enhanced observations. Frontiers in Marine Science, 6, (2019): 421, doi:10.3389/fmars.2019.00421.
    Description: Air-sea and air-sea-ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a “knowledge gap” that increases uncertainty in atmosphere and ocean dynamics and boundary-layer thermodynamic processes, impeding improvements in weather and climate models. Improvements will require both process-based research to understand the mechanisms governing air-sea exchange and a significant expansion of the observing system. This will improve flux parameterizations and reduce uncertainty associated with bulk formulae and satellite observations. Improved estimates spanning the full Southern Ocean will need to take advantage of ships, surface moorings, and the growing capabilities of autonomous platforms with robust and miniaturized sensors. A key challenge is to identify observing system sampling requirements. This requires models, Observing System Simulation Experiments (OSSEs), and assessments of the specific spatial-temporal accuracy and resolution required for priority science and assessment of observational uncertainties of the mean state and direct flux measurements. Year-round, high-quality, quasi-continuous in situ flux measurements and observations of extreme events are needed to validate, improve and characterize uncertainties in blended reanalysis products and satellite data as well as to improve parameterizations. Building a robust observing system will require community consensus on observational methodologies, observational priorities, and effective strategies for data management and discovery.
    Description: SS was funded by a Wallenberg Academy Fellowship (WAF 2015.0186). EK was funded by the NERC ORCHESTRA Project (NE/N018095/1). LP was funded by the Advanced Studies in Oceanography of Medium and High Latitudes (CAPES 23038.004304/2014-28) and the Research Productivity Program (CNPq 304009/2016-4). BdS was a research associate at the F.R.S-FNRS. PeH was supported by the Australian Antarctic Science Projects 4301 and 4390, and the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre and the International Space Science Institute Project 406. SG and MM were funded by National Science Foundation awards OCE-1658001 and PLR-1425989. AT was supported by NASA (NNX15AG42G) and NSF (OCE-1756956).
    Keywords: Air-sea/air-sea-ice fluxes ; Southern Ocean ; Ocean-atmosphere interaction ; Climate ; Ocean-ice interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Palmer, M. D., Durack, P. J., Paz Chidichimo, M., Church, J. A., Cravatte, S., Hill, K., Johannessen, J. A., Karstensen, J., Lee, T., Legler, D., Mazloff, M., Oka, E., Purkey, S., Rabe, B., Sallee, J., Sloyan, B. M., Speich, S., von Schuckmann, K., Willis, J., & Wijffels, S. Adequacy of the ocean observation system for quantifying regional heat and freshwater storage and change. Frontiers in Marine Science, 6, (2019): 16, doi: 10.3389/fmars.2019.00416.
    Description: Considerable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analyzing the multi-variable arrays provided by the integrated observing system.
    Description: MP was supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra, and the European Union’s Horizon 2020 Research and Innovation Program under grant Agreement No. 633211 (AtlantOS). The work of PD was prepared the by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and is a contribution to the U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Modeling and Analysis Program. LLNL Release number: LLNL-JRNL-761158. BS and JC was partially supported by the Centre for Southern Hemisphere Oceans Research, a joint research center between the QNLM and the CSIRO. BS was also supported by the Australian Government Department of the Environment and CSIRO through the National Environmental Science Program. SC was supported by the IRD and by the French national program LEFE/INSU. SC thanks W. Kessler for suggestions concerning Figure 6. BR was supported by the German Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung (AWI). J-BS was supported by the CNRS/INSU and the Horizon 2020 Research and Innovation Program under Grant Agreement 637770. SS was supported by the French Institutions ENS, LMD, IPSL, and CNRS/INSU. The work of JW was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
    Keywords: Heat content ; Freshwater content ; Salinity ; Temperature ; Ocean observing system ; Climate change ; Climate variability ; Observing system design
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 1090, doi:10.3389/fmicb.2015.01090.
    Description: Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P. antarctica blooms awaits elucidation of their functional gene pool and of the geochemical activities they support. Here, we report on a metagenome (~160 million reads) analysis of the microbial community associated with a P. antarctica bloom event in the Amundsen Sea polynya (West Antarctica). Genomes of the most abundant Bacteroidetes and Proteobacteria populations have been reconstructed and a network analysis indicates a strong functional partitioning of these bacterial taxa. Three of them (SAR92, and members of the Oceanospirillaceae and Cryomorphaceae) are found in close association with P. antarctica colonies. Distinct features of their carbohydrate, nitrogen, sulfur and iron metabolisms may serve to support mutualistic relationships with P. antarctica. The SAR92 genome indicates a specialization in the degradation of fatty acids and dimethylsulfoniopropionate (compounds released by P. antarctica) into dimethyl sulfide, an aerosol precursor. The Oceanospirillaceae genome carries genes that may enhance algal physiology (cobalamin synthesis). Finally, the Cryomorphaceae genome is enriched in genes that function in cell or colony invasion. A novel pico-eukaryote, Micromonas related genome (19.6 Mb, ~94% completion) was also recovered. It contains the gene for an anti-freeze protein, which is lacking in Micromonas at lower latitudes. These draft genomes are representative for abundant microbial taxa across the Southern Ocean surface.
    Description: This work was performed with financial support from NSF Antarctic Sciences awards ANT-1142095 to AP.
    Keywords: Southern Ocean ; Amundsen Sea Polynya ; Phytoplankton bloom ; Phaeocystis ; Micromonas ; Microbial communities ; Metagenomics ; Genome reconstruction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sloyan, B. M., Wilkin, J., Hill, K. L., Chidichimo, M. P., Cronin, M. F., Johannessen, J. A., Karstensen, J., Krug, M., Lee, T., Oka, E., Palmer, M. D., Rabe, B., Speich, S., von Schuckmann, K., Weller, R. A., & Yu, W. Evolving the physical global ocean observing system for research and application services through international coordination. Frontiers in Marine Science, 6, (2019): 449, doi:10.3389/fmars.2019.00449.
    Description: Climate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean’s role in the Earth’s climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land, and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon, and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean’s biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs’99 to OceanObs’09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirements.
    Description: BS received support from the Centre for Southern Hemisphere Oceans Research, a collaboration between the CSIRO and the Qingdao National Laboratory for Marine Science and Technology and the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. JK was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the grant agreement no. 633211 (AtlantOS). MP was supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra. SS was supported by the Ecole Normale Supérieure, CNRS, and Ifremer funded by the European Union’s Horizon 2020 Research and Innovation Programme under the grant agreement no. 633211 (AtlantOS), CNES, and ANR grants.
    Keywords: Observing system evaluation ; Observing system design ; Sustained observations ; Observing networks ; Observation platforms ; Climate ; Weather ; Operational services
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benway, H. M., Lorenzoni, L., White, A. E., Fiedler, B., Levine, N. M., Nicholson, D. P., DeGrandpre, M. D., Sosik, H. M., Church, M. J., O'Brien, T. D., Leinen, M., Weller, R. A., Karl, D. M., Henson, S. A., & Letelier, R. M. Ocean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications. Frontiers in Marine Science, 6, (2019): 393, doi:10.3389/fmars.2019.00393.
    Description: Sustained ocean time series are critical for characterizing marine ecosystem shifts in a time of accelerating, and at times unpredictable, changes. They represent the only means to distinguish between natural and anthropogenic forcings, and are the best tools to explore causal links and implications for human communities that depend on ocean resources. Since the inception of sustained ocean observations, ocean time series have withstood many challenges, most prominently availability of uninterrupted funding and retention of trained personnel. This OceanObs’19 review article provides an overarching vision for sustained ocean time series observations for the next decade, focusing on the growing challenges of maintaining sustained ocean time series, including ship-based and autonomous coastal and open-ocean platforms, as well as remote sensing. In addition to increased diversification of funding sources to include the private sector, NGOs, and other groups, more effective engagement of stakeholders and other end-users will be critical to ensure the sustainability of ocean time series programs. Building a cohesive international time series network will require dedicated capacity to coordinate across observing programs and leverage existing infrastructure and platforms of opportunity. This review article outlines near-term observing priorities and technology needs; explores potential mechanisms to broaden ocean time series data applications and end-user communities; and describes current tools and future requirements for managing increasingly complex multi-platform data streams and developing synthesis products that support science and society. The actionable recommendations outlined herein ultimately form the basis for a robust, sustainable, fit-for-purpose time series network that will foster a predictive understanding of changing ocean systems for the benefit of society.
    Description: This work was led by HB in the Ocean Carbon and Biogeochemistry (OCB) Project Office, which is supported by the NSF OCE (1558412) and the NASA (NNX17AB17G).
    Keywords: Ocean time series ; Marine ecosystems ; Climate ; End-users ; Synthesis ; Sustained observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pearlman, J., Bushnell, M., Coppola, L., Karstensen, J., Buttigieg, P. L., Pearlman, F., Simpsons, P., Barbier, M., Muller-Karger, F. E., Munoz-Mas, C., Pissierssens, P., Chandler, C., Hermes, J., Heslop, E., Jenkyns, R., Achterberg, E. P., Bensi, M., Bittig, H. C., Blandin, J., Bosch, J., Bourles, B., Bozzano, R., Buck, J. J. H., Burger, E. F., Cano, D., Cardin, V., Llorens, M. C., Cianca, A., Chen, H., Cusack, C., Delory, E., Garello, R., Giovanetti, G., Harscoat, V., Hartman, S., Heitsenrether, R., Jirka, S., Lara-Lopez, A., Lanteri, N., Leadbetter, A., Manzella, G., Maso, J., McCurdy, A., Moussat, E., Ntoumas, M., Pensieri, S., Petihakis, G., Pinardi, N., Pouliquen, S., Przeslawski, R., Roden, N. P., Silke, J., Tamburri, M. N., Tang, H., Tanhua, T., Telszewski, M., Testor, P., Thomas, J., Waldmann, C., & Whoriskey, F. Evolving and sustaining ocean best practices and standards for the next decade. Frontiers in Marine Science, 6, (2019):277, doi:10.3389/fmars.2019.00277.
    Description: The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet’s ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into “Ocean Best Practices.” While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come.
    Description: The Ocean Best Practices project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement no: 633211 (AtlantOS), no. 730960 (SeaDataCloud) and no: 654310 (ODIP). Funding was also received from the NSF OceanObs Research Coordination Network under NSF grant 1143683. The Best Practices Handbook for fixed observatories has been funded by the FixO3 project financed by the European Commission through the Seventh Framework Programme for Research, grant agreement no. 312463. The Harmful Algal Blooms Forecast Report was funded by the Interreg Atlantic Area Operational Programme Project PRIMROSE (Grant Agreement No. EAPA_182/2016), and the AtlantOS project (see above). PB acknowledges funding from the Helmholtz Programme Frontiers in Arctic Marine Monitoring (FRAM) conducted by the Alfred-Wegener-Institut. JM acknowledges fundng from the WeObserve project under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 776740). MTe acknowledges support from the US National Science Foundation grant OCE-1840868 to the Scientific Committee on Oceanic Research (SCOR, US) FM-K acknowledges support by NSF Grant 1728913 ‘OceanObS Research Coordination Network’. Funding was also provided by NASA grant NNX14AP62A ‘National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)’ funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803 in partnership between NOAA, BOEM, and NASA), and the U.S. Integrated Ocean Observing System (IOOS) Program Office.
    Keywords: Best practices ; Sustainability ; Interoperability ; Digital repository ; Peer review ; Ocean observing ; Ontologies ; Methodologies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-21
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tanhua, T., Pouliquen, S., Hausman, J., O'Brien, K., Bricher, P., de Bruin, T., Buck, J. J. H., Burger, E. F., Carval, T., Casey, K. S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D., Muelbert, J. H., Novellino, A., Pfeil, B., Pulsifer, P. L., Van de Putte, A., Robinson, E., Schaap, D., Smirnov, A., Smith, N., Snowden, D., Spears, T., Stall, S., Tacoma, M., Thijsse, P., Tronstad, S., Vandenberghe, T., Wengren, M., Wyborn, L., & Zhao, Z. Ocean FAIR data services. Frontiers in Marine Science, 6, (2019): 440, doi:10.3389/fmars.2019.00440.
    Description: Well-founded data management systems are of vital importance for ocean observing systems as they ensure that essential data are not only collected but also retained and made accessible for analysis and application by current and future users. Effective data management requires collaboration across activities including observations, metadata and data assembly, quality assurance and control (QA/QC), and data publication that enables local and interoperable discovery and access and secures archiving that guarantees long-term preservation. To achieve this, data should be findable, accessible, interoperable, and reusable (FAIR). Here, we outline how these principles apply to ocean data and illustrate them with a few examples. In recent decades, ocean data managers, in close collaboration with international organizations, have played an active role in the improvement of environmental data standardization, accessibility, and interoperability through different projects, enhancing access to observation data at all stages of the data life cycle and fostering the development of integrated services targeted to research, regulatory, and operational users. As ocean observing systems evolve and an increasing number of autonomous platforms and sensors are deployed, the volume and variety of data increase dramatically. For instance, there are more than 70 data catalogs that contain metadata records for the polar oceans, a situation that makes comprehensive data discovery beyond the capacity of most researchers. To better serve research, operational, and commercial users, more efficient turnaround of quality data in known formats and made available through Web services is necessary. In particular, automation of data workflows will be critical to reduce friction throughout the data value chain. Adhering to the FAIR principles with free, timely, and unrestricted access to ocean observation data is beneficial for the originators, has obvious benefits for users, and is an essential foundation for the development of new services made possible with big data technologies.
    Description: We thank the funding agencies and the data management projects that have made this work possible through dedicated funding for the data management activities and improvements. TT and JB acknowledge support from the EU Horizon 2020 project AtlantOS (grant agreement 633211). JM acknowledges support from the Integrated Oceanography and Multiple Uses of the Continental Shelf and the Adjacent Ocean Integrated Center of Oceanography (INCT-Mar COI, CNPq, Proc. 565062/2010-7). DS acknowledges support from the H2020 project SeaDataCloud (grant agreement 730960). SP acknowledges support from the EU Horizon 2020 project ENVRIplus (grant agreement 654182). AN acknowledges support from the EMODnet Physics (grant number EASME/EMFF/2016/1.3.1.2-Lot3/SI2.749411). HG acknowledges funding from the EU H2020 Ocean Data Interoperability Platform (ODIP) project (Grant No: 654310). JH acknowledges that funding came from the National Aeronautics and Space Agency as managed by the California Institute of Technology under task number 80NM0018F0848. AVdP acknowledges support from Belspo in the framework the EU Lifewatch ERIC (grant agreement FR/36/AN3). KO’B acknowledges that his publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2018-0175.
    Keywords: FAIR ; Ocean ; Data management ; Data services ; Ocean observing ; Standardization ; Interoperability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...