ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Marine terraces  (5)
  • 04.03. Geodesy  (4)
  • Elsevier  (9)
  • 2020-2023  (5)
  • 2020-2022  (4)
  • 1985-1989
  • 1970-1974
  • 1950-1954
  • 1
    Publikationsdatum: 2022-02-28
    Beschreibung: New analyses of marine terraces in the Tyrrhenian Sea margin of Basilicata - northern Calabria (southern Italy) have been carried out. In the study area, c. 25 km in length, an impressive flight of marine terraces occurs, with the highest terraces reaching ~160 m a.s.l. Detailed geomorphological-stratigraphical analyses on remnants of paleoshorelines located within 60 m a.s.l. have shown that the rocky coast of the investigated coastal stretch has been affected by multiple relative sea-level fluctuations, during which reworking of older shorelines has occurred. Dating of the coral Cladocora caespitosa and speleothems, either predating or postdating single paleoshorelines, has allowed the construction of a chronological framework for the identified relative sea-level markers, and their correlation with MIS 7, MIS 6e and distinct peaks of MIS 5. A mean uplift rate of c. 0.25 mm/y since the Last Interglacial has been quantified, one order of magnitude larger than previous estimates. The uplift rate value has been used to infer the elevations of MIS 5a, 5c and 6e sea level peaks, which are higher than those reported in most sea level curves worldwide, although consistent with several findings from the western Mediterranean. Our results demonstrate that a mere sequential correlation may be misleading in the interpretation of flights of marine terraces and indicates that multiple age controls are crucial to unravelling the complex interaction between uplift and sea-level fluctuations in uplifted coastal areas. The reconstructed MIS 5a, 5c and 6e sea level paleo-elevations, besides contributing to the assessment of late Quaternary sea-level fluctuations in the Mediterranean Sea, may contribute to constrain coeval ice sheets volume variations.
    Beschreibung: Published
    Beschreibung: 107978
    Beschreibung: 7SR AMBIENTE – Servizi e ricerca per la società
    Beschreibung: JCR Journal
    Schlagwort(e): Marine terraces ; morpho-stratigraphy ; Geochronological dating ; MIS 5 ; MIS 6e ; Tyrrhenian margin
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-12-14
    Beschreibung: New constraints were set on the age of marine deposits in the Pontine Plain and of the related sea level indicators on the Tyrrhenian Sea coast of central Italy by twelve new 40Ar/39Ar dates on detrital sanidine from these deposits. By combining a new geomorphologic analysis and previous morpho-pedostratigraphic studies with these geochronological constraints we reconstructed the geometry of four marine terraces and correlated these with the highstands during the marine isotopic stages (MIS) 9.3, 7.5, 5.5 and 5.3. Results point to a progressive tilting of the terraces, the elevation increasing from the SE to the NW due to differential tectonic uplift that occurred over the last 300 ka. We identified a MIS 9 sea level at 30 - 25 m asl in the northwestern sector, whereas the MIS 7.5 sea level reached a maximum of 24 m asl in the NWand descended to 18 m asl in the central sector. Moderate tilting affected the MIS 5.5 sea level, with an elevation of 12 to 9.5 m asl in between the Anzio and Circeo headlands. Finally, an undeformed MIS 5.3 sea level at ca. 3 m asl is indicated throughout this coastal reach, confirming previous data suggesting a much higher absolute sea level during this highstand with respect to the d18O-derived predicted level.
    Beschreibung: Published
    Beschreibung: 107866
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): Marine terraces ; MIS 5 sea level ; Pontine Plain ; Tyrrhenian Sea ; 04.04. Geology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-12-01
    Beschreibung: An accurate survey of old and new datasets allowed us to probe the nature and role of fluids in the seismogenic processes of the Apennines mountain range in Italy. New datasets include the 1985–2021 instrumented seismicity catalog, the computed seismogenic thickness, and geodetic velocities and strains, whereas data from the literature comprise focal mechanism solutions, CO2 release, Moho depth, tomographic seismic velocities, heat flow and Bouguer gravity anomalies. Most of the inspected datasets highlight differences between the western and eastern domains of the Apennines, while the transition zone is marked by high geodetic strain, prevailing uplift at the surface and high seismic release, and spatially corresponds with the overlapping Tyrrhenian and Adriatic Mohos. Published tomographic models suggest the presence of a large hot asthenospheric mantle wedge which intrudes beneath the western side of the Apennines and disappears at the southern tip of the southern Apennines. This wedge modulates the thermal structure and rheology of the overlying crust as well as the melting of carbonate-rich sediments of the subducting Adriatic lithosphere. As a result, CO2-rich fluids of mantle-origin have been recognized in association with the occurrence of destructive seismic sequences in the Apennines. The stretched western domain of the Apennines is characterized by a broad pattern of emissions from CO2-rich fluids that vanishes beneath the axial belt of the chain, where fluids are instead trapped within crustal overpressurized reservoirs, favoring their involvement in the evolution of destructive seismic sequences in that region. In the Apennines, areas with high mantle He are associated with different degrees of metasomatism of the mantle wedge from north to south. Beneath the chain, the thickness and permeability of the crust control the formation of overpressurized fluid zones at depth and the seismicity is favored by extensional faults that act as high permeability pathways. This multidisciplinary study aims to contribute to our understanding of the fluid-related mechanisms of earthquake preparation, nucleation and evolution encouraging a multiparametric monitoring system of different geophysical and geochemical observables that could lead the creation of a data-constrained and reliable conceptual model of the role of fluids in the preparatory phase of earthquakes in the Apennines.
    Beschreibung: The INGV Earthquake Department Strategic Project FURTHER “The role of FlUids in the pReparaTory pHase of EaRthquakes in Southern Apennines”
    Beschreibung: Published
    Beschreibung: 104236
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: 3T. Fisica dei terremoti e Sorgente Sismica
    Beschreibung: 4T. Sismicità dell'Italia
    Beschreibung: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Beschreibung: JCR Journal
    Schlagwort(e): CO2 Earth degassing ; Earthquakes ; Mantle wedge ; Subduction ; Apennines ; 04.06. Seismology ; Geochemistry ; 04.03. Geodesy
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-09-15
    Beschreibung: We have mapped and constrained the timing of tectonically deformed uplifted Late Quaternary palaeoshorelines in the Messina Strait, southern Italy, an area above a subduction zone containing active normal faults. The palaeoshorelines are preserved from up to thirteen Late Quaternary sea-level highstands, providing a record of the deformation over this timescale (~500 ka) for the Messina-Taormina Fault, the Reggio Calabria Fault and the Armo Fault. The palaeoshorelines reveal spatial patterns of uplift through time along the strike of these normal faults, and, given the across strike arrangement of the faults, also reveal how the contribution of each fault to the regional strain-rate progressed through time. The results reveal that the uplift rates mapped within the fault hangingwalls and footwalls were not constant through time, with a marked change in the location of strain accumulation at ~50 ka. The uplift rates, once converted into throw-rates, imply that the three faults comprised similar throw-rates prior to ~50 ka (in the range 0.77–0.96 mm/yr), with the Armo and Reggio Calabria faults then switching to lower rates (0.32 mm/yr and 0.33 mm/yr respectively), whilst the Messina-Taormina Fault accelerated to 2.34 mm/yr. The regional extension rate, gained by summing the implied heave rates across the three faults, was maintained through time despite this re-organisation of local strain accumulation at ~50 ka. We explain these out-of-phase fault throw-rate changes during the constant-rate regional extension conditions as due to interactions between these upper plate normal faults. We finally discuss how fault throw-rates changing through time may affect a long-term seismic hazard assessment within active normal fault systems.
    Beschreibung: Published
    Beschreibung: 105432
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): Crustal Deformation ; Active Faults ; Marine terraces ; Uplift ; 04.04. Geology ; 04.07. Tectonophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-11-22
    Beschreibung: To refine knowledge about terrace phases and uplift history for a tectonically poor deformed region, we apply the synchronous correlation method to reconstruct the chronology of a poorly constrained sequence of raised palaeoshorelines on the Apulian foreland, southern Italy. This work uses new chronological constraints obtained by amino acid racemisation (AAR) and isoleucine/alloisoleucine epimerisation (IE) on Patella spp., Thetystrombus latus (Gmelin), Glycymeris sp., and ostracods and U-series dating on corals Hoplangia durotrix Gosse and Cladocora caespitosa Linneo. This procedure provides a quantitative estimate of the vertical movements and associated rates within a region of the Apulian foreland. The synchronous correlation method uses sea-level highstands and uplift rate(s) as inputs; in particular, for sea-level highstands, the inputs are the age of the highstands and the sea-level elevation of the highstands relative to the present-day sea level. The output is a set of currently expected elevations of each sea-level highstand (the present elevations of palaeoshorelines). We then used regression analysis to assess the robustness between our observed palaeoshorelines and expected elevations of sea-level highstands. Our results show that the best fitting scenario is obtained using the sea-level curves of (i) Waelbroeck et al. (2002) from present to 410 ky BP and (ii) Rohling et al. (2014) from 410 to 590 ky BP as inputs for our synchronous correlation method, with uplift rates ranging from 0.09 mm/y to 0.07 mm/y with a mean value of 0.08 mm/y from 590 ky BP onwards. We recognised palaeoshorelines in the field belonging to the following highstands: 120 ky BP (MIS 5.5, second peak), 127 ky BP (MIS 5.5, first peak), 212 ky BP (MIS 7.3), 330 ky BP (MIS 9.3), 410 (MIS 11), 525 ky BP (MIS 13.3), and 590 ky BP (MIS 15). Our results show field observations of the reoccupation effect of younger palaeoshorelines over older ones due to the relatively slow uplift rates measured in the investigated area as predicted by our synchronous correlation method. In particular, we show a well-mapped and described reoccupation of the MIS 5.5 palaeoshoreline over the MIS 7.3 palaeoshoreline, constrained by new absolute dating. In addition, the data from the Apulian foreland suggest an MIS 7.3 highstand close to the present sea level.
    Beschreibung: Published
    Beschreibung: 108530
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): Crustal Deformation ; Uplift ; Marine terraces ; Absolute dating ; 04.04. Geology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-05-12
    Beschreibung: Mapping and luminescence aging of raised marine terraces and aeolian ridges along an ∼90 km coastal stretch in southwestern Sicily provide the first quantitative assessment of vertical tectonic deformation in this region, which spans the frontal part of an active thrust belt. We recognized a staircase of eleven terraces and nine related aeolian ridges. The elevation profile of terraces parallel to the coast shows a 〉90 km long bell-shaped pattern, onto which shorter-wavelength (∼10 km long) undulations are superimposed. Luminescence ages from terraced beach deposits and aeolian sediments constrain the position of paleoshorelines formed during MIS 5e, 7a and 7c, with a maximum uplift rate of ∼0.75 mm/a, and indicate a late Middle-Late Pleistocene (80–400 ka) age for the sequence of terraces. The elevation of Lower Pleistocene morpho-depositional markers points that uplift may have occurred at similar rates at the beginning of the Early Pleistocene, but almost zeroed between ∼1.5 and 0.4 Ma before the recent renewal. The uneven elevation of Middle-Upper Pleistocene paleoshorelines observed moving along the coast documents that uplift embeds both a regional and a local component. The regional, symmetric bell-shaped uplift is related to involvement in the thrust belt of thicker crustal portions of the northern African continental margin. The short-wavelength undulations represent the local component and correspond to actively growing bedrock folds. The present study contributes to unravel the different spatial and temporal scales of deformation processes at a collisional margin.
    Beschreibung: Published
    Beschreibung: 106812
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): Marine terraces ; Aeolian ridges ; Luminescence dating ; Pleistocene ; Frontal thrust belt ; Fold growth ; Southwestern Sicily ; Mediterranean sea ; 04.04. Geology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-06-25
    Beschreibung: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. Such a rock uplift rate pattern is at odds with the horizontal velocity eld, characterized by shortening and crustal thickening in the Eastern Alps and very limited deformation in the Central and Western Alps. Proposed me- chanisms of rock uplift rate include isostatic response to the last deglaciation, long-term erosion, detachment of the Western Alpine slab, as well as lithospheric and surface de ection due to mantle convection. Here, we assess previous work and present new estimates of the contributions from these mechanisms. Given the large range of model estimates, the isostatic adjustment to deglaciation and erosion are su cient to explain the full observed rate of uplift in the Eastern Alps, which, if correct, would preclude a contribution from horizontal shortening and crustal thickening. Alternatively, uplift is a partitioned response to a range of mechanisms. In the Central and Western Alps, the lithospheric adjustment to deglaciation and erosion likely accounts for roughly half of the rock uplift rate, which points to a noticeable contribution by mantle-related processes such as detachment of the European slab and/or asthenospheric upwelling. While it is di cult to independently constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at present, future data should provide additional insights. Regardless, interacting tectonic and surface mass redistribution processes, rather than an individual forcing, best explain ongoing Alpine elevation changes.
    Beschreibung: Published
    Beschreibung: 589-604
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): 04. Solid Earth ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2020-06-10
    Beschreibung: Understanding how long-term subduction dynamics relates to the short-term seismicity and crustal tec tonics is a challenging but crucial topic in seismotectonics. We attempt to address this issue by linking long-term geodynamic evolution with short-term seismogenic deformation in the Northern Apennines. This retreating subduction orogen displays tectonic and seismogenic behaviors on various spatiotemporal scales that also characterize other subduction zones in the Mediterranean area. We use visco-elasto-plastic seismo-thermo-mechanical (STM) modeling with a realistic 2D setup based on available geological and geophysical data. The subduction dynamics and seismicity are coupled in the numerical modeling, and driven only by buoyancy forces, i.e., slab pull. Our results suggest that lower crustal rheology and lithospheric mantle temperature modulate the crustal tectonics of the Northern Apennines, as inferred by previous studies. The observed spatial distribution of upper crustal tectonic regimes and surface displacements requires buoyant, highly ductile material in the subduction channel beneath the internal part of the orogen. This allows protrusion of the asthenosphere in the lower crust and lithospheric delamination associated with slab retreat. The resulting surface velocities and principal stress axes generally agree with present-day observations, suggesting that slab delamination and retreat can explain the dynamics of the orogen. Our simulations successfully reproduce the type and overall distribution of seismicity with thrust faulting events in the external part of the orogen and normal faulting in its internal part. Slab temperatures and lithospheric mantle stiffness affect the cumulative seismic moment release and spatial distribution of upper crustal earthquakes. The properties of deep, sub-crustal material are thus shown to influence upper crustal seismicity in an orogen driven by slab retreat, even though the upper crust is largely decoupled from the lithospheric mantle. Our simulations therefore highlight the effect of deep lower crustal rheologies, self-driven subduction dynamics and mantle properties in controlling shallow deformation and seismicity.
    Beschreibung: Published
    Beschreibung: 228481
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): Numerical modeling ; Geodynamics ; Seismotectonics orogen ; Delamination ; Northern Apennines ; 04.06. Seismology ; 04.03. Geodesy ; 05.01. Computational geophysics ; 04.07. Tectonophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-03-03
    Beschreibung: The elevation of an orogenic belt is commonly related to crustal/lithosphere thickening. Here, we discuss the Apennines as an example to show that topography at a plate margin may be controlled not only by isostatic adjustment but also by dynamic, mantle-driven processes. Using recent structural constraints for the crust and mantle we find that the expected crustal isostatic component explains only a fraction of the topography of the belt, indicating positive residual topography in the central Apennines and negative residual topography in the northern Apennines and Calabria. The trend of the residual topography matches the mantle flow induced dynamic topography estimated from regional tomography models. We infer that a large fraction of the Apennines topography is related to mantle dynamics, producing relative upwellings in the central Apennines and downwellings in the northern Apennines and Calabria where subduction is still ongoing. Comparison between geodetic and geological data on vertical motions indicates that this dynamic process started in the early Pleistocene and the resulting uplift appears related to the formation and enlargement of a slab window below the central Apennines. The case of the Apennines shows that at convergent margins the elevation of a mountain belt may be significantly different from that predicted solely by crustal isostasy and that a large fraction of the elevation and its rate of change are dynamically controlled by mantle convection.
    Beschreibung: Published
    Beschreibung: 163-174
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): 04. Solid Earth ; 04.03. Geodesy
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...