ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Institute for Risk and Disaster Reduction, University College London
    Publication Date: 2024-04-20
    Description: We present a database of field data for active faults in the central Apennines, Italy including trace, fault and master fault locations with activity and location certainties, and slip-rate, slip-vector and surface geometry data. As advances occur in our capability to create more detailed fault-based hazard models, depending on the availability of primary data and observations, it is desirable that such data can be organized in a way that is easily understood and incorporated into present and future models. The database structure presented herein aims to assist this process. We recommend stating what observations have led to different location and activity certainty and presenting slip-rate data with point location coordinates of where the data were collected with the time periods over which they were calculated. Such data reporting allows more complete uncertainty analyses in hazard and risk modelling. The data and maps are available as kmz, kml, and geopackage files with the data presented in spreadsheet files and the map coordinates as txt files.
    Keywords: Binary Object; Binary Object (File Size); Binary Object (Media Type); CentralApennines; Central Apennines; Central Apennines, Central Italy; earthquake; fault; Fault2SHA; Italy; MULT; Multiple investigations; normal fault
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-29
    Description: t has been suggested that a better knowledge of fault locations and slip rates improves seismic hazard assessments. However, the importance of detailed along‐fault‐slip‐rate profiles and variable fault geometry has not yet been explored. We quantify the importance for modeled seismicity rates of using multiple throw‐rate measurements to construct along‐fault throw‐rate profiles rather than basing throw‐rate profiles on a single measurement across a fault. We use data from 14 normal faults within the central Italian Apennines where we have multiple measurements along the faults. For each fault, we compared strain rates across the faults using our detailed throw‐rate profiles and degraded data and simplified profiles. We show the implied variation in average recurrence intervals for a variety of magnitudes that result. Furthermore, we demonstrate how fault geometry (variable strike and dip) can alter calculated ground‐shaking intensities at specific sites by changing the source‐to‐site distance for ground‐motion prediction equations (GMPEs). Our findings show that improved fault‐based seismic hazard calculations require detailed along‐fault throw‐rate profiles based on well‐constrained local 3D fault geometry for calculating recurrence rates and shaking intensities.
    Description: Published
    Description: 110-123
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-23
    Description: The aim of the Fault2SHA European Seismological Commission Working Group Central Apennines laboratory is to enhance the use of geological data in fault-based seismic hazard and risk assessment and to promote synergies between data providers (earthquake geologists), end-users and decision-makers. Here we use the Fault2SHA Central Apennines Database where geologic data are provided in the form of characterized fault traces, grouped into faults and main faults, with individual slip rate estimates. The proposed methodology first derives slip rate profiles for each main fault. Main faults are then divided into distinct sections of length comparable to the seismogenic depth to allow consideration of variable slip rates and the exploration of multi-fault ruptures in the computations. The methodology further allows exploration of epistemic uncertainties documented in the database (e.g., main fault definition, slip rates) as well as additional parameters required to characterize the seismogenic potential of fault sources (e.g., 3D fault geometries). To illustrate the power of the methodology, in this paper we consider only one branch of the uncertainties affecting each step of the computation procedure. The resulting hazard and typological risk maps allow both data providers and end-users 1) to visualize the faults that threaten specific localities the most, 2) to appreciate the density of observations used for the computation of slip rate profiles, and 3) interrogate the degree of confidence on the fault parameters documented in the database (activity and location certainty). Finally, closing the loop, the methodology highlights priorities for future geological investigations in terms of where improvements in the density of data within the database would lead to the greatest decreases in epistemic uncertainties in the hazard and risk calculations. Key to this new generation of fault-based seismic hazard and risk methodology are the user-friendly open source codes provided with this publication, documenting, step-by-step, the link between the geological database and the relative contribution of each section to seismic hazard and risk at specific localities
    Description: Published
    Description: 626401
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-23
    Description: We present a database of field data for active faults in the central Apennines, Italy, including trace, fault and main fault locations with activity and location certainties, and slip-rate, slip-vector and surface geometry data. As advances occur in our capability to create more detailed fault-based hazard models, depending on the availability of primary data and observations, it is desirable that such data can be organized in a way that is easily understood and incorporated into present and future models. The database structure presented herein aims to assist this process. We recommend stating what observations have led to different location and activity certainty and presenting slip-rate data with point location coordinates of where the data were collected with the time periods over which they were calculated. Such data reporting allows more complete uncertainty analyses in hazard and risk modelling. The data and maps are available as kmz, kml, and geopackage files with the data presented in spreadsheet files and the map coordinates as txt files. The files are available at: https://doi.org/10.1594/PANGAEA.922582 .
    Description: Published
    Description: 87
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-13
    Description: The 28th December 1908 Messina earthquake (Mw 7.1), Italy, caused 〉80,000 deaths and transformed earthquake science by triggering the study of earthquake environmental effects worldwide, yet its source is still a matter of debate. To constrain the geometry and kinematics of the earthquake we use elastic half-space modelling on non-planar faults, constrained by the geology and geomorphology of the Messina Strait, to replicate levelling data from 1907-1909. The novelty of our approach is that we (a) recognise the similarity between the pattern of vertical motions and that of other normal faulting earthquakes, and (b) for the first time model the levelling data using the location and geometry of a well-known offshore capable fault. Our results indicate slip on the capable fault with a dip to the east of 70° and 5 m dip-slip at depth, with slip propagating to the surface on the sea bed. Our work emphasises that geological and geomorphological observations supporting maps of capable non-planar faults should not be ignored when attempting to identify the sources of major earthquakes.
    Description: Published
    Description: 6481
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-15
    Description: We have mapped and constrained the timing of tectonically deformed uplifted Late Quaternary palaeoshorelines in the Messina Strait, southern Italy, an area above a subduction zone containing active normal faults. The palaeoshorelines are preserved from up to thirteen Late Quaternary sea-level highstands, providing a record of the deformation over this timescale (~500 ka) for the Messina-Taormina Fault, the Reggio Calabria Fault and the Armo Fault. The palaeoshorelines reveal spatial patterns of uplift through time along the strike of these normal faults, and, given the across strike arrangement of the faults, also reveal how the contribution of each fault to the regional strain-rate progressed through time. The results reveal that the uplift rates mapped within the fault hangingwalls and footwalls were not constant through time, with a marked change in the location of strain accumulation at ~50 ka. The uplift rates, once converted into throw-rates, imply that the three faults comprised similar throw-rates prior to ~50 ka (in the range 0.77–0.96 mm/yr), with the Armo and Reggio Calabria faults then switching to lower rates (0.32 mm/yr and 0.33 mm/yr respectively), whilst the Messina-Taormina Fault accelerated to 2.34 mm/yr. The regional extension rate, gained by summing the implied heave rates across the three faults, was maintained through time despite this re-organisation of local strain accumulation at ~50 ka. We explain these out-of-phase fault throw-rate changes during the constant-rate regional extension conditions as due to interactions between these upper plate normal faults. We finally discuss how fault throw-rates changing through time may affect a long-term seismic hazard assessment within active normal fault systems.
    Description: Published
    Description: 105432
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Active Faults ; Marine terraces ; Uplift ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-22
    Description: Surface faulting earthquakes are known to cluster in time from historical and palaeoseismic studies, but the mechanism(s) responsible for clustering, such as fault interaction, strain-storage, and evolving dynamic topography, are poorly quantified, and hence not well understood. We present a quantified replication of observed earthquake clustering in central Italy. Six active normal faults are studied using 36Cl cosmogenic dating, revealing out-of-phase periods of high or low surface slip-rate on neighboring structures that we interpret as earthquake clusters and anticlusters. Our calculations link stress transfer caused by slip averaged over clusters and anti-clusters on coupled fault/shear-zone structures to viscous flow laws. We show that (1) differential stress fluctuates during fault/shear-zone interactions, and (2) these fluctuations are of sufficient magnitude to produce changes in strain-rate on viscous shear zones that explain slip-rate changes on their overlying brittle faults. These results suggest that fault/shear-zone interactions are a plausible explanation for clustering, opening the path towards process-led seismic hazard assessments.
    Description: Published
    Description: 7126
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Active Faults ; Earthquake clustering ; 36-Chlorine ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-13
    Description: We model Coulomb stress transfer (CST) due to 30 strong earthquakes occurring on normal faults since 1509 CE in Calabria, Italy, including the influence of interseismic loading, and compare the results to existing studies of stress interaction from the Central and Southern Apennines, Italy. The three normal fault systems have different geometries and long-term slip-rates. We investigate the extent to which stress transfer can influence the occurrence of future earthquakes and what factors may govern the variability in earthquake recurrence in different fault systems. The Calabrian, Central Apennines, and Southern Apennines fault systems have 91%, 73%, and 70% of faults with mean positive cumulative CST in the time considered; this is due to fewer faults across strike, more across strike stress reductions, and greater along-strike spacing in the three regions respectively. In regions with close along strike spacing or few faults across strike, such as Calabria and Southern Apennines, the stress loading history is mostly dominated by interseismic loading and most faults are positively stressed before an earthquake occur on them (96% of all faults that ruptured in Calabria; 94% of faults in Southern Apennines), and some of the strongest earthquakes occur on faults with the highest mean cumulative stress of all faults prior to the earthquake. In the Central Apennines, where across strike interactions are the predominant process, 79% of earthquakes occur on faults positively stressed. The results highlight that fault system geometry plays a central role in characterizing the stress evolution associated with earthquake recurrence.
    Description: This work was supported by a Natural Environment Research Council studentship (Grant NE/L002485/1) to Claudia Sgambato. Original development of the 3D-faults code was supported by NERC PhD Studentship NE/L501700/1 and JSPS Short Term Fellowship PE15776 to Zoë Mildon.
    Description: Published
    Description: e2023JB026496
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Fault interaction ; Tectonics of Calabria ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-23
    Description: A key challenge in paleoseismology is constraining the timing and occurrence of past earthquakes to create an earthquake history along faults that can be used for testing or building fault-based seismic hazard assessments. We present a new methodological approach and accompanying code (Paleoseismic EArthquake CHronologies, PEACH) to meet this challenge. By using the integration of multi-site paleoseismic records through probabilistic modeling of the event times and an unconditioned correlation, PEACH improves the objectivity of constraining paleoearthquake chronologies along faults, including highly populated records and poorly dated events. Our approach reduces uncertainties in event times and allows increased resolution of the trench records. By extension, the approach can potentially reduce the uncertainties in the estimation of parameters for seismic hazard assessment such as earthquake recurrence times and coefficient of variation. We test and discuss this methodology in two well-studied cases: the Paganica Fault in Italy and the Wasatch Fault in the United States.
    Description: Published
    Description: 7339–7355
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-21
    Description: Uncertainty concerning the processes responsible for slip-rate fluctuations associated with temporal clustering of surface faulting earthquakes is a fundamental, unresolved issue in tectonics, because strain-rates accommodated by fault/shear-zone structures are the key to understanding the viscosity structure of the crust and seismic hazard. We constrain the timing and amplitude of slip-rate fluctuations that occurred on three active normal faults in central Italy over a time period of 20–30 kyrs, using in situ 36Cl cosmogenic dating of fault planes. We identify five periods of rapid slip on individual faults lasting a few millennia, separated time periods of up to 10 millennia with low or zero slip-rate. The rapid slip pulses migrated across the strike between the faults in two waves from SW to NE. We replicate this migration with a model where rapid slip induces changes in differential stress that drive changes in strain-rate on viscous shear zones that drive slip-rate variability on overlying brittle faults. Earthquakes increase the differential stress and strain-rate on underlying shear zones, which in turn accumulate strain, re-loading stress onto the overlying brittle fault. This positive feedback produces high strain-rate episodes containing several large magnitude surface faulting earthquakes (earthquake clusters), but also reduce the differential stress on the viscous portions of neighbouring fault/shear-zones slowing the occurrence of large-magnitude surface faulting earthquakes (earthquake anticlusters). Shear-zones on faults experiencing anticlusters continue to accumulate viscous strain at a lowered rate, and eventually this loads the overlying brittle fault to failure, initiating a period of rapid slip through the positive feedback process described above, and inducing lowered strain-rates onto neighbouring fault/shear-zones. We show that these patterns of differential stress change can replicate the measured earthquake clustering implied by the 36Cl data. The stress changes are related to the fault geometry in terms of distance and azimuth from the slipping structure, implying that (a) strain-rate and viscosity fluctuations for studies of continental rheology, and (b) slip-rates for seismic hazard purposes are to an extent predictable given knowledge of the fault system geometry.
    Description: Published
    Description: 105096
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Active Faults ; Central Apennines ; Fault interaction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...