ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (788)
  • Spacecraft Propulsion and Power  (240)
  • 2000-2004  (1,028)
  • 2003  (1,028)
Collection
Years
  • 2000-2004  (1,028)
Year
  • 1
    Publication Date: 2011-08-24
    Description: Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Acta astronautica (ISSN 0094-5765); Volume 53; 4-10; 387-97
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology (ISSN 1531-1074); Volume 3; 4; 771-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 31; 1; 87-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and with the correct methodology provide unamibiguous detection of such life forms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Chemphyschem : a European journal of chemical physics and physical chemistry (ISSN 1439-4235); Volume 4; 2; 162-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The results of a study of ion-molecule reactions occurring in pure methane, acetylene, ethylene, ethane, propyne, propene, propane, and diacetylene at pressures up to 40 microns of pressure are reported. A variety of experimental methods are used: The standard double resonance in an ICR, for determination of the precursor ions and the modulated double resonance ejection in an ICR, for the determination of the daughter ions. The FA-SIFT technique was used for validation and examination of termolecular reactions with rate coefficients that are less than 10(-26) cm(6) s(-1). An extensive database of reaction kinetics already exists for many of these reactions. The main point of this study was the determination of the accuracy of this database and to search for any missing reactions and reaction channels that may have been omitted from earlier investigations. A specific objective of this work was to extend the study to the highest pressures possible to find out if there were any important termolecular reaction channels occurring. A new approach was used here. In the pure hydrocarbon gases the mass spectra were followed as a function of the pressure changes of the gas. An initial guess was first made using the current literature as a source of the reaction kinetics that were expected. A model of the ion abundances was produced from the solution of the partial differential equations in terms of reaction rate coefficients and initial abundances. The experimental data was fitted to the model for all of the pressures by a least squares minimization to the reaction rate coefficients and initial abundances. The reaction rate coefficients obtained from the model were then compared to the literature values. Several new channels and reactions were discovered when the modeled fits were compared to the actual data. This is all explained in the text and the implications of these results are discussed for the Titan atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of the American Society for Mass Spectrometry (ISSN 1044-0305); Volume 14; 8; 900-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Acta astronautica (ISSN 0094-5765); Volume 53; 4-10; 399-404
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Impact Cratering: Bridging the Gap Between Modeling and Observations; 9; LPI-Contrib-1155
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-04-13
    Description: This presentation will outline a proposed mission for the Jupiter Icy Moons Orbiter (JIMO). The mission outlined will concentrate on an examination of Europa. Some of the primary science goals for the JIMO mission are: 1) to answer broad science questions, 2) improved knowledge of Jovian system; specifically, lunar geological and geophysical properties, 3) chemical composition of Jovian lunar surfaces and subterranean matter, and 4) the search for life. In order to address these issues, the experiment proposed here will deploy orbiting, surface, and subterranean science platforms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 30; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-04-01
    Description: This paper presents a discussion on scientific goals for Jupiter's atmosphere which include near and middle infrared remote sensing capabilities and high resolution spectroscopy.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 59; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-10-30
    Description: Following the Galileo spacecraft encounters with Europa, Ganymede, and Callisto, evidence emerged suggesting that these Galilean moons of Jupiter may have liquid oceans underneath their icy shells. Detection of the oceans on one or all three moons will have profound implications on probability of life beyond the Earth. The icy satellites also have tidal environments that are among the strongest in the solar system. The leading time-varying tidal forcing term on the surface of Europa is at least 9 times larger than those on the inner planets. Tidal forcing on the surfaces of Ganymede and Callisto are about 10% and 7%, respectively, of that on Europa. Since a planetary body with internal fluid deforms more than an otherwise solid body, tidal measurements offer exciting opportunities to detect the oceans.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 88; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-10-30
    Description: A Jupiter atmospheric entry probe as part of JIMO is a cost effective way to address fundamental science questions identified in the National Research Council Solar System Exploration Decadal Survey (SSEDS): New Frontiers in the Solar System, An Integrated Ex- ploration Strategy. Compared to either the cost of an entirely separate Jupiter mission, or the cost of JIMO itself, inclusion of such a probe on JIMO would be cost advantageous. The probe itself could be relatively simple, and could build on the Galileo Probe heritage. The SSEDS specifically identified the distribution of water across the Solar System as a Key Scientific Question. Correspondingly, knowing the water abun dance on Jupiter is fundamental to understanding almost every aspect of the evolution of the early solar nebula. The Galileo Probe obtained the abundance of several key elements in Jupiter's atmosphere, which data have already caused major rethinking of theories of how Jupiter formed and how the early solar nebula evolved. However, because of a combination of circumstances, the global abundance of the key element oxygen, in the form of water, was not obtained. Without knowledge of the jovian water abundance, further progress in understanding Solar System evolution and planet formation will be greatly inhibited. Therefore, quantifying jovian water abundance should be a goal of the very next mission to the jovian system. Such a measurement would be impossible via remote sensing from the JIMO orbiter because of the large distances the JIMO orbiter maintains from Jupiter. A Jupiter atmospheric entry probe as part of JIMO could achieve the fundamental water measurement. In order that a probe avoid repeating the Galileo probe's experience of failing to obtain the jovian water abundance, the probe should go deep, to at least 100 bars pressure. Probes to 100 bars have been accomplished many times in descending to the surface of Venus, and at 100 bars the temperature of the jovian atmosphere is 60-70 K less than the surface temperature of Venus.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 90; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-10-30
    Description: The Galileo Solid State Imaging (SSI) experiment provided high-resolution images of Europa's surface allowing identification of surface features barely distinguishable at Voyager's resolution. SSI revealed the visible pitting on Europa's surface to be due to large disrupted features, chaos, and smaller sub-circular patches, lenticulae. Chaos features contain a hummocky matrix material and commonly contain dislocated blocks of ridged plains. Lenticulae are morphologically interrelated and can be divided into three classes: domes, spots, and micro-chaos. Domes are broad, upwarped features that generally do not disrupt the texture of the ridged plains. Spots are areas of low albedo that are generally smooth in texture compared to other units. Micro-chaos are disrupted features with a hummocky matrix material, resembling that observed within chaos regions. Chaos and lenticulae are ubiquitous in the SSI regional map observations, which average approximately 200 meters per pixel (m/pxl) in resolution, and appear in several of the ultra-high resolution, i.e., better than 50 m/pxl, images of Europa as well. SSI also provided a number of multi-spectral observations of chaos and lenticulae. Using this dataset we have undertaken a thorough study of the morphology, size, spacing, stratigraphy, and color of chaos and lenticulae to determine their properties and evaluate models of their formation. Geological mapping indicates that chaos and micro-chaos have a similar internal morphology of in-situ degradation suggesting that a similar process was operating during their formation. The size distribution denotes a dominant size of 4-8 km in diameter for features containing hummocky material (i.e., chaos and micro-chaos). Results indicate a dominant spacing of 15 - 36 km apart. Chaos and lenticulae are generally among the youngest features stratigraphically observed on the surface, suggesting a recent change in resurfacing style. Also, the reddish non-icy materials on Europa's surface have high concentrations in many chaos and lenticulae features. Nonetheless, a complete global map of the distribution of chaos and lenticulae is not possible with the SSI dataset. Only 〈20% of the surface has been imaged at 200 m/pxl or better resolution, mostly of the near-equatorial regions. Color and ultra-high-res images have much less surface coverage. Thus we suggest that full global imaging of Europa at 200 m/pxl or better resolution, preferably in multi-spectral wavelengths, should be a high priority for the JIMO mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 79; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-10-30
    Description: Imaging radars with wavelengths in the range of 10 cm to 1 m can deeply penetrate the surface of an icy body, revealing details of the geomorphology, local structure, and electrical properties of the upper layers. Radar studies of icy surfaces on Earth have used the polarization state of backscatter echoes at multiple frequencies to characterize the surface and subsurface properties of glaciers, showing relatively smooth surfaces on the scale of radar wave-lengths, and subsurface scattering from volume scatterers consistent with ice pipes and lenses. These volume scattering effects are evident in enhanced polarization ratios over a limited range of backscatter incidence angles. The Galilean satellites exhibit similarly enhanced polarization ratios and volumetric scattering effects, but the observations are limited in angular resolution, leading to ambiguity in interpreting the scattering mechanisms and their structural implications.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 65; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-10-30
    Description: This paper presents a discussion on the structure and dynamic processes of the interiors of the icy satellites of Jupiter. Although such measurements as global gravity and magnetic fields, high precision altimetry and radar sounding can be made from the Jupiter Icy Moons Orbiter (JIMO) satellite, there are certain seismic and heat flow measurements which must be made from the surface to clearly understand the geophysics of a planet such as Jupiter. The possibility of a geophysical probe that can be released into orbit about a satellite to return potential field data for a sufficient period of time is discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 4; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-10-30
    Description: Spectra of Jupiter's icy satellites reveal surfaces dominated by water-ice, minor amounts of SO2 and CO2, and (for Europa) H2O2 along with hydrated materials. Jovian magnetospheric ions (protons, sulfur, and oxygen) and electrons significantly modify the chemical composition of these moons' surfaces in times ranging from a few years for Europa to thousands of years for Callisto at micrometer depths. Appropriate laboratory studies examining relevant volatile and non-volatile materials under low-temperature radiation conditions can provide information on likely radiation chemical mechanisms, on the stability and evolution of species, and on new species awaiting detection. Although the molecules detected on the icy moons are relatively simple, predicting their responses to radiation in space remains difficult. One problem is that there is a dearth of fundamental data examining solid-phase reactions. Our laboratory experiments have focused on infrared studies (2.5 to 25 microns) of a few simple irradiated ices. We have measured the spectra of proton-irradiated H2O ice containing SO2, H2S, and/or CO2. Ices with H2O/SO2 or H2O/H2S ratios of 3 and 30 have been irradiated at 86 K, 110 K, and 132 K. In irradiated H2O + SO2 ices new ions have been identified: SO4(-2), HSO4(-) and H3O(+). After warming to 260 K the residual spectrum is similar to that of H2SO4. Ices with H2O + H2S form SO2. After warming to 175 K, the residual sample matches the spectrum of hydrated H2SO4. H2O + CO2 ice forms carbonic acid, H2CO3 which is stable to temperatures near 230 K. In addition, OCS has been detected in irradiated ices containing H2O + SO2 + CO2. The radiation half-life of SO2 and H2S in H2O has been calculated. Our results give compelling evidence for the presence of new species awaiting detection. Future experiments will examine the signatures of these ices and hydrated materials in the 1 to 5 micron region, where possible weaker overtone bands may occur. In addition, absolute strengths for both the fundamental and overtone bands will be determined. Finally, good arguments can be made, based on current information, for remote sensing observations that have spectral coverage to at least 5 microns on the long wavelength end. This range would include some of the characteristic bands of H2O, H2O2, CO2, SO2, H2CO3, H2S, and OCS.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 56; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-10-30
    Description: Europa is the only body in the solar system besides Mars that is currently viewed as a body of significant interest relative to the process of chemical evolution and/or the origin of life or for which scientific opinion provides a significant chance of contamination which could jeopardize a future biological experiment. Thus, both NASA and COSPAR policy require that Europa be protected from biological contamination that could result from scientific exploration conducted by robotic spacecraft. In 2000, the Task Group on the Forward Contamination of Europa (Space Studies Board) published its report on Preventing the Forward Contamination of Europa recommending a limit of 10(exp -4) probability of contamination of Europa's ocean per mission (at any time in the future) by a single viable terrestrial microbe. While NASA guidelines do not yet explicitly reflect this new recommendation, it is likely that the SSB recommendation will be adopted by NASA planetary protection in the form of a sterility requirement or at least a stringent total microbial burden requirement. In our presentation, we will present an overview of the anticipated planetary protection requirements for both orbiters and landers destined for Europa and some of the challenges these requirements will present.
    Keywords: Spacecraft Propulsion and Power
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 40; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-10-30
    Description: Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 23; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-10-30
    Description: It is vital to include an ultraviolet spectrograph as part of the JIMO payload to Europa, Ganymede and Callisto. Ultraviolet measurements are key for understanding the atmospheres, auroral activity and surfaces of these icy satellites, and a UV imaging spectrograph will also complement a visible camera and near-IR spectrometer, to achieve full wavelength coverage in remote sensing of the icy satellites. The UV instrument proposed for JIMO will be similar to that currently on board the Cassini spacecraft. The design draws on the experience of building UV spectrometers for Mariner, Pioneer, Galileo and Cassini. It will have three spectrographic channels that provide images and spectra of the atmosphere, aurorae and surface: An EUV channel (800-110 nm), an FUV channel (110 to 190 nm) range, and an NUV channel (180 to 350 nm).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 32; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-10-30
    Description: This paper presents a discussion on the Jupiter Icy Moons Orbiter (JIMO) mission to possibly study Io's spectacular time-variable phenomena from moderate range which was not achieved by Galileo, Voyager, or Earth-based studies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 81; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-10-30
    Description: This talk will address the main drivers in the design of a radar sounder for the JIMO mission and provide a potential solution that will optimize the chances of success in the detection of ice/water interface and sub-surface stratigraphy.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 66; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-10-30
    Description: The Jupiter Icy Moons Orbiter presents an opportunity to greatly improve our understanding of the most dynamic body in the solar system. Io is the best place to study tidal heating of the Galilean moons, provides unique insights into Earth history and is a unique laboratory for basic planetary physics. Many important questions about Io remain after Galileo that cannot be addressed from Earth or Earth orbit, but could be answered by limited observing time from JIMO with the appropriate instrumentation. Here we outline the requirements in the infrared.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 77; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-10-30
    Description: The Galileo Europa data set served to revolutionize our view of Europa. In particular the strong evidence of a large, cold, salty Ocean beneath 5-30 km of ice has profoundly altered the significance of Europa in our thinking, especially of context of habitability in the solar system. While much remains to be learned from spacecraft observations of several sorts, there are significant questions answerable only by in-situ techniques; these relate to the formation of Europa, the nature of its ocean, and the prospects for life in its ocean, sediments, and ice. We feel that wide-ranging discussion of an in-situ subsurface mission to Europa, as part of JIMO, should proceed. The science objective of the mission is to characterize the icy shell of Europa to resolve its provenance, estimate the composition of brine of the Europa ocean, and search for evidence of Earth-like life. Probably anyone would agree that an in-situ mission to Europa would be of great value, but he or she would also immediately take the position that such a mission is utterly impractical. We take the position here of defining the least complex mission that can nonetheless justify its cost and to argue that such a mission is realistic enough that it should be seriously considered. Our mission thinking has been: 1) Soft landing. A soft lander is required on a site sufficiently flat to offer a stable platform; no further site selectivity is required. 2) Subsurface exploration. The Europa subsurface must be examined. Surficial processes on Europa arguably have exposed the upper 200 m of shell to chemical effects from the Jovian radiation belts as well as cometary infall, etc; to examine native ice we must descend below that point to, for discussion, 300 m. At that depth we argue that the ice is characteristic of ice at depth and possibly is effectively sea ice. 3) Science data. A few simple measurements at various depths and at 300 m constitute a scientifically successful mission. Measurements would include analysis of meltwater for a few inorganic ions and amino acids and an optical examination of the borehole wall. 4) Communication. Transmission of data to an orbiter is essential, but we will constrain the landed mission to a daily communication over a few days. 5) Subsurface access. Drilling to 300 m is a significant challenge; it can be addressed by several means: Thermal Probe (Cryobot) which permits water to refreeze above the vehicle. This is our tentative choice with plutonium as the fuel to generate thermal energy for drilling and electrical power for operations. Open Hole Drill, a thermal system in which the meltwater is removed for greater thermal efficiency. Meltwater removal on Europa is both a complexity and a risk, but analysis is improved. Mechanical Drilling in which cutting or grinding generates ice chips which are removed. This is too complex at Europa temperatures. The measurement objectives for the mission will be: Obj. 1: Determine the concentration of simple inorganic salts in the Europa Ice Shell and, by extrapolation, of the ocean. These data will also validate spaceborne sensors. Obj. 2: Determine the nature and abundance of amino acids in the ice such that cometary infall material in the upper ice can be compared to material at depth. Obj. 3: Optically examine the ice to resolve inclusion structure, particulate content, and stratification. Access to 300 m depth is a significant if not audacious plan; we are aware that this has not been done on any planetary body. Our approach is the use of a plutonium heat source; to overcome Europa's surface temperature and to melt ice a significant amount of plutonium is needed, and significant shielding and other protective steps will be required. The quantity of plutonium is a key concern. The mission will require subsurface collection and processing of samples for in situ analysis, calling for a miniature, high pressure micro-sampling system designed to meet needs of instruments that require low presses for operation. The inlet system itself collects a micro-sample in the external high pressure environment, then transfers it into a protected low pressure environment for analysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 10; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-10-30
    Description: The Jupiter Icy Moons Orbiter mission will intensely study Callisto, Ganymede and Eu- ropa for several years. During its orbital tour, there will be long periods (approximately 300 days) where the spacecraft is spiraling in from one satellite to the next, giving the perfect opportunity to study Jupiter's atmosphere. The obvious question is, 'Why do we need JIMO to do this, after Voyager, Galileo and the Cassini flyby?' Much like the satellite science from these missions, atmospheric science still has many outstanding questions, some of which were raised by these missions. In addition, virtually every measurable quantity on Jupiter varies both spatially and temporally, and previous missions did not supply the coverage needed to address them. The JIMO mission offers an outstanding opportunity for the global and long temporal coverage needed to answer these questions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 75; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-10-30
    Description: Radio sounding of the Earth's top side ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to the Jupiter Icy Moons Orbiter (JIMO) mission will provide unique remote sensing observations of the plasma and magnetic field environments, and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the moon surfaces vary in response to magnetic field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans. Radio sounding at 3 kHz to 10 MHz can provide globally-determined electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. Subsurface variations in conductivity, can be investigated by radio sounding from 10 MHz to 40 MHz allowing the determination of the presence of dense and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 26; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-10-30
    Description: Radio Science experiments have been conducted on most deep space missions leading to numerous scientific discoveries. A set of concepts and approaches are proposed for the Jupiter Icy Moons Orbiter (JIMO) to apply Radio Science tools to investigate the interior structures of the Galilean Satellites and address key questions on their thermal and dynamical evolution. Measurements are identified that utilize the spacecraft's telecommunication system. Additional instruments can augment these measurements in order to leverage observational synergies. Experiments are also offered for the purpose of investigating the atmospheres and surfaces of the satellites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 2; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-10-30
    Description: Light scattering by planetary ices of interest such as water, methane, clathrated species, will provide insight into the nature of the Jovian moons targeted by the JIMO mission - Europa, Callisto and Ganymede - composition, surface properties and thickness of ice mantles. Although much remote sensing data exists, theoretical models lag the data. We highlight the current state of theoretical and experimental models for water ice and highlight areas of study necessary to address the JIMO goals regarding surface and subsurface properties.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 89; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-10-30
    Description: The specification of greater than 45kW of disposable power available on the JIMO spacecraft raises the possibility of a new class of instrumentation that has utility at such power levels. In this presentation we discuss the concept of an electromagnetic mass driver that can launch projectiles from orbit around one of the Galilean satellites directed on a trajectory that will impact the satellite surface. The resulting impact will create a crater that will provide information on the mechanical properties of surface and near-surface materials, expose subsurface materials for remote spectral identification, and form a vapor cloud that can be sensed for composition either remotely or in-situ. An analog for such a controlled cratering experiment is Deep Impact, a mission to observe the crater and ensuing ejecta cloud formed by a ballistic projectile into a comet surface in July, 2005.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 18; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-10-30
    Description: In this paper, we will provide insights into mass spectrometer requirements. In addition, we will describe the modeling of the neutrals ejected from likely surface materials and their ionization rates in the Jovian environment. We will use such models to connect the mass spectra measurements of the freshly formed ions to surface composition. We will also discuss what possible compositional signatures are for endogenic materials other than water ice. Finally, since a goal is to identify material composition with surface features, we will describe the transport of neutrals ejected from the surface prior to detection by either an ion or neutral mass spectrometer.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 87; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-10-30
    Description: Impact craters perform two vital functions in planetary history and evolution. They date the surface. They probe the interior. Voyager and Galileo based studies reveal that impact crater morphology is fundamentally different on icy and rocky bodies. Also, differences have been discovered among the icy satellites that are probably related to thermal state of the ice shell. Much of this is related to the strong temperature dependence of ice rheology on temperature, and the much weaker strength of ices in general. Depth diameter studies of impact craters show very clear breaks associated with morphologic transitions. In fact, some larger craters appear to be shallower than smaller craters. These transitions may be related to rheologic transitions at depth within the outer icy shells. Unfortunately, only a few of the larger impact craters can be mapped topographically and some of these were not observed at high resolution. It is therefore highly desirable to determine the shapes of larger impact features on these satellites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 69; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-10-30
    Description: This paper presents a review of infrared, visible and ultraviolet spectroscopic measurements of Europa. Recommendations are also given for the Jupiter Icy Moons Orbiter (JIMO) spacecraft.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 9; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-10-30
    Description: This paper presents a discussion on the planetary structure, evolution and composition of the Gallilean Satellite, Callisto. The Jupiter Icy Moons Orbiter (JIMO) mission is currently planned to first orbit Callisto then its two icy sisters Ganymede and Europa to investigate Callisto's actual configuration. The JIMO mission consists of three globally complete mapping sets of Callisto along with spectrographic measurements to answer remaining outstanding questions about the geomorphology of Callisto.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 55; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-10-05
    Description: In this paper we describe the retrieval of stratospheric NO2 from the GOME (Global Ozone Monitoring Experiment) spectrometer. For this retrieval the Differential Optical Absorption Spectroscopy (DOAS) is used and we describe the influence of the instrument s characteristics on this measurement technique. This analysis led to an improved version of the DOAS algorithm resulting in results with lower systematic errors. Subsequently these results were used to separate the tropospheric and stratospheric fraction of the measured NO;! in the atmosphere. This paper is focusing on the annual variations of the stratospheric distribution of nitrogen oxides. For this examination the satellite data from beginning of 1996 to the end of 2001 was used and has been visualized in a plot zonal means versus time of the year, a visualization which proved to be very useful for Ozone. Additionally the so called "Noxon Cliff", a drop of NO2 column densities Noxon measured in 1975-77 while traveling northwards towards the pole in Canada, is shown. Also its southern equivalent could be discovered in the GOME data.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: Microbial characterization of the Mars Odyssey spacecraft and the Kennedy Space Center Spacecraft Assembly and Encapsulation Facility II (SAEF-II) was carried out by both culture-based and molecular methods. The most dominant cultivable microbes were species of Bacillus, with comamonads, microbacteria and actinomycetales also represented. Several spore-forming isolates were resistant to gamma-radiation, UV, H2O2 and desiccation, and one Acinetobacter radioresistens isolate and several Aureobasidium, isolated directly from the spacecraft, survived various conditions. Sequences arising in clone libraries were fairly consistent between the spacecraft and facility; predominant genera included Variovorax, Ralstonia and Aquaspirillum. This study improves our understanding of the microbial community structure, diversity and survival capabilities of microbes in an encapsulation facility and physically associated with colocated spacecraft.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Environmental microbiology (ISSN 1462-2912); Volume 5; 10; 977-85
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of geophysical research (ISSN 0148-0227); Volume 108; E7; 13-1 - 13-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 300; 5617; 299-303
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Acta astronautica (ISSN 0094-5765); Volume 53; 4-10; 365-73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: Experiments were conducted in a Mars simulation chamber (MSC) to characterize the survival of endospores of Bacillus subtilis under high UV irradiation and simulated martian conditions. The MSC was used to create Mars surface environments in which pressure (8.5 mb), temperature (-80, -40, -10, or +23 degrees C), gas composition (Earth-normal N2/O2 mix, pure N2, pure CO2, or a Mars gas mix), and UV-VIS-NIR fluence rates (200-1200 nm) were maintained within tight limits. The Mars gas mix was composed of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.2%), and water vapor (0.03%). Experiments were conducted to measure the effects of pressure, gas composition, and temperature alone or in combination with Mars-normal UV-VIS-NIR light environments. Endospores of B. subtilis, were deposited on aluminum coupons as monolayers in which the average density applied to coupons was 2.47 x 10(6) bacteria per sample. Populations of B. subtilis placed on aluminum coupons and subjected to an Earth-normal temperature (23 degrees C), pressure (1013 mb), and gas mix (normal N2/O2 ratio) but illuminated with a Mars-normal UV-VIS-NIR spectrum were reduced by over 99.9% after 30 sec exposure to Mars-normal UV fluence rates. However, it required at least 15 min of Mars-normal UV exposure to reduce bacterial populations on aluminum coupons to non-recoverable levels. These results were duplicated when bacteria were exposed to Mars-normal environments of temperature (-10 degrees C), pressure (8.5 mb), gas composition (pure CO2), and UV fluence rates. In other experiments, results indicated that the gas composition of the atmosphere and the temperature of the bacterial monolayers at the time of Mars UV exposure had no effects on the survival of bacterial endospores. But Mars-normal pressures (8.5 mb) were found to reduce survival by approximately 20-35% compared to Earth-normal pressures (1013 mb). The primary implications of these results are (a) that greater than 99.9% of bacterial populations on sun-exposed surfaces of spacecraft are likely to be inactivated within a few tens of seconds to a few minutes on the surface of Mars, and (b) that within a single Mars day under clear-sky conditions bacterial populations on sun-exposed surfaces of spacecraft will be sterilized. Furthermore, these results suggest that the high UV fluence rates on the martian surface can be an important resource in minimizing the forward contamination of Mars. c2003 Elsevier Inc. All rights reserved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); Volume 165; 2; 253-76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The articles in this issue cover the end of the Galileo mission to Jupiter, educational outreach programs, and news on planetary science, including discoveries and updates on Mars missions. This issue also features brief book reviews, and a calender listing conferences for 2003.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-10-02
    Description: One of the many questions of Martian exploration is to uncover the history of Mars, through analysis of the polar layered deposits (PLD). Martian polar ice caps hold most of the exposed water ice on the surface of Mars and yet their history and physical processes involved in their formation are unclear. We will attempt to contribute to our knowledge of the composition and stratigraphy of the PLD. In this work we present the latest imaging data acquired by the Mars Odyssey THermal EMission Imaging System (THEMIS) [1] and place it into context of the Mars Global Surveyor (MGS) data. We have discussed the North Polar data in [5]. This work concentrates on data acquired over the South pole of Mars and compares properties of North and South PLD. We are primarily interested in properties of the layers in both ice caps : their continuity, morphology and stratigraphy. These questions can be addressed by THEMIS VIS color images, along with MOC high resolution data and MOLA Digital Elevation Models (DEM). We will investigate thermophysical properties of the layered deposits employing THEMIS IR images. Based on the data obtained by the orbiting spacecraft and described here, we will attempt to expose major directions for modeling and further understanding of the physical processes involved in the formation of the polar layered terrain
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-10-02
    Description: The search for life on Mars and evidence for past life connects to polar exploration in two important ways. First the polar regions on Mars are sites of possible liquid water today, and hence possible locations for extant life. Secondly, ancient permafrost may preserve evidence of the nature of martian life.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-10-02
    Description: The Viking Orbiters determined that the surface of Mars northern residual cap is water ice. Many researchers have related observed atmospheric water vapor abundances to seasonal exchange between reservoirs such as the polar caps, but the extent to which the exchange between the surface and the atmosphere remains uncertain. Early studies of the ice coverage and albedo of the northern residual Martian polar cap using Mariner 9 and Viking images reported that there were substantial internannual differences in ice deposition on the polar cap, a result that suggested a highly variable Martian climate. However, some of the data used in these studies were obtained at differing values of heliocentric solar longitude (Ls). Reevaluation of this dataset in indicated that the residual cap undergoes seasonal brightening throughout the summer, and indicated that this process repeats from year to year. In this study we continue this work with data acquired with Mars Global Surveyor s Mars Orbiter Camera (MOC) and Thermal Emission Spectrometer (TES) instruments. We use MOC Wide Angel (WA) red filter images
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-10-02
    Description: The polar layered deposits of both hemispheres contain a record of Martian environmental conditions. In this study we will assemble a fully three dimensional stratigraphic sequence for the topmost section of the southern layered deposits. A prominent layer sticks out as a bench part-way down the section. We will correlate other layers relative to this one in exposures on opposite ends of the section. In this way we hope to learn how this part of the overall southern layered deposits is organized in three dimensions. The necessary datasets which will be utilized will be hires topographic grids from the Mars Orbiter Laser Altimeter (MOLA) provided by the MOLA team and high resolution Mars Orbiter Camera (MOC) images with spatial resolutions of 1.4 to 12 m/px. Due to continuous repeat coverage of the polar orbiting Mars Global Surveyor and Mars Odyssey (MGS & MO) spacecraft this area has very high coverage. MOC frames almost totally cover the entire exposure which makes it ideal for this kind of study.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-10-02
    Description: The Mars Orbiter Laser Altimeter (MOLA) is routinely making radiometric observations of Mars at a wavelength of 1064 nm. Although the altimeter function is no longer operational, the MOLA detector continues to measure the reflectivity of the surface. Observations have been obtained almost continuously since the beginning of the Mars Global Surveyor (MGS) mapping mission in February 1999, and are providing measurements relevant to understanding the seasonal cycling of CO2 surface frost.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-10-02
    Description: Ground-penetrating radar (GPR) offers the exciting possibility of remote sensing below the Martian surface for trapped aquifers. A GPR is currently heading to Mars onboard Mars Express (MEX) and a GPR is in consideration to be onboard Mars Reconnaissance Orbiter (MRO) in 2005. While such orbital systems offer great potential for polar stratigraphy studies, their ability to penetrate deep into the Martian polar ice is a function of both the intervening ionospheric density and the overlying ground ice conductivity. The influence of both signal-altering layers will be discussed. Polar Ice and Water: Clifford1,2 has suggested
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-10-02
    Description: In this paper, we examine the meteorological components driving water transport in the Martian atmosphere. A particular emphasis is given to the role of residual mean circulation and water ice clouds in determining the geographical partitioning of water vapor and frost.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-10-02
    Description: In May and June of 1994, the NASA/DoD Clementine Mission acquired global, 11- band, multispectral observations of the lunar surface using the ultraviolet-visible (UVVIS) and near-infrared (NIR) camera systems. The global 5-band UVVIS Digital Image Model (DIM) of the Moon at 100 m/pixel was released to the Planetary Data System (PDS) in 2000. The corresponding NIR DIM has been compiled by the U.S. Geological Survey for distribution to the lunar science community. The recently released NIR DIM has six spectral bands (1100, 1250, 1500, 2000, 2600, and 2780 nm) and is delivered in 996 quads at 100 m/pixel (303 pixels/degree). The NIR data were radiometrically corrected, geometrically controlled, and photometrically normalized to form seamless, uniformly illuminated mosaics of the lunar surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-10-02
    Description: We have modeled the cooling of lava bodies on Io after solidification of the lava, a process that has been little explored since Carr (1986). With recent estimates of lava flow thicknesses on Io ranging from 1 m to 10 m, the modeling of thermal emission from active volcanism must take into account the cooling behaviour after the solidification of the lava, which we model using a finite-element model. Once a lava body is fully solidified, the surface temperature decreases faster, as heat loss is no longer buffered by release of latent heat. This is significant as observed surface temperature is often the only clue available to determine lava surface age. We also find that cooling from the base of the lava is an important process that accelerates the solidification of a flow and therefore subsequent cooling. It is necessary to constrain the cooling process in order to better understand temperature-area relationships on Io's surface and to carry out stochastic modelling of lava flow emplacement.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-10-02
    Description: We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-10-02
    Description: Our working hypothesis in these experiments is that meteoritic organics are a mixture of materials made both in the interstellar medium and in the solar nebula that were further processed within meteorite parent bodies to produce what we see today. The material synthesized in the pre-solar environment is currently under study in several laboratories, though to our knowledge none are investigating the changes that might occur as the result of metamorphic processes on the parent body itself. Material made in the Solar Nebula results from a Fischer-Tropsch type (FTT) synthesis as CO and H2 react on grain surfaces to make methane, as well as more complex species. The products of these reactions using natural catalysts have been well-studied and a calculation of the potential efficiency of FTT reactions in the solar nebula demonstrates that they could contribute significantly to the composition of material near 3 AU.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-10-02
    Description: Though Mars is a cold, dry planet, with respect to the thermal stability of liquid water at low altitudes it is not terribly different from comparably cold places on Earth. In dry air such water would evaporate faster on Mars, at a rate comparable to a 60 C hot spring on Earth, but the heat loss associated with that evaporation would be mitigated by the poor thermal convection in the thin Martian air. Even at higher altitudes where the atmospheric pressure does not reach the triple point of water, liquid water might theoretically exist in a low-vapor pressure form such as wet soil, in a briny solution, or simply under a layer of dust or snow. The theoretical stability of liquid water does not suggest its occurrence, either on Mars or in Antarctica. In fact, global models have suggested that locations capable of providing sufficient heat for melting are, precisely for that reason, too dry for water to be present. However, the temperature of irregular local structures such as trenches or craters can be markedly warmer than those of the uniform surfaces of global models. The work described here suggests a plausible scenario in which seasonal liquid water might be produced locally, in sheltered locations, through a process of condensation, cold-trapping, buffering, and melting. While the amounts produced in the present climate would be small, copious amounts of meltwater may have been produced at other phases of the orbital cycle, as recently as 20,000 years ago.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-10-02
    Description: Interplanetary dust particles (IDPs) collected from the Earth s stratosphere generally contain percent-level concentrations of organic matter. This organic matter in IDPs is important for several reasons: 1) some IDPs contain interstellar organic matter, identified by high D/H or N-15, providing the opportunity to characterize this interstellar material, 2) comparison of the organic matter in anhydrous IDPs to that in hydrated IDPs can help establish the effects of parent body aqueous alteration, and, 3) IDPs are believed to have delivered to the surface of the early Earth pre-biotic organic matter important for the origin of life. X-Ray Absorption Near-Edge Structure (XANES) spectroscopy provides information on the functional groups present in a sample, and XANES can be performed on the nano-scale, comparable to the size of some of the sub-units of the IDPs. The energies of the XANES transitions are diagnostic of the type of bonding of the C, N, and O, allowing identification of the functional groups present in the sample. As part of our ongoing effort to characterize the organic matter in the IDPs, we have performed carbon- and oxygen- and the first nitrogen-XANES spectroscopy on two IDPs and acid-insoluble residue from the CM2 meteorite Murchison.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-10-02
    Description: Physical librations in longitude are forced periodic variations of a body's rotation rate. If the torque producing the librations can be calculated, then observations of the phase and amplitude of librations can provide information on mass distribution, and effective strength of the body. In the near future prospects for observing physical librations look quite promising. Radio interferometric observations of Venus and Mercury may yield sufficiently accurate rotational observations that librations there may be visible. Range measurements from Earth to networks of landed instrument packages on Mars are likely to yield librational data there as well. We compute expected libration amplitudes from physical and orbital parameters of a set of planets and satellites partially motivated by a desire to identify candidates for future observations. Solar system bodies occupy one of three general rotation states: non-resonant states, resonant states, and the synchronous resonant state. Analytical treatments of forced librations were initially motivated by the Moon. Lunar librations were predicted by Newton, first detected telescopically by Bessel, and definitively resolved through lunar laser ranging which has led to quite thorough analysis of of librations for the synchronous case. The synchronous resonant state is commonly observed among satellites. The only known body to exist in a non-synchronous resonance is Mercury which exists in a 3:2 resonance, completing three rotations for every two revolutions about the sun. The analysis of Goldreich and Peale has lead to improved understanding of the general case of half integer resonance states. The dynamics of forced librations in non-resonant rotators has received less attention. While there are few cases in which non-resonant forced librations have been observed, Earth is an important exception, and current observing techniques may have the capacity to detect them on Venus. A comprehensive observing program spanning a range of solar system bodies can address an array of geophysical issues involving interior mass distribution of planets, satellites, and asteroids. Calculations of expected librations can supply amplitude estimates helpful in identifying the likelihood of detecting librations observationally. We present a survey of expected libration amplitudes for a subset of solar system bodies, identifying those bodies with amplitudes likely to be detectable, and commenting on spin state, and radial structure implications.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-10-02
    Description: Angrites are a rare group (approx.7 known) of igneous meteorites with basalt-like composition, which probably derive from a relatively small parent body that differs from those of other igneous meteorites. Angrites show evidence for extinct Mn-53, Sm-146, and Pu-244, and precise U-Pb, and Pb-Pb ages of 4.558 Gyr for two angrites define the time of early parent body differentiation. The S-147 - Nd-143 ages of two angrites range between 4.53+/-0.04 and 4.56+/-0.04 Gyr, but no Ar-39 - Ar-40 or Rb-Sr ages have been reported. Most angrites show no evidence for either shock brecciation or metamorphism.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-10-02
    Description: Marsoweb is a collaborative web environment that has been developed for the Mars research community to better visualize and analyze Mars orbiter data. Its goal is to enable online data discovery by providing an intuitive, interactive interface to data from the Mars Global Surveyor and other orbiters. Recently Marsoweb has served a prominent role as a resource center for the site selection process for the Mars Explorer Rover 2003 missions. In addition to hosting a repository of landing site memoranda and workshop talks, it includes a Java-based interface to a variety of datamaps and images. This interface enables the display and numerical querying of data, and allows data profiles to be rendered from user-drawn cross-sections. High-resolution Mars Orbiter Camera (MOC) images (currently, over 100,000) can be graphically perused; browser-based image processing tools can be used on MOC images of potential landing sites. An automated VRML atlas allows users to construct 'flyovers' of their own regions-of-interest in 3D. These capabilities enable Marsoweb to be used for general global data studies, in addition to those specific to landing site selection. As of September 2002, over 70,000 distinct users from NASA, USGS, academia, and the general public have accessed Marsoweb.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-10-02
    Description: The investigations of the interior and atmosphere of Mars have been identified as high scientific priorities in most planetary exploration strategy document since the time of Viking. Most recently, the National Academy of Sciences has recommended a long-lived Mars network mission as its second highest scientific priority for Mars (after sample return) for the purpose of performing seismological investigations of the interior and studying the activity and composition of the atmosphere. Despite consistent recommendations by advisory groups, Mars network missions (MESUR, Marsnet, InterMarsnet, NetLander/MSR 05, NetLander/Premier 07, NetLander/?? 09) have undergone a strikingly consistent 'Phoenix' cycle of death and rebirth over the past 15 years, and there are still no confirmed plans to address the interior and atmosphere of Mars. The latest attempt is the NetLander mission. The objective of NetLander is to place a network of four landers on Mars to perform detailed measurements of the seismicity and atmospheric pressure, temperature, wind, humidity, and opacity (as well as provide images, subsurface radar sounding profiles, and electric/magnetic field measurements). However, this mission has recently encountered major programmatic difficulties within CNES and NASA. NASA has already cancelled its participation and the mission itself is facing imminent cancellation if CNES cannot solve programmatic issues associated with launching the mission in 2009. In this presentation we will describe an approach that could move us closer to realizing the goals of a Mars network mission and will secure at least one geophysical and meteorological observatory in 2009.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-10-02
    Description: Analysis of all existing radar data for the two Mars Exploration Rover (MER) landing sites at Meridiani Planum and Gusev Crater suggest that their meter-scale morphological appearance will be noticeably different than previous Mars landing sites; their human-scale, decimeter-to meter-scale roughness is not the same as for previous Mars landing sites. We make this prediction based on a comparison of the MER landing sites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-10-02
    Description: Several isolated deposits of gray, crystalline hematite on Mars were discovered using data returned from the Thermal Emission Spectrometer (TES) instrument aboard the Mars Global Surveyor spacecraft. Christensen et al. provided five testable hypotheses regarding the formation of crystalline hematite on Mars: 1) low-temperature precipitation of Fe oxides/hydroxides from standing, oxygenated, Fe-rich water, followed by subsequent alteration to gray hematite, 2) low-temperature leaching of iron-bearing silicates and other materials leaving a Fe-rich residue laterite-style weathering) which is subsequently altered to gray hematite, 3) direct precipitation of gray hematite from Fe-rich circulating fluids of hydrothermal or other origin, 4) formation of gray hematitic surface coatings during weathering, and 5) thermal oxidation of magnetite-rich lavas. Since this initial work, several authors have examined the hematite deposits to determine their formation mechanism. Lane et al. cited the absence of a 390/ cm absorption in the martian hematite spectrum as evidence for platy hematite grains. Their model for the formation of the deposits includes deposition of any of a variety of iron oxides or oxyhydroxides by aqueous or hydrothermal fluids, burial and metamorphosis to gray platy hematite grains, and exhumation in recent times. Based on a detailed geomorphic examination of the Sinus Meridiani region, Hynek et al. conclude that the most likely method of hematite formation was either emplacement by a hydrothermal fluid or oxidation of a magnetite-rich pyroclastic deposit. Similarly, Arvidson et al., favor a model involving the alteration of pyroclastic deposits by aqueous or hydrothermal fluids. Finally, based on geochemical modeling and an examination of Aram Chaos, Catling and Moore favor emplacement by hydrothermal fluids with a minimum temperature of 100 C. Comparison of the average martian hematite spectrum measured by TES to hematite emissivity spectra for a variety of naturally occurring hematites shows small but potentially important differences. In particular, band shapes, positions and relative band emissivities of hematite spectra vary over the range of samples. These differences imply that the natural variability of thermal infrared hematite spectra has not been fully characterized, especially with respect to the reaction pathway and crystal structure.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-10-02
    Description: Large asteroid and comet impacts result in the production of thick (greater than tens of meters) global debris layers of 1500+ K and the release through precipitation of impact-injected steam and melting ground ice) of large amounts (greater than tens of meters global equivalent thickness) of water on the surface of Mars. Modeling shows that the surface of Mars is still above the freezing point of water after the rainout of the impact-injected steam and melting of subsurface ice. The energy remaining in the hot debris layer will allow evaporation of this water back into the atmosphere where it may rain out at a later time. Given a sufficiently rapid supply of this water to the atmosphere it will initiate a temporary "runaway" greenhouse state.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-10-02
    Description: The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate we just don't know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-10-02
    Description: The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tb of returned data expected in the first Mars year in the mapping orbit. The mapping orbit is nearly polar, 255 x 320 km above the surface, 12 orbits per day. The HiRISE camera, features a 0.5 m telescope, 12 m focal length, and 14 CCDs. Basic capabilities are summarized.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-10-02
    Description: To date, there has been no comprehensive study to understand the partitioning of water into vapor and ice clouds, and the associated effects of dust and surface temperature in the north polar region. Ascertaining the degree to which water is transported out of the cap region versus within the cap region will give much needed insight into the overall story of water cycling on a seasonal basis. In particular, understanding the mechanism for the polar cap surface albedo changes would go along way in comprehending the sources and sinks of water in the northern polar region. We approach this problem by examining Thermal Emission Spectrometer (TES) atmospheric and surface data acquired in the northern summer season and comparing it to Viking data when possible. Because the TES instrument spans the absorption bands of water vapor, water ice, dust, and measures surface temperature, all three aerosols and surface temperature can be retrieved simultaneously. This presentation will show our latest results on the water vapor, water-ice clouds seasonal and spatial distributions, as well as surface temperatures and dust distribution which may lend insight into where the water is going.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-10-02
    Description: Wind deflation and deposition are powerful agents of surface change in the present Mars climate regime. Recent studies indicate that, while the distribution of regions of potential deflation (or erosion) and deposition is remarkably insensitive to changes in orbital parameters (obliquity, timing of perihelion passage, etc.), rates of aeolian surface modification may be highly sensitive to these parameters even if the atmospheric mass remains constant. But previous work suggested the atmospheric mass is likely to be sensitive to obliquity, especially if a significant mass of carbon dioxide can be stored in the regolith or deposited in the form of massive polar caps. Deflation and erosion are highly sensitive to surface pressure, so feedback between orbit variations and surface pressure can greatly enhance the sensitivity of aeolian modification rates to orbital parameters. We used statistics derived from a 1 Gyr orbital integration of the spin axis of Mars, coupled with 3D general circulation models (GCMs) at a variety of orbital conditions and pressures, to explore this feedback. We also employed a seasonally resolved 1D energy balance model to illuminate the gross characteristics of the longterm atmospheric evolution, wind erosion and deposition over one billion years. We find that seasonal polar cycles have a critical influence on the ability for the regolith to release CO2 at high obliquities, and find that the atmospheric CO2 actually decreases at high obliquities due to the cooling effect of polar deposits at latitudes where seasonal caps form. At low obliquity, the formation of massive, permanent polar caps depends critically on the values of the frost albedo, A(sub frost), and frost emissivity, E(sub frost). Using our 1D model with values of A(sub frost) = 0.67 and E(sub frost) = 0.55, matched to the NASA Ames GCM results, we find that permanent caps only form at low obliquities (〈 10 degrees). Thus, contrary to expectations, the Martian atmospheric pressure is remarkable static over time, and decreases both at high and low obliquity. Also, from our one billion year orbital model, we present new results on the fraction of time Mars is expected to experience periods of high and low obliquity. Finally, using GCM runs at a variety of pressures, we examine the likely role of wind erosion under an early more massive Martian atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-10-02
    Description: Level, bench-like platforms in the interior of the Gorgonum Chaos basin appear to be shorelines associated with an ancient lake. These shorelines, however, seem to lack the typical features of shorelines associated with wave and current transport and erosion, such as crescentic embayments, spits, barrier islands, and wave-cut cliffs. Rather, the lakefacing platform edges are commonly rounded and cumulate in planform, often evenly encircling presumed islands. We interpret these shorelines to have been formed by outward growth in a quiescent environment, possibly in ice-covered bodies of water and possibly, in part, as chemical precipitates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-10-02
    Description: Long standing theoretical predictions [1-3], as well as recent spacecraft observations [4] indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. An understanding of the evolution of water based on theoretical and experimental considerations of the processes operating at the Martian environment is required. In particular, the porosity, diffusivity, and permeability of soils and their effect on water vapor transport under Mars-like conditions have been estimated, but experimental validation of such models is lacking. Goal: Three related mechanisms may affect water transport in the upper Martian regolith. 1) diffusion along a concentration gradient under isobaric conditions, 2) diffusion along a thermal gradient, which may give rise to a concentration gradient as ice sublimes or molecules desorb from the regolith, and 3) hydraulic flow, or mass motion in response to a pressure gradient. Our combined theoretical and experimental investigation seeks to disentangle these mechanisms and determine which process(es) are dominant in the upper regolith over various timescales. A detailed one-dimensional model of the upper regolith is being created which incorporates water adsorption/ desorption, condensation, porosity, diffusivity, and permeability effects. Certain factors such as diffusivity are difficult to determine theoretically due to the wide range of intrinsic grain properties such as particle sizes, shapes, packing densities, and emergent properties such as tortuosity. An experiment is being designed which will allow us to more accurately determine diffusivity, permeability, and water desorption isotherms for regolith simulants.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-10-02
    Description: The strongest crustal fields are located in certain regions in the Southern hemisphere. In the Northern hemisphere, the crustal fields are rather weak and usually do not prevent direct interaction between the SW and the Martian ionosphere/atmosphere. Exceptions occur in the isolated mini-magnetospheres formed by the crustal anomalies. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A study of 523 electron density profiles obtained at latitudes from +67 deg. to +77 deg. has been conducted. The effective scale-height of the electron density for two altitude ranges, 145-165 km and 165-185 km, and the effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak have been derived for each of the profiles studied. For the regions outside of the potential mini-magnetospheres, the thermal pressure of the ionospheric plasma for the altitude range 145-185 km has been estimated. In the high latitude ionosphere at Mars, the total pressure at altitudes 160 and 180 km has been mapped. The solar wind interaction with the ionosphere of Mars and origin of the sharp drop of the electron density at the altitudes 200-210 km will be discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-10-02
    Description: We investigate the oxidizing properties of Mars polar regions using disk-resolved ultraviolet spectra from the Ultraviolet Spectrometer (UVS) on Mariner 9. We detect the spectral characteristic of hydrogen peroxide (H2O2), which has already been found to exist on the icy galilean satellites. The Mariner 9 UVS data have been archived at NASA s Planetary Data System (PDS) Atmospheric Node and are also available at http://lasp.colorado.edu/Mariner_9_data/. A software visualization tool, Albatross, provides database access (http://lasp.colorado.edu/albatross/) and enables the user to view reflectance spectra for desired latitude/longitude regions and mission phases. It displays the UVS field-of-view (FOV) tracks along with the corresponding reflectance spectrum for a chosen FOV against a background showing the Mars surface image, or a user specified alternate dataset, such as a thermal, geologic or topographic map.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-10-02
    Description: The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI) [1]. The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD; see Figure 1).The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400 - 700 nm; see Table 1). Technically, the microscopic imager is not a microscope: it has a fixed magnification of 0.4 and is intended to produce images that simulate a geologist s view through a common hand lens. In photographers parlance, the system makes use of a macro lens. The MI uses the same electronics design as the other MER cameras [2, 3] but has optics that yield a field of view of 31 31 mm across a 1024 1024 pixel CCD image (Figure 2). The MI acquires images using only solar or skylightillumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Because the MI has a relatively small depth of field (3 mm), a single MI image of a rough surface will contain both focused and unfocused areas. Coarse focusing will be achieved by moving the IDD away from a rock target after the contact sensor is activated. Multiple images taken at various distances will be acquired to ensure good focus on all parts of rough surfaces. By combining a set of images acquired in this way, a completely focused image can be assembled. Stereoscopic observations can be obtained by moving the MI laterally relative to its boresight. Estimates of the position and orientation of the MI for each acquired image will be stored in the rover computer and returned to Earth with the image data. The MI optics will be protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500-700 nm, allowing color information to be obtained by taking images with the dust cover open and closed. The MI will image the same materials measured by other Athena instruments (including surfaces prepared by the Rock Abrasion Tool), as well as rock and soil targets of opportunity. Subsets of the full image array can be selected and/or pixels can be binned to reduce data volume. Image compression will be used to maximize the information contained in the data returned to Earth. The resulting MI data will place other MER instrument data in context and aid in petrologic and geologic interpretations of rocks and soils on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-10-02
    Description: The arid inland of Australia contains a diversity of landscapes and landscape processes, often of great antiquity, extending back to the Mesozoic and Paleozoic. The potential of this landscape as a source of Mars analogs has, however, been little explored. The few examples studied so far include radiation-tolerant microbes in thermal springs and hematite-silica hydrothermal alteration near Arkaroola in the Finders Ranges, and aeolian landforms at Gurra Gurra water hole the north east of Arkaroola. Further Australian Mars analog studies were provided by the studies of Bourke and Zimbelman of the paleoflood record of the Todd and Hale Rivers in central Australia. To facilitate study of such analogues, Mars Society Australia has embarked on a project to construct a Mars Analog Research Station near Arkaroola. The international scientific community will soon have the opportunity to participate in Mars analog studies in central Australia utilizing this facility. An area of considerable Mars analog potential is the mound spring complexes that occur at the margins of the Great Artesian Basin (GAB) which underlies 22% of the Australian continent and covers 1.7 million km2. The mound springs are formed when ground water flows to a topographic low, and subsurface strata dips up causing a hydrological head at the surface. Minerals precipitated at the spring discharge zone form low mesas or "mounds", the height of which are controlled by the hydrological head. This paper describes the Dalhousie Mound Spring Complex (DMC) in the northern part of South Australia (Figure 1), and its potential as a Mars analog. Hydrogeology: The DMC consists of a cluster of more than 60 active springs formed by natural discharge from the GAB). Total measured discharge from the GAB is 1.74 GL per day, estimated unfocussed natural leakage through the aquaclude is thought be approximately equal to this figure. Some 54 ML per day are currently discharged by the DMC, 3% of the measured total. The discharged artesian waters are of low to moderate salinity (700 - 9400 ppm), near neutral pH (6.8-7.3) and warm (20-46 C). The elevated temperatures are due to passage of the groundwater through deeply buried (up to 3 km) aquifers in an region of high heat flow, rather than magmatic heating. The waters also contain high levels of dissolved iron and H2S and less than 1 ppm dissolved oxygen. The water is carried in the Late Jurassic Algebuckina Sandstone beneath the aquaclude of the Bulldog Shale. It is brought near the surface by the mid-Cenozoic Dalhousie anticline and the ground water flow focused along a series of faults that breach the anticline's crest.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-10-02
    Description: The Thermal Emission Imaging System (THEMIS) began studying the surface and atmosphere of Mars in February, 2002 using thermal infrared (IR) multi-spectral imaging between 6.5 and 15 m, and visible/near-IR images from 450 to 850 nm. The infrared observations continue a long series of spacecraft observations of Mars, including the Mariner 6/7 Infrared Spectrometer, the Mariner 9 Infrared Interferometer Spectrometer (IRIS), the Viking Infrared Thermal Mapper (IRTM) investigations, the Phobos Termoscan, and the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). The THEMIS investigation's specific objectives are to: (1) determine the mineralogy of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; (4) investigate polar cap processes at all seasons; and (5) provide a high spatial resolution link to the global hyperspectral mineral mapping from the TES investigation. THEMIS provides substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MGS cameras.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-10-02
    Description: Over the past several decades, two issues have dominated the discussion of planetary noble gas patterns: 1) the general resemblance of the noble gas abundances in carbonaceous chondrites to those measured in the Earth s atmosphere and; 2) atmospheric inventories of argon and neon that fall off significantly with increasing distance from the Sun. The recognition of the latter has led to the conclusion that the planetary component is not found on planets. In particular, the inability to explain the missing xenon reservoir, once thought to be sequestered in crustal rocks has been extremely troublesome. Some models have focused on various fractionations of solar wind rather than condensation as the process for the evolution of noble gases in the terrestrial planets. However, these models cannot explain the observed gradient of the gases, nor do they account for the similar Ne/Ar ratios and the dissimilar planetary Ar/Kr ratios. More recent studies have focused on hydrodynamic escape to explain the fractionation of gases, like neon, in the atmosphere and the mantle. Escape theory also seems to explain, in part, the isotopically heavy argon on Mars, however, it does not explain the discrepancies observed for the abundances of argon and neon on Venus and the Earth. This has led to the assumption that some combination of solar wind implantation, absorption and escape are needed to explain the nature of planetary noble gases.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-10-02
    Description: Scattering by atmospheric aerosols can contribute a substantial fraction of the visible-light radiance observed in any remote sensing of Mars. Our objective is to develop techniques to separate this aerosol component from the surface-reflectance component in Mars Odyssey's THEMIS Visible Imaging Subsystem (THEMIS-VIS) dataset. The primary purpose of this study is the production of accurate surface reflectance data in order to allow for reliable color and mineralogical unit mapping. The second principal goal is to study the feasibility of using VIS measurements to derive quantitative information about ice and dust aerosol properties such as particle size and optical depth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-10-02
    Description: The differentiated meteorite, Mundrabilla, exhibits a rare structure of primary kamacite/taenite, and at least 25 volume % of sulfide (troilite and daubreelite). The structure has been investigated in three dimensions using the technique of gamma-ray computed tomography (CT) with a radioactive (60)Co isotope as the source of the flux. Using CT, a 50 kg slab with dimensions 12.6 x 8.2 x approx. 70 cm has been sectioned at 1 mm intervals over 50 cm length, and the three dimensional structure is at present being evaluated. These data revealed, in addition to the metallic and troilite-rich phases, the presence and distribution of graphite-rich cones (up to 5 cm long), and small (1-2 mm), low density particles. The graphite cones are readily visible on the surfaces of many of the sections of Mundrabilla, while the smaller phases have a density (determined from CT) of approximately 2.9 g/cc, and are assumed to be silicate inclusions. CT spatial resolution is not adequate to elucidate the shapes of these particles. One can only state that they show no directionality and are equiaxed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-10-02
    Description: The spatial exploration is providing us a large quantity of information about the composition of the planets and satellites crusts. However, most of the experiences that are proposed in the guides of activities in Planetary Geology are based exclusively on the images utilization: photographs, maps, models or artistic reconstructions [1,2]. That things help us to recognize shapes and to deduce geological processes, but they says us little about the materials that they are implicated. In order to avoid this dicotomy between shapes and materials, we have designed an experience in the one which, employing of rocks and landscapes of our geological environment more next, the pupils be able to do an exercise of compared planetology analyzing shapes, processes and material of several planetary bodies of the Solar System.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-10-02
    Description: Deep Interior is a mission to determine the geophysical properties of near-Earth objects, including the first volumetric image of the interior of an asteroid. Radio reflection tomography will image the 3D distribution of complex dielectric properties within the ~1 km rendezvous target and hence map structural, density or compositional variations. Laser altimetry and visible imaging will provide high-resolution surface topography. Smart surface pods culminating in blast experiments, imaged by the high frame rate camera and scanned by lidar, will characterize active mechanical behavior and structure of surface materials, expose unweathered surface for NIR analysis, and may enable some characterization of bulk seismic response. Multiple flybys en route to this target will characterize a diversity of asteroids, probing their interiors with non-tomographic radar reflectance experiments. Deep Interior is a natural follow-up to the NEARShoemaker mission and will provide essential guidance for future in situ asteroid and comet exploration. While our goal is to learn the interior geology of small bodies and how their surfaces behave, the resulting science will enable pragmatic technologies required of hazard mitigation and resource utilization.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-10-02
    Description: Rover traverse distances are increasing at a faster rate than downlink capacity is increasing. As this trend continues, the quantity of data that can be returned to Earth per meter traversed is reduced. The capacity of the rover to collect data, however, remains high. This circumstance leads to an opportunity to increase mission science return by carefully selecting the data with the highest science interest for downlink. We have developed an onboard science analysis technology for increasing science return from missions. Our technology evaluates the geologic data gathered by the rover. This analysis is used to prioritize the data for transmission, so that the data with the highest science value is transmitted to Earth. In addition, the onboard analysis results are used to identify additional science gathering opportunities. A planning and scheduling component of the system enables the rover to take advantage of the identified science opportunity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-10-02
    Description: The Mars Odyssey Gamma-Ray Spectrometer (GRS) data present a quandary: On the one hand, large deposits of (inferred) water ice are located where thermal models suggest they would form and best be protected, e.g., if deposited during periods of higher obliquity. On the other hand, the volume mixing ratios (approx. 70%) are so high that diffusive deposition of water in regolith pore space (which is the process assumed by these models) cannot be the primary formation mechanism. Furthermore, given that the water is inferred to be so close to the surface (less than a few 10's of cm's), it must be in communication with the atmosphere on time scales that are geologically relatively short (10(exp 3)-10(exp 6) years); therefore the water cannot be archaic. Considering the GRS data, images of mantled, fretted, and disaggregated terrain, and new climate modeling of Mars orbital cycles, we are led to an alternate conclusion about the ice deposits: that they form as subaerial ice sheets. This scenario not only provides a simple explanation for these observations, but may also help explain the formation of globally distributed, sedimentary layered deposits.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-10-02
    Description: The 2001 Mars Odyssey orbital science mission officially began in late February, 2002. The spacecraft carries three science instrument packages: the Gamma Ray Spectrometer suite (GRS), the Thermal Emission Imaging System (THEMIS), and the Martian Radiation Environment Experiment (MARIE). The GRS suite of three instruments includes the Gamma Sensor Subsystem (GSS), the Neutron Spectrometer (NS) and the High Energy Neutron Detector (HEND). THEMIS consists of two cameras sharing a single set of telescopic optics: a 5-band visible imager and a 10-band thermal infrared imager. Spacecraft and instrument performance have been nominal to this point in the science mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-10-02
    Description: The nature of the scattering of light is thought to be well understood when the medium is made up of independent scatterers that are much larger than the wavelength of that light. This is not the case when the size of the scattering objects is similar to or smaller than the wavelength or the scatterers are not independent. In an attempt to examine the applicability of independent particle scattering models, to planetary regoliths, a dataset of experimental results were compared with theoretical predictions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-10-02
    Description: Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-10-02
    Description: Long lava flows (discrete flow units with lengths exceeding 50 km) are easily identified features found on many planetary surfaces. An ongoing investigation is being conducted into the origin of these flows. Here, we limit our attention to long lava flows which show evidence of channel-like structures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-10-02
    Description: We report preliminary results for oxygen isotope measurement of individual chrondules in Y791810. The same chrondules will also be measured for REE and noble gaseds.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-10-02
    Description: We report Mn-Cr, Al-Mg, Rb-Sr, and Sm-Nd investigations of the D'Orbigny and Sahara 99555 angrites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-10-02
    Description: Extensive mapping of the surface of Venus and continued analysis of Magellan data have allowed a more comprehensive survey of coronae to be conducted. Our updated corona database contains 514 features, an increase from the 326 coronae of the previous survey. We include a new set of 106 Type 2 or stealth coronae, which have a topographic rather than a fracture annulus. The large increase in the number of coronae over the 1992 survey results from several factors, including the use of the full Magellan data set and the addition of features identified as part of the systematic geologic mapping of Venus. Parameters of the population that we have analyzed to date include size and topography.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-10-02
    Description: The Mars Orbiter Camera (MOC) has been operating on board of the Mars Global Surveyor (MGS) spacecraft since 1998. It consists of three cameras - Red and Blue Wide Angle cameras (FOV=140 deg.) and Narrow Angle camera (FOV=0.44 deg.). The Wide Angle camera allows surface resolution down to 230 m/pixel and the Narrow Angle camera - down to 1.5 m/pixel. This work is a continuation of the project, which we have reported previously. Since then we have refined and improved our stereo correlation algorithm and have processed many more stereo pairs. We will discuss results of our stereo pair analysis located in the Mars Exploration rovers (MER) landing sites and address feasibility of recovering topography from stereo pairs (especially in the polar regions), taken during MGS 'Relay-16' mode.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-10-02
    Description: Lentz et al. argued that zoning trends in light lithophile elements (LLE) in pyroxene in Shergotty and Zagami are evidence for the degassing of magmatic water. We tested this inference by obtaining: additional LLE analyses of Shergotty and Zagami pyroxene; analyses of Pasamonte pyroxene; and silicate and phosphate partition coefficients for B and Li for martian magma and mineral compositions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-10-02
    Description: Access to the interior of rocks on Mars is an important goal for understanding Mars petrology and geologic history. The spectral signature of the potentially diverse mineralogy of rocks on Mars is veiled by the ubiquitous dust and may be further hidden by weathered rind. We have developed a rock crusher and sample distribution system under the auspices of NASA s PIDDP program. We call it the SPADE : the Sample Processing and Distribution Experiment. Its purpose is to access the interiors of rocks on Mars and prepare samples for analysis by a suite of in situ instruments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-10-02
    Description: The NASA Genesis spacecraft was launched August 8, 2001 on a mission to collect samples of solar wind for greater than or equal to 2 years and then return them to Earth in 2004. Detailed analyses of the solar wind ions implanted into high-purity collection substrates will subsequently be carried out in earth-based laboratories using various mass spectrometry techniques. These analyses are expected to determine key isotopic ratios and elemental abundances in the solar wind and, by extension, in the solar photosphere. Further, the photospheric composition is thought to be representative of the solar nebula with a few exceptions so that the Genesis mission will provide a baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. The implications of the solar oxygen isotopic composition have been discussed. A list of other isotopic and elemental measurement objectives, and some of the rationale behind them, is given.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-10-02
    Description: The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tbits of returned data expected in the first Mars year in the mapping orbit (255 x 320 km). The HiRISE camera features a 0.5 m telescope, 12 m focal length, and 14 CCDs. We expect to acquire approximately 10,000 observations in the primary science phase (approximately 1 Mars year), including approximately 2,000 images for 1,000 stereo targets. Each observation will be accompanied by a approximately 6 m/pixel image over a 30 x 45 km region acquired by MRO s context imager. Many HiRISE images will be full resolution in the center portion of the swath width and binned (typically 4x4) on the sides. This provides two levels of context, so we step out from 0.3 m/pixel to 1.2 m/pixel to 6 m/pixel (at 300 km altitude). We expect to cover approximately 1% of Mars at better than 1.2 m/pixel, approximately 0.1% at 0.3 m/pixel, approximately 0.1% in 3 colors, and approximately 0.05% in stereo. Our major challenge is to find the dey contacts, exposures and type morphologies to observe.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-10-02
    Description: Diverse evidence shows a direct correlation between episodic endogenetic events of the Tharsis magmatic complex (TMC)/Superplume, flood inundations in the northern plains, and glacial/ lacustrine/ice sheet activity in the south polar region, which includes Hellas and Argyre impact basins, corroborating the MEGAOUTFLO hypothesis. The TMC encompasses a total surface area of approximately 2 x 10(exp 7) sq km, which is slightly larger than the estimated size of the Southern Pacific Superplume. These hydrologic events include: (1) a Noachian to possibly Early Hesperian oceanic epoch and related atmospheric and environmental change (a water body covering about 1/3 of the planet s surface area) related to the incipient development of Tharsis Superplume and the northwestern sloping valleys (NSVs) and possibly early circum-Chryse development, the northwest and northeast watersheds of Tharsis, respectively, (2) a smaller ocean inset within the former larger ocean related to extensive Late Hesperian to Early Amazonian effusive volcanism at Tharsis and Elysium and incisement of the circum-Chryse outflow system. During this time, magmatic/plume-driven tectonic activity transitioned into more centralized volcanism. This Late Hesperian water body may have simply diminished into smaller seas and/or lakes during the Amazonian Period, or renewed activity at Tharsis and Elysium resulted in brief perturbations from the prevailing cold and dry climatic conditions to later form minor seas or lakes. All of the hydrologic phases transitioned into extensive periods of quiescence.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-10-02
    Description: In early 2003, the Mars Icy Sample Team (MIST) was formed to address several questions related to the acquisition and analysis of ice-bearing samples on the surface of Mars by a robotic mission. These questions were specifically framed in the context of planning for the 2009 Mars Science Laboratory (MSL) lander, but the answers will also also have value in planning other future landed investigations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-10-02
    Description: Long Day's Drive (LLD) will investigate the north polar layered deposits (PLD). The overarching science rationale for LDD is the belief that the PLD preserve within their stratigraphy an interpretable record of recent climate and geologic history for Mars. Our primary goal is to obtain data that can provide a basis for interpreting that record. In addition, we will test the hypothesis that the ice of the PLD contains organics at higher concentrations than the aeolian dust sampled at the two Viking sites. Finally, we seek to contribute to the understanding of Mars' total volatile inventory by detailed determination of the ice content of the PLD over the traverse.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-10-02
    Description: Pascal is a Mars Climate Network Mission that is being developed for NASA's Mars Scout Program. The mission would establish a network of 18 science weather stations distributed across the entire surface of Mars that operates for 3-10 Mars years (5.6- 18.8 Earth years). Pascal's instrument suite combines entry data from accelerometers and descent cameras, with landed data from pressure, opacity, temperature, wind speed, and water vapor to create a detailed global picture of Martian climate and weather. A panoramic landed camera system acquires images every 30 Sols to monitor changes in the landing environment due to winds. Analysis of data from the science stations, taken as often as once every 15 minutes, will provide a depth of understanding that will vastly increase our knowledge of Mars, and significantly impact site selection for future NASA missions. Pascal is the first mission ever to sample - in situ - the full global diversity of Mars and provide a continuous long-term presence on its surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-10-02
    Description: Radio tracking of the Mars Global Surveyor spacecraft has revealed temporal changes in the long-wavelength gravity field of Mars that correlate, to first order, with the pattern expected for the seasonal redistribution of carbon dioxide between the atmosphere and surface. Detecting these gravity field changes requires isolating very small perturbations in the velocity of the spacecraft and estimating the very low degree zonal coefficients of the field. A comparison of these coefficients determined every 5 days for a period over 2 Mars years shows annual and semi-annual variations that are similar to those predicted by a General Circulation Model simulation. These changes result from the redistribution of the mass of the planet by the exchange of carbon dioxide between the surface and the atmosphere through deposition and sublimation of CO2 in the polar regions. A simple time-dependent model for the icecaps enables an estimate to be made of the mass of carbon dioxide at each pole as a function of the seasonal parameter, Ls.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-10-02
    Description: The recent discovery of vast quantities of near-subsurface ice in both polar regions of Mars by the Mars Odyssey Gamma Ray Spectrometer (GRS) has presented us with an interesting quandary. On one hand, these deposits, found poleward of 60 deg in both hemispheres, are consistent with thermal models suggesting ice will be best protected in these regions during periods of high obliquity. On the other hand, the current paradigm regarding the placement of these deposits, i.e., diffusive deposition of water vapor, appears to be inconsistent with the large volume mixing ratios (approx. 90%) inferred from the GRS data. This incongruity argues that diffusion alone cannot be the primary mechanism for the creation of these reservoirs, and that an alternate, large-scale process should be considered.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-10-02
    Description: Recent data from the Gamma-Ray Spectrometer (GRS) on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in high latitudes on Mars. This hydrogen-rich layer correlates to previously determined regions of ice stability. It has been suggested that the subsurface hydrogen is ice and constitutes 35 plus or minus 15% by weight near the north and south polar regions. This study constrains the location of subsurface ice deposits on the scale of kilometers or smaller by combining GRS data with surface features indicative of subsurface ice. The most recognizable terrestrial geomorphic indicators of subsurface ice, formed in permafrost and periglacial environments, include thermokarst pits, pingos, pseudocraters and patterned ground. Patterned ground features have geometric forms such as circles, polygons, stripes and nets. This study focuses on the polygonal form of patterned ground, selected for its discernable shape and subsurface implications. Polygonal features are typically demarcated by troughs, beneath which grow vertical ice-wedges. Ice-wedges form in thermal contraction cracks in ice-rich soil and grow with annual freezing and thawing events repeated over tens of years. Ice wedges exist below the depth of seasonal freeze-thaw. Terrestrial ice wedges can be several meters deep and polygons can be tens of meters apart, and, on rare occasions, up to 1 km. The crack spacing of terrestrial polygons is typically 3 to 10 times the crack depth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-10-02
    Description: The Opposition Effect, the pronounced non-linear intensity increase in the reflectance phase curve with decreasing phase angle,theta , has long been observed in solar system bodies and in laboratory investigations of the angular scattering properties of particulate media. The size and shape of the phase curve, and the change in linear polarization with theta, have been related to the physical properties of planetary regolith scattering materials. Near zero degrees the increase in reflectance with decreasing phase angle has been attributed to two distinct processes. The first is the elimination of shadows cast between the regolith grains as the phase angle decreases. This is called the shadow hiding opposition effect (SHOE). The second is coherent constructive interference between rays of light traveling along identical but opposite paths in multiply scattering media. This is called the coherent backscattering opposition effect (CBOE).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-10-02
    Description: The Martian water cycle is one of the three annual cycles on Mars, dust and CO2 being the other two. Despite the fact that detailed spacecraft data, including global and annual coverage in a variety of wavelengths, have been taken of Mars spanning more than 25 years, there are many outstanding questions regarding the water cycle. There is very little exposed water on Mars today, in either the atmosphere or on the surface although there is geological evidence of catastrophic flooding and continuously running water in past epochs in Mars' history as well as recent (within about 10,000 years ago) evidence for running water in the form of gullies. While there is little water in the atmosphere, water- ice clouds do form and produce seasonal clouds caused by general circulation and by storms. These clouds may in turn be controlling the cycling of the water within the general circulation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-10-02
    Description: The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Large Meteorite Impacts; LPI-Contrib-1167
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-10-02
    Description: Science return from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) will be optimized by maximizing science participation in the experiment. MRO is expected to arrive at Mars in March 2006, and the primary science phase begins near the end of 2006 after aerobraking (6 months) and a transition phase. The primary science phase lasts for almost 2 Earth years, followed by a 2-year relay phase in which science observations by MRO are expected to continue. We expect to acquire approx. 10,000 images with HiRISE over the course of MRO's two earth-year mission. HiRISE can acquire images with a ground sampling dimension of as little as 30 cm (from a typical altitude of 300 km), in up to 3 colors, and many targets will be re-imaged for stereo. With such high spatial resolution, the percent coverage of Mars will be very limited in spite of the relatively high data rate of MRO (approx. 10x greater than MGS or Odyssey). We expect to cover approx. 1% of Mars at approx. 1m/pixel or better, approx. 0.1% at full resolution, and approx. 0.05% in color or in stereo. Therefore, the placement of each HiRISE image must be carefully considered in order to maximize the scientific return from MRO. We believe that every observation should be the result of a mini research project based on pre-existing datasets. During operations, we will need a large database of carefully researched 'suggested' observations to select from. The HiRISE team is dedicated to involving the broad Mars community in creating this database, to the fullest degree that is both practical and legal. The philosophy of the team and the design of the ground data system are geared to enabling community involvement. A key aspect of this is that image data will be made available to the planetary community for science analysis as quickly as possible to encourage feedback and new ideas for targets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-10-02
    Description: The global populations of visible and buried impact basins greater than 200 km diameter revealed by high resolution gridded MOLA indicate: (a) a small (approximately 10) number of very large basins (D=1300-3000km), most of which have remained visible over martian history; (b) a much larger population of smaller basins (D=200-800 km) with many more buried than visible (on images); (c) a depletion of visible basins at intermediate diameters which may be a signature of some global-scale event (formation of the lowlands? origin of Tharsis?); and (d) a crater retention age for the buried lowlands greater than that of the visible highlands but less than that of the total (visible + buried) highlands. Crustal magnetic anomalies are generally not present in the interiors of the largest basins with two exceptions: these two (which appear to be the oldest) may predate the demise of the global magnetic field.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...