ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (47)
  • Springer
  • 2020-2023  (56)
  • 2005-2009
  • 1950-1954
  • 1940-1944
  • 2020  (56)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Malige, F., Patris, J., Buchan, S. J., Stafford, K. M., Shabangu, F., Findlay, K., Hucke-Gaete, R., Neira, S., Clark, C. W., & Glotin, H. Inter-annual decrease in pulse rate and peak frequency of Southeast Pacific blue whale song types. Scientific Reports, 10(1), (2020): 8121, doi:10.1038/s41598-020-64613-0.
    Description: A decrease in the frequency of two southeast Pacific blue whale song types was examined over decades, using acoustic data from several different sources in the eastern Pacific Ocean ranging between the Equator and Chilean Patagonia. The pulse rate of the song units as well as their peak frequency were measured using two different methods (summed auto-correlation and Fourier transform). The sources of error associated with each measurement were assessed. There was a linear decline in both parameters for the more common song type (southeast Pacific song type n.2) between 1997 to 2017. An abbreviated analysis, also showed a frequency decline in the scarcer southeast Pacific song type n.1 between 1970 to 2014, revealing that both song types are declining at similar rates. We discussed the use of measuring both pulse rate and peak frequency to examine the frequency decline. Finally, a comparison of the rates of frequency decline with other song types reported in the literature and a discussion on the reasons of the frequency shift are presented.
    Description: The authors thank the help of Explorasub diving center (Chile), Agrupación turística Chañaral de Aceituno (Chile), ONG Eutropia (Chile), Valparaiso university (Chile), the international institutions and research programs CTBTO, IWC, BRILAM STIC AmSud 17-STIC-01. S.J.B. thanks support from the Center for Oceanographic Research COPAS Sur-Austral, CONICYT PIA PFB31, Biology Department of Woods Hole Oceanographic Institution, the Office of Naval Research Global (awards N62909-16-2214 and N00014-17-2606), and a grant to the Centro de Estudios Avanzados en Zonas Ãridas (CEAZA) “Programa Regional CONICYT R16A10003”. We thank SABIOD MI CNRS, EADM MaDICS CNRS and ANR-18-CE40-0014 SMILES supporting this research. We are grateful to colleagues at DCLDE 2018 and SOLAMAC 2018 conferences for useful comments on the preliminary version of this work. In this work we used only the free and open-source softwares Latex, Audacity and OCTAVE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., Diefenderfer, H., Ganju, N. K., Goni, M. A., Graham, E. B., Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G., Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J., Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R., Weisenhorn, P. B., & Windham-Myers, L. Representing the function and sensitivity of coastal interfaces in earth system models. Nature Communications, 11(1), (2020): 2458, doi:10.1038/s41467-020-16236-2.
    Description: Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.
    Description: Funding for this work was provided by Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research & Development (LDRD) as part of the Predicting Ecosystem Resilience through Multiscale Integrative Science (PREMIS) Initiative. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Additional support to J.P.M. was provided by the NSF-LTREB program (DEB-0950080, DEB-1457100, DEB-1557009), DOE-TES Program (DE-SC0008339), and the Smithsonian Institution. This manuscript was motivated by discussions held by co-authors during a three-day workshop at PNNL in Richland, WA: The System for Terrestrial Aquatic Research (STAR) Workshop: Terrestrial-Aquatic Research in Coastal Systems. The authors thank PNNL artist Nathan Johnson for preparing the figures in this manuscript and Terry Clark, Dr. Charlette Geffen, and Dr. Nancy Hess for their aid in organizing the STAR workshop. The authors thank all workshop participants not listed as authors for their valuable insight: Lihini Aluwihare (contributed to biogeochemistry discussions and development of concept for Fig. 3), Gautam Bisht (contributed to modeling discussion), Emmett Duffy (contributed to observational network discussions), Yilin Fang (contributed to modeling discussion), Jeremy Jones (contributed to biogeochemistry discussions), Roser Matamala (contributed to biogeochemistry discussions), James Morris (contributed to biogeochemistry discussions), Robert Twilley (contributed to biogeochemistry discussions), and Jesse Vance (contributed to observational network discussions). A full report on the workshop discussions can be found at https://www.pnnl.gov/publications/star-workshop-terrestrial-aquatic-research-coastal-systems.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liang, Y., Lo, M., Lan, C., Seo, H., Ummenhofer, C. C., Yeager, S., Wu, R., & Steffen, J. D. Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region. Nature Communications, 11(1), (2020): 4390, doi:10.1038/s41467-020-18187-0.
    Description: The Amazon river basin receives ~2000 mm of precipitation annually and contributes ~17% of global river freshwater input to the oceans; its hydroclimatic variations can exert profound impacts on the marine ecosystem in the Amazon plume region (APR) and have potential far-reaching influences on hydroclimate over the tropical Atlantic. Here, we show that an amplified seasonal cycle of Amazonia precipitation, represented by the annual difference between maximum and minimum values, during the period 1979–2018, leads to enhanced seasonalities in both Amazon river discharge and APR ocean salinity. An atmospheric moisture budget analysis shows that these enhanced seasonal cycles are associated with similar amplifications in the atmospheric vertical and horizontal moisture advections. Hierarchical sensitivity experiments using global climate models quantify the relationships of these enhanced seasonalities. The results suggest that an intensified hydroclimatological cycle may develop in the Amazonia atmosphere-land-ocean coupled system, favouring more extreme terrestrial and marine conditions.
    Description: M.-H.L., C.-W.L., and R.-J.W. are supported by the Ministry of Science and Technology in Taiwan under grant 106-2111-M-002-010-MY4. H.S. and J.D.S. are grateful for support from NOAA NA19OAR4310376 and NA17OAR4310255. C.C.U. acknowledges support from the U.S. National Science Foundation under grant OCE-1663704. The National Center for Atmospheric Research (NCAR) is a major facility sponsored by the US National Science Foundation (NSF) under Cooperative Agreement No. 1852977. We thank Dr. Young-Oh Kwon at Woods Hole Oceanographic Institution and Dr. Who Kim at NCAR for discussions about the ocean model experiment design. We thank Dr. Mehnaz Rashid at National Taiwan University and Wen-Yin Wu at the University of Texas at Austin in helping generate the high-resolution Amazon river mask. We also thank Dr. Gael Forget at Massachusetts Institue of Technology for comments on using ECCO and other ocean-state estimate products.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gravinese, P. M., Page, H. N., Butler, C. B., Spadaro, A. J., Hewett, C., Considine, M., Lankes, D., & Fisher, S. Ocean acidification disrupts the orientation of postlarval Caribbean spiny lobsters. Scientific Reports, 10(1), (2020): 18092, doi:10.1038/s41598-020-75021-9.
    Description: Anthropogenic inputs into coastal ecosystems are causing more frequent environmental fluctuations and reducing seawater pH. One such ecosystem is Florida Bay, an important nursery for the Caribbean spiny lobster, Panulirus argus. Although adult crustaceans are often resilient to reduced seawater pH, earlier ontogenetic stages can be physiologically limited in their tolerance to ocean acidification on shorter time scales. We used a Y-maze chamber to test whether reduced-pH seawater altered the orientation of spiny lobster pueruli toward chemical cues produced by Laurencia spp. macroalgae, a known settlement cue for the species. We tested the hypothesis that pueruli conditioned in reduced-pH seawater would be less responsive to Laurencia spp. chemical cues than pueruli in ambient-pH seawater by comparing the proportion of individuals that moved to the cue side of the chamber with the proportion that moved to the side with no cue. We also recorded the amount of time (sec) before a response was observed. Pueruli conditioned in reduced-pH seawater were less responsive and failed to select the Laurencia cue. Our results suggest that episodic acidification of coastal waters might limit the ability of pueruli to locate settlement habitats, increasing postsettlement mortality.
    Description: We thank the Steinwachs Family Foundation, which provided funding that supported Gravinese’s postdoctoral fellowship at Mote Marine Laboratory and Aquarium. We also acknowledge the partial support provided by the St. Petersburg College Titan Achievement minigrant program. Page was supported by a Mote Marine Laboratory and Aquarium Postdoctoral Research Fellowship. Postlarval spiny lobsters were collected with a state-issued Special Activity License (SAL-17-1868G-SR). We also thank those who helped with animal collection throughout this work including in-kind support provided by E. Muller and the Mote CAOS facility, as well as E. Bartels and C. Walter of the Coral Reef Monitoring and Assessment Program at Mote Marine Laboratory and Aquarium, as well as other field personnel including: L. Toth, S. Perry, T. Parker, A. Fine, L. Humphrey, and many undergraduate interns. We also thank L. Toth, E. Ross, B. Sharp, C. Crowley, J. Butler, and B. Crowder for editorial comments.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huang, J., Pickart, R. S., Huang, R. X., Lin, P., Brakstad, A., & Xu, F. Sources and upstream pathways of the densest overflow water in the Nordic Seas. Nature Communications, 11(1), (2020): 5389, doi:10.1038/s41467-020-19050-y.
    Description: Overflow water from the Nordic Seas comprises the deepest limb of the Atlantic Meridional Overturning Circulation, yet questions remain as to where it is ventilated and how it reaches the Greenland-Scotland Ridge. Here we use historical hydrographic data from 2005-2015, together with satellite altimeter data, to elucidate the source regions of the Denmark Strait and Faroe Bank Channel overflows and the pathways feeding these respective sills. A recently-developed metric is used to calculate how similar two water parcels are, based on potential density and potential spicity. This reveals that the interior of the Greenland Sea gyre is the primary wintertime source of the densest portion of both overflows. After subducting, the water progresses southward along several ridge systems towards the Greenland-Scotland Ridge. Kinematic evidence supports the inferred pathways. Extending the calculation back to the 1980s reveals that the ventilation occurred previously along the periphery of the Greenland Sea gyre.
    Description: Funding for the study was provided by the US National Science Foundation under grants OCE-1558742 (J.H., R.P.) and OCE-1259618 (P.L.); the Bergen Research Foundation under grant BFS2016REK01 (A.B.); and the National Natural Science Foundation of China No. 41576018 (F.X.) and 41606020 (F.X.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Colin, S. P., Costello, J. H., Sutherland, K. R., Gemmell, B. J., Dabiri, J. O., & Du Clos, K. T. The role of suction thrust in the metachronal paddles of swimming invertebrates. Scientific Reports, 10(1), (2020): 17790, doi:10.1038/s41598-020-74745-y.
    Description: An abundance of swimming animals have converged upon a common swimming strategy using multiple propulsors coordinated as metachronal waves. The shared kinematics suggest that even morphologically and systematically diverse animals use similar fluid dynamic relationships to generate swimming thrust. We quantified the kinematics and hydrodynamics of a diverse group of small swimming animals who use multiple propulsors, e.g. limbs or ctenes, which move with antiplectic metachronal waves to generate thrust. Here we show that even at these relatively small scales the bending movements of limbs and ctenes conform to the patterns observed for much larger swimming animals. We show that, like other swimming animals, the propulsors of these metachronal swimmers rely on generating negative pressure along their surfaces to generate forward thrust (i.e., suction thrust). Relying on negative pressure, as opposed to high pushing pressure, facilitates metachronal waves and enables these swimmers to exploit readily produced hydrodynamic structures. Understanding the role of negative pressure fields in metachronal swimmers may provide clues about the hydrodynamic traits shared by swimming and flying animals.
    Description: This work was funded by National Science Foundation (NSF OCE 1829913 to SPC), the Alfred P. Sloan Foundation (to BJG) and the Gordon and Betty Moore Foundation (8835 to KRS). The work was also supported by the Roger Williams Foundation to Promote Scholarship and Teaching.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wiechmann, A. F., Martin, T. A., & Horb, M. E. CRISPR/Cas9 mediated mutation of the mtnr1a melatonin receptor gene causes rod photoreceptor degeneration in developing Xenopus tropicalis. Scientific Reports, 10(1), (2020): 13757, doi:10.1038/s41598-020-70735-2.
    Description: Nighttime surges in melatonin levels activate melatonin receptors, which synchronize cellular activities with the natural light/dark cycle. Melatonin receptors are expressed in several cell types in the retina, including the photon-sensitive rods and cones. Previous studies suggest that long-term photoreceptor survival and retinal health is in part reliant on melatonin orchestration of circadian homeostatic activities. This scenario would accordingly envisage that disruption of melatonin receptor signaling is detrimental to photoreceptor health. Using in vivo CRISPR/Cas9 genomic editing, we discovered that a small deletion mutation of the Mel1a melatonin receptor (mtnr1a) gene causes a loss of rod photoreceptors in retinas of developing Xenopus tropicalis heterozygous, but not homozygous mutant tadpoles. Cones were relatively spared from degeneration, and the rod loss phenotype was not obvious after metamorphosis. Localization of Mel1a receptor protein appeared to be about the same in wild type and mutant retinas, suggesting that the mutant protein is expressed at some level in mutant retinal cells. The severe impact on early rod photoreceptor viability may signify a previously underestimated critical role in circadian influences on long-term retinal health and preservation of sight. These data offer evidence that disturbance of homeostatic, circadian signaling, conveyed through a mutated melatonin receptor, is incompatible with rod photoreceptor survival.
    Description: The National Xenopus Resource (NXR) Genome Editing Workshop conducted at the Marine Biological Laboratory (MBL) contributed to the early development of this project (A.F.W. & M.E.H). We thank Dr. Marcin Wlizla, Sean McNamara, Rosie Falco, and Dr. Will Ratzen of the NXR and MBL for their advice and assistance with the F0 founders. We thank Cynthia Bulmer of the NIH Diabetes CoBRE (P20GM104934) Core Histology Facility at the University of Oklahoma Health Sciences Center (OUHSC) for preparing the histology specimens. We thank Dr. David Sherry of OUHSC for critically reading the initial version of the manuscript and his helpful advice during this study.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dzwonkowski, B., Coogan, J., Fournier, S., Lockridge, G., Park, K., & Lee, T. Compounding impact of severe weather events fuels marine heatwave in the coastal ocean. Nature Communications, 11(1), (2020): 4623, doi:10.1038/s41467-020-18339-2.
    Description: Exposure to extreme events is a major concern in coastal regions where growing human populations and stressed natural ecosystems are at significant risk to such phenomena. However, the complex sequence of processes that transform an event from notable to extreme can be challenging to identify and hence, limit forecast abilities. Here, we show an extreme heat content event (i.e., a marine heatwave) in coastal waters of the northern Gulf of Mexico resulted from compounding effects of a tropical storm followed by an atmospheric heatwave. This newly identified process of generating extreme ocean temperatures occurred prior to landfall of Hurricane Michael during October of 2018 and, as critical contributor to storm intensity, likely contributed to the subsequent extreme hurricane. This pattern of compounding processes will also exacerbate other environmental problems in temperature-sensitive ecosystems (e.g., coral bleaching, hypoxia) and is expected to have expanding impacts under global warming predictions.
    Description: This work would not have been possible without the help of the Tech Support Group at the Dauphin Island Sea Lab. A portion of this work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. This research was made possible by the NOAA RESTORE Science Program (NA17NOS4510101 and NA19NOS4510194) and NOAA NGI NMFS Regional Collaboration Network (18-NGI3-61).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-11-09
    Description: The aim of this study is to improve our knowledge of the attenuation structure in the Southern Apennines using a new amplitude ratio tomography method (Phillips et al., Geophys Res Lett 32(21): L21301, 2005) applied on both direct and coda envelope measurements derived from 150 events recorded by 47 stations of the Istituto Nazionale di Geofisica e Vulcanologia National Seismic Network (Rete Sismica Nazionale Centralizzata). The twodimensional (2-D) analysis allows us to take into account lateral crustal variations and heterogeneities of this region. Using the same event and station distribution, we also applied a simple 1-D methodology, and the performance of the 1-D and 2-D path assumptions is tested by comparing the average interstation variance for the path-corrected amplitudes using coda and direct waves. In general, coda measurement results are more stable than using direct waves when the same methodology is applied. Using the 2-D approach, we observe more stable results for both waves. However, the improvement is quite small, probably because the crustal heterogeneity is weak. This means that, for this region, the 1-D path assumption is a good approximation of the attenuation characteristics of the region. A comparison between Q tomography images obtained using direct and coda amplitudes shows similar results, consistent with the geology of the region. In fact, we observe low Q along the Apennine chain toward the Tyrrhenian Sea and higher values to the east, in correspondence with the Gargano zone that is related to the Apulia Carbonate Platform. Finally, we compared our results with the coda Q values proposed by Bianco et al. (Geophys J Int 150:10–22, 2002) for the same region. The good agreement validates our results as the authors used a completely independent methodology.
    Description: Published
    Description: 355–365
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: coda Q tomography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-13
    Description: Poás is a complex stratovolcano with an altitude of 2,708 m asl, located in the Cordillera Volcánica Central of Costa Rica. Prior to 2017, the last three historical eruptions occurred on 7 February 1834, between January and May 1910 and during the period 1953-1955. Very few literature exists on the 1834 eruption. The only references state that it was an important event, that ash reached 〉53 km W-SW of Poás, and that it harmed the grasslands around the volcano. Related deposits of this eruption suggest phreatic activity, which launched bombs and blocks. Moreover, there is evidence of pyroclastic flow deposits near the crater. The 1910 eruption is better described. Despite the fact that ash fall is only reported near the volcano, a volume of the deposit of 1.6 x 107 m3 is estimated. Deposits of the eruption are white in color with many hydrothermally altered, and minor presence of juvenile fragments (vesicular lapilli). The eruption is classified as vulcanian, with deposits of ash fall and pyroclastic flows close to the crater. A Volcano Explosivity Index 3 (VEI 3) is estimated. The eruption affected agriculture. The 1953-1955 eruptions had a longer duration. Various ash fall deposits at several sites are reported. Deposits of this eruption, easily distinguished in the field, are black scoria lapilli, bombs with, sometimes fusiform, bread crust textures. In the eastern sector of the crater bombs can reach meters in size; such large bombs near the eruption centre at one side suggest the inclination of the eruptive conduct, or an asymmetrical vent-crater system. Inside the crater a 40 m-high dome and a lava flow were extruded during the eruption. Towards the east side of the current Laguna Caliente crater lake, relicts of a 8.5 m thick lava pool are found. During the entire eruptive episode, the acid lake presumably lacked. The eruption is described to be of a mixed type: strombolian, phreatomagmatic, vulcanian and dome extrusion eruptions. Considering the characteristics of this eruption, the height of the eruption column, ejected volume (2.1 x 107  m3), and its presumed duration, a VEI 3 is estimated. The eruptions damaged agricultural activity (including cattle), and forced the spontaneous evacuation of some people. In April 2017 magmatic eruptions followed a decade-long period of intense phreatic activity. These eruptions destroyed the 1953-1955 Dome and led to the complete dry out of Laguna Caliente. Pyroclastic cones and sulphur volcanism manifested at the bottom of the former crater lake bottom. The 2017 eruption severely affected touristic activities at and near Poás, with an estimated economic loss of 20 million dollars. By May-August 2018 Laguna Caliente reappeared. The volcanic hazards related to the three studied historical eruptions are: pyroclastic flows (at least 1 km from the eruptive centre, including reaching the current mirador sector), ballistics (bomb ejections up to 2 km from the emission centre), dispersion and fall of pyroclasts (tens of kms), gas emission and acid rain, dispersed by WSW dominant winds, and lahars in most of the river canyons SW of the volcano.  
    Description: Published
    Description: 261-299
    Description: 1V. Storia eruttiva
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-10-26
    Description: Author Posting. © The Author(s), 2020. This is the author's version of the work. It is posted here by permission of Nature Research for personal use, not for redistribution. The definitive version was published in Bramante, J. F., Ford, M. R., Kench, P. S., Ashton, A. D., Toomey, M. R., Sullivan, R. M., Karnauskas, K. B., Ummenhofer, C. C., & Donnelly, J. P. (2020). Increased typhoon activity in the Pacific deep tropics driven by Little Ice Age circulation changes. Nature Geoscience, 13, 806–811. doi:10.1038/s41561-020-00656-2.
    Description: The instrumental record reveals that tropical cyclone activity is sensitive to oceanic and atmospheric variability on inter-annual and decadal scales. However, our understanding of the influence of climate on tropical cyclone behaviour is restricted by the short historical record and the sparseness of prehistorical reconstructions, particularly in the western North Pacific, where coastal communities suffer loss of life and livelihood from typhoons annually. Here, to explore past regional typhoon dynamics, we reconstruct three millennia of deep tropical North Pacific cyclogenesis. Combined with existing records, our reconstruction demonstrates that low-baseline typhoon activity prior to 1350 ce was followed by an interval of frequent storms during the Little Ice Age. This pattern, concurrent with hydroclimate proxy variability, suggests a centennial-scale link between Pacific hydroclimate and tropical cyclone climatology. An ensemble of global climate models demonstrates a migration of the Pacific Walker circulation and variability in two Pacific climate modes during the Little Ice Age, which probably contributed to enhanced tropical cyclone activity in the tropical western North Pacific. In the next century, projected changes to the Pacific Walker circulation and expansion of the tropics will invert these Little Ice Age hydroclimate trends, potentially reducing typhoon activity in the deep tropical Pacific.
    Description: This work was supported by the Strategic Environmental Research and Development Program (SERDP RC-2336). C.C.U. acknowledges support from NSF under AGS-1602455. We thank student intern D. Carter for extensive labwork on core LTD3. We acknowledge the WCRP’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. CMIP5 model output was provided by the WHOI CMIP5 Community Storage Server via their website: http://cmip5.whoi.edu/. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.
    Description: 2021-05-16
    Keywords: Tropical cyclones ; Little Ice Age ; Last millennium ; Paleoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-07-13
    Description: We present an interdisciplinary review of the observed and projected variations in atmospheric and oceanic circulation within the southwestern South Atlantic focused on basin-scale processes driven by climate change, and their potential impact on the regional fisheries. The observed patterns of atmospheric circulation anomalies are consistent with anthropogenic climate change. There is strong scientific evidence suggesting that the Brazil Current is intensifying and shifting southwards during the past decades in response to changes in near-surface wind patterns, leading to intense ocean warming along the path of the Brazil Current, the South Brazil Bight, and in the Río de la Plata. These changes are presumably responsible for the poleward shift of commercially important pelagic species in the region and the long-term shift from cold-water to warm-water species in industrial fisheries of Uruguay. Scientific and traditional knowledge shows that climate change is also affecting small-scale fisheries. Long-term records suggest that mass mortalities decimated harvested clam populations along coastal ecosystems of the region, leading to prolonged shellfishery closures. More frequent and intense harmful algal blooms together with unfavorable environmental conditions driven by climate change stressors affect coastal shellfisheries, impact economic revenues, and damage the livelihood of local communities. We identify future modelling needs to reduce uncertainty in the expected effects of climate change on marine fisheries. However, the paucity of fisheries data prevents a more effective assessment of the impact of climate change on fisheries and hampers the ability of governments and communities to adapt to these changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Giuffre, C., Hinow, P., Jiang, H., & Strickler, J. R. Oscillations in the near-field feeding current of a calanoid copepod are useful for particle sensing. Scientific Reports, 9(1), (2019): 17742, doi: 10.1038/s41598-019-54264-1.
    Description: Calanoid copepods are small crustaceans that constitute a major element of aquatic ecosystems. Key to their success is their feeding apparatus consisting of sensor-studded mouth appendages that are in constant motion. These appendages generate a feeding current to enhance the encounter probability with food items. Additionally, sensing enables the organism to determine the position and quality of food particles, and to alter the near-field flow to capture and manipulate the particles for ingestion or rejection. Here we observe a freely swimming copepod Leptodiaptomus sicilis in multiple perspectives together with suspended particles that allow us to analyse the flow field created by the animal. We observe a highly periodic motion of the mouth appendages that is mirrored in oscillations of nearby tracer particles. We propose that the phase shift between the fluid and the particle velocities is sufficient for mechanical detection of the particles entrained in the feeding current. Moreover, we propose that an immersed algal cell may benefit from the excitation by increased uptake of dissolved inorganic compounds.
    Description: We acknowledge funding from the Simons Foundation (grant #278436 to PH) during two visits of HJ to Milwaukee. HJ was also supported by NSF grant OCE-1559062. We thank Dr. Russell Cuhel (School of Freshwater Sciences, University of Wisconsin - Milwaukee) for collecting the animals from Lake Michigan and four unknown readers for valuable comments.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Barry, P. H., Nakagawa, M., Giovannelli, D., de Moor, J. M., Schrenk, M., Seltzer, A. M., Manini, E., Fattorini, D., di Carlo, M., Regoli, F., Fullerton, K., & Lloyd, K. G. Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin. Scientific Data, 6(1), (2019): 284, doi: 10.1038/s41597-019-0302-4.
    Description: In 2017, fluid and gas samples were collected across the Costa Rican Arc. He and Ne isotopes, C isotopes as well as total organic and inorganic carbon concentrations were measured. The samples (n = 24) from 2017 are accompanied by (n = 17) samples collected in 2008, 2010 and 2012. He-isotopes ranged from arc-like (6.8 RA) to crustal (0.5 RA). Measured dissolved inorganic carbon (DIC) δ13CVPDB values varied from 3.55 to −21.57‰, with dissolved organic carbon (DOC) following the trends of DIC. Gas phase CO2 only occurs within ~20 km of the arc; δ13CVPDB values varied from −0.84 to −5.23‰. Onsite, pH, conductivity, temperature and dissolved oxygen (DO) were measured; pH ranged from 0.9–10.0, conductivity from 200–91,900 μS/cm, temperatures from 23–89 °C and DO from 2–84%. Data were used to develop a model which suggests that ~91 ± 4.0% of carbon released from the slab/mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition with an additional 3.3 ± 1.3% incorporated into autotrophic biomass.
    Description: This work was principally supported by a grant (G-2016-7206) from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B. In addition, P.H.B. was supported by NSF grant 1144559 during a portion of this project. D.G. was supported by an NSF grant (MCB 15–17567) and an ELSI Origins Network (EON) research Fellowship, which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. DG was also partially supported a Deep Life Modeling and Visualization Fellowship, which is supported by the Deep Carbon Observatory. This work was further supported in party by JSPS KAKENHI grants (JP17K14412, JP17H06105, JP17H02989) awarded to M.N., NSF OCE-1431598 and NASA Exobiology NNX16AL59G awarded to K.G.L. J.M.d.M. gratefully acknowledges funding from Universidad Nacional Costa Rica, the World Bank, and the Costa Rican Ley Transitorio 8933 used to acquire a laser carbon isotope system in collaboration with R. Sánchez-Murillo and G. Esquivel-Hernandez. M.N. produced the most data. We thank Patricia Barcala Dominguez for assistance with figure illustration. We thank Bruce Deck, Marten Wahlen and Keith Blackmon for analytical assistance at SIO. Finally, we acknowledge D. Hummer, T. Lopez, C.A. Pratt, Y. Alpízar Segura, A. Battaglia, P. Beaudry, G. Bini, M. Cascante, G. d’Errico, K. Fullerton, E. Gazel, G. González, S. A. Halldórsson, K. Iacovino, T. Ilanko, J.T. Kulongoski, M. Martínez, H. Miller, S. Ono, S. Patwardhan, C.J. Ramírez, F. Smedile, S. Turner, C. Vetriani, M. Yücel, C.J. Ballentine, T.P. Fischer, and D.R. Hilton, who were instrumental in proposal writing, sample collection, sample analysis and data analysis.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chaput, D. L., Fowler, A. J., Seo, O., Duhn, K., Hansel, C. M., & Santelli, C. M. Mn oxide formation by phototrophs: spatial and temporal patterns, with evidence of an enzymatic superoxide-mediated pathway. Scientific Reports, 9(1), (2019): 18244, doi: 10.1038/s41598-019-54403-8.
    Description: Manganese (Mn) oxide minerals influence the availability of organic carbon, nutrients and metals in the environment. Oxidation of Mn(II) to Mn(III/IV) oxides is largely promoted by the direct and indirect activity of microorganisms. Studies of biogenic Mn(II) oxidation have focused on bacteria and fungi, with phototrophic organisms (phototrophs) being generally overlooked. Here, we isolated phototrophs from Mn removal beds in Pennsylvania, USA, including fourteen Chlorophyta (green algae), three Bacillariophyta (diatoms) and one cyanobacterium, all of which consistently formed Mn(III/IV) oxides. Isolates produced cell-specific oxides (coating some cells but not others), diffuse biofilm oxides, and internal diatom-specific Mn-rich nodules. Phototrophic Mn(II) oxidation had been previously attributed to abiotic oxidation mediated by photosynthesis-driven pH increases, but we found a decoupling of Mn oxide formation and pH alteration in several cases. Furthermore, cell-free filtrates of some isolates produced Mn oxides at specific time points, but this activity was not induced by Mn(II). Manganese oxide formation in cell-free filtrates occurred via reaction with the oxygen radical superoxide produced by soluble extracellular proteins. Given the known widespread ability of phototrophs to produce superoxide, the contribution of phototrophs to Mn(II) oxidation in the environment may be greater and more nuanced than previously thought.
    Description: This work was funded by a Smithsonian Scholarly Studies grant to CMS, by a Smithsonian Postdoctoral Fellowship to DLC, by the National Science Foundation, grant number CBET-1336496, to CMH and CMS, and by MnDRIVE Environment at the University of Minnesota to CMS. We thank Margaret Dunn and Cliff Denholm, Stream Restoration Inc., for assistance and access to field sites, Carolyn Zeiner (WHOI/Harvard) for useful discussions and advice regarding ROS experiments, as well as Jeff Post, Tim Rose and Tim Gooding (Smithsonian NMNH) for assistance with the SEM/EDS work. Portions of the laboratory work were conducted in and with the support of the L.A.B. facilities at the National Museum of Natural History, Smithsonian Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ciacci, C., Grimmelpont, M. V., Corsi, I., Bergami, E., Curzi, D., Burini, D., Bouchet, V. M. P., Ambrogini, P., Gobbi, P., Ujiié, Y., Ishitani, Y., Coccioni, R., Bernhard, J. M., & Frontalini, F. Nanoparticle-biological interactions in a marine benthic foraminifer. Scientific Reports, (91), (2019): 19441, doi:10.1038/s41598-019-56037-2.
    Description: The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO2), polystyrene (PS) and silicon dioxide (SiO2), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.
    Description: The authors are very grateful to two anonymous reviewers for their thoughtful and valuable comments that have greatly improved our contribution. NP characterization by DLS was conducted at the facilities of the Department of Biotechnologies, Chemistry and Pharmacy of the University of Siena (Italy). The authors acknowledge Prof. Andrea M. Atrei for the support in DLS analysis. Margot V. Grimmelpont’s stay at Urbino University was supported by an ERASMUS + fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marzen, R. E., Shillington, D. J., Lizarralde, D., Knapp, J. H., Heffner, D. M., Davis, J. K., & Harder, S. H. Limited and localized magmatism in the Central Atlantic Magmatic Province. Nature Communications, 11(1), (2020): 3397, doi:10.1038/s41467-020-17193-6.
    Description: The Central Atlantic Magmatic Province (CAMP) is the most aerially extensive magmatic event in Earth’s history, but many questions remain about its origin, volume, and distribution. Despite many observations of CAMP magmatism near Earth’s surface, few constraints exist on CAMP intrusions at depth. Here we present detailed constraints on crustal and upper mantle structure from wide-angle seismic data across the Triassic South Georgia Rift that formed shortly before CAMP. Lower crustal magmatism is concentrated where synrift sedimentary fill is thickest and the crust is thinnest, suggesting that lithospheric thinning influenced the locus and volume of magmatism. The limited distribution of lower crustal intrusions implies modest total CAMP volumes of 85,000 to 169,000 km3 beneath the South Georgia Rift, consistent with moderately elevated mantle potential temperatures (〈1500 °C). These results suggest that CAMP magmatism in the South Georgia Rift is caused by syn-rift decompression melting of a warm, enriched mantle.
    Description: This project was funded by an NSF GRFP fellowship DGE 16-44869 and a grant from the National Science Foundation’s Division of Earth Sciences (NSF-EAR) EarthScope program through the collaborative awards EAR-1144534/−1144829/−1144391. Data collection was made possible with help from IRIS PASSCAL, the University of Texas El Paso Seismic Source Facility, the teams of students who deployed and recovered geophones, and the support of landowners and county and state officials. We thank Alistair Harding for the VMTomo code, Nathan Miller for the PyVM toolbox, and William Wilcock for maintaining the Upicker package to pick arrivals.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Domeignoz-Horta, L. A., Pold, G., Liu, X. A., Frey, S. D., Melillo, J. M., & DeAngelis, K. M. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 11(1), (2020): 3684, doi:10.1038/s41467-020-17502-z.
    Description: Empirical evidence for the response of soil carbon cycling to the combined effects of warming, drought and diversity loss is scarce. Microbial carbon use efficiency (CUE) plays a central role in regulating the flow of carbon through soil, yet how biotic and abiotic factors interact to drive it remains unclear. Here, we combine distinct community inocula (a biotic factor) with different temperature and moisture conditions (abiotic factors) to manipulate microbial diversity and community structure within a model soil. While community composition and diversity are the strongest predictors of CUE, abiotic factors modulated the relationship between diversity and CUE, with CUE being positively correlated with bacterial diversity only under high moisture. Altogether these results indicate that the diversity × ecosystem-function relationship can be impaired under non-favorable conditions in soils, and that to understand changes in soil C cycling we need to account for the multiple facets of global changes.
    Description: Funding for this project was provided by the Department of Energy grant DE-SC0016590 to K.M.D. and S.D.F., and an American Association of University Women Dissertation fellowship to G.P. We would also like to thank Stuart Grandy and Kevin Geyer for the fruitful discussions and Mary Waters, Courtney Bly and Ana Horta for their help with samples processing.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tao, C., Seyfried, W. E., Jr., Lowell, R. P., Liu, Y., Liang, J., Guo, Z., Ding, K., Zhang, H., Liu, J., Qiu, L., Egorov, I., Liao, S., Zhao, M., Zhou, J., Deng, X., Li, H., Wang, H., Cai, W., Zhang, G., Zhou, H., Lin, J., & Li, W. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nature Communications, 11(1), (2020): 1300, doi:10.1038/s41467-020-15062-w.
    Description: Coupled magmatic and tectonic activity plays an important role in high-temperature hydrothermal circulation at mid-ocean ridges. The circulation patterns for such systems have been elucidated by microearthquakes and geochemical data over a broad spectrum of spreading rates, but such data have not been generally available for ultra-slow spreading ridges. Here we report new geophysical and fluid geochemical data for high-temperature active hydrothermal venting at Dragon Horn area (49.7°E) on the Southwest Indian Ridge. Twin detachment faults penetrating to the depth of 13 ± 2 km below the seafloor were identified based on the microearthquakes. The geochemical composition of the hydrothermal fluids suggests a long reaction path involving both mafic and ultramafic lithologies. Combined with numerical simulations, our results demonstrate that these hydrothermal fluids could circulate ~ 6 km deeper than the Moho boundary and to much greater depths than those at Trans-Atlantic Geotraverse and Logachev-1 hydrothermal fields on the Mid-Atlantic Ridge.
    Description: This work was supported by National Key R&D Program of China under contract no. 2018YFC0309901, 2017YFC0306603, 2017YFC0306803, and 2017YFC0306203, COMRA Major Project under contract No. DY135-S1-01-01 and No. DY135-S1-01-06.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., Krsnik, E., Gischler, E., Hansen, M., Henkel, D., Price, G. D., Raddatz, J., Scholz, D., & Fiebig, J. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11(1), (2020): 4005, doi:10.1038/s41467-020-17501-0.
    Description: Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.
    Description: This work became possible through DFG grant “INST 161/871-1” and the Investment in Science Fund at Woods Hole Oceanographic Institution. The authors would like to thank Sven Hofmann and Manuel Schumann for their assistance in the joint Goethe University – Senckenberg BiK-F Stable Isotope Facility at the Institute of Geosciences, Goethe University Frankfurt. K.M. acknowledges funding through “DFG ME 4955/1-1”, E.K. through “DFG MU 2845/6-1”, D.S. through “DFG SCHO 1274/8-1” and “DFG SCHO 1274/11-1”, and M.H. through “DFG HA 8694/1-1”. C.S. acknowledges funding from the University of Innsbruck. A review of the manuscript by David Evans on behalf of the USGS is acknowledged.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rodysill, J. R., Donnelly, J. P., Sullivan, R., Lane, P. D., Toomey, M., Woodruff, J. D., Hawkes, A. D., MacDonald, D., d'Entremont, N., McKeon, K., Wallace, E., & van Hengstum, P. J. Historically unprecedented Northern Gulf of Mexico hurricane activity from 650 to 1250 CE. Scientific Reports, 10(1), (2020): 19092. doi:10.1038/s41598-020-75874-0.
    Description: Hurricane Michael (2018) was the first Category 5 storm on record to make landfall on the Florida panhandle since at least 1851 CE (Common Era), and it resulted in the loss of 59 lives and $25 billion in damages across the southeastern U.S. This event placed a spotlight on recent intense (exceeding Category 4 or 5 on the Saffir-Simpson Hurricane Wind Scale) hurricane landfalls, prompting questions about the natural range in variability of hurricane activity that the instrumental record is too short to address. Of particular interest is determining whether the frequency of recent intense hurricane landfalls in the northern Gulf of Mexico (GOM) is within or outside the natural range of intense hurricane activity prior to 1851 CE. In this study, we identify intense hurricane landfalls in northwest Florida during the past 2000 years based on coarse anomaly event detection from two coastal lacustrine sediment archives. We identified a historically unprecedented period of heightened storm activity common to four Florida panhandle localities from 650 to 1250 CE and a shift to a relatively quiescent storm climate in the GOM spanning the past six centuries. Our study provides long-term context for events like Hurricane Michael and suggests that the observational period 1851 CE to present may underrepresent the natural range in landfalling hurricane activity.
    Description: Funding for this project was provided by the Strategic Environmental Research and Development Program (SERDP) grant and NSF awards 0903020, 1902463, and 1854980 awarded to Jeffrey Donnelly, and the USGS Land Change Science Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kennedy, E. B. L., Buresch, K. C., Boinapally, P., & Hanlon, R. T. Octopus arms exhibit exceptional flexibility. Scientific Reports, 10(1), (2020): 20872. doi:10.1038/s41598-020-77873-7.
    Description: The octopus arm is often referred to as one of the most flexible limbs in nature, yet this assumption requires detailed inspection given that this has not been measured comprehensively for all portions of each arm. We investigated the diversity of arm deformations in Octopus bimaculoides with a frame-by-frame observational analysis of laboratory video footage in which animals were challenged with different tasks. Diverse movements in these hydrostatic arms are produced by some combination of four basic deformations: bending (orally, aborally; inward, outward), torsion (clockwise, counter-clockwise), elongation, and shortening. More than 16,500 arm deformations were observed in 120 min of video. Results showed that all eight arms were capable of all four types of deformation along their lengths and in all directions. Arms function primarily to bring the sucker-lined oral surface in contact with target surfaces. Bending was the most common deformation observed, although the proximal third of the arms performed relatively less bending and more shortening and elongation as compared with other arm regions. These findings demonstrate the exceptional flexibility of the octopus arm and provide a basis for investigating motor control of the entire arm, which may aid the future development of soft robotics.
    Description: We gratefully acknowledge funding from Grant N00014-19-1-2445 from the Office of Naval Research, Tom McKenna and Marc Steinberg, Program Managers. We also thank the staff of the Marine Resources Center at MBL for assistance with water quality measurements, seawater system maintenance, and collection of food items for octopuses.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Naert, T., Tulkens, D., Edwards, N. A., Carron, M., Shaidani, N. I., Wlizla, M., Boel, A., Demuynck, S., Horb, M. E., Coucke, P., Willaert, A., Zorn, A. M., & Vleminckx, K. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Scientific Reports, 10(1), (2020): 14662, doi:10.1038/s41598-020-71412-0.
    Description: CRISPR/Cas9 genome editing has revolutionized functional genomics in vertebrates. However, CRISPR/Cas9 edited F0 animals too often demonstrate variable phenotypic penetrance due to the mosaic nature of editing outcomes after double strand break (DSB) repair. Even with high efficiency levels of genome editing, phenotypes may be obscured by proportional presence of in-frame mutations that still produce functional protein. Recently, studies in cell culture systems have shown that the nature of CRISPR/Cas9-mediated mutations can be dependent on local sequence context and can be predicted by computational methods. Here, we demonstrate that similar approaches can be used to forecast CRISPR/Cas9 gene editing outcomes in Xenopus tropicalis, Xenopus laevis, and zebrafish. We show that a publicly available neural network previously trained in mouse embryonic stem cell cultures (InDelphi-mESC) is able to accurately predict CRISPR/Cas9 gene editing outcomes in early vertebrate embryos. Our observations can have direct implications for experiment design, allowing the selection of guide RNAs with predicted repair outcome signatures enriched towards frameshift mutations, allowing maximization of CRISPR/Cas9 phenotype penetrance in the F0 generation.
    Description: Research in the Vleminckx laboratory is supported by the Research Foundation—Flanders (FWO-Vlaanderen) (Grants G0A1515N and G029413N), by the Belgian Science Policy (Interuniversity Attraction Poles—IAP7/07) and by the Concerted Research Actions from Ghent University (BOF15/GOA/011). Further support was obtained by the Hercules Foundation, Flanders (Grant AUGE/11/14) and the Desmoid Tumor Research Foundation and the Desmoid Tumour Foundation Canada. T.N. is funded by “Kom op tegen Kanker” (Stand up to Cancer), the Flemish cancer society and previously held PhD fellowship with VLAIO-HERMES during the course of this work. D.T. and M. C. hold a PhD fellowship from the Research Foundation-Flanders (FWO-Vlaanderen). The Zorn Lab is supported by Funding from NIH National Institute of Child Health and Human Development (NICHD) P01 HD093363. A.W. and A.B. are supported by the Ghent University (Universiteit Gent) Methusalem grant BOFMET2015000401 to Anne De Paepe. The National Xenopus Resource and Horb lab is supported by funding from the National Institutes of Health (P40 OD010997 and R01 HD084409).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, D., Ma, Q., Valiela, I., Anderson, D. M., Keesing, J. K., Gao, K., Zhen, Y., Sun, X., & Wang, Y. Role of C4 carbon fixation in Ulva prolifera, the macroalga responsible for the world's largest green tides. Communications Biology, 3(1), (2020): 494, doi:10.1038/s42003-020-01225-4.
    Description: Most marine algae preferentially assimilate CO2 via the Calvin-Benson Cycle (C3) and catalyze HCO3− dehydration via carbonic anhydrase (CA) as a CO2-compensatory mechanism, but certain species utilize the Hatch-Slack Cycle (C4) to enhance photosynthesis. The occurrence and importance of the C4 pathway remains uncertain, however. Here, we demonstrate that carbon fixation in Ulva prolifera, a species responsible for massive green tides, involves a combination of C3 and C4 pathways, and a CA-supported HCO3− mechanism. Analysis of CA and key C3 and C4 enzymes, and subsequent analysis of δ13C photosynthetic products showed that the species assimilates CO2 predominately via the C3 pathway, uses HCO3− via the CA mechanism at low CO2 levels, and takes advantage of high irradiance using the C4 pathway. This active and multi-faceted carbon acquisition strategy is advantageous for the formation of massive blooms, as thick floating mats are subject to intense surface irradiance and CO2 limitation.
    Description: This work was supported by the State Key Project of Research and Development Plan, Ministry of Science and Technology of the Peopleʼs Republic of China (2016YFC1402106). Support for D.M.A. provided by the Woods Hole Oceanographic Institution—Ocean University of China Cooperative Research Initiative. We thank Dr. Juntian Xu, Jing Ma, Ying Li, and Chenglong Ji for assisting culture experiments and sample analysis.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jiao, F., Cannon, K. S., Lin, Y. C., Gladfelter, A. S., & Scheuring, S. The hierarchical assembly of septins revealed by high-speed AFM. Nature Communications, 11(1), (2020): 5062, doi:10.1038/s41467-020-18778-x.
    Description: Septins are GTP-binding proteins involved in diverse cellular processes including division and membrane remodeling. Septins form linear, palindromic heteromeric complexes that can assemble in filaments and higher-order structures. Structural studies revealed various septin architectures, but questions concerning assembly-dynamics and -pathways persist. Here we used high-speed atomic force microscopy (HS-AFM) and kinetic modeling which allowed us to determine that septin filament assembly was a diffusion-driven process, while formation of higher-order structures was complex and involved self-templating. Slightly acidic pH and increased monovalent ion concentrations favor filament-assembly, -alignment and -pairing. Filament-alignment and -pairing further favored diffusion-driven assembly. Pairing is mediated by the septin N-termini face, and may occur symmetrically or staggered, likely important for the formation of higher-order structures of different shapes. Multilayered structures are templated by the morphology of the underlying layers. The septin C-termini face, namely the C-terminal extension of Cdc12, may be involved in membrane binding.
    Description: We thank J. Thorner for the generous gift of the CTE mutant plasmids. K.S.C. was supported in part by a grant from NIGMS under award T32 GM119999 and A.S.G., F.J. and S.S. were supported by NIH RO1 GM130934.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Winkler, T. S., van Hengstum, P. J., Donnelly, J. P., Wallace, E. J., Sullivan, R. M., MacDonald, D., & Albury, N. A. Revising evidence of hurricane strikes on Abaco Island (the Bahamas) over the last 700 years. Scientific Reports, 10(1), (2020): 16556, doi:10.1038/s41598-020-73132-x.
    Description: The northern Bahamas have experienced more frequent intense-hurricane impacts than almost anywhere else in the Atlantic since 1850 CE. In 2019, category 5 (Saffir-Simpson scale) Hurricane Dorian demonstrated the destructive potential of these natural hazards. Problematically, determining whether high hurricane activity levels remained constant through time is difficult given the short observational record (〈 170 years). We present a 700-year long, near-annually resolved stratigraphic record of hurricane passage near Thatchpoint Blue Hole (TPBH) on Abaco Island, The Bahamas. Using longer sediment cores (888 cm) and more reliable age-control, this study revises and temporally expands a previous study from TPBH that underestimated the sedimentation rate. TPBH records at least 13 ≥ category 2 hurricanes per century between 1500 to 1670 CE, which exceeds the 9 ≥ category 2 hurricanes per century within 50 km of TPBH since 1850 CE. The eastern United States also experienced frequent hurricanes from 1500 to 1670 CE, but frequency was depressed elsewhere in the Atlantic Ocean. This suggests that spatial heterogeneity in Atlantic hurricane activity since 1850 CE could have persisted throughout the last millennium. This heterogeneity is impacted by climatic and stochastic forcing, but additional high-resolution paleo-hurricane reconstructions are required to assess the mechanisms that impact regional variability.
    Description: Field support was provided by Jody Albury and the staff of Friends of the Environment in Marsh Harbour, The Bahamas, and technical support was provided was provided by M. Horgan and S. Molodtsov. Funding for this project was provided by NSF Awards OCE-1356509, OCE-1356708, OCE-1854917, OCE-1903616, and ICER-1854980. The open access publishing fees for this article have been covered by the Texas A&M University Open Access to Knowledge Fund (OAKFund), supported by the University Libraries.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-24
    Description: The relation between macroseismic intensity and ground shaking makes it possible to transform instrumental Ground Motion Parameters (GMPs) in macroseismic intensity and vice versa, and is therefore useful for making comparisons between estimates of seismic hazard determined in terms of GMPs and macroseismic intensity, and for other engineering and seismological applications. Empirical relationships between macroseismic intensity and different recorded GMPs for the Italian territory are presented in this paper. The coefficients are calibrated using a dataset of horizontal geometrical mean GMPs, i.e. peak ground acceleration (PGA), peak ground velocity (PGV), spectral acceleration (SA) at 0.2, 0.3, 1.0 and 2.0 s from the ITalian ACcelerometric Archive (ITACA; Luzi et al. 2019), and macroseismic intensity at Mercalli-Cancani-Sieberg (MCS) scale from the database DBMI15 (Locati et al. 2019). A dataset was obtained that corresponds to 240 pairs of macroseismic intensity-GMPs from 67 Italian earthquakes in the time window 1972-2016 with moment magnitude ranging from 4.2 to 6.8 and macroseismic intensity in the range [2, 10-11]. The final dataset is developed correlating strong motion stations and macroseismic intensity observations generally within 2 km from each other, but the associations is manually validated through the expert opinion. The adopted functional form is non-linear predicting macroseismic intensity as a function of LogGMPs and vice versa by performing separate regressions. The set of empirical conversion relationships GMP-I MCS -GMP and the associated standard deviations are compared with previous models. The results of an illustrative PSHA, obtained using a new seismogenic zonation (Santulin et al. 2017), proposed as one of the inputs of the new Italian seismic hazard model (Meletti et al. 2017), are used to analyse and compare seismic hazard assessment in terms of PGA and the related seismic hazard map in terms of macroseismic intensity (MCS) obtained using the empirical relationships here proposed for the PGA.
    Description: Published
    Description: 5143–5164
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: macroseismic ; intensity ; groundmotionparameters ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-06-08
    Description: This chapter is arguably the most complete compilation of sulfur volcanism of any given volcano on Earth: Poás. Sulfur volcanism at Poás is described in historical literature since 1828, and in scientific literature since the 1960’s. We first classify the various manifestations of sulfur volcanism at crater lake bearing volcanoes (subaerial and sublacustrine sulfur pools, sulfur spherules, flows, cones/hornitos, and sweat, and pyroclastic and burning sulfur), based on work by Japanese pioneers of the early 1900s. Their first observations and models have passed the test of time and still stand as theories today. Comparing the sulfur volcanism at Poás with the one at other (55) volcanoes, it is honest to say that only White Island (New Zealand) and Kawah Ijen (Indonesia) are the only ones comparable with Poás, being the most dynamic of them all.
    Description: Published
    Description: 45-78
    Description: 4V. Processi pre-eruttivi
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Athanasiadis, P. J., Yeager, S., Kwon, Y. O., Bellucci, A., Smith, D. W., & Tibaldi, S. Decadal predictability of North Atlantic blocking and the NAO. Npj Climate and Atmospheric Science, 3(1), (2020): 20, doi:10.1038/s41612-020-0120-6.
    Description: Can multi-annual variations in the frequency of North Atlantic atmospheric blocking and mid-latitude circulation regimes be skilfully predicted? Recent advances in seasonal forecasting have shown that mid-latitude climate variability does exhibit significant predictability. However, atmospheric predictability has generally been found to be quite limited on multi-annual timescales. New decadal prediction experiments from NCAR are found to exhibit remarkable skill in reproducing the observed multi-annual variations of wintertime blocking frequency over the North Atlantic and of the North Atlantic Oscillation (NAO) itself. This is partly due to the large ensemble size that allows the predictable component of the atmospheric variability to emerge from the background chaotic component. The predictable atmospheric anomalies represent a forced response to oceanic low-frequency variability that strongly resembles the Atlantic Multi-decadal Variability (AMV), correctly reproduced in the decadal hindcasts thanks to realistic ocean initialization and ocean dynamics. The occurrence of blocking in certain areas of the Euro-Atlantic domain determines the concurrent circulation regime and the phase of known teleconnections, such as the NAO, consequently affecting the stormtrack and the frequency and intensity of extreme weather events. Therefore, skilfully predicting the decadal fluctuations of blocking frequency and the NAO may be used in statistical predictions of near-term climate anomalies, and it provides a strong indication that impactful climate anomalies may also be predictable with improved dynamical models.
    Description: This study received support by the Blue-Action project (European Union’s Horizon 2020 research and innovation program, #727852). A.B. was supported by the H2020 EUCP (grant no. GA 776613) project. S.Y. acknowledges the support of National Science Foundation (NSF) grants OPP-1737377 and OCE-1243015. NCAR is a major facility sponsored by NSF under Cooperative Agreement No. 1852977. The CESM-DPLE was generated using computational resources provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231, as well as by an Accelerated Scientific Discovery grant for Cheyenne (https://doi.org/10.5065/D6RX99HX) that was awarded by NCAR’s Computational and Information Systems Laboratory. Y.-O.K. was supported by the DOE Regional and Global Model Analysis Program (DE-SC0019492), and the NSF Arctic Natural Science Program (OPP-1736738) and Climate and Large-scale Dynamics Program (AGS-1355339).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Romagosa, M., Baumgartner, M., Cascão, I., Lammers, M. O., Marques, T. A., Santos, R. S., & Silva, M. A. Baleen whale acoustic presence and behaviour at a Mid-Atlantic migratory habitat, the Azores Archipelago. Scientific Reports, 10(1), (2020): 4766, doi: 10.1038/s41598-020-61849-8.
    Description: The identification of important areas during the annual life cycle of migratory animals, such as baleen whales, is vital for their conservation. In boreal springtime, fin and blue whales feed in the Azores on their way to northern latitudes while sei whales migrate through the archipelago with only occasional feeding. Little is known about their autumn or winter presence or their acoustic behaviour in temperate migratory habitats. This study used a 5-year acoustic data set collected by autonomous recorders in the Azores that were processed and analysed using an automated call detection and classification system. Fin and blue whales were acoustically present in the archipelago from autumn to spring with marked seasonal differences in the use of different call types. Diel patterns of calling activity were only found for fin whales with more calls during the day than night. Sei whales showed a bimodal distribution of acoustic presence in spring and autumn, corresponding to their expected migration patterns. Diel differences in sei whale calling varied with season and location. This work highlights the importance of the Azores as a migratory and wintering habitat for three species of baleen whales and provides novel information on their acoustic behaviour in a mid-Atlantic region.
    Description: This work was supported by Fundação para a Ciência e Tecnologia (FCT), Azores 2020 Operational Programme and Fundo Regional da Ciência e Tecnologia (FRCT) through research projects TRACE (PTDC/MAR/74071/2006), MAPCET (M2.1.2/F/012/2011) and AWARENESS (PTDC/BIA-BMA/30514/201), co-funded by FEDER, COMPETE, QREN, POPH, ERDF, ESF, the Lisbon Regional Operational Programme, and the Portuguese Ministry for Science and Education. Funding for publication fees was provided by Project AWARENESS (PTDC/BIA-BMA/30514/201). Okeanos R&D Centre is supported by FCT, through the strategic fund (UIDB/05634/2020). MR was supported by a DRCT doctoral grant (M3.1.a/F/028/2015) and MAS by an FCT-Investigator contract (IF/00943/2013). TAM thanks partial support by CEAUL (funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013). We are grateful to Rui Prieto, Sérgio Gómez, Norberto Serpa, skilled skippers and crew that participated in the preparation and deployment of EARs at DOP/IMAR and to Ken Sexton and Michael Richlen for their roles in manufacturing the EARs. We are also grateful to Dr. Helena Silva for her feedback on statistical analysis.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zheng, H., Zhou, L., Wei, J., Tang, Q., Zou, Y., Tang, J., & Xu, H. Cover crops and chicken grazing in a winter fallow field improve soil carbon and nitrogen contents and decrease methane emissions. Scientific Reports, 10(1), (2020): 12607, doi:10.1038/s41598-020-69407-y.
    Description: Using symbiotic farming methods [cover crops and chicken grazing (+ C)] in a winter fallow field, we found that the soil organic matter and total nitrogen of the + C treatment were 5.2% and 26.6% higher, respectively, than those of a treatment with cover crops and no chicken grazing (− C). The annual rice grain yield of the + C treatment was 3.8% higher than that of the − C treatment and 12.3% higher than that of the bare fallow field (CK), while the annual CH4 emissions of the + C treatment were 26.9% lower than those of the − C treatment and 10.6% lower than those of the CK treatment. The 100-year global warming potential of the + C treatment was 6.2% lower than that of the − C treatment. Therefore, the use of winter cover crops and chicken grazing in a winter fallow field was effective at reducing CH4 emissions and significantly improving soil nutrients and rice yield.
    Description: This study was supported by the Earmarked Fund for China Agriculture Research System (CARS-01-26), the China-UK joint Red Soil Critical Zone project from the National Natural Science Foundation of China (Grant No. 41571130053), and Hunan “A Hundred Scholars” Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Faktorova, D., Nisbet, R. E. R., Robledo, J. A. F., Casacuberta, E., Sudek, L., Allen, A. E., Ares, M., Jr., Areste, C., Balestreri, C., Barbrook, A. C., Beardslee, P., Bender, S., Booth, D. S., Bouget, F., Bowler, C., Breglia, S. A., Brownlee, C., Burger, G., Cerutti, H., Cesaroni, R., Chiurillo, M. A., Clemente, T., Coles, D. B., Collier, J. L., Cooney, E. C., Coyne, K., Docampo, R., Dupont, C. L., Edgcomb, V., Einarsson, E., Elustondo, P. A., Federici, F., Freire-Beneitez, V., Freyria, N. J., Fukuda, K., Garcia, P. A., Girguis, P. R., Gomaa, F., Gornik, S. G., Guo, J., Hampl, V., Hanawa, Y., Haro-Contreras, E. R., Hehenberger, E., Highfield, A., Hirakawa, Y., Hopes, A., Howe, C. J., Hu, I., Ibanez, J., Irwin, N. A. T., Ishii, Y., Janowicz, N. E., Jones, A. C., Kachale, A., Fujimura-Kamada, K., Kaur, B., Kaye, J. Z., Kazana, E., Keeling, P. J., King, N., Klobutcher, L. A., Lander, N., Lassadi, I., Li, Z., Lin, S., Lozano, J., Luan, F., Maruyama, S., Matute, T., Miceli, C., Minagawa, J., Moosburner, M., Najle, S. R., Nanjappa, D., Nimmo, I. C., Noble, L., Vanclova, A. M. G. N., Nowacki, M., Nunez, I., Pain, A., Piersanti, A., Pucciarelli, S., Pyrih, J., Rest, J. S., Rius, M., Robertson, D., Ruaud, A., Ruiz-Trillo, I., Sigg, M. A., Silver, P. A., Slamovits, C. H., Smith, G. J., Sprecher, B. N., Stern, R., Swart, E. C., Tsaousis, A. D., Tsypin, L., Turkewitz, A., Turnsek, J., Valach, M., Verge, V., von Dassow, P., von der Haar, T., Waller, R. F., Wang, L., Wen, X., Wheeler, G., Woods, A., Zhang, H., Mock, T., Worden, A. Z., & Lukes, J. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 17, (2020): 481-494, doi:10.1038/s41592-020-0796-x.
    Description: Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
    Description: We thank M. Salisbury and D. Lacono, C. Poirier, M. Hamilton, C. Eckmann, H. Igel, C. Yung and K. Hoadley for assistance; V.K. Nagarajan, M. Accerbi and P.J. Green who carried out Agrobacterium studies in Heterosigma akashiwo, and N. Kraeva, C. Bianchi and V. Yurchenko for the help with designing the p57-V5+NeoR construct. We are also grateful to the protocols.io team (L. Teytelman and A. Broellochs) for their support. This collaborative effort was supported by the Gordon and Betty Moore Foundation EMS Program of the Marine Microbiology Initiative (grant nos. GBMF4972 and 4972.01 to F.-Y.B.; GBMF4970 and 4970.01 to M.A. and A.Z.W.; GBMF3788 to A.Z.W.; GBMF 4968 and 4968.01 to H.C.; GBMF4984 to V.H.; GBMF4974 and 4974.01 to C. Brownlee; GBMF4964 to Y. Hirakawa; GBMF4961 to T. Mock; GBMF4958 to P.S.; GBMF4957 to A.T.; GBMF4960 to G.J.S.; GBMF4979 to K.C.; GBMF4982 and 4982.01 to J.L.C.; GBMF4964 to P.J.K.; GBMF4981 to P.v.D.; GBMF5006 to A.E.A.; GBMF4986 to C.M.; GBMF4962 to J.A.F.R.; GBMF4980 and 4980.01 to S.L.; GBMF 4977 and 4977.01 to R.F.W.; GBMF4962.01 to C.H.S.; GBMF4985 to J.M.; GBMF4976 and 4976.01 to C.H.; GBMF4963 and 4963.01 to V.E.; GBMF5007 to C.L.D.; GBMF4983 and 4983.01 to J.L.; GBMF4975 and 4975.01 to A.D.T.; GBMF4973 and 4973.01 to I.R.-T. and GBMF4965 to N.K.), by The Leverhulme Trust (RPG-2017-364) to T. Mock and A. Hopes, and by ERD funds (16_019/0000759) from the Czech Ministry of Education to J.L.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: The detection ranges of broadband sounds produced by marine invertebrates are not known. To address this deficiency, a linear array of hydrophones was built in a shallow water area to experimentally investigate the propagation features of the sounds from various sizes of European spiny lobsters (Palinurus elephas), recorded between 0.5 and 100 m from the animals. The peak-to-peak source levels (SL, measured at one meter from the animals) varied significantly with body size, the largest spiny lobsters producing SL up to 167 dB re 1 µPa2. The sound propagation and its attenuation with the distance were quantified using the array. This permitted estimation of the detection ranges of spiny lobster sounds. Under the high ambient noise conditions recorded in this study, the sounds propagated between 5 and 410 m for the smallest and largest spiny lobsters, respectively. Considering lower ambient noise levels and different realistic propagation conditions, spiny lobster sounds can be detectable up to several kilometres away from the animals, with sounds from the largest individuals propagating over 3 km. Our results demonstrate that sounds produced by P. elephas can be utilized in passive acoustic programs to monitor and survey this vulnerable species at kilometre scale in coastal waters.
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jezequel, Y., Chauvaud, L., & Bonnel, J. Spiny lobster sounds can be detectable over kilometres underwater. Scientific Reports, 10(1), (2020): 7943, doi:10.1038/s41598-020-64830-7.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Windler, F., Bönigk, W., Körschen, H. G., Grahn, E., Strünker, T., Seifert, R., & Kaupp, U. B. Author correction: the solute carrier SLC9C1 is a Na(+)/H(+)-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nature Communications, 11(1),(2020): 4210, doi:10.1038/s41467-020-18023-5.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Pickart, R. S., Vage, K., Larsen, K. M. H., Hatun, H., & Hansen, B. The Iceland-Faroe slope jet: a conduit for dense water toward the Faroe Bank Channel overflow. Nature Communications, 11(1), (2020): 5390, doi:10.1038/s41467-020-19049-5.
    Description: Dense water from the Nordic Seas passes through the Faroe Bank Channel and supplies the lower limb of the Atlantic Meridional Overturning Circulation, a critical component of the climate system. Yet, the upstream pathways of this water are not fully known. Here we present evidence of a previously unrecognised deep current following the slope from Iceland toward the Faroe Bank Channel using high-resolution, synoptic shipboard observations and long-term measurements north of the Faroe Islands. The bulk of the volume transport of the current, named the Iceland-Faroe Slope Jet (IFSJ), is relatively uniform in hydrographic properties, very similar to the North Icelandic Jet flowing westward along the slope north of Iceland toward Denmark Strait. This suggests a common source for the two major overflows across the Greenland-Scotland Ridge. The IFSJ can account for approximately half of the total overflow transport through the Faroe Bank Channel, thus constituting a significant component of the overturning circulation in the Nordic Seas.
    Description: Support for this work was provided by the Bergen Research Foundation Grant BFS2016REK01 (S.S. and K.V.), the U.S. National Science Foundation Grants OCE-1558742 and OCE-1259618 (R.S.P.), the Danish Ministry of Climate, Energy and Utilities (K.M.H.L., H.H., and B.H.) and the European Union’s Horizon 2020 research and innovation programme under grant agreement 727852 (Blue-Action) (K.M.H.L., H.H., and B.H.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zeng, L., Schmitt, R. W., Li, L., Wang, Q., & Wang, D. Forecast of summer precipitation in the Yangtze River Valley based on South China Sea springtime sea surface salinity. Climate Dynamics, 53(9-10), (2019): 5495-5509, doi: 10.1007/s00382-019-04878-y.
    Description: As a major moisture source, the South China Sea (SCS) has a significant impact on the summer precipitation over China. The ocean-to-land moisture transport generates sea surface salinity (SSS) anomalies that can be used to predict summer precipitation on land. This study illustrates a high correlation between springtime SSS in the central SCS and summer precipitation over the middle and lower Yangtze River Valley (the YRV region). The linkage between spring SSS in the central SCS and summer YRV precipitation is established by ocean-to-land moisture transport by atmospheric processes and land–atmosphere soil moisture feedback. In spring, oceanic moisture evaporated from the sea surface generates high SSS in the central SCS and directly feeds the precipitation over southern China and the YRV region. The resulting soil moisture anomalies last for about 3 months triggering land–atmosphere soil moisture feedback and modulating the tropospheric moisture content and circulation in the subsequent summer. Evaluation of the atmospheric moisture balance suggests both a dynamic contribution (stronger northward meridional winds) and a local thermodynamic contribution (higher tropospheric moisture content) enhance the summer moisture supply over the YRV, generating excessive summer precipitation. Thus, spring SSS in the SCS can be utilized as an indicator of subsequent summer precipitation over the YRV region, providing value for operational climate prediction and disaster early warning systems in China.
    Description: This research has been supported by the National Natural Science Foundation of China (Nos. 41776025, 41476014, 41606030, 41806027, 41806035). RWS was supported by NSF Grant ICER-1663704. LL was supported by NSF-ICER-1663138. QW was also sponsored by the Pearl River S&T Nova Program of Guangzhou (201906010051). LZ was also supported by the Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, and the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou).
    Keywords: South China Sea ; Yangtze River Valley ; Sea surface salinity ; Moisture flux ; Summer precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lee, J., Kang, S. H., Yang, E. J., Macdonald, A. M., Joo, H. M., Park, J., Kim, K., Lee, G. S., Kim, J. H., Yoon, J. E., Kim, S. S., Lim, J. H., & Kim, I. N. Latitudinal distributions and controls of bacterial community composition during the summer of 2017 in western Arctic surface waters (from the Bering Strait to the Chukchi Borderland). Scientific Reports, 9(1), (2019): 16822, doi: 10.1038/s41598-019-53427-4.
    Description: The western Arctic Ocean is experiencing some of the most rapid environmental changes in the Arctic. However, little is known about the microbial community response to these changes. Employing observations from the summer of 2017, this study investigated latitudinal variations in bacterial community composition in surface waters between the Bering Strait and Chukchi Borderland and the factors driving the changes. Results indicate three distinctive communities. Southern Chukchi bacterial communities are associated with nutrient rich conditions, including genera such as Sulfitobacter, whereas the northern Chukchi bacterial community is dominated by SAR clades, Flavobacterium, Paraglaciecola, and Polaribacter genera associated with low nutrients and sea ice conditions. The frontal region, located on the boundary between the southern and northern Chukchi, is a transition zone with intermediate physical and biogeochemical properties; however, bacterial communities differed markedly from those found to the north and south. In the transition zone, Sphingomonas, with as yet undetermined ecological characteristics, are relatively abundant. Latitudinal distributions in bacterial community composition are mainly attributed to physical and biogeochemical characteristics, suggesting that these communities are susceptible to Arctic environmental changes. These findings provide a foundation to improve understanding of bacterial community variations in response to a rapidly changing Arctic Ocean.
    Description: This research was a part of the project titled the Korea-Arctic Ocean Observing System project (K-AOOS) (KOPRI, 20160245) funded by the Ministry of Oceans and Fisheries, Korea. This work was also supported by a grant from the National Institute of Fisheries Science in Republic of Korea (R2019024) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1F1A1051790&NRF-2019R1A4A1026423).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Skottene, E., Tarrant, A. M., Olsen, A. J., Altin, D., Ostensen, M., Hansen, B. H., Choquet, M., Jenssen, B. M., & Olsen, R. E. R. The beta-oxidation pathway is downregulated during diapause termination in Calanus copepods. Scientific Reports, 9, (2019): 16686, doi: 10.1038/s41598-019-53032-5.
    Description: Calanus copepods are keystone species in marine ecosystems, mainly due to their high lipid content, which is a nutritious food source for e.g. juvenile fish. Accumulated lipids are catabolized to meet energy requirements during dormancy (diapause), which occurs during the last copepodite stage (C5). The current knowledge of lipid degradation pathways during diapause termination is limited. We characterized changes in lipid fullness and generated transcriptional profiles in C5s during termination of diapause and progression towards adulthood. Lipid fullness of C5s declined linearly during developmental progression, but more β-oxidation genes were upregulated in early C5s compared to late C5s and adults. We identified four possible master regulators of energy metabolism, which all were generally upregulated in early C5s, compared to late C5s and adults. We discovered that one of two enzymes in the carnitine shuttle is absent from the calanoid copepod lineage. Based on the geographical location of the sampling site, the field-samples were initially presumed to consist of C. finmarchicus. However, the identification of C. glacialis in some samples underlines the need for performing molecular analyses to reliably identify Calanus species. Our findings contributes to a better understanding of molecular events occurring during diapause and diapause termination in calanoid copepods.
    Description: The authors wish to thank Dept. of Biology at Norwegian University of Science and Technology (NTNU) for additional funding for Elise Skottene´s stay at Woods Hole Oceanographic Institution (WHOI), Christoffer H. Hilde for help in the field and in the lab, Siv Anina Etter, Øystein Leiknes, Sofia Soloperto and Clara Igisch for help with the field work, Justyna Świeżak and Signe D. Løvmo for experimental assistance, Hanny Rivera for help with bioinformatic analyses at WHOI. The RNA seq work was provided by the Genomics Core Facility (GCF). GCF is funded by the Faculty of Medicine and Health Sciences at NTNU and Central Norway Regional Health Authority. Ann M. Tarrant was funded by the National Science Foundation (Award Number OPP-1746087).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhao, N., Oppo, D. W., Huang, K., Howe, J. N. W., Blusztajn, J., & Keigwin, L. D. Glacial-interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nature Communications, 10, (2019): 5773, doi: 10.1038/s41467-019-13707-z.
    Description: The Nd isotope composition of seawater has been used to reconstruct past changes in the contribution of different water masses to the deep ocean. In the absence of contrary information, the Nd isotope compositions of endmember water masses are usually assumed constant during the Quaternary. Here we show that the Nd isotope composition of North Atlantic Deep Water (NADW), a major component of the global overturning ocean circulation, was significantly more radiogenic than modern during the Last Glacial Maximum (LGM), and shifted towards modern values during the deglaciation. We propose that weathering contributions of unradiogenic Nd modulated by the North American Ice Sheet dominated the evolution of the NADW Nd isotope endmember. If water mass mixing dominated the distribution of deep glacial Atlantic Nd isotopes, our results would imply a larger fraction of NADW in the deep Atlantic during the LGM and deglaciation than reconstructed with a constant northern endmember.
    Description: This study was supported by National Science Foundation grants (OCE 1335191 and OCE 1811305) to D.W.O. We thank Kathryn Pietro and Mary Carman for help with lab work, Steve Galer and Jerry McManus for helpful discussions. L.D.K. acknowledges the Grayce B. Kerr Fund for supporting research cruise KNR198. N.Z. acknowledges supports by a graduate internship from National Ocean Sciences Accelerator Mass Spectrometry facility and a post-doctoral scholarship from Max Planck Institute for Chemistry. K.-F.H. acknowledges funding from Taiwan MOST (MOST 104-2628-M-001-007-MY3).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shi, L., Olabarrieta, M., Nolan, D. S., & Warner, J. C. Tropical cyclone rainbands can trigger meteotsunamis. Nature Communications, 11(1), (2020): 678, doi:10.1038/s41467-020-14423-9.
    Description: Tropical cyclones are one of the most destructive natural hazards and much of the damage and casualties they cause are flood-related. Accurate characterization and prediction of total water levels during extreme storms is necessary to minimize coastal impacts. While meteotsunamis are known to influence water levels and to produce severe consequences, their impacts during tropical cyclones are underappreciated. This study demonstrates that meteotsunami waves commonly occur during tropical cyclones, and that they can contribute significantly to total water levels. We use an idealized coupled ocean–atmosphere–wave numerical model to analyze tropical cyclone-induced meteotsunami generation and propagation mechanisms. We show that the most extreme meteotsunami events are triggered by inherent features of the structure of tropical cyclones: inner and outer spiral rainbands. While outer distant spiral rainbands produce single-peak meteotsunami waves, inner spiral rainbands trigger longer lasting wave trains on the front side of the tropical cyclones.
    Description: We thank all the developers of COAWST, ROMS, WRF, and SWAN models. D.N. was supported by NSF grant AGS-1654831. We would like to thank Dr. K. Bagamian for her editorial and writing suggestions. We would like to thank Dr. A. Aretxabaleta for the internal US Geological Survey internal revision and suggestions.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mohl, J. E., Fetcher, N., Stunz, E., Tang, J., & Moody, M. L. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event. Scientific Reports, 10(1), (2020): 8990, doi:10.1038/s41598-020-65693-8.
    Description: Tussock cottongrass (Eriophorum vaginatum) is a foundation species for much of the arctic moist acidic tundra, which is currently experiencing extreme effects of climate change. The Arctic is facing higher summer temperatures and extreme weather events are becoming more common. We used Illumina RNA-Seq to analyse cDNA libraries for differential expression of genes from leaves of ecologically well-characterized ecotypes of tussock cottongrass found along a latitudinal gradient in the Alaskan Arctic and transplanted into a common garden. Plant sampling was performed on a typical summer day and during an extreme heat event. We obtained a de novo assembly that contained 423,353 unigenes. There were 363 unigenes up-regulated and 1,117 down-regulated among all ecotypes examined during the extreme heat event. Of these, 26 HSP unigenes had 〉log2-fold up-regulation. Several TFs associated with heat stress in previous studies were identified that had 〉log2-fold up- or down-regulation during the extreme heat event (e.g., DREB, NAC). There was consistent variation in DEGs among ecotypes, but not specifically related to whether plants originated from taiga or tundra ecosystems. As the climate changes it is essential to determine ecotypic diversity at the genomic level, especially for widespread species that impact ecosystem function.
    Description: We thank Thomas Parker for providing crucial logistical support at Toolik Field station and Darrel Dech, Stephen Turner, and Mayra Melendez for assistance in field sampling. Funding for this research was provided through the National Science Foundation (NSF/PLR 1418010 to NF, NSF/PLR 1417645 to MLM, NSF/PLR 1417763 to JT) and JEM received funding in part from NIH Grant #5G12RR007592 from the National Center for Research Resources (NCRR)/NIH to UTEP’s Border Biomedical Research Center. Significant logistic support came from Toolik Field Station and the Arctic LTER (NSF/PLR 1637459).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Omand, M. M., Govindarajan, R., He, J., & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Scientific Reports, 10(1), (2020): 5582, doi:10.1038/s41598-020-60424-5.
    Description: The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic ‘Martin curve’ flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of the particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.
    Description: We thank NSF (OCE 1260080), NASA (NNX16AR48G), and the Ministry of Earth Sciences, Government of India (Monsoon Mission Project on the Bay of Bengal) for support. This work was largely done in 2012 while MMO was a postdoctoral associate at WHOI, during a visit by RG supported by The Mary Sears visiting scholar program to the Woods Hole Oceanographic Institution. Thanks also to Benjamin Hodges for many thoughtful contributions.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Salinas-de-León, P., Martí-Puig, P., Buglass, S., Arnés-Urgellés, C., Rastoin-Laplane, E., Creemers, M., Cairns, S., Fisher, C., O'Hara, T., Ott, B., Raineault, N. A., Reiswig, H., Rouse, G., Rowley, S., Shank, T. M., Suarez, J., Watling, L., Wicksten, M. K., & Marsh, L. Characterization of deep-sea benthic invertebrate megafauna of the Galapagos Islands. Scientific Reports, 10(1), (2020): 13894, doi:10.1038/s41598-020-70744-1.
    Description: The deep sea represents the largest and least explored biome on the planet. Despite the iconic status of the Galapagos Islands and being considered one of the most pristine locations on earth, the deep-sea benthic ecosystems of the archipelago are virtually unexplored in comparison to their shallow-water counterparts. In 2015, we embarked on a multi-disciplinary scientific expedition to conduct the first systematic characterization of deep-sea benthic invertebrate communities of the Galapagos, across a range of habitats. We explored seven sites to depths of over 3,300 m using a two-part Remotely Operated Vehicle (ROV) system aboard the E/V Nautilus, and collected 90 biological specimens that were preserved and sent to experts around the world for analysis. Of those, 30 taxa were determined to be undescribed and new to science, including members of five new genera (2 sponges and 3 cnidarians). We also systematically analysed image frame grabs from over 85 h of ROV footage to investigate patterns of species diversity and document the presence of a range of underwater communities between depths of 290 and 3,373 m, including cold-water coral communities, extensive glass sponge and octocoral gardens, and soft-sediment faunal communities. This characterization of Galapagos deep-sea benthic invertebrate megafauna across a range of ecosystems represents a first step to study future changes that may result from anthropogenic impacts to the planet’s climate and oceans, and informed the creation of fully protected deep-water areas in the Galapagos Marine Reserve that may help preserve these unique communities in our changing planet.
    Description: We are thankful to the Ocean Exploration Trust as well as the pilots and crew aboard the E/V Nautilus during cruise NA064 for their assistance in sample collection and exploration using the Hercules ROV. Thank you to the NOAA Office of Exploration and Research for funding the E/V Nautilus Exploration Program (NA15OAR0110220). Further acknowledgements and thanks go out to the Charles Darwin Foundation and the Galapagos National Park Directorate for their collaboration and assistance in the exploration of the Galapagos Platform conducted under research permits PC-26–15 & PC-45-15. We also gratefully recognize the Government of Ecuador via the Ecuadorian Navy for permission to operate in their territorial waters. This research was supported by a grant from the Helmsley Charitable Trust and the Gordon and Betty Moore Foundation. This publication is contribution number 2354 of the Charles Darwin Foundation for the Galapagos Islands.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fortune, S. M. E., Ferguson, S. H., Trites, A. W., Hudson, J. M., & Baumgartner, M. F. Bowhead whales use two foraging strategies in response to fine-scale differences in zooplankton vertical distribution. Scientific Reports, 10(1), (2020): 20249, doi:10.1038/s41598-020-76071-9.
    Description: As zooplanktivorous predators, bowhead whales (Balaena mysticetus) must routinely locate patches of prey that are energy-rich enough to meet their metabolic needs. However, little is known about how the quality and quantity of prey might influence their feeding behaviours. We addressed this question using a new approach that included: (1) multi-scale biologging and unmanned aerial system observations of bowhead whales in Cumberland Sound, Nunavut (Canada), and (2) an optical plankton counter (OPC) and net collections to identify and enumerate copepod prey species through the water column. The OPC data revealed two prey layers comprised almost exclusively of lipid-rich calanoid copepods. The deep layer contained fewer, but larger, particles (10% greater overall biomass) than the shallow prey layer. Dive data indicated that the whales conducted long deep Square-shaped dives (80% of dives; averaging depth of 260.4 m) and short shallow Square-shaped dives (16%; averaging depth of 22.5 m) to feed. The whales tended to dive proportionally more to the greater biomass of zooplankton that occurred at depth. Combining behavioural recordings with prey sampling showed a more complex feeding ecology than previously understood, and provides a means to evaluate the energetic balance of individuals under current environmental conditions.
    Description: Funding was awarded to S.H.F and provided by: Fisheries and Oceans Canada (Emerging Fisheries), World Wildlife Fund Canada (Arctic Species Conservation Fund), Nunavut Wildlife Research Trust Fund, Nunavut General Monitoring Program, Ocean Tracking Network and ArcticNet Centre of Excellence. Personal support was awarded to S.M.E.F and provided by Natural Sciences and Engineering Research Council Canadian Graduate Scholarship, Northern Scientific Training Program (Canadian Polar Commission), The Molson Foundation and the W.Garfield Weston Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sen Gupta, A., Thomsen, M., Benthuysen, J. A., Hobday, A. J., Oliver, E., Alexander, L. V., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Perkins-Kirkpatrick, S., Moore, P. J., Rodrigues, R. R., Scannell, H. A., Taschetto, A. S., Ummenhofer, C. C., Wernberg, T., & Smale, D. A. Drivers and impacts of the most extreme marine heatwaves events. Scientific Reports, 10(1), (2020): 19359. doi:10.1038/s41598-020-75445-3.
    Description: Prolonged high-temperature extreme events in the ocean, marine heatwaves, can have severe and long-lasting impacts on marine ecosystems, fisheries and associated services. This study applies a marine heatwave framework to analyse a global sea surface temperature product and identify the most extreme events, based on their intensity, duration and spatial extent. Many of these events have yet to be described in terms of their physical attributes, generation mechanisms, or ecological impacts. Our synthesis identifies commonalities between marine heatwave characteristics and seasonality, links to the El Niño-Southern Oscillation, triggering processes and impacts on ocean productivity. The most intense events preferentially occur in summer, when climatological oceanic mixed layers are shallow and winds are weak, but at a time preceding climatological maximum sea surface temperatures. Most subtropical extreme marine heatwaves were triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds, associated with increased insolation, and reduced ocean heat losses. Furthermore, the most extreme events tended to coincide with reduced chlorophyll-a concentration at low and mid-latitudes. Understanding the importance of the oceanic background state, local and remote drivers and the ocean productivity response from past events are critical steps toward improving predictions of future marine heatwaves and their impacts.
    Description: Concepts and analyses were developed during three workshops organized by an international working group on marine heatwaves (https://www.marineheatwaves.org) funded by a University of Western Australia Research Collaboration Award and a Natural Environment Research Council (UK) International Opportunity Fund (NE/N00678X/1). D.A.S. is supported by a UKRI Future Leaders Fellowship (MR/S032827/1). The Australian Research Council supported T.W. (FT110100174 and DP170100023) and A.S.T. (FT160100495). N.J.H. and L.V.A. are supported by the ARC Centre of Excellence for Climate Extremes (CE170100023). M.S.T was supported by the Brian Mason Trust. P.J.M. is supported by a Marie Curie Career Integration Grant (PCIG10-GA-2011–303685) and a Natural Environment Research Council (UK) Grant (NE/J024082/1). E.C.J.O. was supported by National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2018-05255 and Marine Environmental Observation, Prediction and Response Network (MEOPAR) project 1-02-02-059.1. C.C.U. acknowledges financial support through the Early Career Scientist Endowed Fund, George E. Thibault Early Career Scientist Fund, and The Joint Initiative Awards Fund from the Andrew W. Mellon Foundation at WHOI. M.G.D. received funding by the Spanish Ministry for the Economy, Industry and Competitiveness Ramón y Cajal 2017 grant reference RYC-2017-22964. NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boissin, E., Thorrold, S. R., Braun, C. D., Zhou, Y., Clua, E. E., & Planes, S. Contrasting global, regional and local patterns of genetic structure in gray reef shark populations from the Indo-Pacific region. Scientific Reports, 9(1), (2019): 15816. doi: 10.1038/s41598-019-52221-6.
    Description: Human activities have resulted in the loss of over 90% of sharks in most ocean basins and one in four species of elasmobranch are now listed at risk of extinction by the IUCN. How this collapse will affect the ability of populations to recover in the face of continued exploitation and global climate change remains unknown. Indeed, important ecological and biological information are lacking for most shark species, particularly estimates of genetic diversity and population structure over a range of spatial scales. Using 15 microsatellite markers, we investigated genetic diversity and population structure in gray reef sharks over their Indo-Pacific range (407 specimens from 9 localities). Clear genetic differentiation was observed between the Indian and the Pacific Ocean specimens (FST = 0.145***). Further differentiation within the Pacific included a West and East cleavage as well as North-Central and South-Central Pacific clusters. No genetic differentiation was detected within archipelagos. These results highlight the legacy of past climate changes and the effects of large ocean expanses and circulation patterns on contrasting levels of connectivity at global, regional and local scales. Our results indicate a need for regional conservation units for gray reef sharks and pinpoint the isolation and vulnerability of their French Polynesian population.
    Description: All of the following provided funding for the research presented here (no particular order after the first organization): Laboratoire d’Excellence CORAIL, Ministère de l’Ecologie du Développement Durable et de l’Energie, Ministère de l’Outre-Mer, Fonds Pacifique, IFRECOR, Délégation à la recherche de Polynésie, Agence Nationale de la Recherche and the Robertson Foundation. We also thank Andrew Chin, Jennifer Ovenden, Mark Meekan and Conrad Speed, Mael Imirizaldu, David Lecchini, Patrick Plantard, Jonathan Werry, Johann Mourier, Thomas Vignaud, Matis Jorge, Noémie Jublier and several other students for providing samples or for assistance with sampling. We are grateful to three anonymous reviewers who provided helpful comments.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, F., Lu, X., Sanders, C. J., & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 10(1), (2019): 5434, doi: 10.1038/s41467-019-13294-z.
    Description: Coastal wetlands are large reservoirs of soil carbon (C). However, the annual C accumulation rates contributing to the C storage in these systems have yet to be spatially estimated on a large scale. We synthesized C accumulation rate (CAR) in tidal wetlands of the conterminous United States (US), upscaled the CAR to national scale, and predicted trends based on climate change scenarios. Here, we show that the mean CAR is 161.8 ± 6 g Cm−2 yr−1, and the conterminous US tidal wetlands sequestrate 4.2–5.0 Tg C yr−1. Relative sea level rise (RSLR) largely regulates the CAR. The tidal wetland CAR is projected to increase in this century and continue their C sequestration capacity in all climate change scenarios, suggesting a strong resilience to sea level rise. These results serve as a baseline assessment of C accumulation in tidal wetlands of US, and indicate a significant C sink throughout this century.
    Description: This study was partially funded by Natural Science Foundation of China (31300419, 31670621, 31870463), the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0408), R&D Program of Guangdong Provincial Department of Science and Technology (2018B030324003) and Pearl River Nova Program of Guangzhou (201710010140) awarded to F.W. J.T. is supported by the NOAA National Estuarine Research Reserve Science Collaborative (NA09NOS4190153 and NA14NOS4190145). C.J.S. is supported by Australian Research Council (DE160100443).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Echeverri, K. The various routes to functional regeneration in the central nervous system. Communications Biology, 3(1), (2020): 47, doi:10.1038/s42003-020-0773-z.
    Description: The axolotl is a type of Mexican salamander with astonishing regenerative capacity1. In our recent paper, we identified a signaling heterodimer that is formed directly after injury in the glial cells adjacent to the injury in axolotls. The c-Fos and JunB genes forming this heterodimer are not unique to animals with high regenerative capacity but they are present in humans too. In this paper I propose perspectives on molecular control of regeneration and future directions that need to be taken to advance our understanding of regeneration at a molecular level.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cascao, I., Lammers, M. O., Prieto, R., Santos, R. S., & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Scientific Reports, 10(1), (2020): 3610, doi:10.1038/s41598-020-60441-4.
    Description: Several seamounts have been identified as hotspots of marine life in the Azores, acting as feeding stations for top predators, including cetaceans. Passive acoustic monitoring is an efficient tool to study temporal variations in the occurrence and behaviour of vocalizing cetacean species. We deployed bottom-moored Ecological Acoustic Recorders (EARs) to investigate the temporal patterns in acoustic presence and foraging activity of oceanic dolphins at two seamounts (Condor and Gigante) in the Azores. Data were collected in March–May 2008 and April 2010–February 2011. Dolphins were present year round and nearly every day at both seamounts. Foraging signals (buzzes and bray calls) were recorded in 〉87% of the days dolphin were present. There was a strong diel pattern in dolphin acoustic occurrence and behaviour, with higher detections of foraging and echolocation vocalizations during the night and of social signals during daylight hours. Acoustic data demonstrate that small dolphins consistently use Condor and Gigante seamounts to forage at night. These results suggest that these seamounts likely are important feeding areas for dolphins. This study contributes to a better understanding of the feeding ecology of oceanic dolphins and provides new insights into the role of seamount habitats for top predators.
    Description: This research was supported by the Fundação para a Ciência e a Tecnologia (FCT), Azores 2020 Operational Programme and the Fundo Regional da Ciência e Tecnologia (FRCT), through research projects TRACE (PTDC/MAR/74071/2006), MAPCET (M2.1.2/F/012/2011), FCT-Exploratory (IF/00943/2013/CP1199/CT0001), WATCH IT (Acores-01-0145-FEDER-000057) and MISTIC SEAS II (GA11.0661/2017/750679/SUB/ENV.C2), co-funded by FEDER, COMPETE, QREN, POPH, European Social Fund (ESF), the Portuguese Ministry for Science and Education, and EU-DG/ENV. The Azores 2020 Operational Programme is funded by the community structural funds ERDF and ESF. Funds were also provided by FCT to MARE, through the strategic project UID/MAR/04292/2013. MAS was supported through a FCT Investigator contract funded by POPH, QREN, ESF and the Portuguese Ministry for Science and Education (IF/00943/2013). IC was supported by a FCT doctoral grant (SFRH/BD/41192/2007) and RP by a FCT postdoctoral grant (SFRH/BPD/108007/2015). We thank the field and crew teams for assisting with the many deployments and recoveries of the EARs. Special thanks to Norberto Serpa for helping with mooring design, Ken Sexton and Michael Richlen for their roles in manufacturing the EARs, Sergio Gomes for building the battery packs, and Lisa Munger for adapting Triton for EAR data analysis.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Laissue, P. P., Roberson, L., Gu, Y., Qian, C., & Smith, D. J. Long-term imaging of the photosensitive, reef-building coral Acropora muricata using light-sheet illumination. Scientific Reports, 10(1), (2020):10369, doi:10.1038/s41598-020-67144-w.
    Description: Coral reefs are in alarming decline due to climate emergency, pollution and other man-made disturbances. The numerous ecosystem services derived from coral reefs are underpinned by the growth and physical complexity of reef-forming corals. Our knowledge of their fundamental biology is limited by available technology. We need a better understanding of larval settlement and development, skeletogenesis, interactions with pathogens and symbionts, and how this biology interacts with environmental factors such as light exposure, temperature, and ocean acidification. We here focus on a fast-growing key coloniser, Acropora muricata (Linnaeus, 1758). To enable dynamic imaging of this photosensitive organism at different scales, we developed light-sheet illumination for fluorescence microscopy of small coral colonies. Our approach reveals live polyps in previously unseen detail. An imaging range for Acropora muricata with no measurable photodamage is defined based upon polyp expansion, coral tissue reaction, and photobleaching. We quantify polyp retraction as a photosensitive behavioural response and show coral tissue rupture at higher irradiance with blue light. The simple and flexible technique enables non-invasive continuous dynamic imaging of highly photosensitive organisms with sizes between 1 mm3 and 5 cm3, for eight hours, at high temporal resolution, on a scale from multiple polyps down to cellular resolution. This live imaging tool opens a new window into the dynamics of reef-building corals.
    Description: This work was made possible through a Royal Society Research Grant [RG120274], an innovation voucher from the University of Essex [DBF6000], a Royal Society Industry Fellowship [IF150018] and two Whitman Center Fellowships from the Marine Biological Laboratory (Woods Hole, USA) to PPL. PPL would like to thank Russell Smart for aquarium maintenance and Tony Jordan for production of customised parts. PPL also thanks the open-source communities OpenSPIM and µManager for support, as well as Cairn Research, 89North, Nikon Instruments UK, Alex Gardiol from Olympus Keymed UK, and Scott Young, Matt Preston and Daniel Croucher from Teledyne Photometrics for equipment loans. PPL is grateful to Amy Gladfelter, Hari Shroff, Abhishek Kumar, Louis Kerr, Philip M. Mullineaux, Marino Exposito-Rodriguez and Jean A. Laissue for support and critical discussions.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zou, S., Bower, A., Furey, H., Susan Lozier, M., & Xu, X. Redrawing the Iceland−Scotland overflow water pathways in the North Atlantic. Nature Communications, 11(1), (2020): 890, doi:10.1038/s41467-020-15513-4.
    Description: Iceland-Scotland Overflow Water (ISOW) is a primary deep water mass exported from the Norwegian Sea into the North Atlantic as part of the global Meridional Overturning Circulation. ISOW has historically been depicted as flowing counter-clockwise in a deep boundary current around the subpolar North Atlantic, but this single-boundary-following pathway is being challenged by new Lagrangian observations and model simulations. We show here that ISOW leaves the boundary and spreads into the interior towards the central Labrador and Irminger basins after flowing through the Charlie-Gibbs Fracture Zone. We also describe a newly observed southward pathway of ISOW along the western flank of the Mid-Atlantic Ridge. The partitioning of these pathways is shown to be influenced by deep-reaching eddies and meanders of the North Atlantic Current. Our results, in tandem with previous studies, call for a revision in the historical depiction of ISOW pathways throughout the North Atlantic.
    Description: S.Z., A.B. and H.F. gratefully acknowledge the support from the Physical Oceanography Program of the U.S. National Science Foundation (grant number OCE-17-56361). S.Z. and M.S.L. also acknowledge support from NSF-OCE-17-56143. X.X. acknowledges support from NSF award 1537136. Gratitude is also extended to C. Böning and A. Biastoch for sharing FLAME output and trajectory calculation code.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Piecuch, C. G. Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nature Communications, 11(1), (2020): 3973, doi:10.1038/s41467-020-17761-w.
    Description: The Florida Current marks the beginning of the Gulf Stream at Florida Straits, and plays an important role in climate. Nearly continuous measurements of Florida Current transport are available at 27°N since 1982. These data are too short for assessing possible multidecadal or centennial trends. Here I reconstruct Florida Current transport during 1909–2018 using probabilistic methods and principles of ocean physics applied to the available transport data and longer coastal sea-level records. Florida Current transport likely declined steadily during the past century. Transport since 1982 has likely been weaker on average than during 1909–1981. The weakest decadal-mean transport in the last 110 y likely took place in the past two decades. Results corroborate hypotheses that the deep branch of the overturning circulation declined over the recent past, and support relationships observed in climate models between the overturning and surface western boundary current transports at multidecadal and longer timescales.
    Description: Funding came from NSF awards OCE-1558966 and OCE-1834739. I acknowledge helpful conversations with M. Andres, L. Beal, S. Coats, S. Dangendorf, S. Elipot, T. Frederikse, N. Foukal, G. Gawarkiewicz, G. Gebbie, B. Hamlington, J. Heiderich, A. Kemp, Y.-O. Kwon, F. Landerer, C. Little, M. Thomas, T. Wahl, and S. Wijffels.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Urann, B. M., Dick, H. J. B., Parnell-Turner, R., & Casey, J. F. Recycled arc mantle recovered from the Mid-Atlantic Ridge. Nature Communications, 11(1), (2020): 3887, doi:10.1038/s41467-020-17604-8.
    Description: Plate tectonics and mantle dynamics necessitate mantle recycling throughout Earth’s history, yet direct geochemical evidence for mantle reprocessing remains elusive. Here we present evidence of recycled supra-subduction zone mantle wedge peridotite dredged from the Mid-Atlantic Ridge near 16°30′N. Peridotite trace-element characteristics are inconsistent with fractional anhydrous melting typically associated with a mid-ocean ridge setting. Instead, the samples are best explained by hydrous flux melting which changed the melting reactions such that clinopyroxene was not exhausted at high degrees of melting and was retained in the residuum. Based on along-axis ridge depth variations, this buoyant refractory arc mantle is likely compensated at depth by denser, likely garnet-rich, lithologies within the mantle column. Our results suggest that highly refractory arc mantle relicts are entrained in the upper mantle and may constitute 〉60% of the upper mantle by volume. These highly refractory mantle domains, which contribute little to mantle melting, are under-represented in compilations of mantle composition that rely on inverted basalt compositions alone.
    Description: We thank the science party for their dutiful collection and description of dredge samples, and in particular chief scientist Dr. Deborah K. Smith. Analysis work for this research was supported by an internal grant from the MIT EAPS Student Research Fund to BMU. Urann was supported by the Stanley W. Watson Student Fellowship Fund based at WHOI. Dick and Urann were supported by NSF OCE-1637130 and OCE-1155650. Dr. Yongjun Gao is thanked for conducting LA-ICP-MS trace elements analyses.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Finke, K., Jimenez-Esteve, B., Taschetto, A. S., Ummenhofer, C. C., Bumke, K., & Domeisen, D. I., V. Revisiting remote drivers of the 2014 drought in South-Eastern Brazil. Climate Dynamics, (2020), doi:10.1007/s00382-020-05442-9.
    Description: South-Eastern Brazil experienced a devastating drought associated with significant agricultural losses in austral summer 2014. The drought was linked to the development of a quasi-stationary anticyclone in the South Atlantic in early 2014 that affected local precipitation patterns over South-East Brazil. Previous studies have suggested that the unusual blocking was triggered by tropical Pacific sea surface temperature (SST) anomalies and, more recently, by convection over the Indian Ocean related to the Madden–Julian Oscillation. Further investigation of the proposed teleconnections appears crucial for anticipating future economic impacts. In this study, we use numerical experiments with an idealized atmospheric general circulation model forced with the observed 2013/2014 SST anomalies in different ocean basins to understand the dominant mechanism that initiated the 2014 South Atlantic anticyclonic anomaly. We show that a forcing with global 2013/2014 SST anomalies enhances the chance for the occurrence of positive geopotential height anomalies in the South Atlantic. However, further sensitivity experiments with SST forcings in separate ocean basins suggest that neither the Indian Ocean nor tropical Pacific SST anomalies alone have contributed significantly to the anomalous atmospheric circulation that led to the 2014 South-East Brazil drought. The model study rather points to an important role of remote forcing from the South Pacific, local South Atlantic SSTs, and internal atmospheric variability in driving the persistent blocking over the South Atlantic.
    Description: K.F. was partially supported by the GEOMAR Marine Meteorology research area. Support to D.D. and B.J-E. from the Swiss National Science Foundation through project PP00P2_170523 is gratefully acknowledged. This research was supported by a Research Fellowship by the Alexander von Humboldt Foundation and the Early Career Scientist Endowed Fund and The George E. Thibault Early Career Scientist Fund to C.C.U. A.S.T. is supported by the Australian Research Council FT160100495. Open access funding provided by Swiss Federal Institute of Technology Zurich.
    Keywords: Brazil 2014 drought ; Teleconnection ; ENSO ; Blocking ; MJO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-01-07
    Description: It is a good method to utilize the grain size distribution curves and cumulative frequency curves of marine or river sediments to estimate the hydrodynamic conditions, transportation processes and sedimentary environment. However, researchers can only rely on Excel or Grapher to plot the curves one by one at the present day. The manual plotting procedures are complicated, and calculating the truncation points is time-consuming. To solve the aforementioned problems, we have developed a software tool to plot cumulative frequency curves and calculate the values of truncation points automatically. The software has the ability to plot curves of hundreds of samples accurately and rapidly, promoting researchers to analyze transport mechanisms and hydrodynamic environments. And it is convenient to apply the software to compare the processes of transportation and deposition between different samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-04-07
    Description: In times of accelerating climate change, species are challenged to respond to rapidly shifting environmental settings. Yet, faunal distribution and composition are still scarcely known for remote and little explored seas, where observations are limited in number and mostly refer to local scales. Here, we present the first comprehensive study on Eurasian-Arctic macrobenthos that aims to unravel the relative influence of distinct spatial scales and environmental factors in determining their large-scale distribution and composition patterns. To consider the spatial structure of benthic distribution patterns in response to environmental forcing, we applied Moran’s eigenvector mapping (MEM) on a large dataset of 341 samples from the Barents, Kara and Laptev Seas taken between 1991 and 2014, with a total of 403 macrobenthic taxa (species or genera) that were present in ≥ 10 samples. MEM analysis revealed three spatial scales describing patterns within or beyond single seas (broad: ≥ 400 km, meso: 100–400 km, and small: ≤ 100 km). Each scale is associated with a characteristic benthic fauna and environmental drivers (broad: apparent oxygen utilization and phosphate, meso: distance-to-shoreline and temperature, small: organic carbon flux and distance-to-shoreline). Our results suggest that different environmental factors determine the variation of Eurasian-Arctic benthic community composition within the spatial scales considered and highlight the importance of considering the diverse spatial structure of species communities in marine ecosystems. This multiple-scale approach facilitates an enhanced understanding of the impact of climate-driven environmental changes that is necessary for developing appropriate management strategies for the conservation and sustainable utilization of Arctic marine systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...