ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-09-01
    Description: High-precision analysis of the excess abundance (relative to the stochastic distribution) of mass 48 isotopologues in CO2 evolved from acid digestion of carbonates (∆48) has not been possible until recently due to the relatively low natural abundance of 18O. Here we show that the 253 Plus™ gas source mass spectrometer equipped with Faraday cups and 1013 Ω resistors can perform combined ∆47 and ∆48 analyses on carbonates with external reproducibilities (1SD) of 0.010 ‰ and 0.030 ‰, respectively.~10 mg aliquots of five carbonate reference materials (ETH 1, ETH 2, ETH 3, ETH 4, and Carrara) are digested with phosphoric acid at 90 °C using a common acid bath. The evolved CO2 is purified using an automated gas preparation system (including cryotraps and a GC) and analyzed for its ∆47 and ∆48 compositions using the dual inlet system of a 253 Plus™ gas source mass spectrometer. Raw ∆47 and ∆48 values are finally normalized to the Carbon Dioxide Equilibrium Scale (CDES).In ∆47, CDES 90°C vs. ∆48, CDES 90°C space, calcite reference materials Carrara, ETH 3 and ETH 4 agree with the equilibrium curve for calcite after adding semi-empirically determined 90 °C acid fractionation factors of 0.196 ‰ (for ∆47) and 0.136 ‰ (for ∆48) to theoretical ∆63 and ∆64 data. Agreement between measured and theoretically expected ∆48, CDES 90°C highlights the accuracy of our high-precision clumped isotope analytical setup. Combined analysis of the abundances of mass 47 and mass 48 isotopologues in CO2 evolved from acid digestion of natural carbonates has excellent potential for the determination of accurate and highly precise paleotemperatures as well as for the identification of rate-limiting kinetic processes involved in biomineralization. A formation temperature of 15(±2) °C is obtained on the 95 % confidence level for the Upper Cretaceous chalk sample ETH 3.
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-10
    Description: Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-21
    Description: Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., Krsnik, E., Gischler, E., Hansen, M., Henkel, D., Price, G. D., Raddatz, J., Scholz, D., & Fiebig, J. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11(1), (2020): 4005, doi:10.1038/s41467-020-17501-0.
    Description: Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.
    Description: This work became possible through DFG grant “INST 161/871-1” and the Investment in Science Fund at Woods Hole Oceanographic Institution. The authors would like to thank Sven Hofmann and Manuel Schumann for their assistance in the joint Goethe University – Senckenberg BiK-F Stable Isotope Facility at the Institute of Geosciences, Goethe University Frankfurt. K.M. acknowledges funding through “DFG ME 4955/1-1”, E.K. through “DFG MU 2845/6-1”, D.S. through “DFG SCHO 1274/8-1” and “DFG SCHO 1274/11-1”, and M.H. through “DFG HA 8694/1-1”. C.S. acknowledges funding from the University of Innsbruck. A review of the manuscript by David Evans on behalf of the USGS is acknowledged.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...