ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kim, Ju Hyoung; Kim, Kwang Young; Kang, Eun Ju; Lee, Kitack; Kim, Ja-Myung; Park, K T; Shin, Kyoungsoon; Hyun, B; Jeong, Hae Jin (2013): Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences, 10(11), 7525-7535, https://doi.org/10.5194/bg-10-7525-2013
    Publication Date: 2024-03-15
    Description: A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Coast and continental shelf; Date; Effective quantum yield; Electron transport rate, relative; Electron transport rate efficiency; Entire community; EXP; Experiment; Field experiment; Figure; Fluorometric; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Geoje_Island; Grazing rate; Grazing rate, standard deviation; Gross community production of carbon dioxide; Gross community production of carbon dioxide, cumulative; Gross community production of carbon dioxide, per chlorophyll a; Gross photosynthesis rate, carbon dioxide, per chlorophyll a; Growth/Morphology; Identification; Incubation duration; Irradiance; Maximal electron transport rate, relative; Maximum potential capacity of photosynthesis; Mesocosm or benthocosm; Nitrate and Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Photosynthetic efficiency, carbon production; Primary production/Photosynthesis; Salinity; Saturation light intensity; Silicate; Species; Table; Temperate; Temperature; Temperature, water; Time of day; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 45219 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kim, Keunyong; Kim, Kwang Young; Kim, Ju Hyoung; Kang, Eun Ju; Jeong, Hae Jin; Lee, Kitack (2013): Synergistic effects of elevated carbon dioxide and sodium hypochlorite on survival and impairment of three phytoplankton species. ALGAE, 28(2), 173-183, https://doi.org/10.4490/algae.2013.28.2.173
    Publication Date: 2024-03-15
    Description: Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased CO2. Therefore, we investigated whether the impacts of NaOCl on survival, chlorophyll a (Chl-a), and effective quantum yield in three marine phytoplankton belonging to different taxonomic classes are increased under high CO2 levels. Our results show that all biological parameters of the three species decreased under increasing NaOCl concentration, but increasing CO2 concentration alone (from 450 to 715 µatm) had no effect on any of these parameters in the organisms. However, due to the synergistic effects between NaOCl and CO2, the survival and Chl-a content in two of the species, Thalassiosira eccentrica and Heterosigma akashiwo, were significantly reduced under high CO2 when NaOCl was also elevated. The results show that combined exposure to high CO2 and NaOCl results in increasing toxicity of NaOCl in some marine phytoplankton. Consequently, greater caution with use of NaOCl will be required, as its use is widespread in coastal waters.
    Keywords: Abundance per volume; Akashiwo sanguinea; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chromista; Effective quantum yield; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Heterosigma akashiwo; Hypochlorite; Hypochlorous acid; Identification; Incubation duration; Iodometric chemical method; Laboratory experiment; Laboratory strains; Lethal concentration 50; Lethal concentration 50, standard deviation; Mortality/Survival; Myzozoa; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Organic toxins; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Primary production/Photosynthesis; Replicate; Salinity; Single species; Sodium hypochlorite; Species; Temperature, water; Thalassiosira eccentrica; Total residual chlorine; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 44868 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 1474–1482, doi:10.1002/2016GL072124.
    Description: As the western North Pacific Ocean is located downwind of the source regions for spring Asian dust, it is an ideal location for determining the response of open waters to these events. Spatial analysis of spring Asian dust events from source regions to the western North Pacific, using long-term daily aerosol index data, revealed three different transport pathways supported by the westerly wind system: one passing across the northern East/Japan Sea (40°N–50°N), a second moving over the entire East/Japan Sea (35°N–55°N), and a third flowing predominantly over the Siberian continent (〉50°N). Our results indicate that strong spring Asian dust events can increase ocean primary productivity by more than 70% (〉2-fold increase in chlorophyll-a concentrations) compared to weak/nondust conditions. Therefore, attention should be paid to the recent downturn in the number of spring Asian dust events and to the response of primary production in the western North Pacific to this change.
    Description: Korean government (MSIP) Grant Numbers: 2015R1C1A1A01052051, NRF-C1ABA001-2011-0021064; Korea Polar Research Institute (KOPRI) Grant Number: PE17030; NOAA Grant Number: NA11OAR4310063; WHOI
    Description: 2017-08-15
    Keywords: Western North Pacific Ocean ; Asian dust events ; Ocean primary productivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lee, J., Kang, S. H., Yang, E. J., Macdonald, A. M., Joo, H. M., Park, J., Kim, K., Lee, G. S., Kim, J. H., Yoon, J. E., Kim, S. S., Lim, J. H., & Kim, I. N. Latitudinal distributions and controls of bacterial community composition during the summer of 2017 in western Arctic surface waters (from the Bering Strait to the Chukchi Borderland). Scientific Reports, 9(1), (2019): 16822, doi: 10.1038/s41598-019-53427-4.
    Description: The western Arctic Ocean is experiencing some of the most rapid environmental changes in the Arctic. However, little is known about the microbial community response to these changes. Employing observations from the summer of 2017, this study investigated latitudinal variations in bacterial community composition in surface waters between the Bering Strait and Chukchi Borderland and the factors driving the changes. Results indicate three distinctive communities. Southern Chukchi bacterial communities are associated with nutrient rich conditions, including genera such as Sulfitobacter, whereas the northern Chukchi bacterial community is dominated by SAR clades, Flavobacterium, Paraglaciecola, and Polaribacter genera associated with low nutrients and sea ice conditions. The frontal region, located on the boundary between the southern and northern Chukchi, is a transition zone with intermediate physical and biogeochemical properties; however, bacterial communities differed markedly from those found to the north and south. In the transition zone, Sphingomonas, with as yet undetermined ecological characteristics, are relatively abundant. Latitudinal distributions in bacterial community composition are mainly attributed to physical and biogeochemical characteristics, suggesting that these communities are susceptible to Arctic environmental changes. These findings provide a foundation to improve understanding of bacterial community variations in response to a rapidly changing Arctic Ocean.
    Description: This research was a part of the project titled the Korea-Arctic Ocean Observing System project (K-AOOS) (KOPRI, 20160245) funded by the Ministry of Oceans and Fisheries, Korea. This work was also supported by a grant from the National Institute of Fisheries Science in Republic of Korea (R2019024) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1F1A1051790&NRF-2019R1A4A1026423).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Terrestrial, Atmospheric and Oceanic Sciences 27 (2016): 955-963, doi:10.3319/TAO.2016.01.24.01(Oc).
    Description: The northern East China Sea (a.k.a., “The South Sea”) is a dynamic zone that exerts a variety of effects on the marine ecosystem due to Three-Gorges Dam construction. As the northern East China Sea region is vulnerable to climate forcing and anthropogenic impacts, it is important to investigate how the remineralization rate in the northern East China Sea has changed in response to such external forcing. We used an historical hydrographic dataset from August 1997 to obtain a baseline for future comparison. We estimate the amount of remineralized phosphate by decomposing the physical mixing and biogeochemical process effect using water column measurements (temperature, salinity, and phosphate). The estimated remineralized phosphate column inventory ranged from 0.8 to 42.4 mmol P m-2 (mean value of 15.2 ± 12.0 mmol P m-2). Our results suggest that the Tsushima Warm Current was a strong contributor to primary production during the summer of 1997 in the study area. The estimated summer (June - August) remineralization rate in the region before Three-Gorges Dam construction was 18 ± 14 mmol C m-2 d-1.
    Description: T. Lee was supported by 2-Year Research Grant of Pusan National University. H.-C. Kim was partly supported by KOPRI project (PG15010). I.-N. Kim was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A01052051). K.-T. Park was partly supported by KOPRI project (PE17010). J.-H. Kim was partly supported by the program of “Management of Marine Organisms Causing Ecological Disturbance and Harmful Effects” funded by KIMST/MOF. A.M. Macdonald’s contribution was supported by NOAA grant: #NA110AR4310063 and NSF grant: #OCE-1059881.
    Keywords: Northern East China Sea ; Remineralized phosphate ; Remineralization rate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Heo, J.-M., Kim, S.-S., Kang, S.-H., Yang, E. J., Park, K.-T., Jung, J., Cho, K.-H., Kim, J.-H., Macdonald, A. M., Yoon, J.-E., Kim, H.-R., Eom, S.-M., Lim, J.-H., & Kim, I.-N. N2O dynamics in the western Arctic Ocean during the summer of 2017. Scientific Reports, 11(1), (2021): 12589, https://doi.org/10.1038/s41598-021-92009-1.
    Description: The western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.
    Description: This research was a part of the project titled 'Korea-Arctic Ocean Warming and Response of Ecosystem (KOPRI, 1525011760)', funded by the MOF, Korea. This study was also supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (NRF-2019R1F1A1051790&NRF-2019R1A4A1026423). This work was also funded by a grant from the National Institute of Fisheries Science (R2021032). AMM's contribution was supported by National Science Foundation grant OCE#-1923387 and National Oceanographic and Atmospheric Administration grant #NA16OAR4310172.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...