ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Forschungsdaten  (21)
  • EARTH SCIENCE 〉 SOLID EARTH  (9)
  • EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS  (6)
  • EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS  (5)
  • Data Analytics Software Framework  (4)
  • GFZ Data Services  (21)
  • 2020-2023  (21)
  • 2021  (12)
  • 2020  (9)
Sammlung
  • Forschungsdaten  (21)
Datenquelle
Verlag/Herausgeber
  • GFZ Data Services  (21)
Erscheinungszeitraum
Jahr
  • 2021  (12)
  • 2020  (9)
  • 2022  (9)
  • 1
    Publikationsdatum: 2022-01-05
    Beschreibung: Abstract
    Beschreibung: The southern Central Andes (SCA, 29°S-39°S) are characterized by the subduction of the oceanic Nazca Plate beneath the continental South American Plate. One striking feature of this area is the change of the subduction angle of the Nazca Plate between 33°S and 35°S from the Chilean-Pampean flat-slab zone (〈 5° dip) in the north to a steeper sector in the south (~30° dip). Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to the lithospheric strength in the upper plate. Despite recent research focused on the compositional and thermal characteristics of the SCA lithosphere, the lithospheric strength distribution remains largely unknown. Here we calculated the long-term lithospheric strength on the basis of an existing 3D model describing the variation of thickness, density and temperature of geological units forming the lithosphere of the SCA. The model consists of a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Beschreibung: Methods
    Beschreibung: To compute the lithospheric strength distribution in the SCA, we used the geometries and densities of the units forming the 3D lithospheric scale model of Rodriguez Piceda et al. (2020a,b). The units considered for the rheological calculations are (1) oceanic and continental sediments; (3) upper continental crystalline crust; (4) lower continental crystalline crust; (5) continental lithospheric mantle (6) shallow oceanic crust; (7) deep oceanic crust; (8) oceanic lithospheric mantle; and (9) oceanic sub-lithospheric mantle. The thermal field was derived from a temperature model of the SCA (Rodriguez Piceda et al. under review) covering the same region as the structural model of Rodriguez Piceda et al. (2020a). To calculate the temperature distribution in the SCA, the model volume was split into two domains: (1) a shallow domain, including the crust and uppermost mantle to a depth of ~50 km below mean sea level (bmsl), where the steady-state conductive thermal field was calculated using as input the 3D structural and density model of the area of Rodriguez Piceda et al. (2020b, a) and the finite element method implemented in GOLEM (Cacace and Jacquey 2017); (2) a deep domain between a depth of ~50 and 200 km bmsl, where temperatures were converted from S wave seismic velocities using the approach by Goes et al. (2000) as implemented in the python tool VelocityConversion (Meeßen 2017). Velocities from two alternative seismic tomography models were converted to temperatures (Assumpção et al. 2013; Gao et al. 2021). A detailed description of the method can be found in Rodriguez Piceda et al. (under review). The yield strength of the lithosphere (i.e. maximum differential stress prior to permanent deformation) was calculated using the approach by Cacace and Scheck-Wenderoth (2016). We assumed brittle-like deformation as decribed by Byerlee’s law (Byerlee 1968) and steady state creep as the dominant form of viscous deformation. Low-temperature plasticity (Peierls creep) at differential stresses greater than 200 MPa was also included (Goetze et al. 1978; Katayama and Karato 2008). In addition, effective viscosities were computed from a thermally activated power-law (Burov 2011) We assigned rheological properties to each unit of the model on the basis of laboratory measurements (Goetze and Evans 1979; Ranalli and Murphy 1987; Wilks and Carter 1990; Gleason and Tullis 1995; Hirth and Kohlstedt 1996; Afonso and Ranalli 2004). These properties were chosen, in turn, based on the dominant lithology of each layer derived from seismic velocities and gravity-constrained densities. More methodological details and a table with the rheological properties are depicted in Rodriguez Piceda et al. (under review). The rheological results using the thermal model derived from the seismic tomography of Assumpção et al. (2013) and Gao et al. (2021) can be found in Rodriguez Piceda et al. (under review, under review), respectively
    Beschreibung: Other
    Beschreibung: Two comma-separated files can be found with the calculated lithospheric temperature, strength and effective viscosity for all the points in the model (2,274,757). These points are located at the top surface of each model unit. Therefore, the vertical resolution of the model is variable and depends on the thickness and refinement of the structural modelled units. SCA_RheologicalModel_V01.csv corresponds to the results using the mantle thermal field from the tomography by Assumpção et al. (2013) and presented in Rodriguez Piceda et al. (under review). SCA_RheologicalModel_V02.csv includes the results using the mantle thermal field of Gao et al. (2021) and presented in Rodriguez Piceda et al. (under review). Each of these files contains the following columns: -Northing as " X COORD (m [UTM Zone 19S]) " -Easting as " Y COORD (m [UTM Zone 19S]) " -Depth to the top surface as " Z COORD (m.a.s.l.)" -Temperature in degree Celsius as " TEMP (deg. C) " -Yield strength in MPa as “STRENGTH (MPa)” -Effective viscosity in base-10 logarithm of Pa*s as “EFF VISCOSITY (log10(Pa*s))” The dimensions of the model is 700 km x 1100 km x 200 km. The horizontal resolution is 5 km, while the vertical resolution depends on the thickness of the structural units.
    Schlagwort(e): Lithosphere ; Rheology ; Subduction ; Andes ; EARTH SCIENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-01-05
    Beschreibung: Abstract
    Beschreibung: The Central Andean orogen formed as a result of the subduction of the oceanic Nazca plate beneath the continental South-American plate. In the southern segment of the Central Andes (SCA, 29°S-39°S), the oceanic plate subducts beneath the continental plate with distinct dip angles from north to south. Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to lithospheric temperature distribution in the upper plate. Previous studies provided insights into the present-day thermal field with focus on the surface heat flow distribution in the orogen or through modelling of the seismic velocity distribution in restricted regions of the SCA as indirect proxy of the deep thermal field. Despite these recent advances, the information on the temperature distribution at depth of the SCA lithosphere remains scarcely constrained. To gain insight into the present-day thermal state of the lithosphere in the region, we derived the 3D lithospheric temperature distribution from inversion of S-wave velocity to temperature and calculations of the steady state thermal field. The configuration of the region – concerning both, the heterogeneity of the lithosphere and the slab dip – was accounted for by incorporating a 3D data-constrained structural and density model of the SCA into the workflow (Rodriguez Piceda et al. 2020a-b). The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Beschreibung: Methods
    Beschreibung: To predict the temperature distribution in the SCA, the model volume was subdivided into two domains: (1) a shallow domain, including the crust and uppermost mantle to a depth of ~50 km below mean sea level (bmsl), where the steady-state conductive thermal field was calculated using as input the 3D structural and density model of the area (Rodriguez Piceda et al., 2020a-b); (2) a deep domain between a depth of ~50 and 200 km bmsl, where temperatures were converted from S wave seismic velocities (Assumpção et al., 2013) using the approach by Goes et al. (2000) as implemented in the python tool VelocityConversion (Meeßen 2017). The 3D model of Rodriguez Piceda et al. (2020) consists of the following layers: (1) water; (2) oceanic sediments; (3) continental sediments; (4) upper continental crystalline crust; (5) lower continental crystalline crust; (6) continental lithospheric mantle (7) shallow oceanic crust; (8) deep oceanic crust; (9) oceanic lithospheric mantle; and (10) oceanic sub-lithospheric mantle. For the computation of temperatures in the shallow domain, three main modifications were made to the 3D model of Rodriguez Piceda et al. (2020a-b). First, we removed the water layer thus considering the topography/bathymetry as the top of the model. Second, the horizontal resolution was increased to 5 km and, third, the layers were vertically refined by a factor of 3 to 32. We assigned constant thermal properties (bulk conductivity λ and radiogenic heat production S) to each layer of the model according to each lithology (Alvarado et al. 2007, 2009; Ammirati et al. 2013, 2015, 2018; Araneda et al., 2003; Brocher, 2005; Čermák and Rybach, 1982; Contreras-Reyes et al., 2008; Christensen & Mooney, 1995; Gilbert et al., 2006; Hasterok & Chapman, 2011; He et al., 2008; Marot et al., 2014, Pesicek et al., 2012; Rodriguez Piceda et al., 2020; Scarfi & Barbieri, 2019; Vilà et al.,2010; Wagner et al., 2005; Xu et al., 2004). The steady-state conductive thermal field in the shallow domain was calculated applying the Finite Element Method as implemented in the software GOLEM (Cacace & Jacquey, 2017; Jacquey & Cacace, 2017). For the computation, we assigned fixed temperatures along the top and base of the model as thermal boundary conditions. The upper boundary condition was set at the topography/bathymetry and it is the temperature distribution from the ERA-5 land data base (Muñoz Sabater, 2019). The lower boundary condition was set at a constant depth of 50 km bmsl for areas where the Moho is shallower than 50 km bmsl and at the Moho depth proper where this interface is deeper than the abovementioned threshold. The temperature distribution at this boundary condition was calculated from the conversion of S-wave velocities to temperatures (Assumpção et al., 2013).
    Schlagwort(e): Lithosphere ; Andes ; Subduction ; Thermal Model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE 〉 TEMPERATURE PROFILES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-01-20
    Beschreibung: Abstract
    Beschreibung: This dataset includes raw data used in the paper by Reitano et al. (2022), focused on the effect of boundary conditions on the evolution of analogue accretionary wedges affected by both tectonics and surface processes; the paper also focuses on the balance between tectonics and surface processes as a function of the boundary conditions applied. These boundary conditions are convergence velocity and basal slope (i.e., the tilting toward the foreland imposed prior the experimental run). The experiments have been carried out at Laboratory of Experimental Tectonics (LET), University “Roma Tre” (Rome). Detailed descriptions of the experimental apparatus and experimental procedures implemented can be found in the paper to which this dataset refers. Here we present: •Pictures recording the evolution of the models. •GIFs showing time-lapses of models. •Raw DEMs of the models and Incision DEMs, used for extracting data later discusses in the paper.
    Beschreibung: Methods
    Beschreibung: We took digital images during the evolution of the experiments. These images are stored in the “2021-041_Reitano-et-al_Pictures_and_GIFs” folder. Digital Images The qualitative evolution of the analogue models has been recorded using a digital oblique-view camera (Canon EOS 200D). Digital pictures have not been modified with other imaging software. Data from models' surface Laser scan provides a point cloud, composed by x, y, z coordinated of the points composing the model surface (the number of points is function of the laser resolution). The laser scans are converted to raw DEMs, here stored in the “DEMs” folder. For making the file easily readable to GIS software, data are expressed in m (100 m = 1 mm, see scaling section in the main paper). Bottom left corner in the DEMs is randomly chosen to be -70 ∙ 103 m. No data values equal to -9999. Cell size is 100 m (1 mm in the models). Incision and Mass Balance The .txt files inside the “2021-041_Reitano-et-al_DEMs” folder named “CR****_dem**clip” has been used for producing Fig. 6, 8, 10, and S3 in Reitano et al. (2021). From these DEMs we calculated the Mass Balance, as described in the paper this repository refers to. The .txt files named “CR****_inc**ok” have been used for calculating the incision values shown in Fig. 5 and 7 in Reitano et al. (2021). To obtain incision maps and incision over time, the volume of material incised was computed by comparing the actual topography with the reconstructed non-eroded surface at every shortening step. The non-eroded surface has been calculated by creating an envelope surface using crest lines between valleys as constraints (the assumption is that crests do not erode). The results are then a minimum estimate of the amount of incision.
    Schlagwort(e): Tectonics ; Erosion ; Sedimentation ; Mass Balance ; Analogue models ; EPOS ; multi-scale laboratories ; analogue models of geologic processes ; property data of analogue modelling materials ; analogue modelling results ; software tools ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 FLOOD PLAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 RIVER ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 STREAM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 VALLEY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 WATERSHED/DRAINAGE BASINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 SEDIMENT TRANSPORT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 SEDIMENTATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 OROGENIC MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 TECTONIC UPLIFT ; hydrosphere 〉 water (geographic) 〉 surface water ; science 〉 natural science 〉 earth science 〉 geology 〉 tectonics
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-03-31
    Beschreibung: Abstract
    Beschreibung: This dataset includes the results of Particle Image Velocimetry (PIV) of one experiment on subduction megathrust earthquakes (with interacting asperities) performed at the Laboratory of Experimental Tectonics (LET) Univ. Roma Tre in the framework of AspSync, the Marie Curie project (grant agreement 658034; https://aspsync.wordpress.com). Detailed descriptions of the experiments and monitoring techniques can be found in Corbi et al. (2017). This data set is from one experiment characterized by the presence of a 7 cm wide barrier separating two asperities with equal size, geometry and friction. Here we provide PIV data relative to a 16.3 min long interval during which the experiment produces 138 analog earthquakes with an average recurrence time of 7 s. The PIV analysis yields quantitative information about the velocity field characterizing two consecutive frames, measured in this case at the model surface. For a detailed description of the experimental procedure, set-up and materials used, please refer to the article of Corbi et al. (2017) paragraph 2. This data set has been used for: a) studying velocity variations (Fig. 2 in Corbi et al., 2021) and rupture patterns (Fig. 3a, b in Corbi et al., 2021) occurring during the velocity peak of one of the two asperities (aka trigger).
    Beschreibung: Methods
    Beschreibung: The evolution of the analog model was monitored with a digital top-view camera (PIKE-ALLIED with resolution 1600 × 1200 pixels), capturing one frame every 0.133 s. Digital images were then analyzed with MatPIV (Sveen, 2004), which is an open-source software for PIV running under the MATLAB package. This software uses a cross-correlation technique that allows calculating horizontal components (i.e., on the image plane) of surface displacement with about one tenth of a pixel of accuracy. We used the multi-pass protocol with window size of 128 x 128 pixels and 64 x 64 pixels and 50% overlap. Other information e.g., surface displacement can be easily computed from the velocity field knowing the time between frames.
    Schlagwort(e): analogue models of geologic processes ; subduction megathrust earthquakes ; asperities ; multi-scale laboratories ; EPOS ; Analog modelling results ; Software tools ; deformation ; geologic process ; tectonic process ; subduction ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 MatPIV ; Earthquake simulator ; Wedge simulator ; Gelatine ; plate margin setting ; subduction zones ; thrust fault ; Videocamera ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; geological process 〉 seismic activity ; geological process 〉 seismic activity 〉 earthquake ; science 〉 natural science 〉 earth science ; science 〉 natural science 〉 earth science 〉 geophysics
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-03
    Beschreibung: Abstract
    Beschreibung: The ETH-QM21 model is a gravimetric quasigeoid of 2'x2' spatial resolution developed over Ethiopia. This solution has been derived from the ETH-GM21 gravimetric geoid model by using the ETH-GQS geoid-to-quasigeoid separation surface over Ethiopia (see Dataset Description). Considering the rough topography of Ethiopia, the ETH-QM21 would be beneficial for normal height measurements. The ETH-QM21 model would be beneficial for normal height measurements, also considering the rough topography of Ethiopia. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Beschreibung: Other
    Beschreibung: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Schlagwort(e): Geodesy ; Geoid model ; ISG ; Geoid-to-quasigeoid separation ; Ethiopia ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-09-27
    Beschreibung: Abstract
    Beschreibung: DASF: Web is part of the Data Analytics Software Framework (DASF, https://git.geomar.de/digital-earth/dasf), developed at the GFZ German Research Centre for Geosciences (https://www.gfz-potsdam.de). It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). DASF: Web collects all web components for the data analytics software framework DASF. It provides ready to use interactive data visualization components like time series charts, radar plots, stacked-parameter-relation (spr) and more, as well as a powerful map component for the visualization of spatio-temporal data. Moreover dasf-web includes the web bindings for the DASF RCP messaging protocol and therefore allows to connect any algorithm or method (e.g. via the dasf-messaging-python implementation) to the included data visualization components. Because of the component based architecture the integrated method could be deployed anywhere (e.g. close to the data it is processing), while the interactive data visualizations are executed on the local machine. dasf-web is implemented in Typescript and uses Vuejs/Vuetify, Openlayers and D3 as a technical basis.
    Beschreibung: TechnicalInfo
    Beschreibung: Copyright 2021 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DASF Data Analytics Software Framework Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Beschreibung: Other
    Beschreibung: The data analytics software framework DASF, developed at the GFZ German Research Centre for Geosciences and funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/), provides a framework for scientists to conduct data analysis in distributed environments. DASF supports scientists to conduct data analysis in distributed IT infrastructures by sharing data analysis tools and data. For this purpose, DASF defines a remote procedure call (RCP) messaging protocol that uses a central message broker instance. Scientists can augment their tools and data with this protocol to share them with others. DASF supports many programming languages and platforms since the implementation of the protocol uses WebSockets. It provides two ready-to-use language bindings for the messaging protocol, one for Python and one for the Typescript programming language. In order to share a python method or class, users add an annotation in front of it. In addition, users need to specify the connection parameters of the message broker. The central message broker approach allows the method and the client calling the method to actively establish a connection, which enables using methods deployed behind firewalls. DASF uses Apache Pulsar (https://pulsar.apache.org/) as its underlying message broker. The Typescript bindings are primarily used in conjunction with web frontend components, which are also included in the DASF-Web library. They are designed to attach directly to the data returned by the exposed RCP methods. This supports the development of highly exploratory data analysis tools. DASF also provides a progress reporting API that enables users to monitor long-running remote procedure calls.
    Schlagwort(e): DASF ; Data Analytics Software Framework ; RCP ; remote procedure call ; interactive visualization ; web components ; typescript ; vuetify ; openlayers ; d3 ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 VISUALIZATION/IMAGE PROCESSING
    Materialart: Software , Software
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-09-27
    Beschreibung: Abstract
    Beschreibung: The success of scientific projects increasingly depends on using data analysis tools and data in distributed IT infrastructures. Scientists need to use appropriate data analysis tools and data, extract patterns from data using appropriate computational resources, and interpret the extracted patterns. Data analysis tools and data reside on different machines because the volume of the data often demands specific resources for their storage and processing, and data analysis tools usually require specific computational resources and run-time environments. The data analytics software framework DASF, developed at the GFZ German Research Centre for Geosciences (https://www.gfz-potsdam.de) and funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/), provides a framework for scientists to conduct data analysis in distributed environments. The data analytics software framework DASF supports scientists to conduct data analysis in distributed IT infrastructures by sharing data analysis tools and data. For this purpose, DASF defines a remote procedure call (RCP) messaging protocol that uses a central message broker instance. Scientists can augment their tools and data with this protocol to share them with others. DASF supports many programming languages and platforms since the implementation of the protocol uses WebSockets. It provides two ready-to-use language bindings for the messaging protocol, one for Python and one for the Typescript programming language. In order to share a python method or class, users add an annotation in front of it. In addition, users need to specify the connection parameters of the message broker. The central message broker approach allows the method and the client calling the method to actively establish a connection, which enables using methods deployed behind firewalls. DASF uses Apache Pulsar (https://pulsar.apache.org/) as its underlying message broker. The Typescript bindings are primarily used in conjunction with web frontend components, which are also included in the DASF-Web library. They are designed to attach directly to the data returned by the exposed RCP methods. This supports the development of highly exploratory data analysis tools. DASF also provides a progress reporting API that enables users to monitor long-running remote procedure calls. One application using the framework is the Digital Earth Flood Event Explorer (https://git.geomar.de/digital-earth/flood-event-explorer). The Digital Earth Flood Event Explorer integrates several exploratory data analysis tools and remote procedures deployed at various Helmholtz centers across Germany.
    Schlagwort(e): DASF ; RCP ; Python ; Progress ; Data Analytics Software Framework ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 STATISTICAL APPLICATIONS ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA NETWORKING/DATA TRANSFER TOOLS
    Materialart: Software , Software
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-09-27
    Beschreibung: Abstract
    Beschreibung: DASF: Messaging Python is part of the Data Analytics Software Framework (DASF, https://git.geomar.de/digital-earth/dasf), developed at the GFZ German Research Centre for Geosciences. It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). DASF: Messaging Python is a RCP (remote procedure call) wrapper library for the python programming language. As part of the data analytics software framework DASF, it implements the DASF RCP messaging protocol. This message broker based RCP implementation supports the integration of algorithms and methods implemented in python in a distributed environment. It utilizes pydantic (https://pydantic-docs.helpmanual.io/) for data and model validation using python type annotations. Currently the implementation relies on Apache Pulsar (https://pulsar.apache.org/) as a central message broker instance.
    Beschreibung: TechnicalInfo
    Beschreibung: Copyright 2021 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DASF Data Analytics Software Framework Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Beschreibung: Other
    Beschreibung: The data analytics software framework DASF, developed at the GFZ German Research Centre for Geosciences (https://www.gfz-potsdam.de) and funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/), provides a framework for scientists to conduct data analysis in distributed environments. DASF supports scientists to conduct data analysis in distributed IT infrastructures by sharing data analysis tools and data. For this purpose, DASF defines a remote procedure call (RCP) messaging protocol that uses a central message broker instance. Scientists can augment their tools and data with this protocol to share them with others. DASF supports many programming languages and platforms since the implementation of the protocol uses WebSockets. It provides two ready-to-use language bindings for the messaging protocol, one for Python and one for the Typescript programming language. In order to share a python method or class, users add an annotation in front of it. In addition, users need to specify the connection parameters of the message broker. The central message broker approach allows the method and the client calling the method to actively establish a connection, which enables using methods deployed behind firewalls. DASF uses Apache Pulsar (https://pulsar.apache.org/) as its underlying message broker. The Typescript bindings are primarily used in conjunction with web frontend components, which are also included in the DASF-Web library. They are designed to attach directly to the data returned by the exposed RCP methods. This supports the development of highly exploratory data analysis tools. DASF also provides a progress reporting API that enables users to monitor long-running remote procedure calls.
    Schlagwort(e): DASF ; Data Analytics Software Framework ; RCP ; remote procedure call ; message broker ; distributed analysis ; python ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA NETWORKING/DATA TRANSFER TOOLS
    Materialart: Software , Software
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-09-27
    Beschreibung: Abstract
    Beschreibung: DASF: Progress API is part of the Data Analytics Software Framework (DASF, https://git.geomar.de/digital-earth/dasf), developed at the GFZ German Research Centre for Geosciences (https://www.gfz-potsdam.de). It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). DASF: Progress API provides a light-weight tree-based structure to be sent via the DASF RCP messaging protocol. It's generic design supports deterministic as well as non-deterministic progress reports. While DASF: Messaging Python provides the necessary implementation to distribute the progress reports from the reporting backend modules, DASF: Web includes ready to use components to visualize the reported progress.
    Beschreibung: TechnicalInfo
    Beschreibung: Copyright 2021 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DASF Data Analytics Software Framework Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Beschreibung: Other
    Beschreibung: The data analytics software framework DASF, developed at the GFZ German Research Centre for Geosciences (https://www.gfz-potsdam.de) and funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/), provides a framework for scientists to conduct data analysis in distributed environments. DASF supports scientists to conduct data analysis in distributed IT infrastructures by sharing data analysis tools and data. For this purpose, DASF defines a remote procedure call (RCP) messaging protocol that uses a central message broker instance. Scientists can augment their tools and data with this protocol to share them with others. DASF supports many programming languages and platforms since the implementation of the protocol uses WebSockets. It provides two ready-to-use language bindings for the messaging protocol, one for Python and one for the Typescript programming language. In order to share a python method or class, users add an annotation in front of it. In addition, users need to specify the connection parameters of the message broker. The central message broker approach allows the method and the client calling the method to actively establish a connection, which enables using methods deployed behind firewalls. DASF uses Apache Pulsar (https://pulsar.apache.org/) as its underlying message broker. The Typescript bindings are primarily used in conjunction with web frontend components, which are also included in the DASF-Web library. They are designed to attach directly to the data returned by the exposed RCP methods. This supports the development of highly exploratory data analysis tools. DASF also provides a progress reporting API that enables users to monitor long-running remote procedure calls.
    Schlagwort(e): DASF ; RCP ; Python ; Progress ; Data Analytics Software Framework ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA NETWORKING/DATA TRANSFER TOOLS
    Materialart: Software , Software
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-11-28
    Beschreibung: Abstract
    Beschreibung: This dataset contains data of a reflection seismic profile in North-Western Namibia. The measurements were carried out in continuation of the LISPWAL project aiming to decipher the lithospheric structure of the Namibian passive margin at the intersection with the Walvis Ridge (Ryberg et al., 2014a, b; 2015). Scientific aims were a) to produce a high-resolution image of the reflectivity of the lower-crustal high-velocity body revealed by wide-angle observations; b) an improved understanding of how continental crust and plume head interact, c) to investigate what the extent and volumes of magmatic underplating are, and d) to understand how and which inherited (continental) structures might have been involved and utilized in the break up process. The dataset contains seismic data, including raw and SEG Y files, of the controlled-source survey in North-Western Namibia (Kaokoveld) using near-vertical reflection seismic methods.
    Beschreibung: Other
    Beschreibung: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Schlagwort(e): geophysics ; controlled-source seismic survey ; onshore ; offshore ; continental margin ; Namibia ; Walvis Ridge ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2022-11-28
    Beschreibung: Abstract
    Beschreibung: The stations are part of a seismic network in the Helsinki capital area of Finland in 2020. The stations recorded the response to a second stimulation of a ∼ 6 km deep enhanced geothermal system in the Otaniemi district of Espoo that followed on the first larger stimulation in 2018. The second stimulation from 6 May to 24 May 2020 established a geothermal doublet system. The Institute of Seismology, University of Helsinki (ISUH), installed the 70 GIPP-provided geophones in addition to surface broadband sensors, ISUH-owned short-period instruments, and a borehole satellite network deployed by the operating company. The data set consists of raw CUBE-recorder data and converted MSEED data. The data set has been collected to underpin a wide range of seismic analysis techniques for complementary scientific studies of the evolving reservoir processes and the induced event properties. These should inform the legislation and educate the public for transparent decision making around geothermal power generation in Finland. The full 2020 network and with it the deployment of the CUBE stations is described in a Seismological Research Letter Data Mine Column by A. Rintamäki et al. (2021).
    Beschreibung: Other
    Beschreibung: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Schlagwort(e): Geothermal system ; geothermal reservoir ; stimulation ; induced seismicity ; induced earthquakes ; Fennoscandian shield ; earthquake monitoring ; seismic arrays ; array seismology ; array of arrays ; Finland ; Helsinki] ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; geology
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    facet.materialart.
    Unbekannt
    GFZ Data Services
    Publikationsdatum: 2022-11-29
    Beschreibung: Abstract
    Beschreibung: The Villarrica Volcano is one of the most active volcanoes in South America and is located in a major tourism region. A dense temporal seismological network was installed to investigate the volcanic seismicity and the seismic structure of the edifice with seismic traveltime tomography at high spatial resolution. The network was in operation for 2 weeks from 01.03.2012 to 14.03.2012. It consisted of 30 three-component and 45 one-component short period seismographs covering an area of about 2000 km2. The covered area has a diameter of 45 km and includes the volcanic building.
    Beschreibung: Other
    Beschreibung: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Schlagwort(e): geophysics ; Volcano seismology ; seismic tomography ; seismotectonics ; PASSIVE_SEISMIC 〉 NETWORK ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; LAND ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2022-01-05
    Beschreibung: Abstract
    Beschreibung: The Central Andean orogeny is caused by the subduction of the Nazca oceanic plate beneath the South-American continental plate. In Particular, the Southern Central Andes (SCA, 27°-40°S) are characterized by a strong N-S and E-W variation in the crustal deformation style and intensity. Despite being the surface geology relatively well known, the information on the deep structure of the upper plate in terms of its thickness and density configurations is still scarcely constrained. Previous seismic studies have focused on the crustal structure of the northern part of the SCA (~27°-33°S) based upon 2D cross-sections, while 3D crustal models centred on the South-American or the Nazca Plate have been published with lower resolution. To gain insight into the present-day state of the lithosphere in the area, we derived a 3D model that is consistent with both the available geological and seismic data and with the observed gravity field. The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen, the forearc and the forelands.
    Beschreibung: Methods
    Beschreibung: Different data sets were integrated to derive the lithospheric features: - We used the global relief model of ETOPO1 (Amante and Eakins 2009) for the topography and bathymetry. - The sub-surface structures were defined by integrating seismically constrained models, including the South-American crustal thickness of Assumpção et al. (2013; model A; 0.5 degree resolution), the sediment thickness of CRUST1 (Laske et al. 2013) and the slab geometry of SLAB2 (Hayes et al. 2018). - Additionally, we included seismic reflection and refraction profiles performed on the Chile margin (Araneda et al. 2003; Contreras-Reyes et al. 2008, 2014, 2015; Flueh et al. 1998; Krawzyk et al. 2006; Moscoso et al. 2011; Sick et al. 2006; Von Huene et al. 1997). - Besides, we used sediment thickness maps from the intracontinental basin database ICONS (6 arc minute resolution, Heine 2007) and two oceanic sediment compilations: one along the southern trench axis (Völker et al. 2013) and another of global-scale (GlobSed; Straume et al. 2019). To build the interfaces between the main lithospheric features, we compiled and interpolated these datasets on a regular grid with a surface resolution of 25 km. For that purpose, the convergent algorithm of the software Petrel was used. We assigned constant densities within each layer, except for the lithospheric mantle. In this case, we implemented a heterogeneous distribution by converting s-wave velocities from the SL2013sv seismic tomography (Schaeffer and Lebedev 2013) to densities. The python tool VelocityConversion was used for the conversion (Meeßen 2017). To further constrain the crustal structure of the upper plate, a gravity forward modelling was carried out using IGMAS+ (Schmidt et al. 2010). The gravity anomaly from the model (calculated gravity) was compared to the free-air anomaly from the global gravity model EIGEN-6C4 (observed gravity; Förste et al 2014; Ince et al. 2019). Subsequently, the crystalline crust of the upper plate was split vertically into two layers of different densities. We inverted the residual between calculated and observed gravity to compute the depth to the interface between the two crustal layers. For the inverse modelling of the gravity residual, the Python package Fatiando a Terra was used (Uieda et al. 2013) For each layer, the depth to the top surface, thickness and density can be found as separate files. All files contain identical columns: - Northing as "X Coord (UTM zone 19S)"; - Easting as "Y Coord (UTM zone 19S)"; - depth to the top surface as "Top (m.a.s.l)" and - thickness of each layer as "Thickness (m)". The header ‘Density’ indicates the bulk density of each unit in kg/m3. For the oceanic and continental mantle units, a separate file is provided with a regular grid of the density distribution with a lateral resolution of 8 km x 9 km and a vertical resolution of 5 km. The containing columns are: Northing as "X Coord (UTM zone 19S)"; Easting as "Y Coord (UTM zone 19S)"; depth as "Depth (m.a.s.l)" and density as "Density (kg/m3)"
    Schlagwort(e): Lithosphere ; Gravity Modelling ; Andes ; EARTH SCIENCE ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TOPOGRAPHICAL RELIEF ; EARTH SCIENCE 〉 OCEANS 〉 BATHYMETRY/SEAFLOOR TOPOGRAPHY 〉 BATHYMETRY ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2022-03-22
    Beschreibung: Abstract
    Beschreibung: Despite the amount of research focused on the Alpine orogen, significant unknowns remain regarding the thermal field and long term lithospheric strength in the region. Previous published interpretations of these features primarily concern a limited number of 2D cross sections, and those that represent the region in 3D typically do not conform to measured data such as wellbore or seismic measurements. However, in the light of recently published higher resolution region specific 3D geophysical models, that conform to secondary data measurements, the generation of a more up to date revision of the thermal field and long term lithospheric yield strength is made possible, in order to shed light on open questions of the state of the orogen. The study area of this work focuses on a region of 660 km x 620 km covering the vast majority of the Alps and their forelands, with the Central and Eastern Alps and the northern foreland being the best covered regions.
    Schlagwort(e): Alps ; Forelands ; Po Basin ; Molasse Basin ; Upper Rhine Graben ; Ivrea Body ; European Crust ; Adriatic Crust ; Sediment Thickness ; Crustal Thickness ; Vosges Massif ; Black Forest Massif ; Bohemian Massif ; Mantle Density ; 4DMB ; Mountain Building Processes in 4d ; EARTH SCIENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; lithosphere ; lithosphere 〉 earth's crust ; lithosphere 〉 earth's crust 〉 continental shelf 〉 continent ; lithosphere 〉 earth's crust 〉 sedimentary basin ; physical property 〉 viscosity ; science 〉 natural science 〉 earth science 〉 geophysics
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2022-05-13
    Beschreibung: Abstract
    Beschreibung: Bedload transport is a key process in fluvial morphodynamics and hydraulic engineering, but is notoriously difficult to measure. The recent advent of stream-side seismic monitoring techniques provides an alternative to in-stream monitoring techniques, which are often costly, staff-intensive, and cannot be deployed during large floods. Seismic monitoring is a surrogate method requiring several steps to convert seismic data into bedload data. State-of-the-art approaches of conversion exploit physical models predicting the seismic signal generated by bedload transport. Here, we did an active seismic survey (2017-11) and used seismic data from a flood event (2016-02-22) on the Nahal Ehstemoa to constrain a seismic bedload model. We conducted the active seismic survey to determine the local seismic ground properties, i.e., the Green’s function. We also used water depth and bedload grain size distribution to constrain the seismic bedload model and were able to compare the bedload flux obtained from the seismic data using the model with high-quality independent bedload measurements from slot samplers on the site. The complementary non-seismic data is published in a separate data publication (Lagarde et al., 2020).
    Schlagwort(e): Ground properties ; Green’s function ; Environmental seismology ; EARTH SCIENCE 〉 SOLID EARTH ; geology
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2022-05-31
    Beschreibung: Abstract
    Beschreibung: The quasi-geoid model of São Paulo State was computed using the updated and filtered gravimetric data and the new system of the normal height of the 2018 Brazilian Vertical Reference Frame (BVRF). For the ocean area, gravity anomalies of the DTU13 model with a resolution of 1’ were used. To quantify the terrain effects through the Residual Terrain Model procedure, the SRTM15+ DTM was used. The computation of the quasi-geoid model was performed by numerical integration through the Fast Fourier Transform (FFT). The Molodensky gravity anomaly was determined in a 5’x5’ grid and reduced and restored using the Residual Terrain Model (RTM) technique and the XGM2019e global gravity model truncated at degree and order 720. The zero-order degree term was added in the final computation. The validation for the quasi-geoid model based on 291 GPS measurements in the leveling network has shown 18 cm RMS difference. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Beschreibung: Other
    Beschreibung: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Schlagwort(e): Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; São Paulo State ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2022-05-31
    Beschreibung: Abstract
    Beschreibung: The geoid model of São Paulo State was computed using the updated and filtered gravimetric data and the new system of the normal height of the 2018 Brazilian Vertical Reference Frame (BVRF). For the ocean area, gravity anomalies of the DTU13 model with a resolution of 1’ were used. To quantify the terrain effects through the Residual Terrain Model procedure, the SRTM15+ DTM was used. The computation of the quasi-geoid model was performed by numerical integration through the Fast Fourier Transform (FFT). The Molodensky gravity anomaly was determined in a 5’x5’ grid and reduced and restored using the Residual Terrain Model (RTM) technique and the XGM2019e global gravity model truncated at degree and order 250. The geoid model was derived from the Bouguer gravity anomalies. The zero-order degree term was added in the final computation. The validation for the quasi-geoid model based on 291 GPS measurements in the leveling network has shown 18 cm RMS difference. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Beschreibung: Other
    Beschreibung: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Schlagwort(e): Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; São Paulo State ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2022-05-31
    Beschreibung: Abstract
    Beschreibung: The quasi-geoid model of São Paulo State was computed using the updated and filtered gravimetric data and the new system of the normal height of the 2018 Brazilian Vertical Reference Frame (BVRF). For the ocean area, gravity anomalies of the DTU13 model with a resolution of 1’ were used. To quantify the terrain effects through the Residual Terrain Model procedure, the SRTM15+ DTM was used. The computation of the quasi-geoid model was performed by numerical integration through the Fast Fourier Transform (FFT). The Molodensky gravity anomaly was determined in a 5’x5’ grid and reduced and restored using the Residual Terrain Model (RTM) technique and the XGM2019e global gravity model truncated at degree and order 250. The zero-order degree term was added in the final computation. The validation for the quasi-geoid model based on 291 GPS measurements in the leveling network has shown 18 cm RMS difference. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Beschreibung: Other
    Beschreibung: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Schlagwort(e): Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; São Paulo State ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2022-05-31
    Beschreibung: Abstract
    Beschreibung: The geoid model of São Paulo State was computed using the updated and filtered gravimetric data and the new system of the normal height of the 2018 Brazilian Vertical Reference Frame (BVRF). For the ocean area, gravity anomalies of the DTU13 model with a resolution of 1’ were used. To quantify the terrain effects through the Residual Terrain Model procedure, the SRTM15+ DTM was used. The computation of the quasi-geoid model was performed by numerical integration through the Fast Fourier Transform (FFT). The Molodensky gravity anomaly was determined in a 5’x5’ grid and reduced and restored using the Residual Terrain Model (RTM) technique and the XGM2019e global gravity model truncated at degree and order 720. The geoid model was derived from the Bouguer gravity anomalies. The zero-order degree term was added in the final computation. The validation for the quasi-geoid model based on 291 GPS measurements in the leveling network has shown 18 cm RMS difference. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Beschreibung: Other
    Beschreibung: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Schlagwort(e): Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; São Paulo State ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2022-11-04
    Beschreibung: Abstract
    Beschreibung: The Turkish Geoid Model-2020 (TG-20) is currently the official geoid model for Turkey computed by the General Directorate of Mapping, the national mapping agency. It is a hybrid model extending from 35°N to 43°N and from 25°E to 45°E. It was determined using more than 265,000 point gravity data, as well as the GOCO06S global geopotential model and a digital elevation model of 7.2 arc-second resolution based on SRTM V4.1. Free-air gravity anomalies over marine areas and neighboring countries at 1’×1’ resolution were computed using the XGM2019e model up to degree and order 5399. The computation was based on the Least-Squares Modification of Stokes’ Formula with Additive Corrections (LSMSA) method using the LSMS-GEOLAB scientific software. The transformation of the gravimetric model was carried out via 4-parameter fit to 182 historical and homogenously distributed GPS/levelling data. Absolute validation of the resulting hybrid model with 278 recent GPS/levelling data yielded standard deviations ranging from 1.2 cm to 6.3 cm (below 2 cm at almost every test profile) which brought about considerable improvement over the previous official geoid models. TG-20 with 5 arc-min spatial resolution is freely available to the public. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Beschreibung: Other
    Beschreibung: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Schlagwort(e): Geodesy ; Geoid model ; ISG ; Least Squares modification of Stokes integral with additive corrections ; Turkey ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2022-11-03
    Beschreibung: Other
    Beschreibung: In the data set we provide both mantle velocity and maximum principal stress orientation resulting from a geodynamical model. The data are calculated with use of the ProSpher 3D code in a spectral domain by spherical harmonics decomposition. The resolution of the model is of 120 spherical harmonics laterally and 50 km in depth. For velocity data (file set: Petrunin-etal19-Vel_XXX.dat), the 1st column represents longitude, 2nd column – latitude, 3d, 4th , 5th – longitudinal, latitudinal, and radial components of velocity in mm/yr, correspondingly. For maximum principal stress orientation data (file set: Petrunin-etal19-SH_XXX.dat), the 1st column represents longitude, 2nd column – latitude, 3d, 4th – longitudinal and latitudinal components of the unit vector representing maximum principal stress direction.
    Schlagwort(e): Geodynamic model ; calculated velocity field ; maximum principal stress ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH
    Materialart: Dataset
    Format: 1 Files
    Format: application/octet-stream
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...