ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (25,957)
  • Cell Press  (25,774)
  • 2025-2025
  • 2015-2019  (51,731)
  • 1990-1994
  • 2019  (26,138)
  • 2018  (25,593)
Collection
Publisher
Language
Years
  • 2025-2025
  • 2015-2019  (51,731)
  • 1990-1994
Year
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-03-23
    Description: "With so much media and political criticism of their shortcomings and failures, it is easy to overlook the fact that many governments work pretty well much of the time. Great Policy Successes turns the spotlight on instances of public policy that are remarkably successful. It develops a framework for identifying and assessing policy successes, paying attention not just to their programmatic outcomes but also to the quality of the processes by which policies are designed and delivered, the level of support and legitimacy they attain, and the extent to which successful performance endures over time. The bulk of the book is then devoted to 15 detailed case studies of striking policy successes from around the world, including Singapore's public health system, Copenhagen and Melbourne's rise from stilted backwaters to the highly liveable and dynamic urban centres they are today, Brazil's Bolsa Familia poverty relief scheme, the US's GI Bill, and Germany's breakthrough labour market reforms of the 2000s. Each case is set in context, its main actors are introduced, key events and decisions are described, the assessment framework is applied to gauge the nature and level of its success, key contributing factors to success are identified, and potential lessons and future challenges are identified. Purposefully avoiding the kind of heavy theorizing that characterizes many accounts of public policy processes, each case is written in an accessible and narrative style ideally suited for classroom use in conjunction with mainstream textbooks on public policy design, implementation, and evaluation.
    Keywords: public policy ; policy evaluation ; government ; governance ; social policy ; health policy ; economic policy ; thema EDItEUR::J Society and Social Sciences::JP Politics and government
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-21
    Description: We present the analysis of rotational and translational ground motions from earthquakes recorded during October–November 2016, in association with the Central Italy seismic sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope and the three components of ground velocity from a broad-band seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories of the Istituto Nazionale di Fisica Nucleare. We collected dozens of events spanning the 3.5–5.9 magnitude range and epicentral distances between 30 and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane-wave approximation we process the data set in order to get an experimental estimation of the events backazimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modelling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wavefield, we extract phase-velocity data using the spectral ratio of the translational and rotational components. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear wave velocities in the shallow crust of the Central Apennines
    Description: Published
    Description: 705-715
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Rotational seismology ; Surface waves and free oscillations ; Wave propagation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-20
    Description: The relationships between trachytes and peralkaline rhyolites (i.e. pantellerites and comendites), which occur in many continental rift systems, oceanic islands and continental intraplate settings, is unclear. To fill this gap, we have performed phase equilibrium experiments on two representative metaluminous trachytes from Pantelleria to determine both their pre-eruptive equilibration conditions (pressure, temperature, H2O content and redox state) and liquid lines of descent. Experiments were performed in the temperature range 750–950 C, pressure 0 5–1 5 kbar and fluid saturation conditions with XH2O [¼H2O/(H2OþCO2)] ranging between zero and unity. Redox conditions were fixed below the nickel–nickel oxide buffer (NNO). The results show that at 950 C and melt water contents (H2Omelt) close to saturation, trachytes are at liquidus conditions at all pressures. Clinopyroxene is the liquidus phase, being followed by iron-rich olivine and alkali feldspar. Comparison of experimental and natural phases (abundances and compositions) yields the following pre-eruptive conditions: P¼160 5 kbar, T¼925625 C, H2Omelt¼261wt %, and fO2 between NNO– 0 5 and NNO– 2. A decrease in temperature from 950 C to 750 C, as well as of H2Omelt, promotes a massive crystallization of alkali feldspar to over 80 wt %. Iron-bearing minerals show gradual iron enrichment when T and fO2 decrease, trending towards the compositions of the phenocrysts of natural pantellerites. Despite the metaluminous character of the bulk-rock compositions, residual glasses obtained after 80 wt % crystallization evolve toward comenditic compositions, owing to profuse alkali feldspar crystallization, which decreases the Al2O3 of the melt, leading to a consequent increase in the peralkalinity index [PI¼molar (Na2OþK2O)/Al2O3]. This is the first experimental demonstration that peralkaline felsic derivatives can be produced by low-pressure fractional crystallization of metaluminous mafic magmas. Our results show that the pantelleritic magmas of basalt–trachyte–rhyolite igneous suites require at least 95 wt % of parental basalt crystallization, consistent with trace element evidence. Redox conditions, through their effect on Fe–Ti oxide stabilities, control the final iron content of the evolving melt.
    Description: Published
    Description: 559- 588
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: peralkaline silicic magmatism ; Pantelleria ; Green Tuff ; petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-13
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2015. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Mud volcanoes are geological systems often characterized by elevated fluid pressures at depth deviating from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external forcing induced by natural or man-made perturbations. We used the Nirano mud volcanic field as a natural laboratory to test pre- and post-seismic effects generated by distant earthquakes.We first characterized the subsurface structure of the Nirano mud volcanic field with a geoelectrical study. Next, we deployed a broad-band seismic station in the area to understand the typical seismic signal generated by the mud volcano. Seismic records show a background noise below 2 s, sometimes interrupted by pulses of drumbeatlike high-frequency signals lasting from several minutes to hours. To date this is the first observation of drumbeat signal observed in mud volcanoes. In 2013 June we recorded a M4.7 earthquake, that occurred approximately 60 km far from our seismic station. According to empirical estimations the Nirano mud volcanic field should not have been affected by the M4.7 earthquake. Yet, before the seismic event we recorded an increasing amplitude of the signal in the 10–20 Hz frequency band. The signal emerged approximately two hours before the earthquake and lasted for about three hours. Our statistical analysis suggests the presence of a possible precursory signal about 10 min before the earthquake.
    Description: Published
    Description: 907–917
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Tomography ; Gas and hydrate systems ; Earthquake interaction, forecasting, and prediction ; Seismicity and tectonics ; Volcano seismology ; Mud volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 6 (2018): coy049, doi:10.1093/conphys/coy049.
    Description: Male baleen whales have long been suspected to have annual cycles in testosterone, but due to difficulty in collecting endocrine samples, little direct evidence exists to confirm this hypothesis. Potential influences of stress or adrenal stress hormones (cortisol, corticosterone) on male reproduction have also been difficult to study. Baleen has recently been shown to accumulate steroid hormones during growth, such that a single baleen plate contains a continuous, multi-year retrospective record of the whale’s endocrine history. As a preliminary investigation into potential testosterone cyclicity in male whales and influences of stress, we determined patterns in immunoreactive testosterone, two glucocorticoids (cortisol and corticosterone), and stable-isotope (SI) ratios, across the full length of baleen plates from a bowhead whale (Balaena mysticetus), a North Atlantic right whale (Eubalaena glacialis) and a blue whale (Balaenoptera musculus), all adult males. Baleen was subsampled at 2 cm (bowhead, right) or 1 cm (blue) intervals and hormones were extracted from baleen powder with methanol, followed by quantification of all three hormones using enzyme immunoassays validated for baleen extract of these species. Baleen of all three males contained regularly spaced peaks in testosterone content, with number and spacing of testosterone peaks corresponding well to SI data and to species-specific estimates of annual baleen growth rate. Cortisol and corticosterone exhibited some peaks that co-occurred with testosterone peaks, while other glucocorticoid peaks occurred independent of testosterone peaks. The right whale had unusually high glucocorticoids during a period with a known entanglement in fishing gear and a possible disease episode; in the subsequent year, testosterone was unusually low. Further study of baleen testosterone patterns in male whales could help clarify conservation- and management-related questions such as age of sexual maturity, location and season of breeding, and the potential effect of anthropogenic and natural stressors on male testosterone cycles.
    Description: This work was supported by (1) the Arizona Board of Regents Technology Research Initiative Fund; (2) the Center for Bioengineering Innovation at Northern Arizona University; (3) the Greenland Institute of Natural Resources; (4) the Woods Hole Oceanographic Institution Ocean Life Institute and (5) Fisheries and Ocean Canada’s (DFO) Priorities and Partnership Strategic Initiatives Fund and Oceans Protection Plan.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Epigenetics 4 (2018): dvy005, doi:10.1093/eep/dvy005.
    Description: There is growing evidence that environmental toxicants can affect various physiological processes by altering DNA methylation patterns. However, very little is known about the impact of toxicant-induced DNA methylation changes on gene expression patterns. The objective of this study was to determine the genome-wide changes in DNA methylation concomitant with altered gene expression patterns in response to 3, 3’, 4, 4’, 5-pentachlorobiphenyl (PCB126) exposure. We used PCB126 as a model environmental chemical because the mechanism of action is well-characterized, involving activation of aryl hydrocarbon receptor, a ligand-activated transcription factor. Adult zebrafish were exposed to 10 nM PCB126 for 24 h (water-borne exposure) and brain and liver tissues were sampled at 7 days post-exposure in order to capture both primary and secondary changes in DNA methylation and gene expression. We used enhanced Reduced Representation Bisulfite Sequencing and RNAseq to quantify DNA methylation and gene expression, respectively. Enhanced reduced representation bisulfite sequencing analysis revealed 573 and 481 differentially methylated regions in the liver and brain, respectively. Most of the differentially methylated regions are located more than 10 kilobases upstream of transcriptional start sites of the nearest neighboring genes. Gene Ontology analysis of these genes showed that they belong to diverse physiological pathways including development, metabolic processes and regeneration. RNAseq results revealed differential expression of genes related to xenobiotic metabolism, oxidative stress and energy metabolism in response to polychlorinated biphenyl exposure. There was very little correlation between differentially methylated regions and differentially expressed genes suggesting that the relationship between methylation and gene expression is dynamic and complex, involving multiple layers of regulation.
    Description: This work was supported by the National Institute of Health Outstanding New Environmental Scientist Award to NA (NIH R01ES024915) and Woods Hole Center for Oceans and Human Health [National Institutes of Health (NIH) grant P01ES021923 and National Science Foundation Grant OCE-1314642 to M. Hahn, J. Stegeman, NA and SK].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 1072–1087, doi:10.1093/gji/ggy203.
    Description: An earthquake rupture process can be kinematically described by rupture velocity, duration and spatial extent. These key kinematic source parameters provide important constraints on earthquake physics and rupture dynamics. In particular, core questions in earthquake science can be addressed once these properties of small earthquakes are well resolved. However, these parameters of small earthquakes are poorly understood, often limited by available data sets and methodologies. The Incorporated Research Institutions for Seismology Community Wavefield Experiment in Oklahoma deployed ∼350 three-component nodal stations within 40 km2 for a month, offering an unprecedented opportunity to test new methodologies for resolving small earthquake finite source properties in high resolution. In this study, we demonstrate the power of the nodal data set to resolve the variations in the seismic wavefield over the focal sphere due to the finite source attributes of an M2 earthquake within the array. The dense coverage allows us to tightly constrain rupture area using the second moment method even for such a small earthquake. The M2 earthquake was a strike-slip event and unilaterally propagated towards the surface at 90 per cent local S-wave speed (2.93 km s−1). The earthquake lasted ∼0.019 s and ruptured Lc ∼70 m and Wc ∼45 m. With the resolved rupture area, the stress-drop of the earthquake is estimated as 7.3 MPa for Mw 2.3. We demonstrate that the maximum and minimum bounds on rupture area are within a factor of two, much lower than typical stress-drop uncertainty, despite a suboptimal station distribution. The rupture properties suggest that there is little difference between the M2 Oklahoma earthquake and typical large earthquakes. The new three-component nodal systems have great potential for improving the resolution of studies of earthquake source properties.
    Description: WF is currently supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. JM was partially supported by SCEC grant #17177 at Woods Hole Oceanographic Institution. This research was supported by the Southern California Earthquake Center (Contribution No. 8014). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038.
    Keywords: Inverse theory ; Waveform inversion ; Body waves ; Earthquake dynamics ; Earthquake source observations ; Seismic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 942–958, doi:10.1093/gji/ggy316.
    Description: Surface waves recorded by global arrays have proven useful for locating tectonic earthquakes and in detecting slip events depleted in high frequency, such as glacial quakes. We develop a novel method using an aggregation of small- to continental-scale arrays to detect and locate seismic sources with Rayleigh waves at 20–50 s period. The proposed method is a hybrid approach including first dividing a large aperture aggregate array into Delaunay triangular subarrays for beamforming, and then using the resolved surface wave propagation directions and arrival times from the subarrays as data to formulate an inverse problem to locate the seismic sources and their origin times. The approach harnesses surface wave coherence and maximizes resolution of detections by combining measurements from stations spanning the whole U.S. continent. We tested the method with earthquakes, glacial quakes and landslides. The results show that the method can effectively resolve earthquakes as small as ∼M3 and exotic slip events in Greenland. We find that the resolution of the locations is non-uniform with respect to azimuth, and decays with increasing distance between the source and the array when no calibration events are available. The approach has a few advantages: the method is insensitive to seismic event type, it does not require a velocity model to locate seismic sources, and it is computationally efficient. The method can be adapted to real-time applications and can help in identifying new classes of seismic sources.
    Description: WF is currently supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. This work was supported by National Science Foundation grant EAR-1358520 at Scripps Institution of Oceanography, UC San Diego.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in iScience 1 (2018): 24-34, doi:10.1016/j.isci.2018.01.001.
    Description: The color and pattern changing abilities of octopus, squid, and cuttlefish via chromatophore neuro-muscular organs are unparalleled. Cuttlefish and octopuses also have a unique muscular hydrostat system in their skin. When this system is expressed, dermal bumps called papillae disrupt body shape and imitate the fine texture of surrounding objects, yet the control system is unknown. Here we report for papillae: (1) the motoneurons and the neurotransmitters that control activation and relaxation, (2) a physiologically fast expression and retraction system, and (3) a complex of smooth and striated muscles that enables long-term expression of papillae through sustained tension in the absence of neural input. The neural circuits controlling acute shape-shifting skin papillae in cuttlefish show homology to the iridescence circuits in squids. The sustained tension in papillary muscles for long-term camouflage utilizes muscle heterogeneity and points toward the existence of a “catch-like” mechanism that would reduce the necessary energy expenditure.
    Description: This work was funded by an AFOSR grant no. FA9550-14-1-0134, Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grant (097814/Z/11/Z) to P.T.G-B., and a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (BBSRC, BB/L024667/1) to T.J.W.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 214 (2018): 2224–2235, doi:10.1093/gji/ggy201.
    Description: The key kinematic earthquake source parameters: rupture velocity, duration and area, shed light on earthquake dynamics, provide direct constraints on stress drop, and have implications for seismic hazard. However, for moderate and small earthquakes, these parameters are usually poorly constrained due to limitations of the standard analysis methods. Numerical experiments by Kaneko and Shearer demonstrated that standard spectral fitting techniques can lead to roughly one order of magnitude variation in stress-drop estimates that do not reflect the actual rupture properties even for simple crack models. We utilize these models to explore an alternative approach where we estimate the rupture area directly. For the suite of models, the area averaged static stress drop is nearly constant for models with the same underlying friction law, yet corner-frequency-based stress-drop estimates vary by a factor of 5–10 even for noise-free data. Alternatively, we simulated inversions for the rupture area as parametrized by the second moments of the slip distribution. A natural estimate for the rupture area derived from the second moments is A = πLcWc, where Lc and Wc are the characteristic rupture length and width. This definition yields estimates of stress drop that vary by only 10 per cent between the models but are slightly larger than the true area averaged values. We simulate inversions for the second moments for the various models and find that the area can be estimated well when there are at least 15 available measurements of apparent duration at a variety of take-off angles. The improvement compared to azimuthally averaged corner-frequency-based approaches results from the second moments accounting for directivity and removing the assumption of a circular rupture area, both of which bias the standard approach. We also develop a new method that determines the minimum and maximum values of rupture area that are consistent with a particular data set at the 95 per cent confidence level. For the Kaneko and Shearer models with 20+ randomly distributed observations and ∼10 per cent noise levels, we find that the maximum and minimum bounds on rupture area typically vary by a factor of two and that the minimum stress drop is often more tightly constrained than the maximum.
    Description: This work was supported by USGS NEHRP Award G17AP00029. The research was supported by the Southern California Earthquake Center (SCEC; Contribution No. 8013). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038. YK was supported by both public funding from the Government of New Zealand and the Royal Society of New Zealand’s Rutherford Discovery Fellowship.
    Keywords: Earthquake dynamics ; Earthquake source observations ; Body waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 25 (2018): 1281–1291, doi:10.1016/j.celrep.2018.10.005.
    Description: Morphogenesis and mechanoelectrical transduction of the hair cell mechanoreceptor depend on the correct assembly of Usher syndrome (USH) proteins into highly organized macromolecular complexes. Defects in these proteins lead to deafness and vestibular areflexia in USH patients. Mutations in a non-USH protein, glutaredoxin domain-containing cysteine-rich 1 (GRXCR1), cause non-syndromic sensorineural deafness. To understand the deglutathionylating enzyme function of GRXCR1 in deafness, we generated two grxcr1 zebrafish mutant alleles. We found that hair bundles are thinner in homozygous grxcr1 mutants, similar to the USH1 mutants ush1c (Harmonin) and ush1ga (Sans). In vitro assays showed that glutathionylation promotes the interaction between Ush1c and Ush1ga and that Grxcr1 regulates mechanoreceptor development by preventing physical interaction between these proteins without affecting the assembly of another USH1 protein complex, the Ush1c- Cadherin23-Myosin7aa tripartite complex. By elucidating the molecular mechanism through which Grxcr1 functions, we also identify a mechanism that dynamically regulates the formation of Usher protein complexes.
    Description: This work was supported by grants from the NIH (DC004186, OD011195, and HD22486).
    Keywords: Grxcr1 ; Usher syndrome ; Hair cell ; Stereocilia ; Glutathionylation ; Harmonin ; Sans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 713–735, doi:10.1093/gji/ggy313.
    Description: Gas flux in volcanic conduits is often associated with long-period oscillations known as seismic tremor (Lesage et al.; Nadeau et al.). In this study, we revisit and extend the ‘magma wagging’and ‘whirling’models for seismic tremor, in order to explore the effects of gas flux on the motion of a magma column surrounded by a permeable vesicular annulus (Jellinek & Bercovici; Bercovici et al.; Liao et al.). We find that gas flux flowing through the annulus leads to a Bernoulli effect, which causes waves on the magma column to become unstable and grow. Specifically, the Bernoulli effects are associated with torques and forces acting on the magma column, increasing its angular momentum and energy. As the displacement of the magma column becomes large due to the Bernoulli effect, frictional drag on the conduit wall decelerates the motions of the column, restoring them to small amplitude. Together, the Bernoulli effect and the damping effect contribute to a self-sustained wagging-and-whirling mechanism that help explain the longevity of long-period seismic tremor.
    Description: This work was supported by National Science Foundation grants EAR-1344538 and EAR-1645057
    Keywords: Physics of magma and magma bodies ; Volcano seismology ; Volcanic gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 460–473, doi:10.1093/gji/ggy152.
    Description: In this work, we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine-learning techniques. Non-negative matrix factorization is used to determine grain-size end-members from sediment surface samples. Four end-members were found, which well represent the variety of sediments in the study area. A radial basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.
    Description: This work was funded through DFG Research Center/Cluster of Excellence ‘The Ocean in the Earth System’ and was part of MARUM Research Area SD
    Keywords: Neural networks ; Fuzzy logic ; Statistical methods ; Electrical properties ; Magnetic properties ; Marine electromagnetics ; Controlled source electromagnetics (CSEM)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-11-09
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2019. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: The Amatrice–Norcia–Visso sequence is characterized by complex behaviour that is somewhat atypical of main-shock–aftershock sequences, as there were multiple large main shocks that continued for months. In this study we focus on the Amatrice sequence (main shock 2016 August 24, Mw = 5.97) to evaluate the apparent stress values and magnitude-dependent scaling in order to improve our knowledge of processes that control small and large earthquakes within this active region of Italy. Apparent stress is proportional to the ratio of radiated seismic energy and seismic moment, and as such, these stress parameters play an important role in hazard prediction as they have a strong effect on the observed and predicted ground shaking. We analyse 83 events of the sequence from 2016 August 24 to October 16, within a radius of 20 km from the main shock and with an Mw ranging between 5.97 and 2.72. Taking advantage of the averaging nature of coda waves, we analyse coda-envelope-based spectral ratios between neighbouring event pairs.We use equations proposed byWalter et al. to consider stable, low-frequency and high-frequency spectral ratio levelswhich provide measures of the corner frequency and apparent stress ratios of the events within the sequence. The results demonstrate non-self-similar behaviour within the sequence, suggesting a change in dynamics between the largest events and the smaller aftershocks. The apparent stress and corner frequency estimates are compared to those obtained by Malagnini and Munaf`o who utilized hundreds of direct S-wave spectral ratio measurements to obtain their results. Although our analysis is based only on 83 events, our results are in very good agreement, demonstrating once more that the use of coda waves is very stable and provides lower variance measures than those using direct waves. A comparison with recent Central Apennines source scaling models derived from various seismic sequences (1997–1998 Colfiorito, 2002 San Giuliano di Puglia, 2009 L’Aquila) shows that the Amatrice sequence source scaling in this study is well represented by the models proposed by Pacor et al. and Malagnini and Mayeda.
    Description: Published
    Description: 446-455
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Keywords: Coda waves; Earthquake dynamics; Earthquake source observations; Amatrice ; earthquake stress parameters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2019. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 218(3), (2019): 1822-1837, doi: 10.1093/gji/ggz253.
    Description: Joint inversion of multiple electromagnetic data sets, such as controlled source electromagnetic and magnetotelluric data, has the potential to significantly reduce uncertainty in the inverted electrical resistivity when the two data sets contain complementary information about the subsurface. However, evaluating quantitatively the model uncertainty reduction is made difficult by the fact that conventional inversion methods—using gradients and model regularization—typically produce just one model, with no associated estimate of model parameter uncertainty. Bayesian inverse methods can provide quantitative estimates of inverted model parameter uncertainty by generating an ensemble of models, sampled proportional to data fit. The resulting posterior distribution represents a combination of a priori assumptions about the model parameters and information contained in field data. Bayesian inversion is therefore able to quantify the impact of jointly inverting multiple data sets by using the statistical information contained in the posterior distribution. We illustrate, for synthetic data generated from a simple 1-D model, the shape of parameter space compatible with controlled source electromagnetic and magnetotelluric data, separately and jointly. We also demonstrate that when data sets contain complementary information about the model, the region of parameter space compatible with the joint data set is less than or equal to the intersection of the regions compatible with the individual data sets. We adapt a trans-dimensional Markov chain Monte Carlo algorithm for jointly inverting multiple electromagnetic data sets for 1-D earth models and apply it to surface-towed controlled source electromagnetic and magnetotelluric data collected offshore New Jersey, USA, to evaluate the extent of a low salinity aquifer within the continental shelf. Our inversion results identify a region of high resistivity of varying depth and thickness in the upper 500 m of the continental shelf, corroborating results from a previous study that used regularized, gradient-based inversion methods. We evaluate the joint model parameter uncertainty in comparison to the uncertainty obtained from the individual data sets and demonstrate quantitatively that joint inversion offers reduced uncertainty. In addition, we show how the Bayesian model ensemble can subsequently be used to derive uncertainty estimates of pore water salinity within the low salinity aquifer.
    Description: We gratefully acknowledge funding support from National Science Foundation grants 1458392 and 1459035. We thank the captain and crew of the R.V. Marcus G. Langseth for a successful cruise and the Marine EM Lab at Scripps Institution of Oceanography for providing the instrumentation. We also thank Chris Armerding, Marah Dahn, John Desanto, Jimmy Elsenbeck, Matt Folsom, Keiichi Ishizu, Jeff Pepin, Charlotte Wiman and Georgie Zelenak for participating in the cruise. We gratefully acknowledge Alberto Malinverno for the idea to use a Monte Carlo scheme to estimate the distribution of pore fluid salinity, and William Menke for many constructive conversations and suggestions.
    Keywords: Controlled source electromagnetics (CSEM) ; Joint inversion ; Magnetotellurics ; Statistical methods ; Marine electromagnetics ; Probability distributions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2019. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 218(3), (2019): 2122-2135, doi: 10.1093/gji/ggz272.
    Description: We have conducted the first passive Ocean Bottom Seismograph (OBS) experiment near the Challenger Deep at the southernmost Mariana subduction zone by deploying and recovering an array of 6 broad-band OBSs during December 2016–June 2017. The obtained passive-source seismic records provide the first-ever near-field seismic observations in the southernmost Mariana subduction zone. We first correct clock errors of the OBS recordings based on both teleseismic waveforms and ambient noise cross-correlation. We then perform matched filter earthquake detection using 53 template events in the catalogue of the US Geological Survey and find 〉7000 local earthquakes during the 6-month OBS deployment period. Results of the two independent approaches show that the maximum clock drifting was ∼2 s on one instrument (OBS PA01), while the rest of OBS waveforms had negligible time drifting. After timing correction, we locate the detected earthquakes using a newly refined local velocity model that was derived from a companion active source experiment in the same region. In total, 2004 earthquakes are located with relatively high resolution. Furthermore, we calibrate the magnitudes of the detected earthquakes by measuring the relative amplitudes to their nearest relocated templates on all OBSs and acquire a high-resolution local earthquake catalogue. The magnitudes of earthquakes in our new catalogue range from 1.1 to 5.6. The earthquakes span over the Southwest Mariana rift, the megathrust interface, forearc and outer-rise regions. While most earthquakes are shallow, depths of the slab earthquakes increase from ∼100 to ∼240 km from west to east towards Guam. We also delineate the subducting interface from seismicity distribution and find an increasing trend in dip angles from west to east. The observed along-strike variation in slab dip angles and its downdip extents provide new constraints on geodynamic processes of the southernmost Mariana subduction zone.
    Description: We express our appreciation to the science parties and crew members of the R/V Shiyan 3 for deployment and collection of the OBS instruments during the Mariana expeditions. This study is supported by the Hong Kong Research Grant Council Grants (No. 14313816), Faculty of Science at CUHK, Chinese Academy of Sciences (No. Y4SL021001, QYZDY-SSW-DQC005, 133244KYSB20180029), the National Natural Science Foundation of China (No. 41890813, 91628301, 41676042, U1701641, 41576041, 91858207 and U1606401), the National Key R&D Program of China (2018YFC0309800 and 2018YFC0310100). Generic Mapping Tools (Wessel & Smith 1991) and PSSAC (developed by Prof Lupei Zhu) are used for data analysis and figure preparation in this study. Constructive comments from Dr Lidong Bie and two anonymous reviewers are helpful in improving the manuscript.
    Keywords: Seismicity and tectonics ; Dynamics: seismotectonics ; Subduction zone processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in ICES Journal of Marine Science 76(4), (2010): 781-786, doi:10.1093/icesjms/fsy194.
    Description: Whales are federally protected by the Marine Mammal Protection Act; endangered species, such as the North Atlantic right whale, receive additional protection under the Endangered Species Act. However, their regulations have failed to satisfy conservation and animal welfare concerns. From 1990 to 2011 the North Atlantic right whale (Eubalaena glacialis, NARW) population grew at a mean of 2.8% annually. However, population trends reversed since 2011; the species is in decline, with only ∼100 reproductively active females remaining. This failure is driven by vessel collisions and increasingly fatal and serious entanglement in fixed fishing gear, whose rope strength has increased substantially. Chronic entanglement, drag, and associated morbidity have been linked to poor fecundity. Genuine solutions involve designating areas to be avoided and speed restrictions for ships and removing fishing trap ropes from the water column. A trap fishing closure for NARW habitat in the Cape Cod Bay (U.S.) area has been in place seasonally since 2015. 2017 mortalities in Eastern Canada elicited substantive management changes whereby the 2018 presence of NARW in active trap fishing areas resulted in an effective closure. To avoid these costly closures, the traditional trap fishery model of rope end lines attached to surface marker buoys has to be modified so that traps are marked virtually, and retrieved with gear that does not remain in the water column except during trap retrieval. Consumer demand for genuinely whale-safe products will augment and encourage the necessary regulatory changes so that trap fisheries conserve target and nontarget species.
    Description: I thank Mark Baumgartner, Scott Kraus, Tim Werner, Amy Knowlton, Heather Pettis, Scott Landry, Stormy Mayo, Fred Penney, and Beth Casoni for discussions on this topic and Natalie Renier for drawing Figures 5 and 6. Funding was provided by the Woods Hole Oceanographic Institution Independent Research and Development Program.
    Description: 2020-01-10
    Keywords: end line ; entanglement ; large whale ; rope removal ; trap
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International, 219(1), (2019): 464-478, doi:10.1093/gji/ggz315.
    Description: The electromagnetic (EM) field generated by ocean tidal flow is readily detectable in both satellite magnetic field data, and in ocean-bottom measurements of electric and magnetic fields. The availability of accurate charts of tidal currents, constrained by assimilation of modern satellite altimetry data, opens the possibility of using tidal EM fields as a source to image mantle electrical resistivity beneath the ocean basins, as highlighted by the recent success in defining the globally averaged lithosphere–asthenosphere boundary (LAB) with satellite data. In fact, seafloor EM data would be expected to provide better constraints on the structure of resistive oceanic lithosphere, since the toroidal magnetic mode, which can constrain resistive features, is a significant component of the tidal EM field within the ocean, but is absent above the surface (in particular in satellite data). Here we consider this issue in more detail, using a combination of simplified theoretical analysis and 1-D and 3-D numerical modelling to provide a thorough discussion of the sensitivity of satellite and seafloor data to subsurface electrical structure. As part of this effort, and as a step toward 3-D inversion of seafloor tidal data, we have developed a new flexible 3-D spherical-coordinate finite difference scheme for both global and regional scale modelling, with higher resolution models nested in larger scale solutions. We use the new 3-D model, together with Monte Carlo simulations of errors in tidal current estimates, to provide a quantitative assessment of errors in the computed tidal EM signal caused by uncertainty in the tidal source. Over the open ocean this component of error is below 0.01 nT in Bz at satellite height and 0.05 nT in Bx on the seafloor, well below typical signal levels. However, as coastlines are approached error levels can increase substantially. Both analytical and 3-D modelling demonstrate that the seafloor magnetic field is most sensitive to the lithospheric resistance (the product of resistivity and thickness), and is more weakly influenced (primarily in the phase) by resistivity of the underlying asthenosphere. Satellite data, which contain only the poloidal magnetic mode, are more sensitive to the conductive asthenosphere, but have little sensitivity to lithospheric resistance. For both seafloor and satellite data’s changes due to plausible variations in Earth parameters are well above error levels associated with source uncertainty, at least in the ocean interior. Although the 3-D modelling results are qualitatively consistent with theoretical analysis, the presence of coastlines and bathymetric variations generates a complex response, confirming that quantitative interpretation of ocean tidal EM fields will require a 3-D treatment. As an illustration of the nested 3-D scheme, seafloor data at five magnetic and seven electric stations in the northeastern Pacific (41○N, 165○W) are fit with trial-and-error forward modelling of a local domain. The simulation results indicate that the lithospheric resistance is roughly 7 × 108 Ωm2. The phase of the seafloor data in this region are inconsistent with a sharp transition between the resistive lithosphere and conductive asthenosphere.
    Description: This work has been supported by National Natural Science Foundation of China grants 41804072 and 41574104, and NSF grant EAR-1447109. Special thanks to Dr Benjamin Murphy who provided the conductivity-depth profile for 1-D earth model, Dr Min Ding who provided valuable discussion about the oceanic lithosphere and Dr Jeffery Love who provided comments on the stylistics of the manuscript.
    Keywords: Composition and structure of the mantle ; Pacific Ocean ; Electromagnetic theory ; Geomagnetic induction ; Satellite magnetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: Author Posting. © Author(s), 2017. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 212 (2018): 1429–1449, doi:10.1093/gji/ggx488.
    Description: We conducted detailed analyses of a global array of trenches, revealing systematic intra- and intertrench variations in plate bending characteristics. The intratrench variations of the Manila and Mariana Trenches were analysed in detail as end-member cases of the relatively young (16–36 Ma) and old (140–160 Ma) subducting plates, respectively. Meanwhile, the intertrench variability was investigated for a global array of additional trenches including the Philippine, Kuril, Japan, Izu-Bonin, Aleutian, Tonga-Kermadec, Middle America, Peru, Chile, Sumatra and Java Trenches. Results of the analysis show that the trench relief (W0) and width (X0) of all systems are controlled primarily by the faulting-reduced elastic thickness near the trench axis (Tme) and affected only slightly by the initial unfaulted thickness (TMe) of the incoming plate. The reduction in Te has caused significant deepening and narrowing of trench valleys. For the cases of relatively young or old plates, the plate age could be a dominant factor in controlling the trench bending shape, regardless the variations in axial loadings. Our calculations also show that the axial loading and stresses of old subducting plates can vary significantly along the trench axis. In contrast, the young subducting plates show much smaller values and variations in axial loading and stresses.
    Description: This work was supported by Chinese Academy of Sciences Grants (Y4SL021001, QYZDY-SSW-DQC005, YZ201325 and YZ201534), National Natural Science Foundation of China Grants (91628301, U1606401, 41376063 and 41706056) and HKSAR Research Grant Council Grants (24601515, 14313816).
    Keywords: Lithospheric flexure ; Subduction zone processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aslan, C., Beckman, N. G., Rogers, H. S., Bronstein, J., Zurell, D., Hartig, F., Shea, K., Pejchar, L., Neubert, M., Poulsen, J., HilleRisLambers, J., Miriti, M., Loiselle, B., Effiom, E., Zambrano, J., Schupp, G., Pufal, G., Johnson, J., Bullock, J. M., Brodie, J., Bruna, E., Cantrell, R. S., Decker, R., Fricke, E., Gurski, K., Hastings, A., Kogan, O., Razafindratsima, O., Sandor, M., Schreiber, S., Snell, R., Strickland, C., & Zhou, Y. Employing plant functional groups to advance seed dispersal ecology and conservation. AoB Plants, 11(2), (2019):plz006, doi:10.1093/aobpla/plz006.
    Description: Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.
    Description: Ideas for this manuscript initiated during the Seed Dispersal Workshop held in May 2016 at the Socio-Environmental Synthesis Center in Annapolis, MD and supported by the US National Science Foundation Grant DEB-1548194 to N.G.B. and the National Socio‐Environmental Synthesis Center under the US National Science Foundation Grant DBI‐1052875. D.Z. received funding from the Swiss National Science Foundation (SNF, grant: PZ00P3_168136/1) and from the German Science Foundation (DFG, grant: ZU 361/1- 1). Contributions by the authors C.A. led the development of the concepts, writing, and revising of the manuscript with input from N.G.B. and H.S.R. All authors contributed to the development of concepts and are listed in order of contribution and alphabetical order within each level of contribution.
    Keywords: dependency ; directed dispersal ; dispersal vectors ; generalization ; mutualism ; seed dispersal effectiveness
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Alexander, H., Johnson, L. K., & Brown, C. T.. Keeping it light: (re)analyzing community-wide datasets without major infrastructure. Gigascience, 8(2),(2019): giy159, doi:10.1093/gigascience/giy159.
    Description: DNA sequencing technology has revolutionized the field of biology, shifting biology from a data-limited to data-rich state. Central to the interpretation of sequencing data are the computational tools and approaches that convert raw data into biologically meaningful information. Both the tools and the generation of data are actively evolving, yet the practice of re-analysis of previously generated data with new tools is not commonplace. Re-analysis of existing data provides an affordable means of generating new information and will likely become more routine within biology, yet necessitates a new set of considerations for best practices and resource development. Here, we discuss several practices that we believe to be broadly applicable when re-analyzing data, especially when done by small research groups.
    Description: Funding was provided by the Gordon and Betty Moore Foundation (award GBMF4551 to C.T.B.).
    Keywords: reproducibility ; data reuse ; open data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2019. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 218(3), (2019): 2165-2178, doi: 10.1093/gji/ggz280.
    Description: A multitaper estimator is proposed that accommodates time-series containing gaps without using any form of interpolation. In contrast with prior missing-data multitaper estimators that force standard Slepian sequences to be zero at gaps, the proposed missing-data Slepian sequences are defined only where data are present. The missing-data Slepian sequences are frequency independent, as are the eigenvalues that define the energy concentration within the resolution bandwidth, when the process bandwidth is [−1/2,1/2) for unit sampling and the sampling scheme comprises integer multiples of unity. As a consequence, one need only compute the ensuing missing-data Slepian sequences for a given sampling scheme once, and then the spectrum at an arbitrary set of frequencies can be computed using them. It is also shown that the resulting missing-data multitaper estimator can incorporate all of the optimality features (i.e. adaptive-weighting, F-test and reshaping) of the standard multitaper estimator, and can be applied to bivariate or multivariate situations in similar ways. Performance of the missing-data multitaper estimator is illustrated using length of day, seafloor pressure and Nile River low stand time-series.
    Description: The length of day utilized in Section 3 are available from http://hpiers.obspm.fr. The pressure data used in Section 4 are available from https://doi.org/10.1029/2018JC014586. A Matlab function MDmwps.m to compute missing-data power spectra is available from the Mathworks file exchange website. The author thanks Jeff Park and editor F.J. Simons for thorough reviews. This work was supported by an Internal Research and Development award at WHOI, and by the Walter A. and Hope Noyes Smith Chair for Excellence in Oceanography.
    Keywords: Fourier analysis ; Numerical approximations and analysis ; Statistical methods ; Time-series analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, L. K., Alexander, H., & Brown, C. T. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience, 8(4), (2019): giy158, doi: 10.1093/gigascience/giy158.
    Description: Background: De novo transcriptome assemblies are required prior to analyzing RNA sequencing data from a species without an existing reference genome or transcriptome. Despite the prevalence of transcriptomic studies, the effects of using different workflows, or “pipelines,” on the resulting assemblies are poorly understood. Here, a pipeline was programmatically automated and used to assemble and annotate raw transcriptomic short-read data collected as part of the Marine Microbial Eukaryotic Transcriptome Sequencing Project. The resulting transcriptome assemblies were evaluated and compared against assemblies that were previously generated with a different pipeline developed by the National Center for Genome Research. Results: New transcriptome assemblies contained the majority of previous contigs as well as new content. On average, 7.8% of the annotated contigs in the new assemblies were novel gene names not found in the previous assemblies. Taxonomic trends were observed in the assembly metrics. Assemblies from the Dinoflagellata showed a higher number of contigs and unique k-mers than transcriptomes from other phyla, while assemblies from Ciliophora had a lower percentage of open reading frames compared to other phyla. Conclusions: Given current bioinformatics approaches, there is no single “best” reference transcriptome for a particular set of raw data. As the optimum transcriptome is a moving target, improving (or not) with new tools and approaches, automated and programmable pipelines are invaluable for managing the computationally intensive tasks required for re-processing large sets of samples with revised pipelines and ensuring a common evaluation workflow is applied to all samples. Thus, re-assembling existing data with new tools using automated and programmable pipelines may yield more accurate identification of taxon-specific trends across samples in addition to novel and useful products for the community.
    Description: Funding was provided by the Gordon and Betty Moore Foundation under award number GBMF4551 to C.T.B. Jetstream cloud platform was used with XSEDE allocation TG-BIO160028 [66, 67].
    Keywords: marine microbial eukaryote ; transcriptome assembly ; automated pipeline ; re-analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The investigation of using a novel radial basis function-based meshfree method for forward modelling magnetotelluric data is presented. The meshfree method, which can be termed radial basis function-based finite difference (RBF-FD), uses only a cloud of unconnected points to obtain the numerical solution throughout the computational domain. Unlike mesh-based numerical methods (for example, grid-based finite difference, finite volume and finite element), the meshfree method has the unique feature that the discretization of the conductivity model can be decoupled from the discretization used for numerical computation, thus avoiding traditional expensive mesh generation and allowing complicated geometries of the model be easily represented. To accelerate the computation, unstructured point discretization with local refinements are employed. Maxwell’s equations in the frequency domain are re-formulated using $\mathbf {A}$-ψ potentials in conjuction with the Coulomb gauge condition, and are solved numerically with a direct solver to obtain magnetotelluric responses. A major obstacle in applying common meshfree methods in modelling geophysical electromagnetic data is that they are incapable of reproducing discontinuous fields such as the discontinuous electric field over conductivity jumps, causing spurious solutions. The occurrence of spurious, or non-physical, solutions when applying standard meshfree methods is removed here by proposing a novel mixed scheme of the RBF-FD and a Galerkin-type weak-form treatment in discretizing the equations. The RBF-FD is applied to the points in uniform conductivity regions, whereas the weak-form treatment is introduced to points located on the interfaces separating different homogeneous conductivity regions. The effectiveness of the proposed meshfree method is validated with two numerical examples of modelling the magnetotelluric responses over three-dimensional conductivity models.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Receiver functions are sensitive to sharp seismic velocity variations with depth and are commonly used to constrain crustal thickness. The H-κ stacking method of Zhu and Kanamori (〈span〉2000〈/span〉) is often employed to constrain both the crustal thickness (H) and ${V_P}$/${V_S}$ ratio ($\kappa $) beneath a seismic station using P-to-s converted waves (Ps). However, traditional H-κ stacks require an assumption of average crustal velocity (usually ${V_P}$). Additionally, large amplitude reverberations from low velocity shallow layers, such as sedimentary basins, can overprint sought-after crustal signals, rendering traditional H-$\ \kappa $ stacking uninterpretable. We overcome these difficulties in two ways. When S-wave reverberations from sediment are present, they are removed by applying a resonance removal filter allowing crustal signals to be clarified and interpreted. We also combine complementary Ps receiver functions, Sp receiver functions, and the post-critical P wave reflection from the Moho (SP〈sub〉m〈/sub〉p) to remove the dependence on an assumed average crustal ${V_P}$. By correcting for sediment and combining multiple data sets, the crustal thickness, average crustal P-wave velocity, and crustal ${V_P}$/${V_S}$ ratio is constrained in geologic regions where traditional H-$\ \kappa $ stacking fails, without making an initial P-wave velocity assumption or suffering from contamination by sedimentary reverberations.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: 〈span〉In the original version of this article the author, Adrian Flores Orozco, was incorrectly listed. This has now been corrected and the publisher apologises for the error.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The evolution of the Philippine Sea Plate (PSP) since Jurassic is one of the key issues in the dynamics of lithosphere and mantle. The related studies benefited mostly from seismic tomography which provides velocity structures in the upper mantle. However, the upper-mantle structure is not well resolved compared to the continental areas due to the lack of seismic data in the Philippine Sea. We employ a 3-D gravity inversion constrained by an initial model based on the 〈span〉S〈/span〉-wave tomography (SL2013sv; Schaeffer & Lebedev 2013) to image the density structure of the upper mantle of the PSP and adjacent region. The resulting model shows a three-layer pattern of vertical high-low-high density variation in the upper mantle under the PSP. The thin high-density layer evidences for strong oceanic lithosphere in the West Philippine Sea. The relatively low dense mantle located below the PSP possibly originates from the asthenosphere. The PSP differs from the Pacific and the Indian-Australian plates in the whole depth range, while its structure is similar to the eastern Eurasian and Sunda plates. In the depth range, 200–300 km, the relative high-density zone beneath PSP extends to the Sunda Plate and to the eastern Eurasian Plate. We further estimated the conversion factor of our density model and the velocity model (SL2013sv; Schaeffer & Lebedev 2013) in order to locate the changes of compositional effects in the upper mantle. The negative conversion factor indicates that the compositional changes primarily affect the density anomalies beneath the PSP. We, therefore, describe the layered density structures as ‘sandwich’ pattern, which is unique and different from adjacent regions.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Low-velocity layers within the crust can indicate the presence of melt and lithologic differences with implications for crustal composition and formation. Seismic wave conversions and reverberations across the base of the crust or intracrustal discontinuities, analysed using the receiver function method, can be used to constrain crustal layering. This is commonly accomplished by inverting receiver functions jointly with surface wave dispersion. Recently, the proliferation of model-space search approaches has made this technique a workhorse of crustal seismology. We show that reverberations from shallow layers such as sedimentary basins produce spurious low-velocity zones when inverted for crustal structure with surface wave data of insufficiently high frequency. Therefore, reports of such layers in the literature based on inversions using receiver function data should be re-evaluated. We demonstrate that a simple resonance-removal filter can suppress these effects and yield reliable estimates of crustal structure, and advocate for its use in receiver-function based inversions.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉We present a numerical method for simulating both single-event dynamic ruptures and earthquake sequences with full inertial effects in antiplane shear with rate-and-state fault friction. We use the second-order form of the wave equation, expressed in terms of displacements, discretized with high-order-accurate finite difference operators in space. Advantages of this method over other methods include reduced computational memory usage and reduced spurious high frequency oscillations. Our method handles complex geometries, such as non-planar fault interfaces and free surface topography. Boundary conditions are imposed weakly using penalties. We prove time stability by constructing discrete energy estimates. We present numerical experiments demonstrating the stability and convergence of the method, and showcasing applications of the method, including the transition in rupture style from crack-like ruptures to slip pulses for strongly rate-weakening friction and the simulation of earthquake sequences in a viscoelastic solid with a fully dynamic coseismic phase.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉We derive a theoretical relationship between the cross correlation of ambient Rayleigh waves (seismic ambient noise) and the attenuation parameter α associated with Rayleigh-wave propagation. In particular, we derive a mathematical expression for the multiplicative factor relating normalized cross correlation to the Rayleigh-wave Green’s function. Based on this expression, we formulate an inverse problem to determine α from cross correlations of recorded ambient signal. We conduct a preliminary application of our algorithm to a relatively small instrument array, conveniently deployed on an island. In our setup, the mentioned multiplicative factor has values of about 2.5 to 3, which, if neglected, could result in a significant underestimate of α. We find that our inferred values of α are reasonable, in comparison with independently obtained estimates found in the literature. Allowing α to vary with respect to frequency results in a reduction of misfit between observed and predicted cross correlations.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Global phases, viz. seismic phases that travel through the Earth’s core, can be used to locally image the crust by means of seismic interferometry. This method is known as Global Phase Seismic Interferometry (GloPSI). Traditionally, GloPSI retrieves low-frequency information (up to 1 Hz). Recent studies, however, suggest that there is high-frequency signal present in the coda of strong, distant earthquakes. This research quantifies the potential of these high-frequency signals, by analysing recordings of a multitude of high-magnitude earthquakes (≥6.4 〈span〉M〈/span〉〈sub〉w〈/sub〉) and their coda on a selection of permanent USArray stations. Nearly half of the 〈span〉P, PKP〈/span〉 and PKIKP phases are recorded with a signal-to-noise ratio of at least 5 dB at 3 Hz. To assess the viability of using the high-frequency signal, the second half of the paper highlights two case studies. First, a known sedimentary structure is imaged in Malargüe, Argentina. Secondly, the method is used to reveal the structure of the Midcontinent Rift below the SPREE array in Minnesota, USA. Both studies demonstrate that structural information of the shallow crust (≤5 km) below the arrays can be retrieved. In particular, the interpreted thickness of the sedimentary layer below the Malargüe array is in agreement with earlier studies in the same area. Being able to use global phases and direct 〈span〉P〈/span〉-phases with large epicentral distances (〉80°) to recover the Earth’s sedimentary structure suggests that GloPSI can be applied in an industrial context.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The localization of passive seismic sources in form of microseismic tremors as well as large-scale earthquakes is a key issue in seismology. While most previous studies are assuming fairly good knowledge of the underlying velocity model, we propose an automatic spatial localization and joint velocity model building scheme that is independent of detailed 〈span〉a priori〈/span〉 information. The first step is a coherence analysis, estimating so-called wavefront attributes to locally describe the wavefield in terms of slopes and curvatures. In a similar fashion, we also obtain an initial guess of the source excitation times of the recorded events. The wavefront attributes constitute the input for wavefront tomography which represents the next step of the workflow and allows for a refinement of the previously evaluated source excitation times while simultaneously approximating the velocity distribution. In a last step, we use the final estimate of the velocity distribution and compute the respective image function by reverse time modelling to gain the source locations. This paper introduces the theoretical concept of our proposed approach for the general 3-D case. We analyse the feasibility of our strategy and the influences of different acquisition settings by means of a synthetic 2-D data example. In a final 3-D field data example we use the workflow to localize a deep earthquake without relying on a given velocity model. The approach can deal with high levels of noise and low signal amplitudes, respectively, as well as sparse geophone sampling. The workflow generally delivers good approximations of the long-wavelength velocity variations along with accurate source locations.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The 2017 July 20, 〈span〉M〈/span〉〈sub〉w〈/sub〉6.6 Bodrum–Kos earthquake occurred in the Gulf of Gökova in the SE Aegean, a region characterized by N–S extension in the backarc of the easternmost Hellenic Trench. The dip direction of the fault that ruptured during the earthquake has been a matter of controversy where both north- and south-dipping fault planes were used to model the coseismic slip in previous studies. Here, we use seismic (seismicity, main shock modelling, aftershock relocations and aftershock mechanisms using regional body and surface waves), geodetic (GPS, InSAR) and structural observations to estimate the location, and the dip direction of the fault that ruptured during the 2017 earthquake, and the relationship of this event to regional tectonics. We consider both dip directions and systematically search for the best-fitting locations for the north- and south-dipping fault planes. Comparing the best-fitting planes for both dip directions in terms of their misfit to the geodetic data, proximity to the hypocenter location and Coulomb stress changes at the aftershock locations, we conclude that the 2017 earthquake ruptured a north-dipping fault. We find that the earthquake occurred on a 20–25 km long, ∼E–W striking, 40° north-dipping, pure normal fault with slip primarily confined between 3 and 15 km depth, and the largest slip exceeding 2 m between depths of 4 and 10 km. The coseismic fault, not mapped previously, projects to the surface within the western Gulf, and partly serves both to widen the Gulf and separate Kos Island from the Bodrum Peninsula of SW Anatolia. The coseismic fault may be an extension of a mapped, north-dipping normal fault along the south side of the Gulf of Gökova. While all of the larger aftershocks are consistent with N–S extension, their spatially dispersed pattern attests to the high degree of crustal fracturing within the basin, due to rapid trenchward extension and anticlockwise rotation within the southeastern Aegean.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The harmonic electromagnetic noise produced by anthropic electrical structures is a critical component of the global noise affecting geophysical signals and increasing data uncertainty. It is composed of a series of harmonic signals whose frequencies are multiple integers of the fundamental frequency specific to the electrical noise source. To date, most model-based noise removal strategies assume that the fundamental frequency constraining the harmonic noise is single and constant over the duration of the geophysical record. In this paper, we demonstrate that classical harmonic processing methods lose efficacy when these assumptions are not valid. We present several surface nuclear magnetic resonance field data sets, which testify the increasing probability of recording the harmonic noise with such multiple or unstable frequency content. For each case (multiple frequencies or unstable frequency) we propose new processing strategies, namely, the 〈span〉2-D grid-search〈/span〉 and the 〈span〉segmentation〈/span〉 approach, respectively, which efficiently manage to remove the harmonic noise in these difficult conditions. In the process, we also apply a fast frequency estimator called the Nyman, Gaiser and Saucier estimation method, which shows equivalent performance as classical estimators while allowing a reduction of the computing time by a factor of 2.5.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Combinatorial methods are used to determine the spatial distribution of earthquake magnitudes on a fault whose slip rate varies along strike. Input to the problem is a finite sample of earthquake magnitudes that span 5 kyr drawn from a truncated Pareto distribution. The primary constraints to the problem are maximum and minimum values around the target slip-rate function indicating where feasible solutions can occur. Two methods are used to determine the spatial distribution of earthquakes: integer programming and the greedy-sequential algorithm. For the integer-programming method, the binary decision vector includes all possible locations along the fault where each earthquake can occur. Once a set of solutions that satisfy the constraints is found, the cumulative slip misfit on the fault is globally minimized relative to the target slip-rate function. The greedy algorithm sequentially places earthquakes to locally optimize slip accumulation. As a case study, we calculate how earthquakes are distributed along the megathrust of the Nankai subduction zone, in which the slip rate varies significantly along strike. For both methods, the spatial distribution of magnitudes depends on slip rate, except for the largest magnitude earthquakes that span multiple sections of the fault. The greedy-sequential algorithm, previously applied to this fault (Parsons et al., 2012), tends to produce smoother spatial distributions and fewer lower magnitude earthquakes in the low slip-rate section of the fault compared to the integer-programming method. Differences in results from the two methods relate to how much emphasis is placed on minimizing the misfit to the target slip rate (integer programming) compared to finding a solution within the slip-rate constraints (greedy sequential). Specifics of the spatial distribution of magnitudes also depend on the shape of the target slip-rate function: that is, stepped at the section boundaries versus a smooth function. This study isolates the effects of slip-rate variation along a single fault in determining the spatial distribution of earthquake magnitudes, helping to better interpret results from more complex, interconnected fault systems.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The southcentral Hikurangi subduction margin (North Island, New Zealand) has a wide, low-taper accretionary wedge that is frontally accreting a 〉3-km-thick layer of sediments, with deformation currently focused near the toe of the wedge. We use a geological model based on a depth-converted seismic section, together with physically realistic parameters for fluid pressure, and sediment and décollement friction based on laboratory experiments, to investigate the present-day force balance in the wedge. Numerical models are used to establish the range of physical parameters compatible with the present-day wedge geometry and mechanics. Our analysis shows that the accretionary wedge stability and taper angle require either high to moderate fluid pressure on the plate interface, and/or weak frictional strength along the décollement. The décollement beneath the outer wedge requires a relatively weaker effective strength than beneath the inner (consolidated) wedge. Increasing density and cohesion with depth make it easier to attain a stable taper within the inner wedge, while anything that weakens the wedge—such as high fluid pressures and weak faults—make it harder. Our results allow a near-hydrostatic wedge fluid pressure, sublithostatic fluid overpressure at the subduction interface, and friction coefficients compatible with measurements from laboratory experiments on weak clay minerals.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉We present a new methodology to compute the gravitational fields generated by tesseroids (spherical prisms) whose density varies with depth according to an arbitrary continuous function. It approximates the gravitational fields through the Gauss–Legendre Quadrature along with two discretization algorithms that automatically control its accuracy by adaptively dividing the tesseroid into smaller ones. The first one is a preexisting 2-D adaptive discretization algorithm that reduces the errors due to the distance between the tesseroid and the computation point. The second is a new density-based discretization algorithm that decreases the errors introduced by the variation of the density function with depth. The amount of divisions made by each algorithm is indirectly controlled by two parameters: the distance-size ratio and the delta ratio. We have obtained analytical solutions for a spherical shell with radially variable density and compared them to the results of the numerical model for linear, exponential, and sinusoidal density functions. The heavily oscillating density functions are intended only to test the algorithm to its limits and not to emulate a real world case. These comparisons allowed us to obtain optimal values for the distance-size and delta ratios that yield an accuracy of 0.1 per cent of the analytical solutions. The resulting optimal values of distance-size ratio for the gravitational potential and its gradient are 1 and 2.5, respectively. The density-based discretization algorithm produces no discretizations in the linear density case, but a delta ratio of 0.1 is needed for the exponential and most sinusoidal density functions. These values can be extrapolated to cover most common use cases, which are simpler than oscillating density profiles. However, the distance-size and delta ratios can be configured by the user to increase the accuracy of the results at the expense of computational speed. Finally, we apply this new methodology to model the Neuquén Basin, a foreland basin in Argentina with a maximum depth of over 5000 m, using an exponential density function.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The dynamics of dyke emplacement are typically modeled by assuming an elastic rheology for the host rock. However, the resulting stress field predicts significant shear failure in the region surrounding the dyke tip. Here, we model the dyking process in an elastic-perfectly plastic host rock in order to simulate distributed shear fracturing and subsequent frictional slip on the fracture surfaces. The fluid mechanical aspects of the magma are neglected as we are interested only in the fracture mechanics of the process. Magma overpressure in dykes is typically of the same order of magnitude as the yield stress of the host rock in shear, especially when the pressure effect of volatiles exsolving from the magma is taken into account. Under these conditions, the plastic deformation zone has spatial dimensions that approach the length of the dyke itself, and concepts based on linear elastic fracture mechanics (LEFM) no longer apply. As incremental plasticity is path dependent, we describe two geologically meaningful endmember cases, namely dyke propagation at constant driving pressure, and gradual inflation of a pre-existing crack. For both models, we find that plastic deformation surrounding the fracture tip enhances dyke opening, and thus increases the energy input into the system due to pressure work integrated over the fracture wall. At the same time, energy is dissipated by plastic deformation. Dissipation in the propagation model is greater by about an order of magnitude than it is in the inflation model because the propagating dyke tip leaves behind it a broad halo of deformation due to plastic bending and unbending in the relict process zone. The net effect is that plastic deformation impedes dyke growth in the propagation model, while it enhances dyke growth in the inflation model. The results show that, when the plastic failure zone is large, a single parameter such as fracture toughness is unable to capture the physics that underpin the resistance of a fracture or dyke against propagation. In these cases, plastic failure has to be modeled explicitly for the given conditions. We provide analytical approximations for the propagation forces and the maximum dyke aperture for the two endmember cases, that is, the propagating dyke and the dyke formed by inflation of a crack. Furthermore, we show that the effect of plasticity on dyke energetics, together with an overestimate of magma pressure when interpreting dyke aspect ratios using elastic host rock models, offers a possible explanation for the long-standing paradox that laboratory measurements of fracture toughness of rocks consistently indicate values about two orders of magnitude lower than those derived from dyke observations.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Building geomechanical models for induced seismicity in complex reservoirs poses a major challenge, in particular if many faults need to be included. We developed a novel way of calculating induced stress changes and associated seismic moment response for structurally complex reservoirs with tens to hundreds of faults. Our specific target was to improve the predictive capability of stress evolution along multiple faults, and to use the calculations to enhance physics-based understanding of the reservoir seismicity. Our methodology deploys a mesh-free numerical and analytical approach for both the stress calculation and the seismic moment calculation. We introduce a high-performance computational method for high-resolution induced Coulomb stress changes along faults, based on a Green's function for the stress response to a nucleus of strain. One key ingredient is the deployment of an octree representation and calculation scheme for the nuclei of strain, based on the topology and spatial variability of the mesh of the reservoir flow model. Once the induced stress changes are evaluated along multiple faults, we calculate potential seismic moment release in a fault system supposing an initial stress field. The capability of the approach, dubbed as MACRIS (〈strong〉M〈/strong〉echanical 〈strong〉A〈/strong〉nalysis of 〈strong〉C〈/strong〉omplex 〈strong〉R〈/strong〉eservoirs for 〈strong〉I〈/strong〉nduced 〈strong〉S〈/strong〉eismicity) is proven through comparisons with finite element models. Computational performance and suitability for probabilistic assessment of seismic hazards are demonstrated though the use of the complex, heavily faulted Gullfaks field.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉We test the feasibility of GPS-based rapid centroid moment tensor (GPS CMT) methods for Taiwan, one of the most earthquake prone areas in the world. In recent years, Taiwan has become a leading developer of seismometer-based earthquake early warning systems, which have successfully been applied to several large events. The rapid determination of earthquake magnitude and focal mechanism, important for a number of rapid response applications, including tsunami warning, is still challenging because of the limitations of near-field inertial recordings. This instrumental issue can be solved by an entirely different observation system: a GPS network. Taiwan is well posed to take advantage of GPS because in the last decade it has developed a very dense network. Thus, in this research, we explore the suitability of the GPS CMT inversion for Taiwan. We retrospectively investigate six moderate to large (〈span〉M〈/span〉〈sub〉w〈/sub〉6.0 ∼ 7.0) earthquakes and propose a resolution test for our model, we find that the minimum resolvable earthquake magnitude of this system is ∼〈span〉M〈/span〉〈sub〉w〈/sub〉5.5 (at 5 km depth). Our tests also suggest that the finite fault complexity, often challenging for the near-field methodology, can be ignored under such good station coverage and thus, can provide a fast and robust solution for large earthquake directly from the near field. Our findings help to understand and quantify how the proposed methodology could be implemented in real time and what its contributions could be to the overall earthquake monitoring system.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Time-domain processing of seismic reflection data has always been an important engine that is routinely utilized to produce seismic images and to expeditiously construct subsurface models. The conventional procedure involves analysing parameters related to the derivatives of reflection traveltime with respect to offset including normal moveout (NMO) velocities (second-order derivatives) and quartic coefficients (fourth-order derivatives). In this study, we propose to go beyond the typical assumption of 1-D laterally homogeneous medium when relating those ‘processing’ parameters to the subsurface medium parameters and take into account the additional influences from lateral heterogeneity including curved interfaces and smoothly variable velocities. We fill in the theoretical gap from previous studies and develop a general framework for such connection in layered anisotropic media. We show that in general, the influences of lateral heterogeneity get accumulated from all layers via a recursive relationship according to the Fermat’s principle and can be approximately quantified in terms of the lateral derivatives of the layer interface surfaces and velocities. Based on the same general principle, we show that our approach can also be used to study the lateral heterogeneity effects on diffraction traveltime and its second-order derivative related to time-migration velocity. In this paper, we explicitly specify expressions for NMO and time-migration velocities with the influences from both types of heterogeneity suitable for 2-D data sets and also discuss possible extensions of the proposed theory to 3-D data sets and to parameters related to higher-order traveltime derivatives. Using numerical examples, we demonstrate that the proposed theory can lead to more accurate reflection and diffraction traveltime predictions in comparison with those obtained based on the 1-D assumption. Both the proposed theoretical framework and its numerical testing for forward traveltime computation presented in this study aid in understanding the effects from lateral heterogeneity on time-processing parameters and also serve as an important basis for designing an efficient technique to separate those influences in important processes such as Dix inversion for a more accurate subsurface model in the future.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉We use seismic noise cross-correlations to obtain a 3-D tomography model of 〈span〉SV〈/span〉-wave velocities beneath the western Indian Ocean, in the depth range of the oceanic crust and uppermost mantle. The study area covers 2000 × 2000 km〈sup〉2〈/sup〉 between Madagascar and the three spreading ridges of the Indian Ocean, centred on the volcanic hotspot of La Réunion. We use seismograms from 38 ocean bottom seismometers (OBSs) deployed by the RHUM-RUM project and 10 island stations on La Réunion, Madagascar, Mauritius, Rodrigues, and Tromelin. Phase cross-correlations are calculated for 1119 OBS-to-OBS, land-to-OBS, and land-to-land station pairs, and a phase-weighted stacking algorithm yields robust group velocity measurements in the period range of 3–50 s. We demonstrate that OBS correlations across large interstation distances of 〉2000 km are of sufficiently high quality for large-scale tomography of ocean basins. Many OBSs yielded similarly good group velocity measurements as land stations. Besides Rayleigh waves, the noise correlations contain a low-velocity wave type propagating at 0.8–1.5 km s〈sup〉−1〈/sup〉 over distances exceeding 1000 km, presumably Scholte waves travelling through seafloor sediments. The 100 highest-quality group velocity curves are selected for tomographic inversion at crustal and lithospheric depths. The inversion is executed jointly with a data set of longer-period, Rayleigh-wave phase and group velocity measurements from earthquakes, which had previously yielded a 3-D model of Indian Ocean lithosphere and asthenosphere. Robust resolution tests and plausible structural findings in the upper 30 km validate the use of noise-derived OBS correlations for adding crustal structure to earthquake-derived tomography of the oceanic mantle. Relative to crustal reference model CRUST1.0, our new shear-velocity model tends to enhance both slow and fast anomalies. It reveals slow anomalies at 20 km depth beneath La Réunion, Mauritius, Rodrigues Ridge, Madagascar Rise, and beneath the Central Indian spreading ridge. These structures can clearly be associated with increased crustal thickness and/or volcanic activity. Locally thickened crust beneath La Réunion and Mauritius is probably related to magmatic underplating by the hotspot. In addition, these islands are characterized by a thickened lithosphere that may reflect the depleted, dehydrated mantle regions from which the crustal melts where sourced. Our tomography model is available as electronic supplement.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Since the completion of the Gravity field and steady-state Ocean Circulation Explorer mission (GOCE), global gravity models of uniform quality and coverage are available. We investigate their potential of being useful tools for estimating the thermal structure of the continental lithosphere, through simulation and real-data test in Central-Eastern Europe across the Trans-European Suture Zone. Heat flow, measured near the Earth surface, is the result of the superposition of a complex set of contributions, one of them being the heat production occurring in the crust. The crust is enriched in radioactive elements respect to the underlying mantle and crustal thickness is an essential parameter in isolating the thermal contribution of the crust. Obtaining reliable estimates of crustal thickness through inversion of GOCE-derived gravity models has already proven feasible, especially when weak constraints from other observables are introduced. We test a way to integrate this in a geothermal framework, building a 3-D, steady state, solid Earth conductive heat transport model, from the lithosphere–asthenosphere boundary to the surface. This thermal model is coupled with a crust-mantle boundary depth resulting from inverse modelling, after correcting the gravity model for the effects of topography, far-field isostatic roots and sediments. We employ a mixed space- and spectral-domain based forward modelling strategy to ensure full spectral coherency between the limited spectral content of the gravity model and the reductions. Deviations from a direct crustal thickness to crustal heat production relationship are accommodated using a subsequent substitution scheme, constrained by surface heat flow measurements, where available. The result is a 3-D model of the lithosphere characterised in temperature, radiogenic heat and thermal conductivity. It provides added information respect to the lithospheric structure and sparse heat flow measurements alone, revealing a satisfactory coherence with the geological features in the area and their controlling effect on the conductive heat transport.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉We investigate the possibility of passive monitoring of a salt-water disposal well in British Columbia, Canada, using continuously recorded ambient seismic noise. We find seismic velocity variations induced by a reduction of injection pressure in an effort to mitigate an elevated level of seismicity, most likely associated with the disposal of salt water. The relative velocity variations are derived from time-shifts measured between consecutive cross-correlation functions for each station pair in a surface array composed of five broad-band seismometers. The probable driving mechanisms responsible for the velocity changes are reduced pore pressures and/or lowered poroelastic stresses beyond the injection wellbore, respectively. Hydrologic data (e.g. snow and rainfall), noise energy trends and fluctuations in the incident direction of dominant noise sources do not correlate with the estimated relative velocity variations. Velocity variations are detected ahead of the zone of induced seismicity, thus indicating that seismic interferometry may aid in mitigation efforts to reduce the risk of induced seismicity by (1) providing verifiable and repeatable measurements of physical changes within the surrounding area and (2) providing hard constraints for modelling efforts to constrain how and where pore-pressure fronts change.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Electrical conductivity is one of the most commonly used geophysical method for reservoir and environmental studies. Its main interest lies in its sensitivity to key properties of storage and transport in porous media. Its quantitative use therefore depends on the efficiency of the petrophysical relationship to link them. In this work, we develop a new physically based model for estimating electrical conductivity of saturated porous media. The model is derived assuming that the porous media is represented by a bundle of tortuous capillary tubes with a fractal pore-size distribution. The model is expressed in terms of the porosity, electrical conductivity of the pore liquid and the microstructural parameters of porous media. It takes into account the interface properties between minerals and pore water by introducing a surface conductivity. Expressions for the formation factor and hydraulic tortuosity are also obtained from the model derivation. The model is then successfully compared with published data and performs better than previous models. The proposed approach also permits to relate the electrical conductivity to other transport properties such as the hydraulic conductivity.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Thinning of the lithosphere under continental collisional orogens is often attributed to delamination or convective thinning. Both processes remove part or all of the mantle lithosphere that has become denser and gravitationally unstable. Previous studies mostly focused on the different thermomagmatic consequences of these two processes; the dynamic links between them, and the critical conditions for one or the other process to dominate lithosphere thinning, remain uncertain. Here, we used high-resolution thermomechanical models with various rheology (linear viscous, power-law viscous and/or the extended Drucker–Prager plasticity) to systematically investigate the dynamics of delamination and convective thinning under collisional orogens. Our results show that convective thinning is favoured in models of linear (Newtonian) viscous rheology and low viscosity $({10^{19}}\!-\! {10^{20}}\,\,{\rm{Pa}} \, {\rm{s}})$. Power-law viscous rheology promotes strain localization, which reduces the effective viscosity and may lead to localized rising of the asthenosphere to the crustal base, thus triggering delamination. Further strain localization and stronger delamination are predicted with inclusion of plastic rheology in the model. These results indicate that convective thinning and delamination are dynamically linked and can occur in the same orogeny. Their relative dominance during orogenesis may be distinguished by the resulting spatiotemporal evolutions of thermal perturbation, magmatism and elevation changes. We applied the models to show that the evolution of the Central Anatolian Plateau is consistent with the dominance of convective thinning, whereas delamination played a major role in thinning the mantle lithosphere under central-northern Tibetan Plateau.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Developing a model for anthropogenic seismic hazard remains an open challenge whatever the geo-resource production. We analyse the (〈span〉M〈/span〉〈sub〉max〈/sub〉) largest reported magnitude on each site where (RTS) Reservoir Triggered Seismicity in documented (37 events, 1933–2008), for aftershocks of reservoir impoundment loading. We relate each reservoir impoundment to its magnitude-equivalent 〈span〉M〈/span〉*〈sub〉reservoir〈/sub〉 = 〈span〉M〈/span〉*(〈span〉L〈/span〉〈sub〉r〈/sub〉). We use (〈span〉L〈/span〉〈sub〉r〈/sub〉) the reservoir length as a proxy for a rupture length of the reservoir main shock-equivallent. This latter is derived from the empirical relationship that exists for tectonic earthquake among magnitude and rupture length. We resolve (i) 〈span〉M〈/span〉〈sub〉max〈/sub〉 for RTS are bounded by 〈span〉M〈/span〉*〈sub〉reservoir〈/sub〉 at a 95 per cent confidence level; (ii) in average 〈span〉M〈/span〉〈sub〉max〈/sub〉 are smaller than 〈span〉M〈/span〉*〈sub〉reservoir〈/sub〉 by 2.2 units (iii) 50 per cent of the 〈span〉M〈/span〉〈sub〉max〈/sub〉 occurrence is within 2 ± 1 yr from the reservoir impoundment. These triggering patterns support the signature of fluid driven seismicity during the slow reservoir impoundment emerges as a weaker efficiency (larger Δ〈span〉M〈/span〉 = 〈span〉M〈/span〉*〈sub〉reservoir〈/sub〉 – 〈span〉M〈/span〉〈sub〉max〈/sub〉) to trigger 〈span〉M〈/span〉〈sub〉max〈/sub〉 events than from earthquake interactions.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The activities of frontal thrusts in the northern Qilian Shan are critical for understanding the deformation of the Qilian Shan and the northeastern Tibetan Plateau. In this study, we estimate the slip rate of the active Fodongmiao–Hongyazi thrust along the northern margin of the Qilian Shan. High-resolution satellite imagery interpretations and detailed field investigations suggest that the fault displaced late Pleistocene terraces and formed fresh prominent north-facing fault scarps. To quantify the slip rate of the fault, we measured the displacements along the fault scarps using an unmanned aerial vehicle system and dated the displaced geomorphic surfaces using optically stimulated luminescence (OSL) and 〈sup〉14〈/sup〉C methods. The vertical slip rate of the fault is estimated at 1.0 ± 0.3 mm yr〈sup〉−1〈/sup〉 for the western segment. The slip rates for two branches in the eastern segment are 0.3 ± 0.1 and 0.6 ± 0.1 mm yr〈sup〉−1〈/sup〉. Using a fault dip of 40 ± 10°, we constrain the corresponding shortening rates to 1.4 ± 0.5 and 1.2 ± 0.4 mm yr〈sup〉−1〈/sup〉, respectively. The rates are consistent with values over different timescales, which suggests steady rock uplift and northeastward growth of the western Qilian Shan. Crustal shortening occurs mainly on the range-bounding frontal thrust.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉We present a numerical method for the simulation of earthquake cycles on a 1-D fault interface embedded in a 2-D homogeneous, anisotropic elastic solid. The fault is governed by an experimentally motivated friction law known as rate-and-state friction which furnishes a set of ordinary differential equations which couple the interface to the surrounding volume. Time enters the problem through the evolution of the ordinary differential equations along the fault and provides boundary conditions for the volume, which is governed by quasi-static elasticity. We develop a time-stepping method which accounts for the interface/volume coupling and requires solving an elliptic partial differential equation for the volume response at each time step. The 2-D volume is discretized with a second-order accurate finite difference method satisfying the summation-by-parts property, with boundary and fault interface conditions enforced weakly. This framework leads to a provably stable semi-discretization. To mimic slow tectonic loading, the remote side-boundaries are displaced at a slow rate, which eventually leads to earthquake nucleation at the fault. Time stepping is based on an adaptive, fourth-order Runge–Kutta method and captures the highly varying timescales present. The method is verified with convergence tests for both the orthotropic and fully anisotropic cases. An initial parameter study reveals regions of parameter space where the systems experience a bifurcation from period one to period two behaviour. Additionally, we find that anisotropy influences the recurrence interval between earthquakes, as well as the emergence of aseismic transients and the nucleation zone size and depth of earthquakes.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Palaeomagnetic constraints are essential factors in the reconstruction of the Mesozoic convergence of Eastern Asia blocks. As one of the key blocks, Indochina was constrained only by sedimentary-rocks-derived palaeomagnetic data. To evaluate whether the palaeomagnetic data used to restore the Late Triassic position of Indochina suffered inclination shallowing effects, we conducted a palaeomagnetic and geochronologic study on a coeval volcanic clastic rocks sequence in the western margin of the Khorat Basin, Thailand. The U-Pb SIMS dating on zircons indicates the age of the sampling section is between 205.1 ± 1.5 and 204.7 ± 1.4 Ma. Site mean directions are D〈sub〉g〈/sub〉/I〈sub〉g〈/sub〉 = 217.2°/−39.4° (κ〈sub〉g〈/sub〉 = 45.1, α〈sub〉95g〈/sub〉 = 10.1°) before and D〈sub〉s〈/sub〉/I〈sub〉s〈/sub〉 = 209.2°/−44.5° (κ〈sub〉s〈/sub〉 = 43.8, α〈sub〉95s〈/sub〉 = 10.2°) after tilt correction. The new data set indicates a positive reversal test result at ‘Category C’ level. The characteristic remanent magnetization recorded by the coexistent magnetite and hematite is interpreted to be primary remanence acquired during the initial cooling of the volcanic clastic rocks. The consistence of the corresponding palaeolatitudes derived from the volcanic clastic rocks and the former reported sedimentary rocks suggests that there is probably no significant inclination shallowing bias in the sedimentary-rocks-derived palaeomagnetic data. Therefore, the estimates of the Late Triassic position of Indochina are confirmed to be reliable. The Indochina Block had collided to the southern margin of Eurasia by the Late Triassic and played an important role in the Mesozoic convergence of the Eastern Asia blocks.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉We present a numerically exact method for calculating the internal and external gravitational potential of aspherical and heterogeneous planets. Our approach is based on the transformation of Poisson’s equation into an equivalent equation posed on a spherical computational domain. This new problem is solved in an efficient iterative manner based on a hybrid pseudospectral/spectral element discretization. The main advantage of our method is that its computational cost reflects the planet’s geometric and structural complexity, being in many situations only marginally more expensive than boundary perturbation theory. Several numerical examples are presented to illustrate the method’s efficacy and potential range of applications.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉In the case of long-range propagation of forward scattering, due to the accumulation of phase changes caused by the velocity perturbations, the validity of the Born approximation will be violated. In contrast, the phase-change accumulation can be handled by the Rytov approximation, which has been widely used for long-distance propagation with only forward scattering or small-angle scattering involved. However, the weak scattering assumption (i.e. small velocity perturbation) in the Rytov approximation limits its scope of application. To address this problem, we analyse the integral kernel of the Rytov transform using the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation and we demonstrate that the integral kernel is a function of velocity perturbation and scattering angle. By applying a small scattering angle approximation, we show that the phase variation has a linear relationship with the slowness perturbation, no matter how strong the magnitude of perturbation is. Therefore, the new integral equation is then referred to as the generalized Rytov approximation (GRA) because it overcomes the weak scattering assumption of the Rytov approximation. To show the limitations of the Rytov approximation and the advantages of the proposed GRA method, first we design a two-layer model and we analytically calculate the errors introduced by the small scattering angle assumption using plane wave incidence. We show that the phase (traveltime) variations predicted by the GRA are always more accurate than the Rytov approximation. Particularly, the GRA produces accurate phase variations for the normal incident plane wave regardless of the magnitude of velocity perturbation. Numerical examples using Gaussian anomaly models demonstrate that the scattering angle has a crucial impact on the accuracy of the GRA. If the small scattering angle assumption holds, the GRA can produce an accurate phase approximation even if the velocity perturbation is very strong. On the contrary, both the first-order Rytov approximation and the GRA fail to get satisfying results when the scattering angle is large enough. The proposed GRA method has the potential to be used for traveltime modelling and inversion for large-scale strong perturbation media.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Estimating the location of geologic and tectonic features on a subducting plate is important for interpreting their spatial relationships with other observables including seismicity, seismic velocity and attenuation anomalies, and the location of ore deposits and arc volcanism in the over-riding plate. Here we present two methods for estimating the location of predictable features such as seamounts, ridges and fracture zones on the slab. One uses kinematic reconstructions of plate motions, and the other uses multidimensional scaling to flatten the slab onto the surface of the Earth. We demonstrate the methods using synthetic examples and also using the test case of fracture zones entering the Lesser Antilles subduction zone. The two methods produce results that are in good agreement with each other in both the synthetic and real examples. In the Lesser Antilles, the subducted fracture zones trend northwards of the surface projections. The two methods begin to diverge in regions where the multidimensional scaling method has its greatest likely error. Wider application of these methods may help to establish spatial correlations globally.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Microseismic monitoring is a primary tool for understanding and tracking the progress of mechanical processes occurring in active rock fracture systems. In geothermal or hydrocarbon fields or along seismogenic fault systems, the detection and location of microseismicity facilitates resolution of the fracture system geometry and the investigation of the interaction between fluids and rocks, in response of stress field perturbations. Seismic monitoring aims to detect locate and characterize seismic sources. The detection of weak signals is often achieved at the cost of increasing the number of false detections, related to transient signals generated by a range of noise sources, or related to instrumental problems, ambient conditions or human activity that often affect seismic records. A variety of fast and automated methods has been recently proposed to detect and locate microseismicity based on the coherent detection of signal anomalies, such as increase in amplitude or coherent polarization, at dense seismic networks. While these methods proved to be very powerful to detect weak events and to reduce the magnitude of completeness, a major problem remains to discriminate among weak seismic signals produced by microseismicity and false detections. In this work, the microseimic data recorded along the Irpinia fault zone (Southern Apennines, Italy) are analysed to detect weak, natural earthquakes using one of such automated, migration-based, method. We propose a new method for the automatic discrimination of real vs false detections, which is based on empirical data and information about the detectability (i.e. detection capability) of the seismic network. Our approach allows obtaining high performances in detecting earthquakes without requiring a visual inspection of the seismic signals and minimizing analyst intervention. The proposed methodology is automated, self-updating and can be tuned at different success rates.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉A multitaper estimator is proposed that accommodates time-series containing gaps without using any form of interpolation. In contrast with prior missing-data multitaper estimators that force standard Slepian sequences to be zero at gaps, the proposed missing-data Slepian sequences are defined only where data are present. The missing-data Slepian sequences are frequency independent, as are the eigenvalues that define the energy concentration within the resolution bandwidth, when the process bandwidth is $[ { - 1/2,\,\,\,1/2} )$ for unit sampling and the sampling scheme comprises integer multiples of unity. As a consequence, one need only compute the ensuing missing-data Slepian sequences for a given sampling scheme once, and then the spectrum at an arbitrary set of frequencies can be computed using them. It is also shown that the resulting missing-data multitaper estimator can incorporate all of the optimality features (i.e. adaptive-weighting, 〈span〉F〈/span〉-test and reshaping) of the standard multitaper estimator, and can be applied to bivariate or multivariate situations in similar ways. Performance of the missing-data multitaper estimator is illustrated using length of day, seafloor pressure and Nile River low stand time-series.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The analysis of surface wave dispersion curves (DCs) is widely used for near-surface 〈span〉S〈/span〉-wave velocity (VS) reconstruction. However, a comprehensive characterization of the near-surface requires also the estimation of 〈span〉P〈/span〉-wave velocity (VP). We focus on the estimation of both VS and VP models from surface waves using a direct data transform approach. We estimate a relationship between the wavelength of the fundamental mode of surface waves and the investigation depth and we use it to directly transform the DCs into VS and VP models in laterally varying sites. We apply the workflow to a real data set acquired on a known test site. The accuracy of such reconstruction is validated by a waveform comparison between field data and synthetic data obtained by performing elastic numerical simulations on the estimated VP and VS models. The uncertainties on the estimated velocity models are also computed.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Seismic signal recognition can serve as a powerful auxiliary tool for analysing and processing ever-larger volumes of seismic data. It can facilitate many subsequent procedures such as first-break picking, statics correction, denoising, signal detection, events tracking, structural interpretation, inversion and imaging. In this study, I propose an automatic technique of seismic signal recognition taking advantage of unsupervised machine learning. In the proposed technique, seismic signal recognition is considered as a problem of clustering data points. All the seismic sampling points in time domain are clustered into two clusters, that is, signal or non-signal. The hierarchical clustering algorithm is used to group these sampling points. Four attributes, that is, two short-term-average-to-long-term-average ratios, variance and envelope are investigated in the clustering process. In addition, to quantitatively evaluate the performance of seismic signal recognition properly, I propose two new statistical indicators, namely, the rate between the total energies of original and recognized signals (RTE), and the rate between the average energies of original and recognized signals (RAE). A large number of numerical experiments show that when the signal is slightly corrupted by noise, the proposed technique performs very well, with recognizing accuracy, precision and RTE of nearly 1 (i.e. 100 per cent), recall greater than 0.8 and RAE about 1–1.3. When the signal is moderately corrupted by noise, the proposed technique can hold recognizing accuracy about 0.9, recognizing precision nearly to 1, RTE about 0.9, recall around 0.6 and RAE about 1.5. Applications of the proposed technique to real microseismic data induced from hydraulic fracturing and reflection seismic data demonstrate its feasibility and encouraging prospect.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Measurements of seismo-acoustic events by collocated seismic and infrasound arrays allow for studying the two wavefields that were produced by the same event. However, some of the scientific and technical constraints on the building of the two technologies are different and may be contradicting. For the case of a new station, an optimal design that will satisfy the constraints of the two technologies can be found. However, in the case of upgrading an existing array by adding the complementing technology, the situation is different. The site location, the array configuration and physical constraints are fixed and may not be optimal for the complementing technology, which may lead to rejection of the upgrade. The International Monitoring System (IMS) for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) includes 37 seismic arrays and 51 infrasound arrays. Although the CTBT verification regime is fixed in the treaty, an upgrade of the existing arrays by adding more technologies is possible.The Mount Meron seismic array (MMAI), which is part of the IMS, is composed of 16 sites. Microbarometers were installed at five MMAI sites to form the Mount Meron infrasound array. Due to regulation and physical constraints, it was not possible to relocate the sites nor to install analogue noise reduction filters (i.e. a pipe array). In this study, it is demonstrated that the installation of the MMAI infrasound array is beneficial despite the non-optimal conditions. It is shown that the noise levels of the individual array sites are between the high and median global noise levels. However, we claim that the more indicative measures are the noise levels of the beams of interest, as demonstrated by analysing the microbaroms originated from the Mediterranean Sea. Moreover, the ability to detect events relevant to the CTBT is demonstrated by analysing man-made events during 2011 from the Libya region.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Static and quasi-static Coulomb stress changes produced by large earthquakes can modify the probability of occurrence of subsequent events on neighbouring faults. This approach is based on physical (Coulomb stress changes) and statistical (probability calculations) models, which are influenced by the quality and quantity of data available in the study region. Here, we focus on the Wasatch fault zone (WFZ), a well-studied active normal fault system having abundant geological and palaeoseismological data. Palaeoseismological trench investigations of the WFZ indicate that at least 24 large, surface-faulting earthquakes have ruptured the fault's five central, 35–59-km long segments since ∼7 ka. Our goal is to determine if the stress changes due to the youngest palaeoevents have significantly modified the present-day probability of occurrence of large earthquakes on each of the segments. For each segment, we modelled the cumulative (coseismic + post-seismic) Coulomb stress changes (∆CFS〈sub〉cum〈/sub〉) due to earthquakes younger than the most recent event on the segment in question and applied the resulting values to the time-dependent probability calculations. Results from the Coulomb stress modelling suggest that the Brigham City, Salt Lake City, and Provo segments have accumulated ∆CFS〈sub〉cum〈/sub〉 larger than 10 bar, whereas the Weber segment has experienced a stress decrease of 5 bar, in the scenario of recent rupture of the Great Salt Lake fault to the west. Probability calculations predict high probability of occurrence for the Brigham City and Salt Lake City segments, due to their long elapsed times (〉1–2 ka) when compared to the Weber, Provo and Nephi segments (〈1 ka). The range of calculated coefficients of variation has a large influence on the final probabilities, mostly in the case of the Brigham City segment. Finally, when the Coulomb stress and the probability models are combined, our results indicate that the ∆CFS〈sub〉cum〈/sub〉 resulting from earthquakes post-dating the youngest events on each of the five segments substantially affects the probability calculations for three of the segments: Brigham City, Salt Lake City and Provo. The probability of occurrence of a large earthquake in the next 50 yr on these three segments may, therefore, be underestimated if a time-independent approach, or a time-dependent approach that does not consider ∆CFS, is adopted.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Quantifying landslide activity in remote regions is difficult because of the numerous complications that prevent direct landslide observations. However, building exhaustive landslide catalogues is critical to document and assess the impacts of climate change on landslide activity such as increasing precipitation, glacial retreat and permafrost thawing, which are thought to be strong drivers of the destabilization of large parts of the high-latitude/altitude regions of the Earth. In this study, we take advantage of the capability offered by seismological observations to continuously and remotely record landslide occurrences at regional scales. We developed a new automated machine learning processing chain, based on the Random Forest classifier, able to automatically detect and identify landslide seismic signals in continuous seismic records. We processed two decades of continuous seismological observations acquired by the Alaskan seismic networks. This allowed detection of 5087 potential landslides over a period of 22 yr (1995–2017). We observe an increase in the number of landslides for the period and discuss the possible causes.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉To describe the energy transport in the seismic coda, we introduce a system of radiative transfer equations for coupled surface and body waves in a scalar approximation. Our model is based on the Helmholtz equation in a half-space geometry with mixed boundary conditions. In this model, Green’s function can be represented as a sum of body waves and surface waves, which mimics the situation on Earth. In a first step, we study the single-scattering problem for point-like objects in the Born approximation. Using the assumption that the phase of body waves is randomized by surface reflection or by interaction with the scatterers, we show that it becomes possible to define, in the usual manner, the cross-sections for surface-to-body and body-to-surface scattering. Adopting the independent scattering approximation, we then define the scattering mean free paths of body and surface waves including the coupling between the two types of waves. Using a phenomenological approach, we then derive a set of coupled transport equations satisfied by the specific energy density of surface and body waves in a medium containing a homogeneous distribution of point scatterers. In our model, the scattering mean free path of body waves is depth dependent as a consequence of the body-to-surface coupling. We demonstrate that an equipartition between surface and body waves is established at long lapse-time, with a ratio which is predicted by usual mode counting arguments. We derive a diffusion approximation from the set of transport equations and show that the diffusivity is both anisotropic and depth dependent. The physical origin of the two properties is discussed. Finally, we present Monte Carlo solutions of the transport equations which illustrate the convergence towards equipartition at long lapse-time as well as the importance of the coupling between surface and body waves in the generation of coda waves.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉In the profile analysis of faults, the distribution of GNSS sites directly affects the accuracy of the results of slip rate and locking depth. This paper discusses strategies for designing the layout of GNSS stations perpendicular to strike-slip faults in terms of site spacing and the Minimum Effective Distance, which is 20 times the locking depth of the fault. Three layout models are proposed considering the complexity of strike-slip faults: (1) Equal spacing layout, in which many stations are deployed in the far field, only a few are deployed in the near field. (2) Equal deformation layout, in which stations are densely arranged in the near field and sparsely arranged in the far field according to the frequency of deformation curve. (3) Equal slope spacing layout, in which stations are arranged according to the nonlinear degree of the deformation curve, with dense distribution in regions with high nonlinearity and sparse distribution in approximately linear regions. The three models were used to redistribute the sites in the Qiaojia to Dongchuan segment of the Xiaojiang fault profile, and their performances were compared with that of the current sites distribution of the segment. The results showed that model 1 is optimal for fitting the accuracy of slip rate and model 3 is optimal for the accuracy of locking depth. Overall, model 3 appears to be the best choice, considering that the accuracy of the locking depth is more difficult to control. One of the main purposes of deployment is to identify the seismogenic depth of the fault. With the locking depth of the fault gradually approaching the depth of the seismogenic layer during an interseismic period, the accuracy of observations of sites deployed at a preset value of historical seismogenic depth of the fault would improve.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉HY-2A is China's first satellite altimeter mission, launched in Aug. 2011. Its geodetic mission (GM) started from 2016 March 30 till present, collecting sea surface heights for about five 168-d cycles. To test how the HY-2A altimeter performs in marine gravity derivation, we use the least-squares collocation method to determine marine gravity anomalies on 1′ × 1′ grids around the South China Sea (covering 0°–30°N, 105°E–125°E) from the HY-2A/GM-measured geoid gradients. We assess the qualities of the HY-2A/GM-derived gravity over different depths and areas using the bias and tilt-adjusted ship-borne gravity anomalies from the U.S. National Centers for Environmental Information (NCEI) and the Second Institute of Oceanography, Ministry of Natural Resources (MNR) of P. R. China. The RMS difference between the HY-2A/GM-derived and the NCEI ship-borne gravity is 5.91 mGal, and is 5.33 mGal when replacing the HY-2A value from the Scripps Institution of Oceanography (SIO) V23.1 value. The RMS difference between the HY-2A/GM-derived and the MNR ship-borne gravity is 2.90 mGal, and is 2.76 mGal when replacing the HY-2A value from the SIO V23.1 value. The RMS difference between the HY-2A and SIO V23.1 value is 3.57 mGal in open sea areas at least 20 km far away from the coast. In general, the difference between the HY-2A/GM-derived gravity and ship-borne gravity decreases with decreasing gravity field roughness and increasing depth. HY-2A results in the lowest gravity accuracy in areas with islands or reefs. Our assessment result suggests that HY-2A can compete with other Ku-band altimeter missions in marine gravity derivation.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Virtual Deep Seismic Sounding (VDSS) has emerged as a novel method to image the crust-mantle-boundary (CMB) and potentially other lithospheric boundaries. In Part 1 (Liu et al., 2018), we showed that the arrival time and waveform of post-critical 〈span〉SsPmp〈/span〉, the post-critical reflection phase at the CMB used in VDSS, is sensitive to several different attributes of the crust and upper mantle. Here, we synthesize our methodology of deriving Moho depth, average crustal 〈span〉Vp〈/span〉 and uppermost-mantle 〈span〉Vp〈/span〉 from single-station observations of post-critical 〈span〉SsPmp〈/span〉 under a 1D assumption. We first verify our method with synthetics and then substantiate it with a case study using the Yellowknife and POLARIS arrays in the Slave Craton, Canada. We show good agreement of crustal and upper-mantle properties derived with VDSS with those given by previous active-source experiments and our own P receiver functions (PRF) in our study area. Finally, we propose a PRF-VDSS joint analysis method to constrain average crustal 〈span〉Vp〈/span〉/〈span〉Vs〈/span〉 ratio and composition. Our PRF-VDSS joint analysis shows that the southwest Slave Craton has an intermediate crustal composition, most consistent with a Mesoarchean age.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The variation of temperature in the crust is difficult to quantify due to the sparsity of surface heat flow observations and lack of measurements on the thermal properties of rocks at depth. We examine the degree to which the thermal structure of the crust can be constrained from Curie depth and surface heat flow data in Southeastern Australia. We cast the inverse problem of heat conduction within a Bayesian framework and derive its adjoint so we can efficiently find the optimal model that best reproduces the data and prior information on the thermal properties of the crust. Efficiency gains obtained from the adjoint method facilitates a detailed exploration of thermal structure in SE Australia, where we predict high temperatures within Precambrian rocks of 650 〈sup〉○〈/sup〉C due to relatively high rates of heat production (0.9–1.4 μW m〈sup〉−3〈/sup〉). In contrast, temperatures within dominantly Phanerozoic crust reach only 520 〈sup〉○〈/sup〉C at the Moho due to the low rates of heat production in Cambrian mafic volcanics. A combination of Curie depth and heat flow data are required to constrain the uncertainty of lower crustal temperatures to ± 73 〈sup〉○〈/sup〉C. We also show that parts of the crust are unconstrained if either dataset is omitted from the inversion.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The mantle transition zone is the region between the globally observed major seismic velocity discontinuities around depths of 410 and 660 km and is important for determining the style of convection and mixing between the upper and the lower mantle. In this study, P-to-S converted waves, or receiver functions, are used to study these discontinuities beneath the Alaskan subduction zone, where the Pacific plate subducts underneath the North American plate. Previous tomographic models do not agree on the depth extent of the subducting slab, therefore improved imaging of the Earth structure underneath Alaska is required. We use 27,800 high quality radial receiver functions to make common conversion point stacks. Upper mantle velocity anomalies are accounted for by two recently published regional tomographic S-wave velocity models. Using these two tomographic models, we show that the discontinuity depths within our CCP stacks are highly dependent on the choice of velocity model, between which velocity anomaly magnitudes vary greatly. We design a quantitative test to show whether the anomalies in the velocity models are too strong or too weak, leading to over- or under-corrected discontinuity depths. We also show how this test can be used to rescale the 3D velocity corrections in order to improve the discontinuity topography maps. After applying the appropriate corrections, we find a localised thicker mantle transition zone and an uplifted 410 discontinuity, which show that the slab has clearly penetrated into the mantle transition zone. Little topography is seen on the 660 discontinuity, indicating that the slab has probably not reached the lower mantle. In the southwest, P410s arrivals have very small amplitudes or no significant arrival at all. This could be caused by water or basalt in the subducting slab, reducing the strength at the 410, or by topography on the 410 discontinuity, preventing coherent stacking. In the southeast of Alaska, a thinner mantle transition zone is observed. This area corresponds to the location of a slab window, and thinning of the mantle transition zone may be caused by hot mantle upwellings.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉We present an iterative classification scheme using inter-event cross-correlation to update an existing earthquake catalogue with similar events from a list of automatic seismic event detections. The algorithm automatically produces catalogue quality events, with improved hypocentres and reliable P and S arrival time information. Detected events are classified into four event categories with the purpose of using the top category, with the highest assessed event quality and highest true-to-false ratio, directly for local earthquake tomography without additional manual analysis. The remaining categories have varying proportions of lower quality events, quality being defined primarily by the number of observed phase onsets, and can be viewed as different priority groups for manual inspection to reduce the time spent by a seismic analyst. A list of 3348 event detections from the geothermally active volcanic region around Hengill, southwest Iceland, produced by our migration and stack detector (Wagner et al. 2017), was processed using a reference catalogue of 1108 manually picked events from the same area. P and S phase onset times were automatically determined for the detected events using correlation time lags with respect to manually picked phase arrivals from different multiple reference events at the same station. A significant improvement of the initial hypocentre estimates was achieved after re-locating the detected events using the computed phase onset times. The differential time dataset resulting from the correlation was successfully used for a double-difference re-location of the final updated catalogue. The routine can potentially be implemented in real-time seismic monitoring environments in combination with a variety of seismic event/phase detectors.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉To describe the energy transport in the seismic coda, we introduce a system of radiative transfer equations for coupled surface and body waves in a scalar approximation. Our model is based on the Helmholtz equation in a half-space geometry with mixed boundary conditions. In this model, Green’s function can be represented as a sum of body waves and surface waves, which mimics the situation on Earth. In a first step, we study the single-scattering problem for point-like objects in the Born approximation. Using the assumption that the phase of body waves is randomized by surface reflection or by interaction with the scatterers, we show that it becomes possible to define, in the usual manner, the cross-sections for surface-to-body and body-to-surface scattering. Adopting the independent scattering approximation, we then define the scattering mean free paths of body and surface waves including the coupling between the two types of waves. Using a phenomenological approach, we then derive a set of coupled transport equations satisfied by the specific energy density of surface and body waves in a medium containing a homogeneous distribution of point scatterers. In our model, the scattering mean free path of body waves is depth dependent as a consequence of the body-to-surface coupling. We demonstrate that an equipartition between surface and body waves is established at long lapse-time, with a ratio which is predicted by usual mode counting arguments. We derive a diffusion approximation from the set of transport equations and show that the diffusivity is both anisotropic and depth dependent. The physical origin of the two properties is discussed. Finally, we present Monte-Carlo solutions of the transport equations which illustrate the convergence towards equipartition at long lapse-time as well as the importance of the coupling between surface and body waves in the generation of coda waves.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉In planetary fluid cores, the density depends on temperature and chemical composition, which diffuse at very different rates. This leads to various instabilities, bearing the name of double-diffusive convection. We investigate rotating double-diffusive convection (RDDC) in fluid spheres. We use the Boussinesq approximation with homogeneous internal thermal and compositional source terms. We focus on the finger regime, in which the thermal gradient is stabilising whereas the compositional one is destabilising. First, we perform a global linear stability analysis in spheres. The critical Rayleigh numbers drastically drop for stably stratified fluids, yielding large-scale convective motions where local analyses predict stability. We evidence the inviscid nature of this large-scale double-diffusive instability, enabling the determination of the marginal stability curve at realistic planetary regimes. In particular, we show that in stably stratified spheres, the Rayleigh numbers 〈span〉Ra〈/span〉 at the onset evolve like 〈span〉Ra〈/span〉 ∼ 〈span〉Ek〈/span〉〈sup〉−1〈/sup〉, where 〈span〉Ek〈/span〉 is the Ekman number. This differs from rotating convection in unstably stratified spheres, for which 〈span〉Ra〈/span〉 ∼ 〈span〉Ek〈/span〉〈sup〉−4/3〈/sup〉. The domain of existence of inviscid convection thus increases as 〈span〉Ek〈/span〉〈sup〉−1/3〈/sup〉. Second, we perform nonlinear simulations. We find a transition between two regimes of RDDC, controlled by the strength of the stratification. Furthermore, far from the RDDC onset, we find a dominating equatorially anti-symmetric, large-scale zonal flow slightly above the associated linear onset. Unexpectedly, a purely linear mechanism can explain this phenomenon, even far from the instability onset, yielding a symmetry breaking of the nonlinear flow at saturation. For even stronger stable stratification, the flow becomes mainly equatorially-symmetric and intense zonal jets develop. Finally, we apply our results to the early Earth core. Double diffusion can reduce the critical Rayleigh number by four decades for realistic core conditions. We suggest that the early Earth core was prone to turbulent RDDC, with large-scale zonal flows.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Time-domain processing of seismic reflection data has always been an important engine that is routinely utilized to produce seismic images and to expeditiously construct subsurface models. The conventional procedure involves analyzing parameters related to the derivatives of reflection traveltime with respect to offset including normal moveout (NMO) velocities (second-order derivatives) and quartic coefficients (fourth-order derivatives). In this study, we propose to go beyond the typical assumption of 1D laterally homogeneous medium when relating those ‘processing’ parameters to the subsurface medium parameters and take into account the additional influences from lateral heterogeneity including curved interfaces and smoothly variable velocities. We fill in the theoretical gap from previous studies and develop a general framework for such connection in layered anisotropic media. We show that in general, the influences of lateral heterogeneity get accumulated from all layers via a recursive relationship according to the Fermat’s principle and can be approximately quantified in terms of the lateral derivatives of the layer interface surfaces and velocities. Based on the same general principle, we show that our approach can also be used to study the lateral heterogeneity effects on diffraction traveltime and its second-order derivative related to time-migration velocity. In this paper, we explicitly specify expressions for NMO and time-migration velocities with the influences from both types of heterogeneity suitable for 2D datasets and also discuss possible extensions of the proposed theory to 3D datasets and to parameters related to higher-order traveltime derivatives. Using numerical examples, we demonstrate that the proposed theory can lead to more accurate reflection and diffraction traveltime predictions in comparison with those obtained based on the 1D assumption. Both the proposed theoretical framework and its numerical testing for forward traveltime computation presented in this study aid in understanding the effects from lateral heterogeneity on time-processing parameters and also serve as an important basis for designing an efficient technique to separate those influences in important processes such as Dix inversion for a more accurate subsurface model in the future.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉H-κ stacking is used routinely to infer crustal thickness and bulk-crustal V〈sub〉〈span〉P〈/span〉〈/sub〉/V〈sub〉〈span〉S〈/span〉〈/sub〉 ratio from teleseismic receiver functions. The method assumes that the largest amplitude P-to-S conversions beneath the seismograph station are generated at the Moho. This is reasonable where the crust is simple and the Moho marks a relatively abrupt transition from crust to mantle, but not if the crust-mantle transition is gradational and/or complex intra-crustal structure exists. We demonstrate via synthetic seismogram analysis that H-κ results can be strongly dependent on the choice of stacking parameters (the relative weights assigned to the Moho P-to-S conversion and its subsequent reverberations, the choice of linear or phase-weighted stacking, input crustal P-wave velocity) and associated data parameters (receiver function frequency content and the sample of receiver functions analyzed). To address this parameter sensitivity issue, we develop an H-κ approach in which cluster analysis selects a final solution from 1000 individual H-κ results, each calculated using randomly-selected receiver functions, and H-κ input parameters. Ten quality control criteria that variously assess the final numerical result, the receiver function dataset, and the extent to which the results are tightly clustered, are used to assess the reliability of H-κ stacking at a station. Analysis of synthetic datasets indicates H-κ works reliably when the Moho is sharp and intra-crustal structure is lacking but is less successful when the Moho is gradational. Limiting the frequency content of receiver functions can improve the H-κ solutions in such settings, provided intra-crustal structure is simple. In cratonic Canada, India and Australia, H-κ solutions generally cluster tightly, indicative of simple crust and a sharp Moho. In contrast, on the Ethiopian plateau, where Paleogene flood-basalts overlie marine sediments, H-κ results are unstable and erroneous. For stations that lie on thinner flood-basalt outcrops, and/or in regions where Blue Nile river incision has eroded through to the sediments below, limiting the receiver function frequency content to longer periods improves the H-κ solution and reveals a 6–10 km gradational Moho, readily interpreted as a lower-crustal intrusion layer at the base of a mafic (V〈sub〉〈span〉P〈/span〉〈/sub〉/V〈sub〉〈span〉S〈/span〉〈/sub〉=1.77–1.87) crust. Moving off the flood-basalt province, H-κ results are reliable and the crust is thinner and more felsic (V〈sub〉〈span〉P〈/span〉〈/sub〉/V〈sub〉〈span〉S〈/span〉〈/sub〉=1.70–1.77), indicating the lower crustal intrusion layer is confined to the region covered by flood-basaltic volcanism. Analysis of data from other tectonically-complex settings (e.g., Japan, Cyprus) shows H-κ stacking results should be treated cautiously. Only in regions of relatively simple crust can H-κ stacking analysis be considered truly reliable.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The 280-km-long San Cristobal Trough (SCT), created by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon and Vanuatu subduction zones, has hosted strike-slip earthquake sequences in 1993 and 2015. Both sequences, which likely represent a complete seismic cycle, began along the oldest section of the SCT—the portion farthest from the tear that has experienced the most cumulative displacement—and migrated to the younger sections closer to the tear. The SCT's abundant seismicity allows us to study transform boundary development—a process rarely observed along a single fault system—through observations of earthquake rupture properties. Using the spectral ratio method based on empirical Green's functions (EGFs), we calculate the corner frequencies of three M〈sub〉w〈/sub〉 ∼7 2015 earthquakes and co-located smaller earthquakes. We utilize two different spectral ratio stacking methods and fit both Brune and Boatwright models to the stacked spectral ratios. Regardless of stacking methods and spectral models, we find that the corner frequencies of the 2015 M〈sub〉w〈/sub〉 ∼7 earthquakes decrease slightly with distance from the tear. Assuming a constant rupture velocity and an omega-square spectral model, this corner frequency decrease may be due to an increase in rupture length with distance from the tear. The spectrum of the 2015 earthquake farthest from the tear also deviates from the omega-square model, which may indicate rupture complexity. Stress drop estimates from the corner frequencies of the 2015 M〈sub〉w〈/sub〉 ∼7 earthquakes range between 1 and 7 MPa, whereas stress drop estimates of their EGFs range from ∼0.05 to 10 MPa with most values between 0.1 to 1 MPa. Independent evidence from a second moments analysis of the 2015 earthquake sequence also indicates a possible increase in rupture length with distance from the tear, confirming the results from the spectral ratio analysis. We also observe an increase in normalized centroid time-delay values, a first-order proxy for rupture behavior, with distance from the tear for the 2015 sequence. A similar trend for the 1993 sequence suggests that earthquake rupture varies systematically along the SCT. Since distance from the tear corresponds to cumulative fault displacement, these along-strike rupture variations may be due to a displacement-driven fault maturation process.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Thickness of cover over crystalline basement is an important consideration for mineral exploration in covered regions. It can be estimated from a variety of geophysical data types using a variety of inference methods. A robust method for combining such estimates to map the cover-basement interface over a region of interest is needed. Due to the large uncertainties involved, these need to be a probabilistic maps. Predominantly, interpolation methods are used for this purpose, but these are built on simplifying assumptions about the inputs which are often inappropriate. Bayesian estimate fusion is an alternative capable of addressing that issue by enabling more extensive use of domain knowledge about all inputs. This study is intended as a first step towards making Bayesian estimate fusion a practical tool for cover thickness uncertainty mapping. The main contribution is to identify the types of data assumptions that are important for this problem, to demonstrate their importance using synthetic tests, and to design a method that enables their use without introducing excessive tedium. We argue that interpolation methods like kriging often cannot achieve this goal and demonstrate that Markov chain Monte Carlo sampling can. This paper focuses on development of statistical methodology and presents synthetic data tests designed to reflect realistic exploration scenarios on an abstract level. Intended application is for the early stages of exploration where some geophysical data is available while drill hole coverage is poor.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The uneven distribution of earthquakes and stations in seismic tomography leads to slower convergence of nonlinear inversions and spatial bias in inversion results. Including dense regional arrays, such as USArray or Hi-Net, in global tomography causes severe convergence and spatial bias problems, against which conventional preconditioning schemes are ineffective. To save computational cost and reduce model bias, we propose a new strategy based on a geographical weighting of sources and receivers. Unlike approaches based on ray density or Voronoi tessellation, this method scales to large full-waveform inversion problems and avoids instabilities at the edges of dense receiver or source clusters. We validate our strategy using a 2D global waveform inversion test and show that the new weighting scheme leads to a nearly two-fold reduction in model error and much faster convergence relative to a conventionally-preconditioned inversion. We implement this geographical weighting strategy for global adjoint tomography.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉S-wave spectral amplitudes from 312 crustal earthquakes recorded at the Iranian National Broadband Seismic Network in the Alborz region between 2005 and 2017 are analysed in order to evaluate earthquake source parameters, path attenuation and site amplification functions using the nonparametric generalized inversion technique (GIT). We exploit a total number of 1117 seismograms with M〈sub〉L〈/sub〉 3–5.6 in the frequency range 0.3–20 Hz. The evaluated nonparametric attenuation functions decay uniformly with distance for the entire frequency range and the estimated S-wave quality factor shows low Q values with relatively strong frequency dependence. We assume the omega-square source model to retrieve earthquake source parameters from the inverted source spectra. The obtained stress drops range from 0.02 to 16 MPa with a mean value of 1.1 MPa. Stress drop and radiated energy show fairly self-similar scaling with seismic moment over the available magnitude range; however, the magnitude range of this study is too narrow to draw a definite conclusion on source scaling characteristics. The obtained moment magnitude M〈sub〉W〈/sub〉 and the local magnitude M〈sub〉L〈/sub〉 are linearly correlated and approximately equivalent in the range of M〈sub〉W〈/sub〉 3–4. For larger events, M〈sub〉W〈/sub〉 generally underestimates M〈sub〉L〈/sub〉 by about 0.1–0.5 magnitude units. The estimated site amplification functions for horizontal component (GIT H) are nearly flat with no obvious predominant frequency peaks for most stations, as expected for the sites of permanent broadband seismic stations located on rock, though a few stations show amplification peaks from 1 to 8 Hz, with a maximum amplification of about a factor of 7 with respect to the reference site. The evaluated site responses for the vertical components present remarkable amplification or deamplification, leading to differences of the H/V amplitude levels in comparison with the GIT H amplification curves. The results of this study provide a valuable basis for predicting appropriate ground motions in a context of seismic hazard assessment.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉We introduce a new relative moment tensor (MT) inversion method for clusters of nearby earthquakes. The method extends previous work by introducing constraints from S-waves that do not require modal decomposition and by employing principal component analysis to produce robust estimates of excitation. At each receiver, P- and S-waves from each event are independently aligned and decomposed into principal components. P-wave constraints on MTs are obtained from a ratio of coefficients corresponding to the first principal component, equivalent to a relative amplitude. For S-waves we produce constraints on MTs involving three events, where one event is described as a linear combination of the other two, and coefficients are derived from the first two principal components. Non-linear optimization is applied to efficiently find best-fit tensile-earthquake and double-couple solutions for relative MT systems. Using synthetic data, we demonstrate the effectiveness of the P and S constraints both individually and in combination. We then apply the relative MT inversion to a set of 16 earthquakes from southern Alaska, at ∼125 km depth within the subducted Yakutat terrane. Most events are compatible with a stress tensor dominated by down-dip tension, however, we observe several pairs of earthquakes with nearly antiparallel slip implying that the stress regime is heterogeneous and/or faults are extremely weak. The location of these events near the abrupt down-dip termination of seismicity and the low-velocity zone suggest that they are caused by weakening via grain-size and volume reduction associated with eclogitization of the lower-crustal gabbro layer.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The complete part of the earthquake frequency-magnitude distribution, above the completeness magnitude 〈span〉mc〈/span〉, is well described by the Gutenberg-Richter law. On the other hand, incomplete data does not follow any specific law, since the shape of the frequency-magnitude distribution below max(〈span〉mc〈/span〉) is function of 〈span〉mc〈/span〉 heterogeneities that depend on the seismic network spatiotemporal configuration. This paper attempts to solve this problem by presenting an asymmetric Laplace mixture model, defined as the weighted sum of Laplace (or double exponential) distribution components of constant 〈span〉mc〈/span〉, where the inverse scale parameter of the exponential function is the detection parameter κ below 〈span〉mc〈/span〉, and the Gutenberg-Richter β-value above 〈span〉mc〈/span〉. Using a variant of the expectation maximization algorithm, the mixture model confirms the ontology proposed by Mignan [2012, 〈a href="https://doi.org/10.1029/2012JB009347"〉https://doi.org/10.1029/2012JB009347〈/a〉], which states that the shape of the earthquake frequency-magnitude distribution shifts from angular (in log-linear space) in a homogeneous space-time volume of constant 〈span〉mc〈/span〉 to rounded in a heterogeneous volume corresponding to the union of smaller homogeneous volumes. The performance of the proposed mixture model is analysed, with encouraging results obtained in simulations and in 8 real earthquake catalogues that represent different seismic network spatial configurations. We find that 〈span〉k〈/span〉 = κ/ln(10) ≈ 3 in most earthquake catalogues (compared to 〈span〉b〈/span〉 = β/ln(10) ≈ 1), suggesting a common detection capability of different seismic networks. Although simpler algorithms may be preferred on pragmatic grounds to estimate 〈span〉mc〈/span〉 and the 〈span〉b〈/span〉-value, other methods so far fail to model the angular distributions observed in homogeneous space-time volumes. Mixture modelling is a promising strategy to model the full earthquake magnitude range, hence potentially increasing seismicity data availability tenfold, since c. 90 per cent of earthquake catalogue events are below max(〈span〉mc〈/span〉).〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Full waveform inversion (FWI) is a nonlinear waveform matching procedure, which suffers from cycle skipping when the initial model is not kinematically-accurate enough. To mitigate cycle skipping, wavefield reconstruction inversion (WRI) extends the inversion search space by computing wavefields with a relaxation of the wave equation in order to fit the data from the first iteration. Then, the subsurface parameters are updated by minimizing the source residuals the relaxation generated. Capitalizing on the wave-equation bilinearity, performing wavefield reconstruction and parameter estimation in alternating mode decomposes WRI into two linear subproblems, which can solved efficiently with the alternating-direction method of multiplier (ADMM), leading to the so-called iteratively refined wavefield reconstruction inversion (IR-WRI). Moreover, ADMM provides a suitable framework to implement bound constraints and different types of regularizations and their mixture in IR-WRI. Here, IR-WRI is extended to multiparameter reconstruction for VTI acoustic media. To achieve this goal, we first propose different forms of bilinear VTI acoustic wave equation. We develop more specifically IR-WRI for the one that relies on a parametrisation involving vertical wavespeed and Thomsen’s parameters δ and ε. With a toy numerical example, we first show that the radiation patterns of the virtual sources generate similar wavenumber filtering and parameter cross-talks in classical FWI and IR-WRI. Bound constraints and TV regularization in IR-WRI fully remove these undesired effects for an idealized piecewise constant target. We show with a more realistic long-offset case study representative of the North Sea that anisotropic IR-WRI successfully reconstruct the vertical wavespeed starting from a laterally homogeneous model and update the long-wavelengths of the starting ε model, while a smooth δ model is used as a passive background model. VTI acoustic IR-WRI can be alternatively performed with subsurface parametrisations involving stiffness or compliance coefficients or normal moveout velocities and η parameter (or horizontal velocity).〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Seismic signal recognition can serve as a powerful auxiliary tool for analyzing and processing ever-larger volumes of seismic data. It can facilitate many subsequent procedures such as first-break picking, statics correction, denoising, signal detection, events tracking, structural interpretation, inversion and imaging. In this study, I propose an automatic technique of seismic signal recognition taking advantage of unsupervised machine learning (ML). In the proposed technique, seismic signal recognition is considered as a problem of clustering data points. All the seismic sampling points in time domain are clustered into two clusters, i.e. signal or non-signal. The hierarchical clustering (HC) algorithm is used to group these sampling points. Four attributes, i.e. two short-term-average-to-long-term-average ratios (STA/LTAs), variance and envelope are investigated in the clustering process. In addition, to quantitatively evaluate the performance of seismic signal recognition properly, I propose two new statistical indicators, namely the rate between the total energies of original and recognized signals (RTE), and the rate between the average energies of original and recognized signals (RAE). A large number of numerical experiments show that, when the signal is slightly corrupted by noise, the proposed technique performs very well, with recognizing accuracy, precision and RTE of nearly 1 (i.e., 100%), recall greater than 0.8 and RAE about 1-1.3. When the signal is moderately corrupted by noise, the proposed technique can hold recognizing accuracy about 0.9, recognizing precision nearly to 1, RTE about 0.9, recall around 0.6 and RAE about 1.5. Applications of the proposed technique to real micro-seismic data induced from hydraulic fracturing and reflection seismic data demonstrate its feasibility and encouraging prospect.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Mantle plumes may play a major role in the transport of heat and mass through the Earth, but establishing their existence and structure using seismology has proven challenging and controversial. Previous studies have mainly focused on imaging plumes using waveform modelling and inversion (i.e. tomography). In this study we investigate the potential visibility of mantle plumes using array methods, and in particular whether we can detect seismic scattering from the plumes. By combining geodynamic modelling with mineral physics data we compute ‘seismic’ plumes whose shape and structure correspond to dynamically-plausible thermochemical plumes. We use these seismic models to perform a full-waveform simulation, sending seismic waves through the plumes, in order to generate synthetic seismograms. Using velocity spectral analysis and slowness-backazimuth plots, we are unable to detect scattering. However at longer dominant periods (25 seconds) we see several arrivals from outside the plane of the great circle path, that are consistent with an apparent bending of the wavefront around the plume conduit. At shorter periods (15 seconds), these arrivals are less obvious and less strong, consistent with the expected changes in the waves' behaviour at higher frequencies. We also detect reflections off the iron-rich chemical pile which serves as the plume source in the D'' region, indicating that D'' reflections may not always be due to a phase transformation. We suggest that slowness-backazimuth analysis may be a useful tool to locate mantle plumes in real array datasets. However, it is important to analyse the data at different dominant periods since, depending on the width of the plume, there is probably an optimum frequency band at which the plume is most visible. Our results also show the importance of studying the incoming energy in all directions, so that any apparently out-of-plane arrivals can be correctly interpreted.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉We test the feasibility of GPS-based rapid centroid moment tensor (GPS CMT) methods for Taiwan, one of the most earthquake prone areas in the world. In recent years Taiwan has become a leading developer of seismometer-based earthquake early warning systems which have successfully been applied to several large events. The rapid determination of earthquake magnitude and focal mechanism, important for a number of rapid response applications, including tsunami warning, is still challenging because of the limitations of near-field inertial recordings. This instrumental issue can be solved by an entirely different observation system: a GPS network. Taiwan is well-posed to take advantage of GPS because in the last decade it has developed a very dense network. Thus, in this research, we explore the suitability of the GPS CMT inversion for Taiwan. We retrospectively investigate six moderate to large (M〈sub〉w〈/sub〉6.0∼7.0) earthquakes and propose a resolution test for our model, we find that the minimum resolvable earthquake magnitude of this system is ∼M〈sub〉w〈/sub〉5.5 (at 5 km depth). Our tests also suggest that the finite fault complexity, often challenging for the near-field methodology, can be ignored under such good station coverage and thus, can provide a fast and robust solution for large earthquake directly from the near-field. Our findings help to understand and quantify how the proposed methodology could be implemented in real-time and what its contributions could be to the overall earthquake monitoring system.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉The strength of the lithosphere plays a key role in the formation and evolution of tectonic plate boundaries. Localized lithospheric deformation associated with plate tectonics requires a mechanism for weakening across the entire width of the lithosphere, including the strongest cold ductile region. We explore the microphysics of weakening of lithospheric materials, and in particular the coupled evolution of mineral grain size and intragranular defects and their control on lithospheric strength. We propose a model for the interaction between grain-boundaries and dislocation density to reduce the net free energy of grains during dynamic recrystallization (DRX). The driving forces for DRX arise from heterogeneity in dislocation density and grain boundary curvature. Our model shows that grain growth driven by variation in grain boundary curvature can be impeded by variation in dislocation density; this occurs because as the grains grow, to minimize their surface energy, their dislocation density and associated internal energy may increase and offset the driving forces for grain growth. The correlation between grain size and dislocation density can for example arise because the dislocation accumulation in smaller grains is suppressed due to the large stress that is needed to bend and elongate a short dislocation (as dictated by the small grain size), while the larger grains can have long dislocations and reach a steady state dislocation density dictated by the applied stress. In a lithospheric setting, slower grain growth means that it would require less mechanical work to establish weak localized shear zones through grain damage, and retard the healing of previously damaged zones. Furthermore, the competition of two different time-scales - that of grain growth and the dislocation kinetics - can lead to oscillating behavior over 1 to 10 years as the grain size and dislocation density advance towards their steady states. These oscillations are likely to have an effect on the rheology of lithospheric rocks, e.g. their strengthening and weakening through time, and have a potential application to geological processes such as postseismic creep in ductile shear zones.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉Locating and monitoring passive seismic sources provides us important information for studying subsurface rock deformation, injected fluid migration, regional stress conditions as well as fault rupture mechanism. In this paper, we present a novel passive-source monitoring approach using vector-based elastic time-reversal imaging. By solving the elastic wave equation using observed multicomponent records as boundary conditions, we first compute back-propagated elastic wavefields in the subsurface. Then, we separate the extrapolated wavefields into compressional (P-wave) and shear (S-wave) modes using the vector Helmholtz decomposition. A zero-lag cross-correlation imaging condition is applied to the separated pure-mode vector wavefields to produce passive-source images. We compare imaging results using three implementations, i.e., dot-product, energy and power. Numerical experiments demonstrate that the power imaging condition gives us the highest resolution and is less sensitive to the presence of random noises. To capture the propagation of microseismic fracture and earthquake rupture, we modify the traditional zero-lag cross-correlation imaging condition by summing the multiplication of the separated P- and S-wavefields within local time windows, which enables us to capture the temporal and spatial evolution of earthquake rupture. 2D and 3D numerical examples demonstrate that the proposed method is capable of accurately locating point sources, as well as delineating dynamic propagation of hydraulic fracture and earthquake rupture.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉Magnitudes of differential stress in the lithosphere, especially in the crust, are still disputed. Earthquake-based stress drop estimates indicate median values 〈 10 MPa whereas the lateral variation of gravitational potential energy per unit area (〈span〉GPE〈/span〉) across significant relief indicates stress magnitudes of ca. 100 MPa in average across a 100 km thick lithosphere between the Indian lowland and the Tibetan plateau. These standard 〈span〉GPE〈/span〉-based stress estimates correspond to membrane stresses, because they are associated with a deformation that is uniform with depth. We show here with new analytical results that lateral variations in 〈span〉GPE〈/span〉 can also cause bending moments and related bending stresses of several hundreds of MPa. Furthermore, we perform two-dimensional thermo-mechanical numerical simulations (1) to evaluate estimates for membrane and bending stresses based on 〈span〉GPE〈/span〉 variations, (2) to quantify minimum crustal stress magnitudes that are required to maintain the topographic relief between Indian lowland and Tibetan plateau for ca. 10 Ma and (3) to quantify the corresponding relative contribution of crustal strength to the total lithospheric strength. The numerical model includes viscoelastoplastic deformation, gravity and heat transfer. The model configuration is based on density fields from the CRUST1.0 data set and from a geophysically and petrologically constrained density model based on 〈span〉in situ〈/span〉 field campaigns. The numerical results indicate that values of differential stress in the upper crust must be 〉 ca. 180 MPa, corresponding to a friction angle of ca. 10°, to maintain the topographic relief between lowland and plateau for 〉 10 Ma. The relative contribution of crustal strength to total lithospheric strength varies considerably laterally. In the region between lowland and plateau and inside the plateau the depth-integrated crustal strength is approximately equal to the depth-integrated strength of the mantle lithosphere. Simple analytical formulae predicting the lateral variation of depth-integrated stresses agree with numerically calculated stress fields, which show both the accuracy of the numerical results and the applicability of simple, rheology-independent, analytical predictions to highly variable, rheology-dependent, stress fields. Our results indicate that (1) crustal strength can be locally equal to mantle lithosphere strength and that (2) crustal stresses must be at least one order of magnitude larger than median stress drops in order to support the plateau relief over a duration of ca. 10 Ma.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉Scanning magnetometers are increasingly used to characterize the magnetization of mineral grains in rock samples. Up-scaling this measurement technique to large numbers of individual particles is hampered by the intrinsic non-uniqueness of potential-field inversion. Here it is shown that this problem can be circumvented by adding tomographic information that determines the location of the possible field sources. Standard potential theory is used to prove a uniqueness theorem which completely characterizes the mathematical background of the corresponding source-localized inversion. It exactly resolves under which conditions a potential field measurement on a surface can be uniquely decomposed into signals from the different source regions. The intrinsic non-uniqueness of potential field inversion prevents that the source distribution inside the tomographically outlined regions can be recovered, but the potential field of each region is uniquely defined. For scanning magnetometers in rock magnetism, this result implies that magnetic dipole vectors of large numbers of individual magnetic particles can be reliably reconstructed from surface scans of the magnetic field, if the particle positions are independently determined. This provides an incentive to improve scanning methods for future paleomagnetic applications.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉The most common earthquake forecasting models assume that the magnitude of the next earthquake is independent from the past. This feature severely limits the capability to forecast large earthquakes with high probabilities. Here we investigate empirically on the magnitude-independence assumption, exploring if: i) background and triggered earthquakes have the same frequency-magnitude distribution, ii) variations of seismicity in the space-time-magnitude domain encode some information on the future earthquakes size. For this purpose, and to verify the stability of the findings, we consider seismic catalogues covering different space-time-magnitude windows, such as the Alto Tiberina Near Fault Observatory (TABOO), the California and Japanese seismic catalogues. Our approach is inspired by the nearest-neighbour method proposed by Baiesi & Paczuski (2004) and elaborated by Zaliapin et al. (2008) to distinguish between triggered and background earthquakes. Here we implement the same metric-based correlation to identify the precursory seismicity of any triggered earthquake; this allows us to analyse, for each triggered earthquake, the space-time-magnitude distribution of the seismicity that likely contributed to its occurrence. Our results show that the magnitude-independence assumption holds reasonably well in all catalogues, with a remarkable exception that is consistent with a previous independent study; this departure from the magnitude-independence assumption shows that larger events tend to nucleate at a higher distance from the ongoing sequence. We also notice that the reliability of this assumption may depend on the spatial scale considered; it holds for seismic catalogues of large areas, but we identify possible departures in small areas, reflecting different ways to release locally seismic energy. Finally, we come across an important issue that may lead to misleading results in similar studies, i.e., if a seismic catalogue appears overall complete above a fixed magnitude threshold, it may still yield spurious signals into the analysis. Specifically, we show that some significant departures from the magnitude-independence assumption do not survive when considering spatiotemporal variations of the magnitude of completeness.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉Vp/Vs models provide important complementary information to Vp and Vs models, relevant to lithology, rock damage, partial melting, water saturation, etc. However, seismic tomography using body-wave traveltime data from local or regional earthquakes does not constrain Vp/Vs well due to the different resolution of Vp and Vs models, with the Vp models usually better constrained than Vs. Since surface-wave data are most sensitive to Vs, which leads to complementary strengths with respect to body-wave data, we jointly invert body- and surface-wave data to better resolve the Vp/Vs models. In order to show the robustness of our joint inversion method, we compare the results to other approaches, including dividing Vp by Vs models and Vp/Vs parameterization with body-wave or both body- and surface-wave data, using synthetic data and real data from the southern California plate boundary region. We confirm that Vp/Vs models from body-wave inversion obtained by division tend to include artifacts, even when both Vp and Vs models seem reasonable. The joint inversion with Vp/Vs parameterization is found to improve the Vp/Vs ratio model significantly and the resultant Vp/Vs model shows more geologically consistent features, such as high Vp/Vs along fault traces at shallow depths likely indicating fault-related damage. The Vp/Vs model also exhibits contrasts at intermediate depths along the Peninsular Range compositional boundary, and high Vp/Vs in the lower crust near the Salton Sea region correlated with high heat flow and may indicate partial melting. The improved Vp/Vs as well as individual Vp and Vs models are useful for earthquake relocation, high-resolution Moho depth imaging, and interpretation of other data and tectonic evolution in the region.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉Interpretation of surface fault scarps and palaeoseismic trenches is a key component of estimating fault slip rates, earthquake recurrence rates and maximum magnitudes for hazard assessments. Often these analyses rely on the assumption that successive earthquakes all breached the surface and that the ruptures are recorded topographically, or by the deposits exposed in a trench. The M〈sub〉〈span〉w〈/span〉〈/sub〉7.2 1992 Suusamyr earthquake, Kyrgyzstan, is an apparently problematic case for such analyses because its ruptures show significant displacement but are only mapped as having broken the surface along small, disparate portions of the fault. Here we present the results of surveys conducted along the Suusamyr Fault to establish whether that is the case. Two sets of ruptures were identified following the earthquake. They are unusually short for their displacement and are separated by a 25 km gap. Using satellite imagery, high-resolution digital elevation models and palaeoseismic trenching we first reassess the distribution of the 1992 ruptures and then reconstruct the Holocene earthquake record to establish the extent to which the 1992 earthquake is representative of the rupture behaviour of this fault. We find evidence for at least two prehistoric surface rupturing earthquakes in the Holocene: one ∼3 ka and one 〉8 ka that, along with the modern event, gives recurrence intervals of ∼3 kyr and ∼5 kyr. Within spatial gaps between segments of the 1992 ruptures there are clear prehistoric surface ruptures and the ruptures in each prehistoric earthquake were discontinuous. We conclude that there is significant variability in the surface rupture pattern of successive earthquakes on the Suusamyr Fault, with implications for the completeness of palaeoseismic records obtained from thrust scarps.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉We provide a six-component (6-C) polarization model for 〈span〉P〈/span〉-, 〈span〉SV〈/span〉-, 〈span〉SH〈/span〉-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local 〈span〉P〈/span〉- and 〈span〉S〈/span〉-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉The Sentinel-1 mission comprises two synthetic aperture radar satellites, each with a 12 day orbital repeat, orbiting 6 days apart within a narrow tube. The mission design promises the ability to respond quickly to earthquakes with InSAR, and to facilitate production of interferograms with good interferometric correlation globally. We report on our efforts to study global seismicity using Sentinel-1 Interferometric Wide-Swath data between April 2015 and December 2016. We select 35 potentially detectable terrestrial earthquakes in the range 5.5 ≤ 〈span〉Mw〈/span〉 ≤ 7.8 on the basis of their locations, depths and magnitudes, and process the first post-event interferogram with the shortest possible time-span for each using the ISCE software. We evaluate each interferogram for earthquake deformation signals by visual inspection. We can identify deformation signals attributable to earthquakes in 18 of these interferograms (51%); a further six interferograms (17%) have ambiguous interferometric phase affected by tropospheric noise. 11 events (31%) could not be identified from their interferograms. The majority of these failed detections were due to interferogram decorrelation, particularly apparent for earthquakes that occurred between 15°N and 15°S, where climate conditions promote dense vegetation. The majority of the ambiguous interferograms are affected by tropospheric noise, suggesting that techniques to mitigate such noise could improve detection performance. The largest event we do not detect with Sentinel-1 data is a 〈span〉Mw〈/span〉7.0 earthquake that occurred in Vanuatu in April 2016; we also fail to detect the 2016 〈span〉Mw〈/span〉6.2 Kurayoshi earthquake in one out of two possible 24-day interferograms. We propose these as upper and lower estimates on the magnitude of completeness for earthquakes studied with Sentinel-1 data; to raise the magnitude of completeness we suggest that more frequent (e.g. six day) recurrence may be necessary in low latitude areas.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉The correct estimation of site-specific attenuation is crucial for the assessment of seismic hazard. Downhole instruments provide in this context valuable information to constrain attenuation directly from data. In this study, we apply an interferometric approach to this problem by deconvolving seismic motions recorded at depth with those recorded at the surface. In doing so, incident and surface-reflected waves can be separated. We apply this technique not only to earthquake data but also to recordings of ambient vibrations. We compute the transfer function between incident and surface-reflected waves in order to infer frequency dependent quality factors for S-waves. The method is applied to a 87 m deep borehole sensor and a co-located surface instrument situated at a hard-rock site in West Bohemia/Vogtland, Germany. We show that the described method provides comparable attenuation estimates using either earthquake data or ambient noise for frequencies between 5-15 Hz. Moreover, a single hour of noise recordings seems to be sufficient to yield stable deconvolution traces and quality factors, thus, offering a fast and easy way to derive attenuation estimates from borehole recordings even in low to mid seismicity regions.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉Injection of CO〈sub〉2〈/sub〉 into tight reservoirs produces both gravity change and ground deformation, which provide great opportunities for more accurate coupled inverse modelling. In this study, we incorporate signals generated from several synthetic models to estimate the CO〈sub〉2〈/sub〉 distribution in the reservoir. A relationship is found that connects density variations to volumetric changes associated with injected CO〈sub〉2〈/sub〉, taking advantage of a common set of model parameters for both gravitational and geo-mechanical inverse modelling. This is achieved by assuming that the injected CO〈sub〉2〈/sub〉 increases pressure in the reservoir, which in turn generates extra porosity that is then filled in by the CO〈sub〉2〈/sub〉 mass in the generated space. Tikhonov regularization, supported by the Generalized Cross Validation (GCV) technique for finding the optimized model, is used to solve the ill-posed inverse problems. The results indicate that with a combination of gravity and ground deformation monitoring, the uncertainty and ambiguity in gravimetric modelling due to high levels of noise is mitigated by implementing highly accurate ground deformation measurements, which normally have a higher signal to noise ratio.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉As the number of seismic sensors grows, it is becoming increasingly difficult for analysts to pick seismic phases manually and comprehensively, yet such efforts are fundamental to earthquake monitoring. Despite years of improvements in automatic phase picking, it is difficult to match the performance of experienced analysts. A more subtle issue is that different seismic analysts may pick phases differently, which can introduce bias into earthquake locations. We present a deep-neural-network-based arrival-time picking method called ”PhaseNet” that picks the arrival times of both P and S waves. Deep neural networks have recently made rapid progress in feature learning, and with sufficient training, have achieved super-human performance in many applications. PhaseNet uses three-component seismic waveforms as input and generates probability distributions of P arrivals, S arrivals, and noise as output. We engineer PhaseNet such that peaks in the probability distributions provide accurate arrival times for both P and S waves. PhaseNet is trained on the prodigious available data set provided by analyst-labeled P and S arrival times from the Northern California Earthquake Data Center. The dataset we use contains more than seven hundred thousand waveform samples extracted from over thirty years of earthquake recordings. We demonstrate that PhaseNet achieves much higher picking accuracy and recall rate than existing methods when applied to the waveforms of known earthquakes, which has the potential to increase the number of S-wave observations dramatically over what is currently available. This will enable both improved locations and improved shear wave velocity models.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉The low frequency earthquakes (LFEs) that constitute tectonic tremor are often inferred to be slow: to have durations of 0.2 to 0.5 s, a factor of 10 to 100 longer than those of typical 〈span〉MW〈/span〉 1-2 earthquakes. Here we examine LFEs near Parkfield, CA in order to assess several proposed explanations for LFEs’ long durations. We determine LFE rupture areas and location distributions using a new approach, similar to directivity analysis, where we examine how signals coming from various locations within LFEs’ finite rupture extents create differences in the apparent source time functions recorded at various stations. We use synthetic ruptures to determine how much the LFE signals recorded at each station would be modified by spatial variations of the source-station travel time within the rupture area given various possible rupture diameters, and then compare those synthetics with the data. Our synthetics show that the methodology can identify inter-station variations created by heterogeneous slip distributions or complex rupture edges, and thus lets us estimate LFE rupture extents for unilateral or bilateral ruptures. To obtain robust estimates of the sources’ similarity across stations, we stack signals from thousands of LFEs, using an empirical Green’s function approach to isolate the LFEs’ apparent source time functions from the path effects. Our analysis of LFEs in Parkfield implies that LFEs’ apparent source time functions are similar across stations at frequencies up to 8 to 16 Hz, depending on the family. The inter-station coherence observed at these relatively high frequencies, or short wavelengths (down to 0.2 to 0.5 km), suggest that LFEs in each of the 7 families examined occur on asperities. They are clustered in patches with sub-1-km diameters. The individual LFEs’ rupture diameters are estimated to be smaller than 1.1 km for all families, and smaller than 0.5 km and 1 km for the two shallowest families, which were previously found to have 0.2-s durations. Coupling the diameters with the durations suggests that it is possible to model these 〈span〉MW〈/span〉 1-2 LFEs with earthquake-like rupture speeds: around 70% of the shear wave speed. However, that rupture speed matches the data only at the edge of our uncertainty estimates for the family with highest coherence. The data for that family are better matched if LFEs have rupture velocities smaller than 40% of the shear wave speed, or if LFEs have different rupture dynamics. They could have long rise times, contain composite sub-ruptures, or have slip distributions that persist from event to event.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉On June 24, 2015, a 230,000 cubic metre landslide slid into the triangle bayou at the intersection of the Yangtze and Daning Rivers and generated a river tsunami that ran up 6.2 metres on the opposite shoreline at Wushan town. The slope failure and resulting waves killed two people and damaged many shipping facilities. Based on field surveys and eyewitness observations, we apply the ‘Tsunami Squares’ method to model the Hongyanzi landslide and its generated waves. Landslide simulations indicate a maximum impact velocity of ∼16 m/s that matches well with an eyewitness video. The computed post-slide mass stopped on the near riverbed with a shape fitting the observed geological profile. Tsunami simulations reveal a large region of wave impacts that coincide with the observed runup heights. The successful reproduction of the dynamics of this landslide-generated river tsunami emphasizes the capacity and efficiency of Tsunami Squares modeling in emergency reaction and risk assessment.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The ice cap covering Antarctica has long limited our understanding of the continental-scale crustal model due to its inaccessibility and the resulting logistical difficulties when executing geophysical field work, such as seismograph deployment. Resolving a high spatial resolution crustal model for Antarctica where seismographs are sparsely distributed, stimulates scientific interest in this relatively less studied continent. In this study, we utilize satellite gravity observations from the global gravity model EIGEN-6C4 to create an alternative crustal thickness model of Antarctica. The gravity data was corrected for sediments, topography and ice cover. Furthermore, we considered the gravity effect due to vertical deformation of the lithosphere caused by ice load besides the earth's curvature in the modeling. We inverted the corrected gravity data using the regularized Bott's inversion method in spherical approximation and constrained the results by seismic observations. This crustal thickness model shows a thicker average crust in East Antarctica and a thinner one in West Antarctica. The thickest crust is in the Gamburtsev sub-glacial mountains with a Moho depth of over 40 km. The thicker crust is particularly evident along the Transantarctic Mountains and the Dronning Maud lands. Comparisons with existing models show a good correlation in gravity-constrained areas. Differences appear in the sedimentary basins and crust with thickness closer to seismic point observations. Overall, our crustal model is relatively improved than the existing gravity derived models.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...