ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The 2017 July 20, 〈span〉M〈/span〉〈sub〉w〈/sub〉6.6 Bodrum–Kos earthquake occurred in the Gulf of Gökova in the SE Aegean, a region characterized by N–S extension in the backarc of the easternmost Hellenic Trench. The dip direction of the fault that ruptured during the earthquake has been a matter of controversy where both north- and south-dipping fault planes were used to model the coseismic slip in previous studies. Here, we use seismic (seismicity, main shock modelling, aftershock relocations and aftershock mechanisms using regional body and surface waves), geodetic (GPS, InSAR) and structural observations to estimate the location, and the dip direction of the fault that ruptured during the 2017 earthquake, and the relationship of this event to regional tectonics. We consider both dip directions and systematically search for the best-fitting locations for the north- and south-dipping fault planes. Comparing the best-fitting planes for both dip directions in terms of their misfit to the geodetic data, proximity to the hypocenter location and Coulomb stress changes at the aftershock locations, we conclude that the 2017 earthquake ruptured a north-dipping fault. We find that the earthquake occurred on a 20–25 km long, ∼E–W striking, 40° north-dipping, pure normal fault with slip primarily confined between 3 and 15 km depth, and the largest slip exceeding 2 m between depths of 4 and 10 km. The coseismic fault, not mapped previously, projects to the surface within the western Gulf, and partly serves both to widen the Gulf and separate Kos Island from the Bodrum Peninsula of SW Anatolia. The coseismic fault may be an extension of a mapped, north-dipping normal fault along the south side of the Gulf of Gökova. While all of the larger aftershocks are consistent with N–S extension, their spatially dispersed pattern attests to the high degree of crustal fracturing within the basin, due to rapid trenchward extension and anticlockwise rotation within the southeastern Aegean.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The 20 July 2017, M〈sub〉w〈/sub〉6.6 Bodrum-Kos Earthquake occurred in the Gulf of Gökova in the SE Aegean, a region characterized by N-S extension in the back-arc of the easternmost Hellenic Trench. The dip direction of the fault that ruptured during the earthquake has been a matter of controversy where both north and south-dipping fault planes were used to model the coseismic slip in previous studies. Here, we use seismic (seismicity, mainshock modeling, aftershock relocations and aftershock mechanisms using regional body and surface waves), geodetic (GPS, InSAR), and structural observations to estimate the location, and the dip direction of the fault that ruptured during the 2017 earthquake, and the relationship of this event to regional tectonics. We consider both dip directions and systematically search for the best-fitting locations for the north- and south-dipping fault planes. Comparing the best-fitting planes for both dip directions in terms of their misfit to the geodetic data, proximity to the hypocenter location and Coulomb stress changes at the aftershock locations, we conclude that the 2017 earthquake ruptured a north-dipping fault. We find that the earthquake occurred on a 20–25 km long, ∼E-W striking, 40° north-dipping, pure normal fault with slip primarily confined between 3–15 km depth, and the largest slip exceeding 2 m between depths of 4–10 km. The coseismic fault, not mapped previously, projects to the surface within the western Gulf, and partly serves both to widen the Gulf and separate Kos Island from the Bodrum Peninsula of SW Anatolia. The coseismic fault may be an extension of a mapped, north-dipping normal fault along the south side of the Gulf of Gökova. While all of the larger aftershocks are consistent with N-S extension, their spatially dispersed pattern attests to the high degree of crustal fracturing within the basin, due to rapid trench-ward extension and anticlockwise rotation within the southeastern Aegean.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...