ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Alexander, H., Johnson, L. K., & Brown, C. T.. Keeping it light: (re)analyzing community-wide datasets without major infrastructure. Gigascience, 8(2),(2019): giy159, doi:10.1093/gigascience/giy159.
    Description: DNA sequencing technology has revolutionized the field of biology, shifting biology from a data-limited to data-rich state. Central to the interpretation of sequencing data are the computational tools and approaches that convert raw data into biologically meaningful information. Both the tools and the generation of data are actively evolving, yet the practice of re-analysis of previously generated data with new tools is not commonplace. Re-analysis of existing data provides an affordable means of generating new information and will likely become more routine within biology, yet necessitates a new set of considerations for best practices and resource development. Here, we discuss several practices that we believe to be broadly applicable when re-analyzing data, especially when done by small research groups.
    Description: Funding was provided by the Gordon and Betty Moore Foundation (award GBMF4551 to C.T.B.).
    Keywords: reproducibility ; data reuse ; open data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, L. K., Alexander, H., & Brown, C. T. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience, 8(4), (2019): giy158, doi: 10.1093/gigascience/giy158.
    Description: Background: De novo transcriptome assemblies are required prior to analyzing RNA sequencing data from a species without an existing reference genome or transcriptome. Despite the prevalence of transcriptomic studies, the effects of using different workflows, or “pipelines,” on the resulting assemblies are poorly understood. Here, a pipeline was programmatically automated and used to assemble and annotate raw transcriptomic short-read data collected as part of the Marine Microbial Eukaryotic Transcriptome Sequencing Project. The resulting transcriptome assemblies were evaluated and compared against assemblies that were previously generated with a different pipeline developed by the National Center for Genome Research. Results: New transcriptome assemblies contained the majority of previous contigs as well as new content. On average, 7.8% of the annotated contigs in the new assemblies were novel gene names not found in the previous assemblies. Taxonomic trends were observed in the assembly metrics. Assemblies from the Dinoflagellata showed a higher number of contigs and unique k-mers than transcriptomes from other phyla, while assemblies from Ciliophora had a lower percentage of open reading frames compared to other phyla. Conclusions: Given current bioinformatics approaches, there is no single “best” reference transcriptome for a particular set of raw data. As the optimum transcriptome is a moving target, improving (or not) with new tools and approaches, automated and programmable pipelines are invaluable for managing the computationally intensive tasks required for re-processing large sets of samples with revised pipelines and ensuring a common evaluation workflow is applied to all samples. Thus, re-assembling existing data with new tools using automated and programmable pipelines may yield more accurate identification of taxon-specific trends across samples in addition to novel and useful products for the community.
    Description: Funding was provided by the Gordon and Betty Moore Foundation under award number GBMF4551 to C.T.B. Jetstream cloud platform was used with XSEDE allocation TG-BIO160028 [66, 67].
    Keywords: marine microbial eukaryote ; transcriptome assembly ; automated pipeline ; re-analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-25
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...