ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉We introduce a new relative moment tensor (MT) inversion method for clusters of nearby earthquakes. The method extends previous work by introducing constraints from S-waves that do not require modal decomposition and by employing principal component analysis to produce robust estimates of excitation. At each receiver, P- and S-waves from each event are independently aligned and decomposed into principal components. P-wave constraints on MTs are obtained from a ratio of coefficients corresponding to the first principal component, equivalent to a relative amplitude. For S-waves we produce constraints on MTs involving three events, where one event is described as a linear combination of the other two, and coefficients are derived from the first two principal components. Non-linear optimization is applied to efficiently find best-fit tensile-earthquake and double-couple solutions for relative MT systems. Using synthetic data, we demonstrate the effectiveness of the P and S constraints both individually and in combination. We then apply the relative MT inversion to a set of 16 earthquakes from southern Alaska, at ∼125 km depth within the subducted Yakutat terrane. Most events are compatible with a stress tensor dominated by down-dip tension, however, we observe several pairs of earthquakes with nearly antiparallel slip implying that the stress regime is heterogeneous and/or faults are extremely weak. The location of these events near the abrupt down-dip termination of seismicity and the low-velocity zone suggest that they are caused by weakening via grain-size and volume reduction associated with eclogitization of the lower-crustal gabbro layer.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...