ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (626)
  • Earth Resources and Remote Sensing  (297)
  • Astrophysics  (201)
  • Engineering (General)  (84)
  • FID-GEO-DE-7
  • Geoelektrik
  • Magnetismus
  • 2015-2019  (626)
  • 2017  (626)
  • 1
    Publication Date: 2018-03-10
    Description: It is our hope that the "Landsat Legacy" story will appeal to a broader audience than just those who use Landsat data on a regular basis. In an era when ready access to images and data from Earth-observing satellites is routine, it is hard to believe that only a few decades ago this was not the case. As the world's first digital land-observing satellite program, Landsat missions laid the foundation for modern space-based Earth observation and blazed the trail in the new field of quantitative remote sensing.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48821
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-02
    Description: We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10keVobservations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 keV) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41428 , The Astrophysical Journal (ISSN 0004-637X; e-ISSN 1538-4357); Volume 838; No. 1; 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-21
    Description: A steep decline in archiving could make large tree-ring datasets irrelevant. But increased spatiotemporal coverage, the addition of novel parameters at sub-annual resolution, and integration with other in situ and remote Earth observations will elevate tree-ring data as an essential component of global-change research.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68143 , Nature Ecology & Evolution (e-ISSN 2397-334X); 1; 8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-21
    Description: The Advanced Very High Resolution Radiometer (AVHRR) sensor provides a unique global remote sensing dataset that ranges from the 1980's to the present. Over the years, several efforts have been made on the calibration of the different instruments to establish a consistent land surface reflectance time-series and to augment the AVHRR data record with data from other sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we present a summary of all the corrections applied to the AVHRR Surface Reflectance and NDVI Version 4 Product, developed in the framework of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program. These corrections result from assessment of the geo-location, improvement of the cloud masking and calibration monitoring. Additionally, we evaluate the performance of the surface reflectance over the AERONET sites by a cross-comparison with MODIS, which is an already validated product, and evaluation of a downstream Leaf Area Index (LAI) product. We demonstrate the utility of this long time-series by estimating the winter wheat yield over the USA. The methods developed by [1] and [2] are applied to both the MODIS and AVHRR data. Comparison of the results from both sensors during the MODIS-era shows the consistency of the dataset with similar errors of 10%. When applying the methods to AVHRR historical data from the 1980's, the results have errors equivalent to those derived from MODIS.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN40735 , Remote Sensing (e-ISSN 2072-4292); 9; 3; 296
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-07-20
    Description: Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z 〉 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(sub BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(sub Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(sub H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z 〈 or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43991 , The Astrophysical Journal (ISSN ISSN 0004-637X; e-ISSN 1538-4357); Volume 835; No. 1; 105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-24
    Description: We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the micro lensing event OGLE-2016-BLG-1469. Thanks to the detection of both finite-source and micro lens-parallax effects, we are able to measure both the masses M(sub 1) ~ 0.05 Solar Mass and M(sub 2) ~ 0.01 Solar Mass, and the distance D(sub L) ~ 4.5 kpc, as well as the projected separation a(sub perpendicular) ~ 0.33 au. This is the third brown-dwarf binary detected using the micro lensing method, demonstrating the usefulness of micro lensing in detecting field brown-dwarf binaries with separations of less than 1 au.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64792 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 843; 1; 59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-02
    Description: The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial carbon dioxide fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem carbon dioxide exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated carbon dioxide fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r (exp 2) =0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r (exp 2)=1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land carbon dioxide fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land carbon dioxide fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land carbon dioxide fluxes. These data-driven estimates can provide a new opportunity to assess carbon dioxide fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51478 , Journal of Geophysical Research Biogeoscience (ISSN 2169-8953) (e-ISSN 2169-8961); 122; 4; 767-795
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-12
    Description: We present the result of microlensing event MOA-2016-BLG-290, which received observations from the two-wheel Kepler (K2), Spitzer, as well as ground-based observatories. A joint analysis of data from K2 and the ground leads to two degenerate solutions of the lens mass and distance. This degeneracy is effectively broken once the (partial) Spitzer light curve is included. Altogether, the lens is found to be an extremely low-mass star or brown dwarf (77(sup +34)(sub -23) M(sub J)) located in the Galactic bulge (6.8 0.4 kpc). MOA-2016-BLG-290 is the first microlensing event for which we have signals from three well-separated (~1 au) locations. It demonstrates the power of two-satellite microlensing experiment in reducing the ambiguity of lens properties, as pointed out independently by S. Refsdal and A. Gould several decades ago.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64721 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 849; 2; L31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-14
    Description: On 27 August 2013, during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys field mission, NASA's ER2 research aircraft encountered a region of enhanced water vapor, extending over a depth of approximately 2 km and a minimum areal extent of 20,000 km(exp 2) in the stratosphere (375 K to 415 K potential temperature), south of the Great Lakes (42N, 90W). Water vapor mixing ratios in this plume, measured by the Harvard Water Vapor instrument, constitute the highest values recorded in situ at these potential temperatures and latitudes. An analysis of geostationary satellite imagery in combination with trajectory calculations links this water vapor enhancement to its source, a deep tropopausepenetrating convective storm system that developed over Minnesota 20 h prior to the aircraft plume encounter. High resolution, groundbased radar data reveal that this system was composed of multiple individual storms, each with convective turrets that extended to a maximum of ~4 km above the tropopause level for several hours. In situ water vapor data show that this storm system irreversibly delivered between 6.6 kt and 13.5 kt of water to the stratosphere. This constitutes a 2025% increase in water vapor abundance in a column extending from 115 hP to 70 hPa over the plume area. Both in situ and satellite climatologies show a high frequency of localized water vapor enhancements over the central U.S. in summer, suggesting that deep convection can contribute to the stratospheric water budget over this region and season.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-26829 , Journal of Geophysical Research (ISSN 0148-0227) (e-ISSN 2156-2202); 122; 17; 9529-9554
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-11
    Description: A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-26292 , Surveys in Geophysics (ISSN 0169-3298) (e-ISSN 1573-0956); 38; 6; 1445-1482
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-15
    Description: In this work, we use the Clouds and the Earths Radiant Energy System (CERES) FluxByCloudTyp data product, which calculates TOA shortwave and longwave fluxes for cloud categories defined by cloud optical depth () and cloud top pressure (), to evaluate the HadGEM2-A model with a simulator. The CERES Flux-by-cloud type simulator is comprised of a cloud generator that produces subcolumns with profiles of binary cloud fraction, a cloud property simulator that determines the (,) cloud type for each subcolumn, and a radiative transfer model that calculates TOA fluxes. The identification of duplicate atmospheric profiles reduces the number of radiative transfer calculations required by approximately 97.6%. In the Southern Great Plains region in JFD (January, February, and December) 2008, the simulator shows that simulated cloud tops are higher in altitude than observed, but also have higher values of OLR than observed, leading to a compensating error that results in an average value of OLR that is close to observed. When the simulator is applied to the Southeast Pacific stratocumulus region in JJA 2008, the simulated cloud tops are primarily low in altitude; however, the clouds tend to be less numerous, and have higher optical depths than are observed. In addition to the increase in albedo that comes from having too many clouds with higher optical depth, the HadGEM2-A albedo is higher than observed for those cloud types that occur most frequently. The simulator is also applied to the entire 60 N 60 S region, and it is found that there are fewer clouds than observed for most cloud types, but there are also higher albedos for most cloud types, which represents a compensating error in terms of the shortwave radiative budget.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-27103 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 20; 10655-10668
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-13
    Description: The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry xperiment (FRAPP) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than 15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than 5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-26921 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 10; 10; 3865-3876
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: As part of the Southeast United States-based Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), and collinear with part of the Southeast Atmosphere Study, the University of Wisconsin High Spectral Resolution Lidar system was deployed to the University of Alabama from 19 June to 4 November 2013. With a collocated Aerosol Robotic Network (AERONET) sun photometer, a nearby Chemical Speciation Network (PM2.5) measurement station, and near daily ozonesonde releases for the August-September SEAC4RS campaign, the site allowed the regions first comprehensive diurnal monitoring of aerosol particle vertical structure. A 532nm lidar ratio of 55 sr provided good closure between aerosol backscatter and AERONET (aerosol optical thickness, AOT). A principle component analysis was performed to identify key modes of variability in aerosol backscatter. ''Fair weather'' days exhibited classic planetary boundary layer structure of a mixed layer accounting for approx. 50% of AOT and an entrainment zone providing another 25%. An additional 5-15% of variance is gained from the lower free troposphere from either convective detrainment or frequent intrusions of western United States biomass burning smoke. Generally, aerosol particles were contained below the 0 C level, a common level of stability in convective regimes. However, occasional strong injections of smoke to the upper troposphere were also observed, accounting for the remaining 10-15% variability in AOT. Examples of these common modes of variability in frontal and convective regimes are presented, demonstrating why AOT often has only a weak relationship to surface PM2.5 concentration.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51500 , Journal of Geophysical Research Atmospheres (ISSN 2169-897X ) (e-ISSN 2169-8996); 122; 5 ; 2970-3004
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: A large variety of organic compounds of astrobiological and prebiotic interest have been detected in carbonaceous meteorites. These include amino acids, carboxylic acids, amphiphiles, functionalized nitrogen heterocycles such as nucleobases, functionalized polycylic aromatic hydrocarbons such as quinones, and sugar derivatives. The sugar derivatives identified in the Murchison and Murray meteorites are mainly sugar alcohols and sugar acids, and only the smallest sugar (dihydroxyacetone) has been detected. The presence of such a variety of organics in meteorites strongly suggests that molecules essential to life can form abiotically under astrophysical conditions. This hypothesis is further supported by laboratory studies in which astrophysical ice analogs (mixtures of H2O, CO, CO2, CH3OH, CH4, NH3, etc.) are subjected to ultraviolet (UV) irradiation at low temperature (〈15 K) to simulate cold interstellar environments. These studies show that the organic residues recovered at room temperature after irradiation contain amino acids, amphiphiles, nucleobases, sugar derivatives, as well as other complex organic compounds. The finding of such compounds under plausible interstellar conditions is consistent with the presence of organic compounds in meteorites. Until very recently, no systematic search for the presence of sugar derivatives in laboratory residues had been carried out. The detection of ribose, the sugar constituent of RNA in all living systems, as well as other sugars, sugar alcohols, and sugar acids have been recently reported in one organic residue produced from the UV irradiation of an H2O:CH3OH:NH3 (10:3.5:1) ice mixture at 80 K. In this work, we present a detailed study of organic residues produced from the UV irradiation ice mixtures of several starting compositions (containing H2O, CH3OH, CO, CO2, and/or NH3) at 〈15 K for their sugar derivative content. Our results confirm the presence of all 3C5C sugar alcohols, several 3C5C sugars, and all 3C4C sugar acids (in decreasing order of abundances) in the residues. The higher abundances of sugar alcohols in these residues suggest a pathway in which sugar alcohols are formed first, while the formation of sugars and sugar acids require more steps. Finally, our results are compared with the detection of sugars derivatives in primitive meteorites.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN37318 , 253rd ACS National Meeting and Exposition; Apr 02, 2017 - Apr 06, 2017; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-12
    Description: Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.
    Keywords: Engineering (General)
    Type: NASA/TM-2017-219461 , E-19339 , GRC-E-DAA-TN38019
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.
    Keywords: Astrophysics
    Type: LIGO-P1600330 , GSFC-E-DAA-TN40321 , American Physical Society
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The ADEPT architecture represents a completely new approach for entry vehicle design using a high-performance carbon fabric to serve as the primary drag surface of the mechanically deployed decelerator and to protect the payload from hypersonic aerothermal heating during entry. The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7-m deployed diameter ADEPT sounding rocket flight experiment. The SR-1 sounding rocket flight experiment is a critical milestone in the technology maturation plan for ADEPT and will generate performance data on in-space deployment and aerodynamic stability.
    Keywords: Engineering (General)
    Type: NASA FS-2017-02-01-ARC , ARC-E-DAA-TN39114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-12
    Description: An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.
    Keywords: Engineering (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-12
    Description: The Q1Q17 DR25 TCERT Vetting Reports are a collection of plots and diagnostics used by the Threshold Crossing Event Review Team (TCERT) to evaluate threshold crossing events (TCEs). While designation of Kepler Objects of Interest (KOIs) and classification of them as Planet Candidates (PCs) or False Positives (FPs) is completely automated via a robotic vetting procedure (the Robovetter) for the Q1Q17 DR25 planet catalog, as described in Thompson et al. (2017), these reports help to visualize the metrics used by the Robovetter and evaluate those robotic decisions for individual objects. For each Q1Q17 DR25 TCE, these reports include the following products: (a) the DV one-page summary, (b) selected pertinent diagnostics and plots from the full DV report, and (c) additional plots and diagnostics not included in the full DV report, including an alternate means of data detrending.
    Keywords: Astrophysics
    Type: KSCI-19105-001 , ARC-E-DAA-TN44464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: We report the discovery and the analysis of the planetary microlensing event, OGLE-2013-BLG-1761. There are some degenerate solutions in this event because the planetary anomaly is only sparsely sampled. However, the detailed light curve analysis ruled out all stellar binary models and shows the lens to be a planetary system. There is the so-called close wide degeneracy in the solutions with the planet host mass ratio of q approx.(7.0+/-2.0) x 10(exp -3) and q approx.(8.1+/-2.6) x 10(exp -3) with the projected separation in Einstein radius units of s = 0.95 (close) and s = 1.18(wide), respectively. The microlens parallax effect is not detected, but the finite source effect is detected. Our Bayesian analysis indicates that the lens system is located -D(sub L) = 6.9(+ 1.0 -1.2)kpc away from us and the host star is an M/K dwarf with amass of M(sub L) = 0.33(+ 0.32- 1.9)Stellar Mass orbited by a super-Jupiter mass planet with a mass of m(sub p) = 2.7(+ 2.5 - 1.5) M(sub Jup) at the projected separation of a(sub l) = 1.8(+ 0.5 -0.5)au. The preference of the large lens distance in the Bayesian analysis is due to the relatively large observed source star radius. The distance and other physical parameters may be constrained by the future high-resolution imaging by large ground telescopes or HST. If the estimated lens distance is correct, then this planet provides another sample for testing the claimed deficit of planets in the Galactic bulge.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45581 , GSFC-E-DAA-TN64725 , The Astronomical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 154; 1; 1-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-12
    Description: In July and August 2014, NASA conducted an airborne lidar campaign based out of Fort Wainwright,Fairbanks, Alaska, in support of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. The survey targeted Alaskan glaciers and icefields and sea ice in the Arctic Ocean during the summer melt season. Ultimately, the mission, MABEL Alaska 2014, including checkout and transit flights, conducted 11 science flights, for a total of over 50 flight hours over glaciers, icefields, and sea ice.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN35821 , NASA/TM-2017-219019
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M17-6434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-19
    Description: This work is using the newly available NASA SMAP soil moisture measurement data to evaluate its impact on the atmospheric dust emissions. Dust is an important component of atmospheric aerosols, which affects both climate and air quality. In this work, we focused on semi-desert regions, where dust emissions show seasonal variations due to soil moisture changes, i.e. in Sahel of Africa. We first identified three Aerosol Robotic Network (AERONET) sites in the Sahel (IER_Cinzana, Banizoumbou, and Zinder_Airport). We then utilized measurements of aerosol optical depth (AOD), fine mode fraction, size distribution, and single-scattering albedo and its wave-length dependence to select dust plumes from the available measurements We matched the latitude and longitude of the AERONET station to the corresponding SMAP data cell in the years 2015 and 2016, and calculated their correlation coefficient. Additionally, we looked at the correlation coefficient with a three-day and a five-day shift to check the impact of soil moisture on dust plumes with some time delay. Due to the arid nature of Banizoumbou and Zinder_Airport, no correlation was found to exist between local soil moisture and dust aerosol load. While IER_Cinzana had soil moisture levels above the satellite threshold of 0.02cm3/cm3, R-value approaching zero indicated no presence of a correlation. On the other hand, Ilorin demonstrated a significant negative correlation between aerosol optical depth and soil moisture. When isolating the analysis to Ilorin's dry season, a negative correlation of -0.593 was the largest dust-isolated R-value recorded, suggesting that soil moisture is driven the dust emission in this semi-desert region during transitional season.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38795 , 2017 BASC Symposium; Feb 02, 2017 - Feb 03, 2017; Berkeley, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-19
    Description: Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed a 80% overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37841 , 2017 Weed Science Society of America Annual Meeting; Feb 06, 2017 - Feb 09, 2017; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-20
    Description: Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage technology at NASA Kennedy Space Center led to the production of large quantities of densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. Overall densification performance of the system is explored, and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing, and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. The phenomenon, observed at two fill levels, is detailed herein. The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.
    Keywords: Engineering (General)
    Type: KSC-E-DAA-TN43516 , Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC/ICMC 2017); Jul 09, 2017 - Jul 13, 2017; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-20
    Description: The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (S-NPP) spacecraft. The S-NPP launched in October 2011 and it has been collecting valuable Earth science data with VIIRS and four other instruments for more than five years. The VIIRS Characterization Support Team (VCST) of the National Aeronautics and Space Administration (NASA) Science Investigator-led Processing Systems (SIPS) is designed to support the VIIRS sensor pre-launch geometric and radiometric characterization and to access on-orbit long-term Level-1B (L1B) calibration and performance. This paper reviews the VIIRS thermal emissive bands (TEB), covering wavelengths from 3.7 to 12.0 m, L1B radiometric calibration algorithms and presents the calibration uncertainty methodology which will be implanted in the L1B processing software. Discussions will be focused on the key uncertainty parameters and the application in L1B.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN66862 , 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Jul 23, 2017 - Jul 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-20
    Description: Talks presented by Dr. Ralph Kahn at the 16th AeroCom and 5th AeroSat Workshops, held October 9-13, 2017 in Helsinki, Finland.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47981 , AeroSat Workshops; Oct 09, 2017 - Oct 13, 2017; Helsinki; Finland|AeroCom; Oct 09, 2017 - Oct 13, 2017; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: The Gravity Recovery and Climate Experiment - Follow-On (GRACE-FO) Mission is a NASA directed mission to continue the goals of the original GRACE mission and provide continuity for the GRACE data set. The GRACE-FO mission is the result of an international cooperation to develop a concept and approach that minimizes cost and risk and maximizes the probability of success through limited changes to the original GRACE system design. The result is a system architecture in which maintenance of heritage is paramount, including heritage derived through the partnership with the German Research Centre for Geosciences (GFZ) in Germany. As a secondary goal, GRACE-FO will carry a Laser Ranging Interferometer (LRI) as a technology demonstration, which will provide laser interferometry measurements of inter-satellite range, complementary to the K/Ka-Band microwave link to demonstrate laser-ranging technology in support of future GRACE-like missions. Another secondary objective is the continuation of GRACE radio occultation measurements.
    Keywords: Earth Resources and Remote Sensing
    Type: JPL-CL-16-6212 , 2017 IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States|2017 IEEE Aerospace Conference
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The ObseRvations of Aerosols above Clouds and their interactions (ORACLES) project is making a series of field deployments to the southeastern Atlantic with NASA ER-2 and P3 aircraft to acquire both detailed remote sensing observations and in situ measurements of the aerosols and clouds in that region. This area is home to one of the largest low-level cloud decks on Earth that is seasonally affected by vast plumes of smoke from biomass burning, which in effect provides a natural experiment testing the radiative and microphysical interactions between the smoke and the clouds. The downward solar radiation at the surface, or cloud top, is always reduced by the presence of smoke. However, whether the amount of sunlight reflected back out to space is increased, or decreased by the presence of smoke is sensitively dependent on the brightness of the clouds and the fraction of light that the smoke absorbs each time light hits a smoke particle. In this study we use data from the Research Scanning Polarimeter, an along track scanning instrument, that provides measurements of the Stokes parameters I, Q and U at 410, 470, 555, 670, 865, 960, 1590, 1880 and 2260 nm at 150 viewing angles over a range of +/- 60 from nadir for each contiguous sub-aircraft pixel (~ 300 m in size). A retrieval algorithm is applied to the data acquired with a table look up technique, similar to that of the operational POLDER algorithm, to provide a first guess of the complex refractive index, optical depth and size distribution of the smoke particles together with cloud droplet size and optical depth. A subsequent iterative fitting procedure, where the fact that the doubling/adding method allows the construction of the Green's function for the radiative transfer equation, is used to obtain an efficient and statistically optimal estimate of the aerosol and cloud retrieval parameters. These retrieval parameters are evaluated against in situ observations, when available, and the optical depth and intensive lidar variables that are measured by the High Spectral Resolution Lidar 2. Finally, the aerosol and cloud retrievals are used to evaluate the variations in top of the atmosphere, surface/cloud top shortwave radiative forcing and atmospheric absorption that are caused by variations in the smoke and clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: A11C-1897 , GSFC-E-DAA-TN50461 , American Geophysical Union (AGU) Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: This paper describes the current ground-based calibration results of Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), Suomi National Polar orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2A Multispectral Instrument (MSI), using an automated suite of instruments located at Railroad Valley, Nevada, USA. The period of this study is 2012 to 2016 for MODIS, VIIRS, and ETM+, 2013 to 2016 for OLI, and 2015 to 2016 for MSI. The current results show that all sensors agree with the Radiometric Calibration Test Site (RadCaTS) to within +/-5% in the solar-reflective regime, except for one band on VIIRS that is within +/-6%. In the case of ETM+ and OLI, the agreement is within +/-3%, and, in the case of MODIS, the agreement is within +/-3.5%. MSI agrees with RadCaTS to within +/-4.5% in all applicable bands.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN59368 , Journal of Applied Remote Sensing (e-ISSN 1931-3195); 12; 1; 012004
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (CalVal) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.
    Keywords: Engineering (General)
    Type: IN23B-0086 , GSFC-E-DAA-TN49851 , AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: While supernova remnants (SNRs) are widely thought to be powerful cosmic-ray accelerators, indirect evidence comes from a small number of well-studied cases. Here we systematically determine the gamma-ray emission detected by the Fermi Large Area Telescope (LAT) from all known Galactic SNRs, disentangling them from the sea of cosmic-ray generated photons in the Galactic plane. Using LAT data we have characterized the 1-100 GeV emission in 279 regions containing SNRs, accounting for systematic uncertainties caused by source misattribution and instrumental response. We classified 30 sources as SNRs, using spatial overlap with the radio emission position. For all the remaining regions we evaluated upper limits on SNRs' emission. In the First Fermi-LAT SNR Catalog there is a study of the common characteristics of these SNRs, such as comparisons between GeV, radio and TeV quantities. We show that previously satisfactory models of SNRs' GeV emission no longer adequately describe the data. To address the question of cosmic ray (CR) origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength (MW) data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN51443 , EPJ Web of Conferences (e-ISSN 2100-014X); 136; 03009
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L(s) = 291 deg (March 30, 2013) to Mars Year 33 L(s) = 127 deg (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of +/-0.6 precipitable microns and systematic errors no larger than +/-0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus they tend to support the hypothesis of substantial diurnal interactions of water vapor with the surface. Our preliminary aerosol results, meanwhile, show the expected seasonal pattern in dust particle size but also indicate a surprising interannual increase in water-ice cloud opacities.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51056 , Icarus (ISSN 0019-1035); 307; 294-326
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Mid-infrared spectra of amorphous and crystalline acetone are presented along with measurements of the refractive index and density for both forms of the compound. Infrared band strengths are reported for the first time for amorphous and crystalline acetone, along with IR optical constants. Vapor pressures and a sublimation enthalpy for crystalline acetone also are reported. Positions of (sup 13) C-labeled acetone are measured. Band strengths are compared to gas-phase values and to the results of a density-functional calculation. A 73 percent error in previous work is identified and corrected.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN55665 , Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (ISSN 1386-1425); 193; 33-39
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b (equatorial temperature equals 2411 degrees Kelvin, mass equals 10.3 times the mass of Jupiter) based on emission spectroscopy from Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We demonstrate a lack of water vapor in either absorption or emission at 1.4 microns. However, we infer emission at 4.5 microns and absorption at 1.6 microns that we attribute to CO, as well as a non-detection of all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and a high metallicity (C/H equals 283 from plus 395 to minus 138 times solar). The derived composition and temperature/pressure profile suggest that WASP-18b is the first example of both a planet with a non-oxide driven thermal inversion and a planet with an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets at greater than 2 sigma. Future observations are necessary to confirm the unusual planetary properties implied by these results.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50537 , GSFC-E-DAA-TN53231 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 850; 2; L32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright (visual magnitude equals 11.7) star TYC 2688-1839-1/KELT-16. A global analysis of the system shows KELT-16 to be an F7V star with effective temperature equal to 6236 plus or minus 54 degrees Kelvin, log g (sub asterisk) equal to 4.253 from plus 0.031 to minus 0.036, [Fe/H] equal to minus 0.002 from plus 0.086 to minus 0.085, mass (sub asterisk) equal to 1.211 from plus 0.043 to minus 0.046 times the solar mass, and radius (sub asterisk) equal to 1.360 from plus 0.064 o minus 0.053 times the solar radius. The planet is a relatively high-mass inflated gas giant with planetary mass equal to 2.75 from plus 0.016 to minus 0.15 times Jupiter's mass, planetary radius equal to 1.415 from plus 0.084 to minus 0.067 times Jupiter's radius, density planetary rho equal to 1.20 plus or minus 0.18 grams per cubic centimeter, surface gravity, log planetary gravity equal to 3.530 from plus 0.042 to minus 0.049, and equatorial temperature equal to 2453 from plus 55 to minus 47 degrees Kelvin. The best-fitting linear ephemeris is T(sub C) equal to 22457247.24791 plus or minus 0.00019 BJD (sub TDB) and P equal to 0.9689951 plus or minus 0.0000024 day. KELT-16b joins WASP-18b, -19b, -43b, -103b, and HATS-18b as the only giant transiting planets with periodicity P less than 1 day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by the Hubble Space Telescope, Spitzer, and eventually the James Webb Space Telescope. For example, as a hotter, higher-mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature-pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass-metallicity relation of the solar system gas giants to higher masses. KELT-16b currently orbits at a mere approximately 1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few times 10 (sup 5) years (for a stellar tidal quality factor of Q (sup prime) (sub asterisk) equal to 10 (sup 5). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai-Lidov (KL) oscillations played a role in driving KELT-16b inward to its current precarious orbit.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN56743 , The Astronomical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 153; 3; 97
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: The NASA K2 (Kepler-2) mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI (Son OF Isaac - ESA's earlier, similar instrument) spectrograph on the European Southern Observatory's New Technology Telescope, we obtained R approximately equal to 1000 J-, H-, and K-band (0.95-2.52 micron) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4-M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 solar radii (16.09 percent) and 160 degrees Kelvin (4.33 percent), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet's radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2. We find a median planet radius and an equilibrium temperature of approximately 3 solar radii and 500 degrees Kelvin, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN56781 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 837; 1; 72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: We present the current state of development in passive gas-gap heat switches. This type of switch does not require a separate heater to activate heat transfer but, instead, relies upon the warming of one end due to an intrinsic step in a thermodynamic cycle to raise a getter above a threshold temperature. Above this temperature sequestered gas is released to couple both sides of the switch. This enhances the thermodynamic efficiency of the system and reduces the complexity of the control system. Various gas mixtures and getter configurations will be presented.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN57172 , CRYOGENIC Engineering Conference/ International Cryogenic MATERIALS Conference (CEC/ICMC 2017); Jul 09, 2017 - Jul 13, 2017; Madison WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Since the 1960s, satellites have been looking down at the Earth to monitor weather patterns and track severe storms, observe how our land surface is changing and responding to hydrometerological extremes, and even to sense how the Earth's crust is deforming from earthquakes and volcanoes. Space and airborne platforms can provide unique views of the disaster lifecycle, informing pre-event mitigation and preparedness, emergency response following an event, and monitoring longer-term recovery. These remotely-sensed data, products and models can provide a global perspective to see beyond administrative boundaries, reach remote places where in situ observations are di cult or non-existent, and provide the necessary context and situational awareness to aid in disaster response. So how do these platforms work? Instruments aboard satellites use different portions of the electromagnetic spectrum to passively or actively observe energy across a range of wavelengths, which can be turned into meaningful data on geophysical, atmospheric, and hydrological variables. e US has had a broad range of Earth observation (EO) platforms delivering open data for scientific research and societal benefits for decades. e Landsat programme, a joint initiative between the US Geological Survey (USGS) and NASA, has the world's longest continuous collection of space-based satellite imagery of the Earth, extending from 1972 to present. e Landsat satellites provide visible, near infrared, and thermal data that are used to support emergency response and disaster relief by mapping changes in water during floods, and dramatic land surface changes, including those resulting from landslides, wild res, severe weather, volcanic plumes, and dust storms.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48416 , Crisis Response Journal (ISSN 1745-8633); 12; 4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47964 , AeroCom; Oct 09, 2017 - Oct 13, 2017; Helsinki; Finland|AeroSat Workshops; Oct 09, 2017 - Oct 13, 2017; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47965 , CFMIP Meeting on Cloud Processes, Circulation and Climate Sensitivity; Sep 25, 2017 - Sep 28, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural network (NN) and physically-based SMAP soil moisture retrievals were assimilated into the National Aeronautics and Space Administration (NASA) Catchment model over the contiguous United States for April 2015 to March 2017. By construction, the NN retrievals are consistent with the global climatology of the Catchment model soil moisture. Assimilating the NN retrievals without further bias correction improved the surface and root zone correlations against in situ measurements from 14 SMAP core validation sites (CVS) by 0.12 and 0.16, respectively, over the model-only skill, and reduced the surface and root zone unbiased root-mean-square error (ubRMSE) by 0.005 m(exp 3) m(exp 3) and 0.001 m(exp 3) m(exp 3), respectively. The assimilation reduced the average absolute surface bias against the CVS measurements by 0.009 m(exp 3) m(exp 3), but increased the root zone bias by 0.014 m(exp 3) m(exp 3). Assimilating the NN retrievals after a localized bias correction yielded slightly lower surface correlation and ubRMSE improvements, but generally the skill differences were small. The assimilation of the physically-based SMAP Level-2 passive soil moisture retrievals using a global bias correction yielded similar skill improvements, as did the direct assimilation of locally bias-corrected SMAP brightness temperatures within the SMAP Level-4 soil moisture algorithm. The results show that global bias correction methods may be able to extract more independent information from SMAP observations compared to local bias correction methods, but without accurate quality control and observation error characterization they are also more vulnerable to adverse effects from retrieval errors related to uncertainties in the retrieval inputs and algorithm. Furthermore, the results show that using global bias correction approaches without a simultaneous re-calibration of the land model processes can lead to skill degradation in other land surface variables.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN49630 , Remote Sensing (e-ISSN 2072-4292); 9; 11; 1179
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: Disturbances, both natural and anthropogenic, are critical determinants of forest structure, function, and distribution. The vulnerability of forests to potential changes in disturbance rates remains largely unknown. Here, we developed a framework for quantifying and mapping the vulnerability of forests to changes in disturbance rates. By comparing recent estimates of observed forest disturbance rates over a sample of contiguous US forests to modeled rates of disturbance resulting in forest loss, a novel index of vulnerability, Disturbance Distance, was produced. Sample results indicate that 20% of current US forestland could be lost if disturbance rates were to double, with southwestern forests showing highest vulnerability. Under a future climate scenario, the majority of US forests showed capabilities of withstanding higher rates of disturbance then under the current climate scenario, which may buffer some impacts of intensified forest disturbance.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN56607 , Environmental Research Letters (e-ISSN 1748-9326); 12; 11; 114015
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: The redshifted 21 cm monopole is expected to be a powerful probe of the epoch of the first stars and galaxies(10 less than z less than 35). The global 21 cm signal is sensitive to the thermal and ionization state of hydrogen gas and thusprovides a tracer of sources of energetic photonsprimarily hot stars and accreting black holeswhich ionize andheat the high redshift intergalactic medium (IGM). This paper presents a strategy for observations of the globalspectrum with a realizable instrument placed in a low-altitude lunar orbit, performing night-time 40120 MHzspectral observations, while on the farside to avoid terrestrial radio frequency interference, ionospheric corruption,and solar radio emissions. The frequency structure, uniformity over large scales, and unpolarized state of theredshifted 21 cm spectrum are distinct from the spectrally featureless, spatially varying, and polarized emissionfrom the bright foregrounds. This allows a clean separation between the primordial signal and foregrounds. Forsignal extraction, we model the foreground, instrument, and 21 cm spectrum with eigenmodes calculated viaSingular Value Decomposition analyses. Using a Markov Chain Monte Carlo algorithm to explore the parameterspace defined by the coefficients associated with these modes, we illustrate how the spectrum can be measured andhow astrophysical parameters (e.g., IGM properties, first star characteristics) can be constrained in the presence offoregrounds using the Dark Ages Radio Explorer (DARE).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45122 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 844; 33; No. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: We present near-infrared high-precision photometry for eight transiting hot Jupiters observed during their predicted secondary eclipses. Our observations were carried out using the staring mode of the WIRCam instrument on the Canada-France-Hawaii Telescope (CFHT). We present the observing strategies and data reduction methods which delivered time series photometry with statistical photometric precision as low as 0.11%. We performed a Bayesian analysis to model the eclipse parameters and systematics simultaneously. The measured planet-to-star flux ratios allowed us to constrain the thermal emission from the day side of these hot Jupiters, as we derived the planet brightness temperatures. Our results combined with previously observed eclipses reveal an excess in the brightness temperatures relative to the blackbody prediction for the equilibrium temperatures of the planets for a wide range of heat redistribution factors. We find a trend that this excess appears to be larger for planets with lower equilibrium temperatures. This may imply some additional sources of radiation, such as reflected light from the host star and/or thermal emission from residual internal heat from the formation of the planet.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN54583 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); 474; 3; 4264–4277
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite uses its 14 reflective solar bands to passively collect solar radiant energy reflected off the Earth. The Level 1 product is the geolocated and radiometrically calibrated top-of- the-atmosphere solar reflectance. The absolute radiometric uncertainty associated with this product includes contributions from the noise associated with measured detector digital counts and the radiometric calibration bias. Here, we provide a detailed algorithm for calculating the estimated standard deviation of the retrieved top-of-the-atmosphere spectral solar radiation reflectance.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN53397 , IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2017); Jul 23, 2017 - Jul 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitale worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O2), ozone (O3), water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets "highlighted" by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric "beacons of life" create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN52847 , Scientific Reports (ISSN 2045-2322); 7; 14141
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: Uncertainties in input land cover estimates contribute to a significant bias in modeled above ground biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN48007 , 2017 AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice cloud's role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, three years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30degS-30deg N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 hours, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50893 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 2; 1185-1193
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: The recent discoveries of pulsed X-ray emission from three ultraluminous X-ray (ULX) sources have finally enabled us to recognize a subclass within the ULX class: the great pretenders, neutron stars (NSs) that appear to emit X-ray radiation at isotropic luminosities Lx = 7 x 10(exp 39) erg/s - 1 x 10(exp 41) erg/s only because their emissions are strongly beamed toward our direction and our sight lines are offset by only a few degrees from their magnetic-dipole axes. The three known pretenders appear to be stronger emitters than the presumed black holes of the ULX class, such as Holmberg II & IX X-1, IC10 X-1 and NGC 300 X-1. For these three NSs, we have adopted a single reasonable assumption, that their brightest observed outbursts unfold at the Eddington rate, and we have calculated both their propeller states and their surface magnetic-field magnitudes. We find that the results are not at all different from those recently obtained for the Magellanic Be/X-ray pulsars: the three NSs reveal modest magnetic fields of about 0.3 - 0.4 TG and beamed propeller-line X-ray luminosities of approx. 10(exp 36) - 10(exp 37) erg/s, substantially below the Eddington limit.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50951 , Research in Astronomy and Astrophysics (ISSN 1674-4527); 17; 6; 063
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Active cloud observations from A-Trains CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B CLDCLASSLIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major Cloud Vertical Structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap, and provide their global frequency of occurrence. We contrast CVS occurrences between daytime and nighttime, identify ocean and land differences, and examine their seasonal and geographical variations for the dominant CVS classes. In order to evaluate CVS role in the radiation budget, we estimate radiative effects and contributions of the various CVS classes at the solar and thermal infrared part of the spectrum. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of MODIS cloud regimes for spatiotemporally coincident MODIS-Aqua and CloudSat-CALIPSO daytime observations. This analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS regimes, and ultimately confirms previous interpretations of the nature of cloud regimes that did not have the benefit of collocated active observations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51598 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 17; 9280–9300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: This work presents a state-of-the art methodology for constructing snow water equivalent (SWE) reanalysis. The method is comprised of two main components: (1) a coupled land surface model and snow depletion curve model, which is used to generate an ensemble of predictions of SWE and snow cover area for a given set of (uncertain) inputs, and (2) a reanalysis step, which updates estimation variables to be consistent with the satellite observed depletion of the fractional snow cover time series. This method was applied over the Sierra Nevada (USA) based on the assimilation of remotely sensed fractional snow covered area data from the Landsat 5-8 record (1985-2016). The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The method (fully Bayesian), resolution (daily, 90-meter), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. This presentation illustrates how the reanalysis dataset was used to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years and ultimately improve real-time streamflow predictions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50111 , International Conference on Reanalysis; Nov 13, 2017 - Nov 17, 2017; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: Agricultural stakeholders need more credible information on which to base adaptation and mitigation policy decisions. In order to provide this, we must improve the rigor of agricultural modelling. Ensemble approaches can be used to address scale issues and integrated teams can overcome disciplinary silos. The AgMIP Coordinated Global and Regional Assessments of Climate Change and Food Security (CGRA) has the goal to link agricultural systems models using common protocols and scenarios to significantly improve understanding of climate effects on crops, livestock and livelihoods across multiple scales. The AgMIP CGRA assessment brings together experts in climate, crop, livestock, economics, and food security to develop Protocols to guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including, socioeconomic development, greenhouse gas concentrations, and specific pathways of agricultural sector development. Through these approaches, AgMIP partners around the world are providing an evidence base for their stakeholders as they make decisions and investments.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50534 , Australian Agronomy Conference; Sep 24, 2017 - Sep 28, 2017; Ballarat, Victoria; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50746 , Publications of the Astronomical Society of the Pacific (ISSN 0004-6280) (e-ISSN 1538-3873); 129; 982; 124401
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: For the purposes of interpreting active (radar) and passive (radiometer) microwave and millimeter wave remote sensing data, we have constructed a consistent radiative transfer modeling framework to simulate the responses for arbitrary sensors with differing sensing geometries and hardware configurations. As part of this work, we have implemented a recent method for calculating the electromagnetic properties of individual ice crystals and snow flakes. These calculations will allow us to exploit polarized remote sensing observations to discriminate different particles types and elucidate dynamics of cloud and precipitating systems.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51059 , 2017 AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron-positron pairs and gamma-ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180deg, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%-60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and gamma-ray spectral components would indicate that CR is the gamma-ray emission mechanism.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50650 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 840; 2; 73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: Two transit survey missions will have been flown by NASA prior to the launch of ESA's PLATO Mission in 2026, laying the groundwork for exoplanet discovery via the transit method. The Kepler Mission, which launched in 2009, collected data on its 100+ square degree field of view for four years before failure of a reaction wheel ended its primary mission. The results from Kepler include 2300+ confirmed or validated exoplanets, 2200+ planetary candidates, 2100+ eclipsing binaries. Kepler also revolutionized the field of asteroseismology by measuring the pressure mode oscillations of over 15000 solar-like stars spanning the lifecycle of such stars from hydrogen-burning dwarfs to helium-burning red giants. The re-purposed Kepler Mission, dubbed K2, continues to observe fields of view in and near the ecliptic plane for 80 days each, significantly broadening the scope of the astrophysical investigations as well as discovering an additional 156 exoplanets to date. The TESS mission will launch in 2017 to conduct an all-sky survey for small exoplanets orbiting stars 10X closer and 100X brighter than Kepler exoplanet host stars, allowing for far greater follow-up and characterization of their masses as well as their sizes for at least 50 small planets. Future assets such as James Webb Space Telescope, and ground-based assets such as ESOs Very Large Telescope (VLT) array, the Exremely Large Telescope (ELT), and the Thirty Meter Telescope (TMT) will be able to characterize the atmospheric composition and properties of these small planets. TESS will observe each 24 X 96 field of view for 30 days and thereby cover first the southern and then the northern hemisphere over 13 pointings during each year of the primary mission. The pole-most camera will observe the James Webb continuous viewing zone for one year in each hemisphere, permitting much longer period planets to be detected in this region. The PLATO mission will seek to detect habitable Earth-like planets with an instrument composed of 26 small telescopes in several 2232 square deg FOVs with a range of observation durations over a mission lifetime of up to eight years. This paper summarizes the findings of the KeplerK2 missions, previews the likely results from the TESS mission, and explores the lessons learned and to be learned from these prior missions that can be incorporated into the observation and data reduction strategy for the PLATO Mission so as to maximize the science return.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN46530 , PLATO Mission Conference 2017; Sep 05, 2017 - Sep 07, 2017; Coventry; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN50300 , American Geophysical Union (AGU) 2017 Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time data and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere), the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood, and Black Marble products. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50097 , American Geophysical Union (AGU) Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Collect Earth Online (CEO) is a free and open online implementation of the FAO Collect Earth system for collaboratively collecting environmental data through the visual interpretation of Earth observation imagery. The primary collection mechanism in CEO is human interpretation of land surface characteristics in imagery served via Web Map Services (WMS). However, interpreters may not have enough contextual information to classify samples by only viewing the imagery served via WMS, be they high resolution or otherwise. To assist in the interpretation and collection processes in CEO, SERVIR, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries, developed the GeoDash system, an embedded and critical component of CEO. GeoDash leverages Google Earth Engine (GEE) by allowing users to set up custom browser-based widgets that pull from GEE's massive public data catalog. These widgets can be quick looks of other satellite imagery, time series graphs of environmental variables, and statistics panels of the same. Users can customize widgets with any of GEE's image collections, such as the historical Landsat collection with data available since the 1970s, select date ranges, image stretch parameters, graph characteristics, and create custom layouts, all on-the-fly to support plot interpretation in CEO. This presentation focuses on the implementation and potential applications, including the back-end links to GEE and the user interface with custom widget building. GeoDash takes large data volumes and condenses them into meaningful, relevant information for interpreters. While designed initially with national and global forest resource assessments in mind, the system will complement disaster assessments, agriculture management, project monitoring and evaluation, and more.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN50516 , American Geophysical Union (AGU) 2017 Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: A molecular formulation of the onset of plasticity is proposed to assess temperature and strain rate effects in anisotropic semi-crystalline rubbery films. The presented plane stress criterion is based on the strain rate-temperature superposition principle and the cooperative theory of yielding, where some parameters are assumed to be material constants, while others are considered to depend on specific modes of deformation. An orthotropic yield function is developed for a linear low density polyethylene thin film. Uniaxial and biaxial inflation experiments were carried out to determine the yield stress of the membrane via a strain recovery method. It is shown that the 3% offset method predicts the uniaxial elastoplastic transition with good accuracy. Both the tensile yield points along the two principal directions of the film and the biaxial yield stresses are found to obey the superposition principle. The proposed yield criterion is compared against experimental measurements, showing excellent agreement over a wide range of deformation rates and temperatures.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN46409 , Polymer (ISSN 0032-3861); 125; 144-153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: The Transiting Exoplanet Survey Satellite (TESS) science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler Mission science pipeline. Like the Kepler pipeline, the TESS science pipeline will provide calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars, observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline will search through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline will generate a suite of diagnostic metrics for each transit-like signature discovered, and extract planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search will be modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN45029 , Kepler & K2 Science Conference; Jun 19, 2017 - Jun 23, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN48503 , RGB Experts and Developers Workshop; Nov 07, 2017 - Nov 09, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: The biodiversity, ecosystem services and climate variability of the Antarctic continent, and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaption of the Scientific Committee on Antarctic Research, which focused on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas, and first steps in their implementation, were clustered into eight themes, ranging from scale problems, risk maps, organism and ecosystem responses to multiple environmental changes, to evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in the research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. New strategies in academic education are proposed. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47256 , Marine Genomics (ISSN 1874-7787) (e-ISSN 1876-7478); 37; 1-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of approximately 30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN47277 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 842; 2; 113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: This study seeks to help better understand aerosol-cloud interactions by examining statistical relationships between aerosol properties and nearby low-altitude cloudiness using satellite data. The analysis of a global dataset of MODIS (Moderate Resolution Imaging Spectroradiometer) observations reveals that the positive correlation between cloudiness and aerosol optical depth (AOD) reported in earlier studies is strong throughout the globe and during both winter and summer. Typically, AOD is 30-50 higher on cloudier-than-average days than on less cloudy days. A combination of satellite observations and MERRA-2 global reanalysis data reveals that the correlation between cloud cover and AOD is strong for all aerosol types considered: sulfate, dust, carbon, and sea salt. The observations also indicate that in the presence of nearby clouds, aerosol size distributions tend to shift toward smaller particles over large regions of the Earth. This is consistent with a greater cloud-related increase in the AOD of fine mode than of coarse mode particles. The greater increase in fine mode AOD implies that the cloudiness-AOD correlation does not come predominantly from cloud detection uncertainties. Additionally, the results show that aerosol particle size increases near clouds even in regions where it decreases with increasing cloudiness. This suggests that the decrease with cloudiness comes mainly from changes in large-scale environment, rather than from clouds increasing the number or the size of fine mode aerosols. Finally, combining different aerosol retrieval algorithms demonstrated that quality assessment flags based on local variability can help identifying when the observed aerosol populations are affected by surrounding clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47772 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 18; 10,013-10,024
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47248 , Ka-Band Earth Observation Radar Missions Workshop, KEO''17; Sep 12, 2017 - Sep 14, 2017; Noordwijk; Netherlands|Workshop on Advanced RF Sensors and Remote Sensing Instruments, ARSI''17; Sep 12, 2017 - Sep 14, 2017; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Review freeform optic applications as NASA. Describe design study results showing benefits of freeform optics to the instrument size, image quality, and field of view. Review areas of study and improvements needed to freeform manufacturing for future applications.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN48197 , European Photonics Industry Consortium (EPIC) Workshop; Oct 26, 2017 - Oct 27, 2017; Jena; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: Stirling Radioisotope Power Systems (RPS) are being developed by NASA's RPS Program in collaboration with the U.S. Department of Energy (DOE). Efforts ranging from 2001 to 2015 enabled development of the Technology Demonstration Convertor (TDC) for use in the 110-watt Stirling Radioisotope Generator (SRG-110) and the Advanced Stirling Convertor (ASC) for use in the Advanced Stirling Radioisotope Generator (ASRG). The DOE selected Lockheed Martin Space Systems Company (LMSSC) as the system integration contractor for both flight development efforts. The SRG-110 housed two TDCs fabricated by Infinia and resulted in the production of 16x demonstration units and 2x engineering units. The project was redirected in 2006 to make use of a more efficient and lower mass ASCs under development by Sunpower Inc. The DOE managed the flight contract with LMSSC and subcontractor Sunpower Inc. from 2007 to 2013 to build the ASRG, with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce ASCs, one with Lockheed Martin to produce ASC-F flight units and one with GRC for the production of ASC-E3 engineering unit pathfinders that were used to refine the flight design and production processes. The DOE initiated termination of the ASRG contract in late 2013. After ASRG had ended, GRC completed characterization testing of the ASRG Engineering Unit #2 (EU2) and the GRC contract with Sunpower was also completed. The NASA RPS Program Office has recently initiated a new Dynamic Power Conversion development effort which includes the potential maturation of Stirling, Brayton, and Rankine power convertors for the next generation of RPS. The effort started with the request for proposal and review of submits. Contracts are anticipated for release in 2017 and will initially focus on a design phase prior to fabrication and testing. This new effort will focus on robustness in addition to high efficiency, specific power, and reliability. Also, some requirements introduced during the ASRG contract have also been included in the new effort, such as constant lateral loading. Due to the focus on robustness and new requirements relative to the older TDC design, the Stirling Cycle Development Project has initiated an assessment of government owned hardware to help inform requirements evolution and evaluation of future designs. While lessons learned from the ASRG flight development project have been taken into consideration, the evaluation of the TDC design had not been completed for some existing environments or relatively new requirements. To further assess the TDC design, a series of tasks were initiated to evaluate degradation for units that have operated unattended for over 105,000 hours, demonstrate robustness to a random vibration environment, characterize and evaluate performance for varying lateral load profiles. The status for each task are described.
    Keywords: Engineering (General)
    Type: GRC-E-DAA-TN43782 , International Energy Conversion Engineering Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data has shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emissions estimates based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies, and uses the average of six models from the Fire Model Intercomparison Project (FireMIP) protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant with 10-year averages varying between 1.8 and 2.3 petagrams of carbon per year. Carbon emissions increased only slightly over the full time period and peaked during the 1990's after which they decreased gradually. There is substantial uncertainty in these estimates and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 percent of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emissions estimates are mostly suited for global analyses and will be used in the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN46920 , Geoscientific Model Development (ISSN 1991-959X) (e-ISSN 1991-9603); 10; 9; 3329–3357
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: We present results from four new broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 (L (sub X) greater than 10 (sup 40) ergs per second), performed by Suzaku and NuSTAR in coordination. Combined with the archival data, we now have broadband observations of this remarkable source from six separate epochs. Two of these new observations probe lower fluxes than seen previously, allowing us to extend our knowledge of the broadband spectral variability exhibited. The spectra are well fit by two thermal blackbody components that dominate the emission below 10 kiloelectronvolts, as well as a steep (Gamma approximately equal to 3.5) power-law tail thatdominates above approximately 15 kiloelectronvolts. Remarkably, while the 0.3-10.0 kiloelectronvolts flux varies by a factor of approximately 3 between all these epochs, the 15-40 kiloelectronvolts flux varies by only approximately 20 percent. Although the spectral variability is strongest in the approximately 1-10 kiloelectronvolts band, both of the thermal components are required to vary when all epochs are considered. We also revisit the search for iron absorption features by leveraging the high-energy NuSTAR data to improve our sensitivity to extreme velocity outflows in light of the ultra-fast outflow recently detected in NGC 1313 X-1. Iron absorption from a similar outflow along our line of sight can be ruled out in this case. We discuss these results in the context of super-Eddington accretion models that invoke a funnel-like geometry for the inner flow, and propose a scenario in which we have an almost face-on view of a funnel that expands to larger radii with increasing flux, resulting in an increasing degree of geometrical collimation for the emission from intermediate-temperature regions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46238 , Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 839; 2; 105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Quantum electrodynamics in very strong Coulomb fields is one scope which has not yet been tested experimentally with sufficient accuracy to really determine whether the perturbative approach is valid. One sensitive test is the determination of the 1s Lamb shift in highly-charged very heavy ions. The 1s Lamb shift of hydrogen-like lead (Pb81+) and gold (Au78+) has been determined using the novel detector concept of silicon microcalorimeters for the detection of hard x-rays. The results of (260 +/- 53) eV for lead and (211 +/- 42) eV for gold are within the error bars in good agreement with theoretical predictions. To our knowledge, for hydrogen-like lead, this represents the most accurate determination of the 1s Lamb shift.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46237 , Journal of Physics B: Atomic, Molecular and Optical Physics (ISSN 0953-4075) (e-ISSN 1361-6455); 50; 5; 055603
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: The spaceborne AVHRR sensors have provided a data record approaching 40 years, which is a crucial asset for studying the long-term trends of aerosol properties on both a global and regional basis. However, due to the limitations on its channels and information content, aerosol optical depth (AOD) data from AVHRR over land are still largely lacking. In this paper, we describe a new physics-based algorithm to retrieve global aerosol properties over both land and ocean from AVHRR for the first time. The over-land algorithm is an extension of our SeaWiFSMODIS Deep Blue algorithm, while a simplified version of the Satellite Ocean Aerosol Retrieval (SOAR) algorithm is used over ocean. We compare the retrieved AVHRR AOD values with those from MODIS collection 6 aerosol products on a daily and seasonal basis, and find in general good agreement between the two. For the satellites with equatorial crossing times within two hours of solar noon, the spatial coverage of the AVHRR aerosol product is comparable to that of MODIS, except over very bright arid regions (such as the Sahara and deserts in the Arabian Peninsula), where the underlying surface reflectance at 630 nm reaches the critical surface reflectance. Based upon comparisons of the AVHRR AOD against the AERONET data, the preliminary results indicate that the expected error is around +/-(0.03+15%) over ocean and +/-(0.05+25%) over land for this first version of the AVHRR aerosol products. Consequently, these new AVHRR aerosol products can contribute important building blocks for constructing a consistent long-term data record for climate studies.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN45133 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 18; 9968-9989
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M17-6129 , 2017 Contamination, Coatings, Materials, and Planetary Protection Workshop; Jul 18, 2017 - Jul 20, 2017; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Oxygen fugacity plays an important role in determining the detailed physical and chemical aspects of planets and their building blocks. Basic chemical properties such as the amount of oxidized Fe in a mantle (as FeO), the nature of alloying elements in the core (S, C, H, O, Si), and the solubility of various volatile elements in the silicate and metallic portions of embryos and planets can influence physical properties such as the size of the core, the liquidus and solidus of the mantle and core, and the speciation of volatile compounds contributing to atmospheres. This paper will provide an overview of the range of fO2 variation observed in primitive and differentiated materials that may have participated in accretion (cosmic dust, Star-dust and meteorites), a comparison to observations of planetary fO2 (Mercury, Mars and Earth), and a discus-sion of timing of variation of fO2 within both early and later accreted materials. This overview is meant to promote discussion and interaction between students of these two stages of planet formation to identify areas where more work is needed.
    Keywords: Astrophysics
    Type: JSC-CN-39953 , Accretion: Building New Worlds Conference; Aug 15, 2017 - Aug 18, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN45865 , GOFC-GOLD Anniversary and Regional Networks Summit; Sep 13, 2017 - Sep 15, 2017; Tbilisi; Georgia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The Langley mobile ozone lidar (LMOL) is a mobile ground-based ozone lidar system that consists of a pulsed UV laser producing two UV wavelengths of 286 and 291 nm with energy of approximately 0.2 mJ/pulse 0.2 mJ/pulse and repetition rate of 1 kHz. The 527 nm pump laser is also transmitted for aerosol measurements. The receiver consists of a 40 cm parabolic telescope, which is used for both backscattered analog and photon counting. The lidar is very compact and highly mobile. This demonstrates the utility of very small lidar systems eventually leading to space-based ozone lidars. The lidar has been validated by numerous ozonesonde launches and has provided ozone curtain profiles from ground to approximately 4 km in support of air quality field missions.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-21440 , Applied Optics; 56; 3; 721-730
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration coefficients. Then VIRS is used as a diurnal calibration reference transfer to produce hourly corrections of GEOsat IR imager BT. For the 9 three-axis stabilized GEO imagers concurrent with VIRS, the midnight effect increased the BT on average by 0.5 K (11 microns) and 0.4 K (12 microns), with a peak at approx.01:00 local time. As expected, the spin-stabilized GEOsats revealed a smaller diurnal temperature cycle (mostly 〈 0.2 K) with inconsistent peak hours.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-26420 , SPIE Optics and Photonics Conference; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN45863 , Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) Regional Networks Summit; Sep 13, 2017 - Sep 15, 2017; Tbilisi; Georgia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: This paper describes how the Orion program is implementing new and innovative test approaches and strategies in an evolving development environment. The early flight test spacecraft are evolving in design maturity and complexity requiring significant changes in the ground test operations for each mission. The testing approach for EM-2 is planned to validate innovative Orion production acceptance testing methods to support human exploration missions in the future. Manufacturing and testing at Kennedy Space Center in the Neil Armstrong Operations and Checkout facility will provide a seamless transition directly to the launch site avoiding transportation and checkout of the spacecraft from other locations.
    Keywords: Engineering (General)
    Type: KSC-E-DAA-TN45646 , AIAA Space 2017 Conference; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the 'red' (680 nm) channels, EPIC also has the O2 A-band (764+/-0.2 nm) and B-band (687.75+/-0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined as the difference between NIR and 'red' channels normalized to their sum. However, the use of the O2 B-band instead of the 'red' channel mitigates the effect of atmosphere on remote sensing of surface reflectance because O2 reduces contribution from the radiation scattered by the atmosphere. Applying the radiative transfer theory and the spectral invariant approximation to EPIC observations, the paper provides supportive arguments for using the O2 band instead of the red channel for monitoring vegetation dynamics. Our results suggest that the use of the O2 B-band enhances the sensitivity of the top-of-atmosphere NDVI to the presence of vegetation.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN45511 , Journal of Quantitative Spectroscopy and Radiative Transfer (ISSN 0022-4073); 191; 7-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: During its first 18 years of operation, the cold (about -60degC) optical blocking filters of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination, which attenuates low-energy x rays. Over the past several years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. This paper, the fourth on this topic, reports the results of recent contamination-migration simulations and their relevance to a decision whether to bake-out the ACIS instrument.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN46438 , Optics and Photonics Conference; Aug 06, 2017 - Aug 08, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol effects in the EO derived reflectances.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN45201 , Remote Sensing (e-ISSN 2072-4292); 9; 6; 562
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46380 , Astronomy and Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 604; A79
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: To better understand the life-essential cycles and processes of our planet and to further develop remote sensing (RS) technology, there is an increasing need for models that simulate the radiative budget (RB) and RS acquisitions of urban and natural landscapes using physical approaches and considering the three-dimensional (3-D) architecture of Earth surfaces. Discrete anisotropic radiative transfer (DART) is one of the most comprehensive physically based 3-D models of Earth-atmosphere radiative transfer, covering the spectral domain from ultraviolet to thermal infrared wavelengths. It simulates the optical 3-DRB and optical signals of proximal, aerial, and satellite imaging spectrometers and laser scanners, for any urban and/or natural landscapes and for any experimental and instrumental configurations. It is freely available for research and teaching activities. In this paper, we briefly introduce DART theory and present recent advances in simulated sensors (LiDAR and cameras with finite field of view) and modeling mechanisms (atmosphere, specular reflectance with polarization and chlorophyll fluorescence). A case study demonstrating a novel application of DART to investigate urban landscapes is also presented.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN46112 , IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (ISSN 1939-1404) (e-ISSN 2151-1535); 10; 6; 2640-2649
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) is currently flying on NASA's Earth Observing System Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS reflective solar bands in the visible wavelength range are known to be sensitive to polarized light based on prelaunch polarization sensitivity tests. After about five years of on-orbit operations, it was discovered that the polarization sensitivity at short wavelengths had shown a noticeable increase. In this paper, we examine the impact of polarization on measured top-of-atmosphere (TOA) reflectance based on MODIS Collection-6 L1B over pseudo invariant desert sites. The standard polarization correction equation is used in combination with simulated at-sensor radiances using the second simulation of a satellite signal in the Solar Spectrum, Vector Radiative Transfer Code (6SV). We ignore the polarization contribution from the surface and a ratio approach is used for both 6SV-derived in put parameters and observed TOA reflectance. Results indicate that significant gain corrections up to 25% are required near the end of scan for the 412 and 443 nm bands. The polarization correction reduces the seasonal fluctuations in reflectance trends and mirror side ratios from 30% and 12% to 10% and 5%, respectively, for the two bands. Comparison of the effectiveness of the polarization correction with the results from the NASA Ocean Biology Processing Group shows a good agreement in the corrected reflectance trending results and their seasonal fluctuations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN46007 , IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); 55; 7; 4168 - 4176
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA's previous satellite era (1980 - onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations from ground, aircraft, and shipborne instruments. We demonstrate the positive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN45926 , Journal of Climate (ISSN 0894-8755) (e-ISSN 1520-0442); 30; 17; 6823–6850
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc (parsec) -scale torus in AGNs (Active Galactic Nuclei). Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45951 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 842; 1; 43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: X-ray observations of supernova remnants (SNRs) allow us to investigate the chemical inhomogeneity of ejecta, offering unique insight into the nucleosynthesis in supernova explosions. Here we present detailed imaging and spectroscopic studies of the Fe knot located along the eastern rim of the Type Ia SNR Tycho ( SN 1572) using Suzaku and Chandra long-exposure data. Surprisingly, the Suzaku spectrum of this knot shows no emission from Cr, Mn, or Ni, which is unusual for the Fe-rich regions in this SNR. Within the framework of the canonical delayed-detonation models for SN Ia, the observed mass ratios M(sub Cr)/M(sub Fe) is less than 0.023, M(sub Mn)/M(sub Fe) is less than 0.012, and M(sub Ni)/M(sub Fe) is less than 0.029 (at 90% confidence) can only be achieved for a peak temperature of (5.3 - 5.7) x 10(exp. 9) K and a neutron excess of approximately less than 2.0 x 10(exp. -3). These constraints rule out the deep, dense core of a Chandrasekhar-mass white dwarf as the origin of the Fe knot and favor either incomplete Si burning or an Alpha-rich freeze-out regime, probably close to the boundary. An explosive He burning regime is a possible alternative, although this hypothesis is in conflict with the main properties of this SNR.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45948 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 834; 2; 124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: We analyze dispersion measure(DM) variations of 37 millisecond pulsars in the nine-year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show both effects. Of the four pulsars with linear trends that have line-of-sight velocity measurements, three are consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and we show that the presence of other trends and localized features or gradients in the interstellar medium is the most likely cause.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45943 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 841; 2; 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57 on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud-Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high-resolution regional chemical transport modeling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN45973 , Geophysical Research Letters (ISSN 0094-8276); 44; 15; 7965-7974
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be bottom-heavy for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g., Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m 〈 or approx. = 0.5 Stellar Mass) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m 〉 or approx. = 8 Stellar Mass) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. searched for evidence of this trend and found that the observed number of LMXBs per unit K-band luminosity (N/LK) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory and Hubble Space Telescope observations of seven low-mass ellipticals where N/LK is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/LK. We reproduce the result of Peacock et al., strengthening the constraint that the slope of the IMF at m 〉 or approx. = 8 Stellar Mass must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope (alpha1 = 3.84) for stars 〈 0.5 Stellar Mass (as suggested by near-IR indices), and that flattens out (alpha2 = 2.14) for stars 〉 0.5 Stellar Mass, and discuss its wider ramifications and limitations.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45844 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 835; 2; 183
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model.
    Keywords: Engineering (General)
    Type: ICES-2017-161 , KSC-E-DAA-TN39776 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN45243 , Optics and Photonics Conference; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Radiated emissions measurements as specified by MIL-STD-461 are performed in the frequency domain, which is best suited to continuous wave (CW) types of signals. However, many platforms implement signals that are single event pulses or transients. Such signals can potentially generate momentary radiated emissions that can cause interference in the system, but they may be missed with traditional measurement techniques. This demonstration provides measurement and analysis techniques that effectively evaluate the potential emissions from such signals in order to evaluate their potential impacts to system performance.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN45424 , 2017 IEEE International Symposium on Electromagnetic Compatibility, Signal and Power Integrity; Aug 07, 2017 - Aug 11, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earths orbit. We investigate two scenarios that involve evolution of the Earth-like planets orbital eccentricity from 0 to 0.066 on a time scale of 4500 years, and from 0 to 0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on time scales of 109 years. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitabilty of these worlds. These are the first such 3-D GCM simulations using a fully-coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN38877 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 835; 1; L1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: A coherent bistatic vegetation scattering model, based on a Monte Carlo simulation, is being developed to simulate polarimetric bi-static reflectometry at VHF/UHF-bands (240-270 MHz). The model is aimed to assess the value of geostationary satellite signals of opportunity to enable estimation of the Earth's biomass and root-zone soil moisture. An expression for bistatic scattering from a vegetation canopy is derived for the practical case of a ground-based/low altitude platforms with passive receivers overlooking vegetation. Using analytical wave theory in conjunction with distorted Born approximation (DBA), the transmit and receive antennas effects (i.e., polarization, orientation, height, etc.) are explicitly accounted for. Both the coherency nature of the model (joint phase and amplitude information) and the explicit account of system parameters (antenna, altitude, polarization, etc) enable one to perform various beamforming techniques to evaluate realistic deployment configurations. In this paper, several test scenarios will be presented and the results will be evaluated for feasibility for future biomass and root-zone soil moisture application using geostationary communication satellite signals of opportunity at low frequencies.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN41661 , 2017 IEEE International Geoscience and Remote Sensing Symposium; Jul 23, 2017 - Jul 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Established approaches involve measurements in the thermal infrared and the 900-2000nm reflective infrared. Less popular UV-visible-NIR techniques presumably deserve research attention, because photochemical changes linked to plant water status manifest spectral light scattering and absorption changes. Here we monitored the visible and NIR light reflected from the leaf interior as well as the leaf transmittance as the relative water content of corn (Zeamays L.) leaves decreased. Our results highlight the importance of both scattering effects and effects due to absorption by leaf pigments.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN41962 , 2017 IEEE International Geoscience and Remote Sensing Symposium; Jul 23, 2017 - Jul 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN43431-1 , Detection and Measurement of RFI in Radio Astronomy; Jun 08, 2017 - Jun 09, 2017; Yebes; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN45461 , SPIE Optics + Photonics; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...