ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (233)
  • Elsevier  (180)
  • Frontiers  (35)
  • GEOMAR  (17)
  • Frontiers Media
  • 2015-2019  (233)
  • 1945-1949
  • 2017  (233)
Collection
Source
Years
  • 2015-2019  (233)
  • 1945-1949
Year
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • The Fram Slide Complex has been active from late Miocene to late Pleistocene. • Local processes were critical for slope stability in the Fram Strait area. • Toe erosion caused by normal faulting may have led to retrogressive failure. • Low gradient contourite drifts might smooth and stabilize submarine slopes. • Low tsunami potential from the Fram Slide Complex could increase in the future. Abstract The best known submarine landslides on the glaciated NW European continental margins are those at the front of cross-shelf troughs, where the alternation of rapidly deposited glycogenic and hemi pelagic material generates sedimentary overpressure. Here, we investigate landslides in two areas built of contourite drifts bounded seaward by a ridge-transform junction. Seismic and bathymetric data from the Fram Slide Complex are compared with the tectonically similar Vastness area ~ 120 km to the south, to analyze the influence of local and regional processes on slope stability. These processes include tectonic activity, changes of climate and oceanography, gas hydrates and fluid migration systems, slope gradient, toe erosion and style of contourite deposition. Two areas within the Fram Slide Complex underwent different phases of slope failures, whereas there is no evidence at all for major slope failures in the Vastness area. The comparison cannot reveal the distinct reason for slope failure but demonstrates the strong impact of variation in the local controls on slope stability. The different failure chronologies suggest that toe erosion, which is dependent on the throw of normal faults, and the different thickness and geometry of contourite deposits can result in a critical slope morphology and exert pronounced effects on slope stability. These results highlight the limitations of regional hazard assessments and the need for multi-disciplinary investigations, as small differences in local controlling factors led to substantially different slope failure histories.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) – Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Highlights • Receiver functions from ocean-bottom seismometer stations reveal no significant crustal thickening in the surrounding of the Tristan da Cunha hot spot. • The mantle transition zone to the NW of Tristan da Cunha is thickened and cool. • The mantle transition zone is potentially thinned to the south/southwest of Tristan da Cunha. • A thickness of 60 to 75 km beneath Tristan da Cunha argues for a compositional control on the seismological lithosphere in the South Atlantic. Abstract The most prominent hotspot in the South Atlantic is Tristan da Cunha, which is widely considered to be underlain by a mantle plume. But the existence, location and size of this mantle plume have not been established due to the lack of regional geophysical observations. A passive seismic experiment using ocean bottom seismometers aims to investigate the lithosphere and upper mantle structure beneath the hotspot. Using the Ps receiver function method we calculate a thickness of 5 to 8 km for the oceanic crust at 17 ocean-bottom stations deployed around the islands. Within the errors of the method the thickness of the oceanic crust is very close to the global mean. The Tristan hotspot seems to have contributed little additional magmatic material or heat to the melting zone at the mid-oceanic ridge, which could be detected as thickened oceanic crust. Magmatic activity on the archipelago and surrounding seamounts seems to have only effected the crustal thickness locally. Furthermore, we imaged the mantle transition zone discontinuities by analysing receiver functions at the permanent seismological station TRIS and surrounding OBS stations. Our observations provide evidence for a thickened (cold) mantle transition zone west and northwest of the islands, which excludes the presence of a deep-reaching mantle plume. We have some indications of a thinned, hot mantle transition zone south of Tristan da Cunha inferred from sparse and noisy observations, which might indicate the location of a Tristan mantle plume at mid-mantle depths. Sp receiver functions image the base of lithosphere at about 60 to 75 km beneath the islands, which argues for a compositionally controlled seismological lithosphere-asthenosphere boundary beneath the study area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Highlights • Observations show that formation of sediment-laden sea ice occurs in coastal polynyas in winter. • Sea ice rafted sediments are a significant component of the Laptev Sea’s sediment budget. • No observational evidence for sediment entrainment into sea ice in mid-shelf polynyas at water depth greater than 20 m. Abstract Sea ice is an important vehicle for sediment transport in the Arctic Ocean. On the Laptev Sea shelf (Siberian Arctic) large volumes of sediment-laden sea ice are formed during freeze-up in autumn, then exported and transported across the Arctic Ocean into Fram Strait where it partly melts. The incorporated sediments are released, settle on the sea floor, and serve as a proxy for ice-transport in the Arctic Ocean on geological time scales. However, the formation process of sediment-laden ice in the source area has been scarcely observed. Sediment-laden ice was sampled during a helicopter-based expedition to the Laptev Sea in March/April 2012. Sedimentological, biogeochemical and biological studies on the ice core as well as in the water column give insights into the formation process and, in combination with oceanographic process studies, on matter fluxes beneath the sea ice. Based on satellite images and ice drift back-trajectories the sediments were likely incorporated into the sea ice during a mid-winter coastal polynya near one of the main outlets of the Lena River, which is supported by the presence of abundant freshwater diatoms typical for the Lena River phytoplankton, and subsequently transported about 80 km northwards onto the shelf. Assuming ice growth of 12 to 19 cm during this period and mean suspended matter content in the newly formed ice of 91.9 mg l-1 suggests that a minimum sediment load of 8.4x104 t might have been incorporated into sea ice. Extrapolating these sediment loads for the entire Lena Delta region suggests that at least 65% of the estimated sediment loads which are incorporated during freeze-up, and up to 10% of the annually exported sediment load may be incorporated during an event such as described in this paper.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: The recent volcanic eruptions of Eyjafjallajökull 2010 and Grímsvötn 2011 demonstrated the risks that mediumsized explosive Icelandic eruptions pose to the North Atlantic region. Using the Eyjafjallajökull 2010 eruption as a case study, we assess how traceable such eruptions are in the marine sedimentary record at medial distances from the source and investigate which factors have affected the particle transport to the marine sedimentary archive. During R/V Poseidon cruise 457, we recovered 13 box cores at 100–1600 m water depths and distances of 18–180 km southwest, south, and east of Iceland. Volcanic glass shards from the uppermost surface sediment were analyzed for their major element composition by electron microprobe and assigned to their eruptive source by geochemical fingerprinting. The predominantly basaltic particles are mostly derived from the Katla, Grímsvötn-Lakagígar, and Bárðarbunga-Veiðivötn volcanic systems. We also identified rhyolitic particles from the Askja 1875 and Öræfajökull 1362 eruptions. Only three out of almost 900 analyzed glass shards are derived from the recent Eyjafjallajökull 2010 eruption, suggesting that medium-sized eruptions are only poorly preserved in marine sediments located at medial distances southwest to east of Iceland. We conclude that the frequency of past medium-sized eruptions is likely higher than detectable in this archive.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Highlights: • Fungal infections represent an increasing threat to human health. • Fungal infections in plants are a worldwide problem to the agricultural industry. • Diverse antifungal compounds were isolated from different marine organisms. • The number of new antifungal marine natural products is rapidly developing. • Marine sponges and bacteria are the predominant sources for antifungal compounds. Abstract: Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: The active volcanic island Tristan da Cunha, located at the southwestern and youngest end of the Walvis Ridge - Tristan/Gough hotspot track, is believed to be the surface expression of a huge thermal mantle anomaly. While several criteria for the diagnosis of a classical hotspot track are met, the Tristan region also shows some peculiarities. Consequently it is vigorously debated if the active volcanism in this region is the expression of a deep mantle plume, or if it is caused by shallow plate tectonics and the interaction with the nearby Mid-Atlantic Ridge. Because of a lack of geophysical data in the study area, no model or assumption has been completely confirmed. We present the first amphibian P-wave finite-frequency travel time tomography of the Tristan da Cunha region, based on cross-correlated travel time residuals of teleseismic earthquakes recorded by 24 ocean-bottom seismometers. The data can be used to image a low velocity structure southwest of the island. The feature is cylindrical with a radius of ~ 100 km down to a depth of 250 km. We relate this structure to the origin of Tristan da Cunha and name it the Tristan conduit. Below 250 km the low velocity structure ramifies into narrow veins, each with a radius of ~ 50 km. Furthermore, we imaged a linkage between young seamounts southeast of Tristan da Cunha and the Tristan conduit.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: Highlights: • Improved Claisen-Schmidt condensation using lithium hydroxide monohydrate in 1,4-dioxane. • Pyridylchalcones show good activity and selectivity against Trypanosoma brucei. • Pyridylchalcones show little activity against Leishmania donovani. • Promising leads in the development of novel compounds for the treatment of sleeping sickness. A library of novel pyridylchalcones were synthesised and screened against Trypanosoma brucei rhodesiense. Eight were shown to have good activity with the most potent 8 having an IC50 value of 0.29 μM. Cytotoxicity testing with human KB cells showed a good selectivity profile for this compound with a selectivity index of 47. Little activity was seen when the library was tested against Leishmania donovani. In conclusion, pyridylchalcones are promising leads in the development of novel compounds for the treatment of human African trypanosomiasis (HAT).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: The sediment-water interface is an important site for material exchange in marine systems and harbor unique microbial habitats. The flux of nutrients, metals, and greenhouse gases at this interface may be severely dampened by the activity of microorganisms and abiotic redox processes, leading to the “benthic filter” concept. In this study, we investigate the spatial variability, mechanisms and quantitative importance of a microbially-dominated benthic filter for dissolved sulfide in the Eastern Gotland Basin (Baltic Sea) that is located along a dynamic redox gradient between 65 and 173 m water depth. In August-September 2013, high resolution (0.25 mm minimum) vertical microprofiles of redox-sensitive species were measured in surface sediments with solid-state gold-amalgam voltammetric microelectrodes. The highest sulfide consumption (2.73–3.38 mmol m−2 day−1) occurred within the top 5 mm in sediments beneath a pelagic hypoxic transition zone (HTZ, 80–120 m water depth) covered by conspicuous white bacterial mats of genus Beggiatoa. A distinct voltammetric signal for polysulfides, a transient sulfur oxidation intermediate, was consistently observed within the mats. In sediments under anoxic waters (〉140 m depth), signals for Fe(II) and aqueous FeS appeared below a subsurface maximum in dissolved sulfide, indicating a Fe(II) flux originating from older sediments presumably deposited during the freshwater Ancylus Lake that preceded the modern Baltic Sea. Our results point to a dynamic benthic sulfur cycling in Gotland Basin where benthic sulfide accumulation is moderated by microbial sulfide oxidation at the sediment surface and FeS precipitation in deeper sediment layers. Upscaling our fluxes to the Baltic Proper; we find that up to 70% of the sulfide flux (2281 kton yr−1) toward the sediment-seawater interface in the entire basin can be consumed at the microbial mats under the HTZ (80–120 m water depth) while only about 30% the sulfide flux effuses to the bottom waters (〉120 m depth). This newly described benthic filter for the Gotland Basin must play a major role in limiting the accumulation of sulfide in and around the deep basins of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl–H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled by their high volatility, whereas the strong enrichment of REY is also a consequence of the elevated concentrations in the host rocks. However, a direct contribution of metals such as As from magmatic degassing cannot be ruled out. The different fluid end-member composition of individual vent sites could be explained by mixing of vapour phase fluids with another fluid phase of different water/rock interaction history.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-02-06
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-06
    Description: Nitrous oxide (N2O) is a powerful greenhouse gas principally produced by nitrification and denitrification in the marine environment. Observations were made in the eastern South Pacific (ESP), between 10° and 60°S, and ~75°–88°W, from intermediate waters targeting Antarctic Intermediate Water (AAIW) at potential density of 27.0–27.1 kg m−3. Between 60° and 20°S, a gradual equatorward increase of N2O from 8 to 26 nmol L−1 was observed at density 27.0–27.1 kg m−3 where AAIW penetrates. Positive correlations were found between apparent N2O production (ΔN2O) and O2 utilization (AOU), and between ΔN2O and NO−3, which suggested that local N2O production is predominantly produced by nitrification. Closer to the equator, between 20° and 10°S at AAIW core, a strong N2O increase up to 75 nmol L−1 was observed. Because negative correlations were found between ΔN2O vs. NO−3 and ΔN2O vs. N* (a Nitrogen deficit index) and because ΔN2O and AOU do not follow a linear trend, we suspect that, in addition to nitrification, denitrification also takes place in N2O cycling. By making use of water mass mixing analyses, we show that an increase in N2O occurs in the region where high oxygen from AAIW merges with low oxygen from Equatorial Subsurface Water (ESSW), creating favorable conditions for local N2O production. We conclude that the non-linearity in the relationship between N2O and O2 is a result of mixing between two water masses with very different source characteristics, paired with the different time frames of nitrification and denitrification processes that impact water masses en route before they finally meet and mix in the ESP region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-06
    Description: The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (〈C14) and longer chain n-alkanes (〉C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-06
    Description: Highlights • Crustal structure of Walvis Ridge reveals high seismic velocities in the lower crust intruding the African continent. • This modified crust is localized to approx. 100 × 100 km within the continent. • No indication for a large plume head observed The opening of the South Atlantic is a classical example for a plume related continental breakup. Flood basalts are present on both conjugate margins as well as aseismic ridges connecting them with the current plume location at Tristan da Cunha. To determine the effect of the proposed plume head on the continental crust, we acquired wide-angle seismic data at the junction of the Walvis Ridge with the African continent and modelled the P-wave velocity structure in a forward approach. The profile extends 430. km along the ridge and continues onshore to a length of 720. km. Crustal velocities beneath the Walvis Ridge vary between 5.5. km/s and 7.0. km/s, a typical range for oceanic crust. The crustal thickness of 22. km, however, is approximately three times larger than of normal oceanic crust. The continent-ocean transition is characterized by 30. km thick crust with strong lateral velocity variations in the upper crust and a high-velocity lower crust (HVLC), where velocities reach up to 7.5. km/s. The HVLC is 100 to 130. km wider at the Walvis Ridge than it is farther south, and impinges onto the continental crust of the Kaoko fold belt. Such high seismic velocities indicate Mg-rich igneous material intruded into the continental crust during the initial rifting stage. However, the remaining continental crust seems unaffected by intrusions and the root of the 40. km-thick crust of the Kaoko belt is not thermally abraded. We conclude that the plume head did not modify the continental crust on a large scale, but caused rather local effects. Thus, it seems unlikely that a plume drove or initiated the breakup process. We further propose that the plume already existed underneath the continent prior to the breakup, and ponded melt erupted at emerging rift structures providing the magma for continental flood basalts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 124 . pp. 55-65.
    Publication Date: 2020-02-06
    Description: Species distribution modelling can be applied to identify potentially suitable habitat for species with largely unknown distributions, such as many deep-water corals. Important variables influencing species occurrence in the deep sea, e.g. substrate composition, are often not included in these modelling approaches because high-resolution data are unavailable. We investigated the relationship between substrate composition and the occurrence of the two deep-water octocoral species Primnoa resedaeformis and Paragorgia arborea, which require hard substrate for attachment. On a scale of 10s of metres, we analysed images of the seafloor taken at two locations inside the Northeast Channel Coral Conservation Area in the Northwest Atlantic. We interpolated substrate composition over the sampling areas and determined the contribution of substrate classes, depth and slope to describe habitat suitability using maximum entropy modelling (Maxent). Substrate composition was similar at both sites - dominated by pebbles in a matrix of sand (〉80%) with low percentages of suitable substrate for coral occurrence. Coral abundance was low at site 1 (0.9 colonies of P. resedaeformis per 100m2) and high at site 2 (63 colonies of P. resedaeformis per 100m2) indicating that substrate alone is not sufficient to explain varying patterns in coral occurrence. Spatial interpolations of substrate classes revealed the difficulty to accurately resolve sparsely distributed boulders (3-5% of substrate). Boulders were by far the most important variable in the habitat suitability model (HSM) for P. resedaeformis at site 1, indicating the fundamental influence of a substrate class that is the least abundant. At site 2, HSMs identified cobbles and sand/pebble as the most important variables for habitat suitability. However, substrate classes were correlated making it difficult to determine the influence of individual variables. To provide accurate information on habitat suitability for the two coral species, substrate composition needs to be quantified so that small fractions (〈20% contribution of certain substrate class) of suitable substrate are resolved. While the collection and analysis of high-resolution data is costly and spatially limited, the required resolution is unlikely to be achieved in coarse-scale interpolations of substrate data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-04-23
    Description: Highlights • A rapid automated analytical method for simultaneous analysis of multiple trace metals in small volumes of seawater. • Isotope dilution is utilized for concentration quantification, eliminating sensitivity to variation in recovery. • Minimal variability in automated sample loading and elution volumes allows precise quantification via standard addition for monoisotopic elements. • High accuracy was confirmed by analysis of reference seawaters SAFe S, D1 and D2. • The utilized resin (WAKO) demonstrated improved recoveries for most tested trace metals in comparison to a NOBIAS Chelate-PA1 resin. A rapid, automated, high-throughput analytical method capable of simultaneous analysis of multiple elements at trace and ultratrace levels is required to investigate the biogeochemical cycle of trace metals in the ocean. Here we present an analytical approach which uses a commercially available automated preconcentration device (SeaFAST) with accurate volume loading and in-line pH buffering of the sample prior to loading onto a chelating resin (WAKO) and subsequent simultaneous analysis of iron (Fe), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), lead (Pb), cobalt (Co) and manganese (Mn) by high-resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS). Quantification of sample concentration was undertaken using isotope dilution for Fe, Zn, Cu, Ni, Cd and Pb, and standard addition for Co and Mn. The chelating resin is shown to have a high affinity for all analyzed elements, with recoveries between 83 and 100% for all elements, except Mn (60%) and Ni (48%), and showed higher recoveries for Ni, Cd, Pb, Co and Mn in direct comparison to an alternative resin (NOBIAS Chelate-PA1). The reduced recoveries for Ni and Mn using the WAKO resin did not affect the quantification accuracy. A relatively constant retention efficiency on the resin over a broad pH range (pH 5–8) was observed for the trace metals, except for Mn. Mn quantification using standard addition required accurate sample pH adjustment with optimal recoveries at pH 7.5 ± 0.3. UV digestion was necessary to increase recovery of Co and Cu in seawater by 15.6% and 11.4%, respectively, and achieved full break-down of spiked Co-containing vitamin B12 complexes. Low blank levels and detection limits could be achieved (e.g., 0.029 nmol L⁻¹ for Fe and 0.028 nmol L⁻¹ for Zn) with the use of high purity reagents. Precision and accuracy were assessed using SAFe S, D1, and D2 reference seawaters, and results were in good agreement with available consensus values. The presented method is ideal for high throughput simultaneous analysis of trace elements in coastal and oceanic seawaters. We present a successful application of the analytical method to samples collected in June 2014 in the Northeast Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-06
    Description: Biodiversity and conservation data are generally costly to collect, particularly in the marine realm. Hence, data collected for a given—often scientific—purpose are occasionally contributed toward secondary needs, such as policy implementation or other types of decision-making. However, while the quality and accessibility of marine biodiversity and conservation data have improved over the past decade, the ways in which these data can be used to develop and implement relevant management and conservation measures and actions are not always explicit. For this reason, there are a number of scientifically-sound datasets that are not used systematically to inform policy and decisions. Transforming these marine biodiversity and conservation datasets into knowledge products that convey the information required by policy- and decision-makers is an important step in strengthening knowledge exchange across the science-policy interface. Here, we identify seven characteristics of a selection of online biodiversity and conservation knowledge products that contribute to their ability to support policy- and decision-making in the marine realm (as measured by e.g., mentions in policy resolutions/decisions, or use for reporting under selected policy instruments; use in high-level screening for areas of biodiversity importance). These characteristics include: a clear policy mandate; established networks of collaborators; iterative co-design of a user-friendly interface; standardized, comprehensive and documented methods with quality assurance; consistent capacity and succession planning; accessible data and value-added products that are fit-for-purpose; and metrics of use collated and reported. The outcomes of this review are intended to: (a) support data creators/owners/providers in designing and curating biodiversity and conservation knowledge products that have greater influence, and hence impact, in policy- and decision-making, and (b) provide recommendations for how decision- and policy-makers can support the development, implementation, and sustainability of robust biodiversity and conservation knowledge products through the framing of marine policy and decision-making frameworks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-06-07
    Description: Highlights • Chronometric dating of Neanderthal remains to 190 ka from the volcanic context of Wannen-Ochtendung. • Red thermoluminescence dating (RTL) of heated detritical quartz extracted from crustal xenoliths • Shortened and full single aliquot regeneration (SAR) protocols agree. • Perfect agreement of RTL dating with argon dating for the identical events Abstract The partial neurocranium of a Neanderthal was recovered from deposits related to the latest volcanic activities recorded at the Wannen Volcanic Group. This last volcanic event provided heated mineral samples for thermoluminescence (TL) and Ar/Ar dating, allowing the estimation of the age of the hominin remains. Novel TL methods using a much less time consuming measurement protocol and employing the orange-red TL-signal (R-TL) were applied, resulting in ages of 177 ± 18 ka and 176 ± 21 ka for two samples of different geology. This new data is compared with standard TL-approaches for one of the samples, which provide an age of 187 ± 29 ka. The luminescence data is contrasted with a newly obtained Ar/Ar-age of 191 ± 12 ka for a sample from the identical heating event. All TL-dating results provide congruent results and are in perfect accordance with Ar/Ar dating, showing the applicability and accuracy of the new TL approach employed. These data also agree well with the geological age estimates and other chronometric data, placing the volcanism at Wannen to around 180–190 ka and thus providing a Saalian age of the fossil. Such an old age, however, contrasts to the reported preliminary placement of this specimen late in the Neanderthal lineage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 126 . pp. 40-49.
    Publication Date: 2020-02-06
    Description: Highlights: • We investigated growth and longevity of three deep-sea squids from the Monterey Bay. • We found daily growth increments in the statoliths of two deep-sea squids. • The estimated longevities are higher than those of shallow water relatives. • The estimated growth rates suggest a reduced pace of life in deep-sea squids. Abstract Coastal and epipelagic cephalopods are among the fastest growing invertebrates, with life cycles of typically 1 year or less. Evidence is accumulating that deep-sea taxa often live longer and grow slower than their shallow water relatives. We test the hypothesis that deep-sea squid show increased longevity and reduced growth rates compared to coastal and epipelagic species, by validation experiments and quantification of statolith increments of three deep-sea squids from the Monterey Submarine Canyon. The periodicity of statolith increment formation in coastal species is daily, but is unknown for deep-sea squid. Between 2010 and 2013, specimens of Chiroteuthis calyx, Galiteuthis phyllura and Octopoteuthis deletron were captured by remotely operated vehicles and trawl nets off California. ROV-captured living squid were immersed in tetracycline and kept alive in the lab for between 3 and 14 days. Correlating the number of elapsed days with the number of newly deposited statolith increments, and statolith growth after the fluorescent tetracycline mark, provided evidence of regular and daily increment deposition, in C. calyx and O. deletron. This relationship was less strong in G. phyllura and the one-increment-per-day hypothesis was not accepted for this species. Reconstructing growth rates based on statolith counts and wet weights from animals of a wide size range suggest that O. deletron is a slower growing squid (0.59% BW/day) than C. calyx (1.3% BW/day) and G. phyllura (1.2% BW/day). Octopoteuthis deletron matures at around two years, the oldest C. calyx was a mature male of 1.5 years and the eldest G. phyllura was 10 months and still immature. Maximum reported sizes for G. phyllura and C. calyx exceed those of our examined specimens, and therefore their longevity likely exceeds 2 years, in particular if the females brood their eggs. Our study supports the hypothesis that deeper living squid exhibit reduced growth rates and an increased longevity compared to shallow living species. We discuss these traits in the context of a life in the deep pelagic ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-02-06
    Description: Highlights • Identify new fine-grained hydrate filled fracture units in the Terrebonne Basin. • Identify new hydrate bearing thin sands, mostly within fractured muds. • Present detailed seismic amplitude maps of the new hydrate bearing units. • Discuss methane migration mechanisms and hydrate formation in thin sands. • Identify and discuss source-reservoir relationships between thick muds and thin sands. Abstract The interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are 〉100 m-thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grained units lack fracture features, and they contain 1–4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-02-06
    Description: Over the last decade there has been renewed interest in determining the water contents of basaltic magmas. A commonly applied method is analysis of H2O from melt inclusions in olivine. However, it is also well known that these can rapidly lose (or gain) H2O by diffusion. An alternative is to measure the H2O contents of clinopyroxene phenocrysts and use a partition coefficient (D) to estimate the original H2O content of the host magma. This approach is not without complications and several recent studies have attempted to assess the effects of diffusive loss of H2O from magmatic clinopyroxenes. In the ideal case, these crystals should be taken from rapidly cooled tephra or lapilli but such materials are not always available. In order to further assess the potential of using 5-10mm clinopyroxenes from lavas we undertook a detailed, multi-analytical investigation of clinopyroxenes from an ankaramite flow on Pico Island in the Azores. We conclude that these can be trusted to preserve (probably minimum) magmatic H2O contents if the H2O concentrations of multiple clinopyroxenes from a single sample form a linear correlation with the AlIV content that demonstrates a coupled substitution with little or no H2O loss. Conversely, if H2O contents decrease from core to rim whereas AlIV contents remain relatively constant then it is likely that those clinopyroxenes lost H2O during differentiation and/or cooling. We suspect that the olivine melt inclusions we analysed from Pico and São Miguel Islands also underwent diffusive loss of H2O. Using these criteria, we present clinopyroxene-derived magmatic H2O estimates for Corvo, Flores Faial, Pico and São Miguel Islands that range from 0.28 to 2.2wt%. When combined with published data these show that H2O contents often extend to higher values on the islands than along the adjacent mid-Atlantic ridge. These localised, elevated H2O contents can explain why the islands are emergent despite being situated away from the ridge and perhaps also the asymmetric nature of the bathymetry of the archipelago. It is possible that this H2O was recycled from material subducted very early on in Earth's history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-06
    Description: One of the major challenges in ecological stoichiometry is to establish how environmental changes in resource availability may affect both the biochemical composition of organisms and the species composition of communities. This is a pressing issue in many coastal waters, where anthropogenic activities have caused large changes in riverine nutrient inputs. Here we investigate variation in the biochemical composition and synthesis of amino acids, fatty acids (FA), and carbohydrates in mixed phytoplankton communities sampled from the North Sea. The communities were cultured in chemostats supplied with different concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) to establish four different types of resource limitations. Diatoms dominated under N-limited, N+P limited and P-limited conditions. Cyanobacteria became dominant in one of the N-limited chemostats and green algae dominated in the one P-limited chemostat and under light-limited conditions. Changes in nutrient availability directly affected amino acid content, which was lowest under N and N+P limitation, higher under P-limitation and highest when light was the limiting factor. Storage carbohydrate content showed the opposite trend and storage FA content seemed to be co-dependent on community composition. The synthesis of essential amino acids was affected under N and N+P limitation, as the transformation from non-essential to essential amino acids decreased at DIN:DIP ≤ 6. The simple community structure and clearly identifiable nutrient limitations confirm and clarify previous field findings in the North Sea. Our results show that different phytoplankton groups are capable of adapting their key biosynthetic rates and hence their biochemical composition to different degrees when experiencing shifts in nutrient availability. This will have implications for phytoplankton growth, community structure, and the nutritional quality of phytoplankton as food for higher trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-02-06
    Description: Highlight • It is important to develop systems able to detect and classify mineralized zones from waste materials while drilling deep-water; • Seismic P-wave velocities (Vp) were measured on 40 SMS and unmineralized mini-cores; • The porosity was back-calculated from Vp; • The results were compared with electrical resistivity measurements; • Using Archie’s Law, it is possible to observe that metallic conduction exists. Abstract Deep-sea mining exploration for seafloor massive sulfide (SMS) deposits is currently increasing. At present, most exploration activities are surficial and use indirect methods to identify potential sites and perform first assessments. For a proper resource estimate, however, drilling is inevitable. By using seabed drill rigs, exploration costs can be reduced considerably. SMS deposits are normally found at depths between 1000 and 4000 m and in order for deep sea mining to be implemented, reliable technologies are needed. Additionally, the development of geophysical systems that can detect and classify mineralized zones from waste materials while drilling could decrease costs and speed up offshore operations by limiting the amount of drilling of unmineralized materials. This paper shows how the physical properties of SMS can be used to discriminate between host rocks and mineralization. Seismic P-wave velocities (Vp) were measured on 40 SMS and unmineralized mini-cores. By back-calculating the porosity from Vp, comparing the results with electrical resistivity measurements, and using Archie's Law, it is possible to observe that metallic conduction exists. For deep-sea mineral exploration, the combination of seismic tests, electrical resistivity and magnetic susceptibility could support the preliminary discrimination of mineralized samples in the cores while drilling at the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-02-06
    Description: The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR). Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS). Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Micropaleontology, 135 . pp. 45-55.
    Publication Date: 2020-02-06
    Description: Highlights • Planktic foraminifera species show an Early Holocene 14C plateau analogous to the atmospheric 14C plateau at 10.2–9.6 cal ka. • Age-calibrated Early Holocene 14C plateau boundaries provide precise age control in 3 sediment cores on a 900 km long transect. • Differences between planktic foraminiferal and atmospheric 14C ages reveal the 14C reservoir age of local surface waters. • Different planktic species document different 14C reservoir ages characteristic of different surface and subsurface waters. To trace spatial variations in Holocene reservoir ages of surface and subsurface waters we studied narrowly spaced 14C records of planktic foraminifera in three high-sedimentation rate cores from the Nordic Seas, the Barents Sea continental margin and eastern Fram Strait. The two northern cores reveal a distinct Early Holocene 14C plateau in dates on the subsurface dweller Neogloboquadrina pachyderma at 9.3–9.1 14C ka. The plateau was tuned to an atmospheric 14C plateau at 9.0–8.7 14C ka that spans 10.2–9.6 calendar ka. These two plateau boundaries provide robust age control points to estimate short-term changes in sedimentation rate and to correlate paleoceanographic signals over 900 km along the West Spitsbergen Current. The difference between planktic and atmospheric 14C plateau ages suggests local 14C reservoir ages of 370–400 yr. Planktic foraminifera species that inhabit different water masses document different reservoir ages. By comparison, the subpolar N. incompta reveals a reservoir age of 150 yr, probably formed in well-mixed Atlantic-sourced waters during winter. The near-surface dweller Turborotalita quinqueloba shows an age of 290 yr in the Fram Strait, but one of 720 yr at the Barents Sea continental margin. The latter age suggests a calcification within old, meltwater-enriched Arctic surface waters admixed by the East Spitsbergen Current. Likewise, we assign an elevated reservoir age of 760 yr on mixed species at a Norwegian Sea site near 71°N to Preboreal meltwaters that spread from northern Norway far west, also documented by the spatial distribution of a coeval δ13C minimum of N. pachyderma.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-02-06
    Description: It was proposed to utilize siderite FeCO3 in mid to late Archaean Superior type banded as a proxy to constrain the CO2 partial pressure of Archaean atmospheres. Implicit in this proposition is that siderite was a primary carbonate mineral that crystallized directly from Fe2+ enriched Archaean seawater, in equilibrium with atmospheric CO2. To our knowledge that proposition has not been demonstrated to be valid. We test with water-gas exchange experiments under controlled CO2 partial pressures if siderite can be stabilized as a primary mineral in Fe2+ bearing seawater. Reduced seawater proxies enriched in Fe2+ and Mn2+ are equilibrated with reduced N2-CH4-CO2-H2 gas phases with variable CO2. The solid phases stabilized in Fe2+ enriched water compositions are amorphous ferrous iron hydroxy carbonates. Crystalline siderite FeCO3 is not found to be a stable phase. The phases precipitating from Mn2+ enriched water include crystalline rhodochrosite MnCO3 and possibly amorphous Mn-enriched phases. Based on these results we advise against using siderite in banded iron formations as a CO2 sensor for the Archaean atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-02-06
    Description: Highlights • We review the knowledge on modern high-latitude planktic foraminifers. • Subpolar species currently invade higher latitudes. • Climate change affects phenology, seawater pH, and carbon turnover. • Modern planktic foraminifers are briefly discussed for their paleoceanographic significance. Abstract Planktic foraminifers can be sensitive indicators of the changing environment including both the Arctic Ocean and Southern Ocean. Due to variability in their ecology, biology, test characteristics, and fossil preservation in marine sediments, they serve as valuable archives in paleoceanography and climate geochemistry over the geologic time scale. Foraminifers are sensitive to, and can therefore provide proxy data on ambient water temperature, salinity, carbonate chemistry, and trophic conditions through shifts in assemblage (species) composition and the shell chemistry of individual specimens. Production and dissolution of the calcareous shell, as well as growth and remineralization of the cytoplasm, affect the carbonate counter pump and to a lesser extent the soft-tissue pump, at varying regional and temporal scales. Diversity of planktic foraminifers in polar waters is low in comparison to lower latitudes and is limited to three native species: Neogloboquadrina pachyderma, Turborotalita quinqueloba, and Globigerina bulloides, of which N. pachyderma is best adapted to polar conditions in the surface ocean. Neogloboquadrina pachyderma hibernates in brine channels in the lower layers of the Antarctic sea ice, a strategy that is presently undescribed in the Arctic. In open Antarctic and Arctic surface waters T. quinqueloba and G. bulloides increase in abundance at lower polar to subpolar latitudes and Globigerinita uvula, Turborotalita humilis, Globigerinita glutinata, Globorotalia inflata, and Globorotalia crassaformis complement the assemblages. Over the past two to three decades there has been a marked increase in the abundance of Orcadia riedeli and G. uvula in the subpolar and polar Indian Ocean, as well as in the northern North Atlantic. This paper presents a review of the knowledge of polar and subpolar planktic foraminifers. Particular emphasis is placed on the response of foraminifers to modern warming and ocean acidification at high latitudes and the implications for data interpretation in paleoceanography and paleoclimate research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-02-06
    Description: High-resolution marine seismic data acquisition and subsequent analyses are highly influenced by sea conditions, directly affecting data quality and interpretation. Traditional swell effect correction methods are effective in improving reflector continuity; however, they are less useful for enhancing travel time consistency at intersection points of crossing lines. To develop a robust swell-removal technique for a set of crossing lines multi-beam echo sounder (MBES) data and Chirp sub-bottom profiler (SBP) data were acquired. After generation of a time structure map of the sea-bottom converted from the final processed multi-beam data, a moving average was used to improve the event continuity of the sea-bottom reflection of the Chirp SBP data. Using the position of the Chirp SBP data, the difference between the travel time of the sea-bottom from the smoothed map and the original travel time of the sea-bottom is calculated as a static correction. The static correction method based on the MBES data was compared and verified using three different cases: (i) simple 2D swell effect correction on a line-by-line basis, (ii) comparing the swell corrections at the crossing positions of 2D lines acquired from different dates, and (iii) comparison of ties of intersection points between 2D lines after new swell correction applied. Although a simple 2D swell correction showed great enhancement of reflector continuity, only the full static correction using the newly proposed method using MBES data produced completely corrected reflection events especially at the crossing points of 2D lines.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-02-06
    Description: Highlights • 2-D velocity models at the highest slip patch during the Chilean 2010 Mw 8.8 earthquake. • The highest slip patch correlates with large accretionary prisms. • The highest slip patch correlates with low continental slope angles. • A similar pattern is observed along the giant 1960 Mw 9.5 earthquake rupture area. Abstract Subduction megathrust earthquakes show complex rupture behaviour and large lateral variations of slip. However, the factors controlling seismic slip are still under debate. Here, we present 2-D velocity-depth tomographic models across four trench-perpendicular wide angle seismic profiles complemented with high resolution bathymetric data in the area of maximum coseismic slip of the 8.8 Maule 2010 megathrust earthquake (central Chile, 34°–36°S). Results show an abrupt lateral velocity gradient in the trench-perpendicular direction (from 5.0 to 6.0 km/s) interpreted as the contact between the accretionary prism and continental framework rock whose superficial expression spatially correlates with the slope-shelf break. The accretionary prism is composed of two bodies: (1) an outer accretionary wedge (5–10 km wide) characterized by low seismic velocities of 1.8–3.0 km/s interpreted as an outer frontal prism of poorly compacted and hydrated sediment, and (2) the middle wedge (∼50 km wide) with velocities of 3.0–5.0 km/s interpreted as a middle prism composed by compacted and lithified sediment. In addition, the maximum average coseismic slip of the 2010 megathrust event is fairly coincident with the region where the accretionary prism and continental slope are widest (50–60 km wide), and the continental slope angle is low (〈5°). We observe a similar relation along the rupture area of the largest instrumentally recorded Valdivia 1960 9.5 megathrust earthquake. For the case of the Maule event, published differential multibeam bathymetric data confirms that coseismic slip must have propagated up to ∼6 km landwards of the deformation front and hence practically the entire base of the middle prism. Sediment dewatering and compaction processes might explain the competent rheology of the middle prism allowing shallow earthquake rupture. In contrast, the outer frontal prism made of poorly consolidated sediment has impeded the rupture up to the deformation front as high resolution seismic reflection and multibeam bathymetric data have not showed evidence for new deformation in the trench region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-02-06
    Description: Highlights • New and reprocessed seismic data improved structural mapping at the Møre Margin. • Time-structure and thickness maps of the Cretaceous units have been constructed. • Stratigraphy reconstruction of a transect reveals 188 km extension. • Average stretching factor is 2.2–3.6 depending on assumed initial crustal thickness. Abstract Lithospheric stretching is the key process in forming extensional sedimentary basins at passive rifted margins. This study explores the stretching factors, resulting extension, and structural evolution of the Møre segment on the Mid-Norwegian continental margin. Based on the interpretation of new and reprocessed high-quality seismic, we present updated structural maps of the Møre margin that show very thick post-rift sediments in the central Møre Basin and extensive sill intrusion into the Cretaceous sediments. A major shift in subsidence and deposition occurred during mid-Cretaceous. One transect across the Møre continental margin from the Slørebotn Subbasin to the continent-ocean boundary is reconstructed using the basin modelling software TecMod. We test different initial crustal configurations and rifting events and compare our structural reconstruction results to stretching factors derived both from crustal thinning and the classical backstripping/decompaction approach. Seismic interpretation in combination with structural reconstruction modelling does not support the lower crustal bodies as exhumed and serpentinised mantle. Our extension estimate along this transect is ~ 188 ± 28 km for initial crustal thickness varying between 30 and 40 km.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-02-06
    Description: Olivine-hosted inclusions of silicate and sulfide melts, Cr-spinel and pyroxene were studied to estimate magma composition, temperature, pressure, and fO2 at the onset and during the silicate-sulfide immiscibility in modern arc basalt from Tolbachik volcano, Kamchatka arc. We demonstrate that the olivine phenocrysts hosting sulfide and silicate melt inclusions belong to the same population. The compositions of the silicate melt inclusions in most primitive olivine (88–91 mol% Fo) represent moderately oxidized (~ QFM + 1.1) high-MgO (up to 12–12.6 wt%) and high CaO/Al2O3 (0.8–1.2) melt that has abundances and ratios of the lithophile trace elements typical of island arc magmas. The initial volatile contents in parental Tolbachik magma are estimated from the melt inclusions and mass-balance considerations to be at least 4.9 wt% H2O, 2600 ppm S, 1100 ppm Cl, 550 ppm F, and 1200 ppm CO2. These data are used to calculate the temperature (~ 1220 °C) and minimum pressure (3 kbar) at which the beginning of crystallization and exsolution of sulfide melt took place. The presence of anhydrite, especially ubiquitous in the crystallized silicate melt associated with sulfide globules, suggest that much higher sulfur abundances prior to degassing and sulfate immiscibility and/or crystallization should be expected. We tentatively considered hydrothermal accumulations of sulfur (elemental, sulfate and sulfide) in the volcanic conduit responsible for local contamination and oversaturation of the Tolbachik magma in sulfur and related sulfide immiscibility. Coexisting sulfide and sulfate can be also interpreted in favor of the magmatic sulfide oxidation and related generation of S-rich fluids. Such fluids are expected to accumulate metals released from decomposed sulfide melts and supply significant epithermal mineralization, including native gold.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Elsevier
    In:  Current Biology, 27 (11). R489-R494.
    Publication Date: 2017-10-04
    Description: Invisible to the naked eye, yet dominating life with some 1030 cells, bacteria and archaea (referred to herein as ‘microbes’) play key roles in the global cycling of nutrients, matter and energy in our oceans. Having experimented for over 3.5 billion years since their first appearance, they are true master chemists that are capable of carrying out the most diverse and complex of chemical reactions. One of the most abundant groups, cyanobacteria, converts light into chemical energy by fixing carbon dioxide into organic matter. Part of this fixed carbon is consumed by higher trophic levels, while another fraction sinks to the deep sediments where, over geological time scales, it fossilizes into the natural resources that we tap into for our everyday lives. Despite our knowledge of their global importance and significant recent advances in marine microbiome research (Figure 1), some of the most fundamental questions still remain unanswered, and serve as active drivers of current research in this field: How many microbes are out there, and how many different types? What are they? What are their functional roles? How are they globally distributed? How do they adapt to varying environmental conditions and how will they respond to future environmental changes? This Primer provides a brief overview on how these questions have been addressed in the context of developing technologies. We discuss new insights, as well as new concepts and more refined questions, and we highlight some of the future promises and challenges that lie ahead.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 129 . pp. 1-9.
    Publication Date: 2020-02-06
    Description: Reliable very deep shipborne SBE 911plus Conductivity Temperature Depth (CTD) data to within 60m from the bottom and Kongsberg EM122 0.5° × 1° multibeam echosounder data are collected in the Challenger Deep, Mariana Trench. A new position and depth are given for the deepest point in the world's ocean. The data provide insight into the interplay between topography and internal waves in the ocean that lead to mixing of the lowermost water masses on Earth. Below 5000m, the vertical density stratification is weak, with a minimum buoyancy frequency N = 1.0 ± 0.6 cpd, cycles per day, between 6500 and 8500m. In that depth range, the average turbulence is coarsely estimated from Thorpe-overturning scales, with limited statistics to be ten times higher than the mean values of dissipation rate εT = 3 ± 2 × 10-11 m2 s-3 and eddy diffusivity KzT = 2 ± 1.5 × 10-4 m2 s-1 estimated for the depth range between 10,300 and 10,850m, where N = 2.5 ± 0.6 cpd. Inertial and meridionally directed tidal inertio-gravity waves can propagate between the differently stratified layers. These waves are suggested to be responsible for the observed turbulence. The turbulence values are similar to those recently estimated from CTD and moored observations in the Puerto Rico Trench. Yet, in contrast to the Puerto Rico Trench, seafloor morphology in the Mariana Trench shows up to 500m-high fault scarps on the incoming tectonic plate and a very narrow trench, suggesting that seafloor topography does not play a crucial role for mixing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-07-31
    Description: Chinese coastal waters support vast fisheries and vital economies, but their productivity is threatened by increasingly frequent harmful algal blooms (HABs). Here we provide direct experimental evidence that atmospheric deposition, along with riverine input, opens new niches for bloom-forming dinoflagellates and diatoms in the East China Sea (ECS) by increasing the ratio of nitrogen to phosphorus (N:P), inducing severe P limitation, and altering trace metal micronutrient inventories. Remote sensing analysis of blooms in the region showed that dinoflagellate blooms were associated with increased aerosol optical thickness and decreased sea surface temperature, whereas diatom blooms were primarily associated with seasonally decreased temperature (e.g., during spring blooms). Bottle incubation experiments revealed that aerosol additions approximating 10 days of strong deposition increased iron availability and intensified P limitation, which together promoted dinoflagellate growth in offshore waters. Diatom growth was correlated with elevated trace metal and nutrient content from aerosols. Aerosols did not induce phytoplankton growth at a station within the Yangtze River plume where light was limiting, consistent with remote sensing observations that aerosol effects are stronger in offshore waters. Eutrophication and trace metal enrichment from Yangtze River discharge together with atmospheric deposition may underlie the transition from diatom-dominated spring blooms toward more frequent spring and summer dinoflagellate blooms that has occurred over the past three decades in the ECS.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-02-06
    Description: Knowledge and understanding of geographic distributions of species is crucial for many aspects in ecology, conservation, policy making and management. In order to reach such an understanding, it is important to know abiotic variables that impact and drive distributions of native and non-native species. We used an existing long-term macrobenthos database for species presence-absence information and biomass estimates at different environmental gradients in the northern Baltic Sea. Region specific abiotic variables (e.g. salinity, depth) were derived from previously constructed bathymetric and hydrodynamic models. Multidimensional ordination techniques were then applied to investigate potential niche space separation between all native and non-native invertebrates in the northern Baltic Sea. Such an approach allowed to obtain data rich and robust estimates of the current native and non-native species distributions and outline important abiotic parameters influencing the observed pattern. The results showed clear niche space separation between native and non-native species. Non-native species were situated in an environmental space characterized by reduced salinity, high temperatures, high proportion of soft seabed and decreased depth and wave exposure whereas native species displayed an opposite pattern. Different placement of native and non-native species along the studied environmental niche space is likely to be explained by the differences in their evolutionary history, human mediated activities and geological youth of the Baltic Sea. The results of this study can provide early warnings and effectively outline coastal areas in the northern Baltic Sea that are prone to further range expansion of non-native species as climate change is expected to significantly reduce salinity and increase temperature in wide coastal areas, both supporting the disappearance of native and appearance of non-native species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-04-23
    Description: The ocean is a major sink for anthropogenic carbon dioxide (CO2), with the CO2 uptake causing changes to ocean chemistry. To monitor these changes and provide a chemical background for biological and biogeochemical studies, high quality partial pressure of CO2 (pCO2) sensors are required, with suitable accuracy and precision for ocean measurements. Optodes have the potential to measure in situ pCO2 without the need for wet chemicals or bulky gas equilibration chambers that are typically used in pCO2 systems. However, optodes are still in an early developmental stage compared to more established equilibrator-based pCO2 systems. In this study, we performed a laboratory-based characterization of a time-domain dual lifetime referencing pCO2 optode system. The pCO2 optode spot was illuminated with low intensity light (0.2 mA, 0.72 mW) to minimize spot photobleaching. The spot was calibrated using an experimental gas calibration rig prior to deployment, with a determined response time (τ63) of 50 s at 25°C. The pCO2 optode was deployed as an autonomous shipboard underway system across the high latitude North Atlantic Ocean with a resolution of ca.10 measurements per hour. The optode data was validated with a secondary shipboard equilibrator-based infrared pCO2 instrument, and pCO2 calculated from discrete samples of dissolved inorganic carbon and total alkalinity. Further verification of the pCO2 optode data was achieved using complimentary variables such as nutrients and dissolved oxygen. The shipboard precision of the pCO2 sensor was 9.5 μatm determined both from repeat measurements of certified reference materials and from the standard deviation of seawater measurements while on station. Finally, the optode deployment data was used to evaluate the physical and biogeochemical controls on pCO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-09-23
    Description: On November 11, 2017, GEOMAR and INDP celebrated the inauguration of the "Ocean Science Centre Mindelo (OSCM)". After 3 years of planning and construction works the building has now been handed over to science. The tropical and subtropical Northeast Atlantic is a very exciting region for climate research, marine biology, oceanography and many other disciplines. For many years, scientists of the GEOMAR Helmholtz Centre for Ocean Research Kiel have been conducting campaigns in the area. A few years ago, these numerous long-term activities resulted in the planning of a laboratory and workshop building in Mindelo on the Islands of Cabo Verde. The longstanding and spirited cooperation with the Cape Verdean Institute for Fisheries Development, the Instituto Nacional de Desenvolvimento das Pescas (INDP), was an additional driver for this enterprise. About two and a half years ago, the partners were able to start the implementation of the project idea. GEOMAR is contributing a total of 2.5 million euros. The construction comprises a building, equipped with two universal labs, a wet lab, workshops for maintenance and repair of scientific equipment, storage rooms and offices as well as seminar rooms.
    Type: Video , NonPeerReviewed
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-02-06
    Description: The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M ~ 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-02-06
    Description: Highlights • We track the preferential pathways of the Mediterranean Outflow Water (MOW). • A topographic analysis method is used to identify the MOW hydrological avenues. • Contour avenues and cross-slope channels have complementary roles steering the MOW. • The MOW is a density-driven current steered by both bottom topography and the Coriolis force. Abstract The Mediterranean Water leaves the western end of the Strait of Gibraltar as a bottom wedge of salty and warm waters flowing down the continental slope. The salinity of the onset Mediterranean Outflow Water (MOW) is so high that leads to water much denser (initially in excess of 1.5 kg m−3) than the overlying central waters. During much of its initial descent, the MOW retains large salinity anomalies – causing density anomalies that induce its gravity current character – and relatively high westward speeds – causing a substantial Coriolis force over long portions of its course. We use hydrographic data from six cruises (a total of 1176 stations) plus velocity data from two cruises, together with high-resolution bathymetric data, to track the preferential MOW pathways from the Strait of Gibraltar into the western Gulf of Cadiz and to examine the relation of these pathways to the bottom topography. A methodology for tributary systems in drainage basins, modified to account for the Coriolis force, emphasizes the good agreement between the observed trajectories and those expected from a topographically-constrained flow. Both contour avenues and cross-slope channels are important and have complementary roles steering the MOW along the upper and middle continental slope before discharging as a neutrally buoyant flow into the western Gulf of Cadiz. Our results show that the interaction between bottom flow and topography sets the path and final equilibrium depths of the modern MOW. Furthermore, they support the hypothesis that, as a result of the high erosive power of the bottom flow and changes in bottom-water speed, the MOW pathways and mixing rates have changed in the geological past.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-02-06
    Description: In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in calcite we performed precipitation experiments decoupling temperature and precipitation rate (R∗). Calcite was precipitated at 12.5, 25.0 and 37.5 °C by diffusing NH3 and CO2 gases into aqueous solutions closely following the experimental setup of Lemarchand et al (2004). The precipitation rate (R∗) for every sample was determined applying the initial rate method and from the specific surface area of almost all samples for each reaction. The order of reaction with respect to Ca2+ ions was determined to be one and independent of T. However, the order of reaction with respect to HCO3- changed from three to one as temperature increases from 12.5, 25 °C and 37.5 °C. Strontium incorporated into calcite (expressed as DSr= [Sr/Ca] calcite/ [Sr/Ca] solution) was found to be R∗ and T dependent. As a function of increasing R∗ the Δ88/86Sr-values become more negative and as temperature increases the Δ88/86Sr values also increase at constant R∗. The DSr and Δ88/86Sr-values are correlated to a high degree and depend only on R∗ being independent of temperature, complexation and varying initial ratios. Latter observation may have important implications for the study of diagenesis, the paleo-sciences and the reconstruction of past environmental conditions. Calcium isotope fractionation (Δ44/40Ca) was also found to be R∗ and T dependent. For 12.5 and 25.0 °C we observe a general increase of the Δ44/40Ca values as a function of R∗ (Lemarchand et al type behavior, Lemarchand et al (2004)). Whereas at 37.5 °C a significant decreasing Δ44/40Ca is observed relative to increasing R∗ (Tang et al type behavior, Tang et al. (2008)). In order to reconcile the discrepant observations we suggest that the temperature triggered change from a Ca2+-NH3-aquacomplex covalent controlled bonding to a Ca2+-H2O-aquacomplex van-der-Waals controlled bonding caused the change in sign of the R∗ - Δ44/40Ca slope due to the switch of an equilibrium type of isotope fractionation related to the covalent bonding during lower temperatures to a kinetic type of isotope fractionation at higher temperatures. This is supported by the observation that the Δ44/40Ca ratios are independent from the [Ca]: [DIC] ratio at 12.5 and 25°C but highly dependent at 37.5°C. Our observations imply the chemical fluid composition and temperature dependent complexation controls the amount and direction of Ca isotope fractionation in contrast to the Sr isotopes which do not show any change of its fractionation behaviour as a function of complexation in the liquid phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-02-06
    Description: Highlights • First present seafloor hydrothermal mineralization processes at both Wocan-1 and Wocan-2 on the slow-spreading Carlsberg Ridge. • The Cu-rich chimneys were formed at slightly lower temperatures than Cu-rich and Fe-rich massive sulfides. • The main Ag-carriers were both late-stage Cu sulfides and Fe sulfides, which deposited under low temperatures and oxidized conditions. • Fluid mixing of hydrothermal fluids with seawater might result in significant redistributions of trace metal elements in sulfides. Abstract The basalt-hosted Wocan hydrothermal field (WHF), located on the NW slope of an axial volcanic ridge in a depth of ∼3000 m at 6°22′N on the slow-spreading Carlsberg Ridge, northwest Indian Ocean, was discovered in 2013 during Chinese DY28th cruise. Preliminary investigations show that the field consists of two hydrothermal sites: Wocan-1, which shows indications for recent high-temperature hydrothermal activity, is located near the peak of the axial volcanic ridge in a water depth of 2970-2990 m, and the inactive Wocan-2 site, located at a water depth of 3100 m, ∼1.7 km to the northwest of Wocan-1. The recovered hydrothermal precipitates can be classified into four groups: (i) Cu-rich chimneys; (ii) Cu-rich massive sulfides; (iii) Fe-rich massive sulfides; and (iv) silicified massive sulfides. We conducted mineral texture and assemblage observation and Laser-ablation ICP-MS analyses of the hydrothermal precipitates to study the mineralization processes. Our results show that there are distinct systematic trace element distributions throughout the different minerals in the four sample groups. In general, chalcopyrite from the group (i) is enriched in Pb, As, Mo, Ga, Ge, V, and Sb, metals that are commonly referred to as medium- to low-temperature elements. In contrast these elements are present in low contents in the chalcopyrite grains from other sample groups. Selenium, a typical high-temperature metal, is enriched in chalcopyrite from groups (ii) and (iv), whereas Ag and Sn are enriched only in some silicified massive sulfides. As with chalcopyrite, pyrite also shows distinct trace element associations in grains with different habitus. The low-temperature association of elements (Pb, Mo, Mn, U, Mg, Ag, and Tl) is typically present in colloform/framboidal pyrite, whereas the high-temperature association (Se, Co, and Bi) is enriched in euhedral pyrite. Sphalerite in the groups (i) and (iii) at Wocan-1 is characterized by high concentrations of Ga, Ge, Pb, Cd, As, and Sb, indicating that sphalerite in these sample groups likely precipitated at intermediate temperatures. Early bornite, which mainly occurs in the central part of the Cu-rich chimney, is typically enriched in Sn and In compared to the other minerals. In contrast, late bornite that likely formed during increasing interaction of hydrothermal fluids with cold, oxygenated seawater has low Sn and In, but significantly higher concentrations of Ag, Au, Mo and U. Digenite, also forming in the exterior parts of the samples during the late stages of hydrothermal fluid venting, is poor in most trace elements, except Ag and U. The notable Ag enrichment in the late-stage mineral assemblages at both Wocan-1 and Wocan-2 may therefore be related to lower temperatures and elevated pH. Our results indicate that Wocan-1 has experienced a cycle of heating with Cu-rich chimney growth and subsequent cooling, followed by late seafloor weathering, while Wocan-2 has seen intermediate- to high-temperature mineralization followed by intense silicification of sulfides. Seafloor weathering processes or mixing of hydrothermal fluids with seawater during the waning stages of hydrothermal fluid flow result in significant redistributions of trace elements in sulfide minerals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-02-06
    Description: The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf–Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between −16.8 and −14.9 at the surface to more radiogenic values near −11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to −11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ −4) and North East Atlantic Deep Water (ɛHf ∼ −0.1), although their source waters have essentially the same ɛNd signature. This most likely reflects different weathering signals of hafnium delivered to Denmark Strait Overflow Water and North East Atlantic Deep Water (incongruent weathering of old rocks from Greenland versus basaltic rocks from Iceland). In addition, the ɛHf data resolve two layers within the main body of Labrador Sea Water not visible in the ɛNd distribution, which are shallow Labrador Sea Water (ɛHf ∼ −2) and deep Labrador Sea Water (ɛHf ∼ −4.5). The latter layer was formed between the late 1980’s and mid 1990’s during the last cold state of the Labrador Sea and underwent substantial modification since its formation through the admixture of Irminger Water, Iceland Slope Water and North East Atlantic Deep Water, which is reflected in its less radiogenic ɛHf signature. The overall behavior of Hf in the water column suggests its higher sensitivity to local changes in weathering inputs on annual to decadal timescales. Although application of Hf isotopes as a tracer for global water mass mixing is complicated by their susceptibility to incongruent weathering inputs they are a promising tracer of local processes in restricted basins such as the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-02-06
    Description: Highlights • First magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site. • New inversion method resolves high-resolution magnetic anomaly in a steep environment. • Lost City bears a positive magnetization resulting from specific chemical processes. A 2003 high-resolution magnetic survey conducted by the Autonomous Underwater Vehicle ABEover the low-temperature, ultramafic-hosted hydrothermal field Lost City reveals a weak positive magnetic anomaly. This observation is in direct contrast to recent observations of strong positive magnetic anomalies documented over the high-temperature ultramafic-hosted hydrothermal vents fields Rainbow and Ashadze, which indicates that temperature may control the production of magnetization at these sites. The Lost City survey provides a unique opportunity to study a field that is, to date, one of a kind, and is an end member of ultramafic-hosted hydrothermal systems. Our results highlight the key contribution of temperature on magnetite production resulting from serpentinization reactions. Whereas high temperature promotes significant production and partitioning of iron into magnetite, low temperature favors iron partitioning into various alteration phases, resulting in a magnetite-poor rock. Moreover, the distribution of magnetic anomalies confirms results of a previous geological survey indicating the progressive migration of hydrothermal activity upslope. These discoveries contribute to the results of 25yrs of magnetic exploration of a wide range of hydrothermal sites, from low-to high-temperature and from basalt-to ultramafic-hosted, and thereby validate using high-resolution magnetics as a crucial parameter for locating and characterizing hydrothermal sites hosting unique chemosynthetic-based ecosystems and potentially mineral-rich deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-02-06
    Description: The water masses passing the Fram Strait are mainly responsible for the exchange of heat and freshwater between the Nordic Seas and the Arctic Ocean (the Arctic Mediterranean, AM). Disentangling their exact sources, distribution and mixing, however, is complex. This work provides new insights based on a detailed geochemical tracer inventory including dissolved Nd isotope (εNd), rare earth element (REE) and stable oxygen isotope (δ18O) data along a full water depth section across Fram Strait. We find that Nd isotope and REE distributions in the open AM primarily reflect lateral advection of water masses and their mixing. Seawater-particle interactions exert important control only above the shelf regions, as observed above the NE Greenland Shelf. Advection of northward flowing warm Atlantic Water (AW) is clearly reflected by an εNd signature of -11.7 and a Nd concentration ([Nd]) of 16 pmol/kg in the upper ∼500 m of the eastern and central Fram Strait. Freshening and cooling of the AW on its way trough the AM are accompanied by a continuous change towards more radiogenic εNd signatures (e.g. -10.4 of dense Arctic Atlantic Water). This mainly reflects mixing with intermediate waters but also admixture of dense Kara Sea waters and Pacific-derived waters. The more radiogenic εNd signatures of the intermediate and deep waters (reaching -9.5) are mainly acquired in the SW Nordic Seas through exchange with basaltic formations of Iceland and SE Greenland. Inputs of Nd from Svalbard are not observed and surface waters and Nd on the Svalbard shelf originate from the Barents Sea. Shallow southward flowing Arctic-derived waters (〈 200 m) form the core of the East Greenland Current above the Greenland slope and can be traced by their relatively radiogenic εNd (reaching -8.8) and elevated [Nd] (21 to 29 pmol/kg). These properties are used together with δ18O and standard hydrographic tracers to define the proportions of Pacific-derived (〈 ∼30 % based on Nd isotopes) and Atlantic-derived waters, as well as of river waters (〈 ∼8 %). Shallow waters (〈 150 m) on the NE Greenland Shelf share some characteristics of Arctic-derived waters, but exhibit less radiogenic εNd values (reaching -12.4) and higher [Nd] (up to 38 pmol/kg) in the upper ∼100 m. This suggests local addition of Greenland freshwater of up to ∼6 %. In addition to these observations, this study shows that the pronounced gradients in εNd signatures and REE characteristics in the upper water column provide a reliable basis for assessments of shallow hydrological changes within the AM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-02-06
    Description: We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from −0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (−0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (−0.39 to −0.07‰) with a mean of −0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (−0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo concentrations of all the ultramafic xenoliths of 40–400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113–180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal–silicate fractionation. An identical isotopic composition might result from core–mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-06-26
    Description: Highlights • Glass inclusions record 11 Ma of early arc magma evolution. • Arc tholeiites succeed calc-alkalic magmas temporally. • Volcanic arc output directly linked to mantle wedge composition. • Dynamic slab control on arc magmatism following subduction initiation. Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu–Bonin–Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu–Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early ‘calc-alkalic’, high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the ‘calc-alkalic’ stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of wedge replenishment by corner flow does not overwhelm the rate of magma extraction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-02-06
    Description: Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)—for example, neoechinulin B—have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-02-06
    Description: Highlights • The Jbel Boho complex is shown to have an alkaline, intraplate geochemical signature. • At least three magma generations are responsible for forming the extrusive-intrusive complex. • The highly evolved and LREE-rich rhyolitic dykes are associated with synchysite-(Ce) mineralization. Abstract The Jbel Boho complex (Anti-Atlas/Morocco) is an alkaline magmatic complex that was formed during the Precambrian-Cambrian transition, contemporaneous with the lower early Cambrian dolomite sequence. The complex consists of a volcanic sequence comprising basanites, trachyandesites, trachytes and rhyolites that is intruded by a syenitic pluton. Both the volcanic suite and the pluton are cut by later microsyenitic and rhyolitic dykes. Although all Jbel Boho magmas were probably ultimately derived from the same, intraplate or plume-like source, new geochemical evidence supports the concept of a minimum three principal magma generations having formed the complex. Whereas all volcanic rocks (first generation) are LREE enriched and appear to be formed by fractional crystallization of a mantle-derived magma, resulting in strong negative Eu anomalies in the more evolved rocks associated with low Zr/Hf and Nb/Ta values, the younger syenitic pluton displays almost no negative Eu anomaly and very high Zr/Hf and Nb/Ta. The syenite is considered to be formed by a second generation of melt and likely formed through partial melting of underplated mafic rocks. The syenitic pluton consists of two types of syenitic rocks; olivine syenite and quartz syenite. The presence of quartz and a strong positive Pb anomaly in the quartz syenite contrasts strongly with the negative Pb anomaly in the olivine syenite and suggests the latter results from crustal contamination of the former. The late dyke swarm (third generation of melt) comprises microsyenitic and subalkaline rhyolitic compositions. The strong decrease of the alkali elements, Zr/Hf and Nb/Ta and the high SiO2 contents in the rhyolitic dykes might be the result of mineral fractionation and addition of mineralizing fluids, allowing inter-element fractionation of even highly incompatible HFSE due to the presence of fluorine. The occurrence of fluorite in some volcanic rocks and the Ca-REE-F carbonate mineral synchysite in the dykes with very high LREE contents (Ce ∼720 ppm found in one rhyolitic dyke) suggest the fluorine-rich nature of this system and the role played by addition of mineralizing fluids. The REE mineralization expressed as synchysite-(Ce) is detected in a subalkaline rhyolitic dyke (with ΣLREE = 1750 ppm) associated with quartz, chlorite and occasionally with Fe-oxides. The synchysite mineralization is probably the result of REE transport by acidic hydrothermal fluids as chloride complex and their neutralization during fluid-rock interaction. The major tectonic change from compressive to extensional regime in the late Neoproterozoic induced the emplacement of voluminous volcaniclastic series of the Ediacran Ouarzazate Group. The alkaline, within-plate nature of the Jbel Boho igneous complex implies that this extensional setting continued during the early Cambrian.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-02-06
    Description: Carbohydrates represent an important fraction of labile and semi-labile marine organic matter that is mainly comprised of exopolymeric substances derived from phytoplankton exudation and decay. This study investigates the composition of total combined carbohydrates (tCCHO; 〉1 kDa) and the community development of free-living (0.2–3 μm) and particle-associated (PA) (3–10 μm) bacterioplankton during a spring phytoplankton bloom in the southern North Sea. Furthermore, rates were determined for the extracellular enzymatic hydrolysis that catalyzes the initial step in bacterial organic matter remineralization. Concentrations of tCCHO greatly increased during bloom development, while the composition showed only minor changes over time. The combined concentration of glucose, galactose, fucose, rhamnose, galactosamine, glucosamine, and glucuronic acid in tCCHO was a significant factor shaping the community composition of the PA bacteria. The richness of PA bacteria greatly increased in the post-bloom phase. At the same time, the increase in extracellular β-glucosidase activity was sufficient to explain the observed decrease in tCCHO, indicating the efficient utilization of carbohydrates by the bacterioplankton community during the post-bloom phase. Our results suggest that carbohydrate concentration and composition are important factors in the multifactorial environmental control of bacterioplankton succession and the enzymatic hydrolysis of organic matter during phytoplankton blooms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-02-06
    Description: Highlights • Late stage volcanism covers old oceanic crust north of the Florianopolis Fracture Zone. • No influence of fracture zone on formation of Walvis Ridge at 6° E. • Walvis Ridge at 6° E erupted in deep water environment. Abstract The Walvis Ridge is one of the major hotspot trails in the South Atlantic and a classical example for volcanic island chains. Two models compete about the origin of the ridge: It is either the result of a deep mantle plume or active fracture zones above mantle inhomogeneities. Among other things crustal information is needed to constrain the models. Here, we provide such constraint with a 480 km long P-wave velocity model of the deep crustal structure of the eastern Walvis Ridge at 6° E. According to our data the Walvis Ridge stretches across the Florianopolis Fracture Zone into the Angola Basin. Here, we observe a basement high and thick basaltic layers covering the oceanic crust and the fracture zone. We found two crustal roots along the profile: one is located beneath the ridge crest, the other one beneath the northern basement high in the Angola Basin. The crustal thickness reaches 18 km and 12 km and the lower crustal velocities are 7.2 km/s and 7.4 km/s, respectively. The bathymetric expression of the ridge along the profile is less pronounced than closer to shore, which is mainly attributable to the absence of a thick layer of volcanic debris, rather than to reduced crustal thickness below the basement surface. Therefore, this part of the ridge was never or only briefly subaerially exposed. The crustal structure suggests that the ridge and the fracture zone formed independently of each other. The oceanic crust north of the fracture zone, which is buried underneath the basalt layer, is younger than the reconstructed age of hotspot volcanism of the Walvis Ridge. We interpret these structures north of the fracture zone to be at least partly a product of late stage volcanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-02-06
    Description: Highlights • Seafloor massive sulphides vary in mineralogy and oxidise at different rates. • Galvanic cells play a role in increasing dissolution rates. • SMS deposits that have been inactive for some time may have lost economic value. • The geochemistry of oxidation products has potential to be an exploration tool. • Potential for anthropogenic release of heavy metals during seafloor mining. • Any risk needs addressing by the ISA prior to the formation of mining regulations. The weathering process of seafloor massive sulphide (SMS) deposits can be considered analogous to weathering of terrestrial volcanogenic massive sulphides (VMS) deposits. However, in the context of SMS deposits, the process occurs in chemically buffered waters of near neutral pH, resulting in the formation of insoluble Fe oxy-hydroxide minerals including goethite and hematite as well as sulphates such as jarosite. As a result of this precipitation, it is commonly assumed that any SMS deposit is unlikely to exhibit a significant loss of metals (dissolution and release of heavy metals) into the water column. However, galvanic interactions have never been considered in this seafloor context, whilst they have already been shown to have the ability to increase dissolution significantly in terrestrial deposits. If heavy metal release is not temporally balanced by precipitation of oxide phases, there is the potential that these metal occurrences lose economic value. This is specifically significant if there is an industrial focus on exploiting deposits associated with hydrothermal vents that have been inactive for some time. Not only this, but the geochemistry of weathering products – ‘gossans’ – that are formed have the potential to be used as tools for exploration. Furthermore, it is unknown what impact galvanic coupling may have with regards to anthropogenic release of heavy metals during seafloor mining of deposits associated with either active or inactive vents (disturbance of sediment, plume generation and dewatering process). This environmental impact needs to be addressed prior to the formulation of regulations for deep-sea mining by the International Seabed Authority. The present review examines our current understanding of oxidation and dissolution of a mixed sulphide ore, bringing together lines of evidence from a range of literature sources. Based on this review, different seafloor sulphide ore deposits will dissolve by oxidation and release a variety of different metals (economic and/or toxic), all at different rates, with galvanic cells playing a role by increasing dissolution rates. While precipitation of oxide and oxy-hydroxide phases will occur, it is unknown in both a natural weathering and anthropogenic (mining) context whether heavy metal release (including economic and toxic metals) is temporally balanced by this precipitation and any subsequent adsorption. Based on our current understanding, certain sites will be more predisposed to oxidation as a result of their mineralogy (those containing significant pyrrhotite, marcasite, galena and secondary copper sulphides) and/or environment (higher temperatures and oxygen concentrations, lower pH's). Furthermore, certain sites pose more of an environmental risk (in terms of toxicity) than others, with arc-related SMS deposits associated with higher concentrations of As, Pb, Sb, Cd and Hg and ultra-mafic hosted SMS deposits associated with high concentrations of Co and Ni. The review highlights the need for subsequent studies that investigate the natural weathering process of seafloor sulphide ore deposits, including how this process impacts their economic value and consequent geochemical signature of oxides that are produced over time. Moreover, this review underlines the necessity for experiments to elucidate the oxidative dissolution of ore throughout any mining process.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-02-06
    Description: Highlights • Mid-MIS 6 changes resemble Dansgaard-Oeschger variability during MIS 3. • Both Termination I and II demonstrate similar two-step-like character. • Sea surface bioproductivity was higher during MIS 6 than during MIS 4-2. • Bottom-water conditions were less stable during MIS 6 than during MIS 4-2. • Sea-ice cover was reduced during MIS 6 as compared to MIS 4-2. Abstract We present high-resolution multi-proxy records from a marine sediment core (SO201-2-85KL) from the western Bering Sea to assess orbital- and millennial-scale paleoceanographic conditions during two last glacial intervals, including both terminations. Based on changes in foraminiferal assemblages, grain-size content and previously published TOC and δ13C records, we reconstruct variations in sea-surface biological productivity, intermediate-water oxygenation and sea-ice conditions during the last 180 kyr. Our data demonstrate remarkable differences between the penultimate (MIS 6) and last (MIS 4-2) glacial. Relatively high sea surface bioproductivity and reduced sea-ice cover are reconstructed for the penultimate glacial interval, whereas low bioproductivity and expanded sea-ice cover appear to be typical for the last glacial. Millennial-scale changes in intermediate water ventilation are inferred from faunal records for the middle part of the penultimate glacial. High-amplitude environmental variability during the penultimate glacial time in the Bering Sea resembles the well-known Dansgaard-Oeschger oscillations, and roughly corresponds to similar rapid climatic fluctuations found in North Atlantic records. The Termination II and I intervals display a similar succession of high-bioproductivity events, being more pronounced during the penultimate glacial-interglacial transition, probably due to the different orbital configuration. During the late phase of Termination II, two short intervals, characterized by high sea surface bioproductivity and low oxygen content of bottom waters, resemble the Bølling and Allerød warmings, whereas an episode with low bioproductivity occurs in between, similar to the Older Dryas. Our results provide support for a close circumpolar coupling between high-latitude environments on millennial timescales at least since the penultimate glacial.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Applied Geophysics, 136 . pp. 178-189.
    Publication Date: 2020-02-06
    Description: Highlights • We present a joint inversion method for the transmitter navigation and the seafloor resistivity for frequency domain marine CSEM data. • We invert for both the transmitter navigation parameters of the towed dipole source (including antenna azimuth, dip, and horizontal positions) and seafloor resistivity. • The eigenparameter analysis shows that seafloor resistivities and transmitter navigation parameters can be independently resolved. • The inversions of both the synthetical and field data sets are tested. Abstract We present a joint inversion method for the transmitter navigation and the seafloor resistivity for frequency domain marine controlled-source electromagnetic (CSEM) data. The inversion approach is based on the modified BFGS scheme, which has an advantage that one can update the Hessian matrix by using the BFGS scheme rather than computing the Hessian matrix itself during the inversion process. The partial derivatives of the electromagnetic field responses with respect to both the seafloor resistivity and the transmitter navigation parameters including the azimuth, dip and horizontal positions of the transmitter antenna are analytically calculated. We invert for both the navigation parameters of the towed dipole source (including antenna azimuth, dip, and horizontal positions) and seafloor resistivity by using the whole range of data instead of the near-field data (usually source-receiver offset 〈1 km). An eigenparameter analysis shows that seafloor resistivities and transmitter navigation parameters can be independently resolved, and a better reconstruction can be obtained with multiple frequency data. The inversions of both the synthetical and field data sets indicate that our inversion method can simultaneously reconstruct seafloor resistivity structures and transmitter navigation parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-02-06
    Description: Highlights: • First feeding of wild brown trout fry with partial inclusion of dietary plant proteins is beneficial for subsequent growth • Feeding of 50% dietary plant protein results in same growth when compared to fishmeal as exclusive protein source • The early feeding of plant-based diets did not induce nutritional programming effects in first-feeding fry • Wild brown trout fry exhibit highly plastic responses to different feeding strategies during the first months of life • Pepsin and amylase activities are only partly affected by plant-derived protein sources and rather intrinsically regulated Abstract: Decreasing fishmeal availability and increasing prices promote the usage of plant-derived feedstuff as a substitution for fishmeal in commercial salmonid diets. However, little is known about the impact of plant-derived feedstuff on juvenile brown trout (Salmo trutta), a species that exhibits strong phenotypic plasticity with various genetic sub-structures and high overall genetic diversity. Thus, the production of brown trout for restocking purposes preferentially uses wild fish as broodstock to avoid loss of genetic variability. Because of nutritional programming, the strictly carnivorous feeding habit of wild brown trout broodfish could nevertheless have a negative impact on the digestive physiology of fry and fingerlings that are fed with commercial plant-protein containing trout diets. The present study, therefore, investigated whether the feeding of plant-based diets from first feeding onwards induced a permanent improvement in the utilisation of plant-derived protein sources in wild brown trout juveniles. Any plastic responses to the experimental diets resulting in a long-term physiological effect were hypothesised to be not only observed in growth performance, but also in altered pepsin and amylase activities. We demonstrated that (i) the feeding of wild brown trout fry with inclusion levels of up to 50% of dietary plant proteins is beneficial during the first weeks of life and (ii) continuous feeding of at least 50% plant-derived dietary protein resulted in the same rate of growth when compared to the growth resulting from fishmeal as the exclusive dietary protein source. Pepsin and amylase activities were only partly affected by diet-type and it can be concluded that intestinal pepsin and amylase activities in juvenile brown trout are primarily regulated by intrinsic mechanisms. In the present experiment, we were not able to induce a permanent nutritional programming effect of the first feeding diet; instead, a cross-over diet change applied 89 days post first feeding demonstrated that wild brown trout fry exhibit highly plastic responses to different feeding strategies during the first months of life.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-02-06
    Description: The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been observed in sponge-microbe symbiosis, although the extent of this pattern remains poorly unknown. We characterized the differences between the microbiomes of HMA (n=19) and LMA (n=17) sponges (575 specimens) present in the Sponge Microbiome Project. HMA sponges were associated with richer and more diverse microbiomes than LMA sponges, as indicated by the comparison of alpha diversity metrics. Microbial community structures differed between HMA and LMA sponges considering Operational Taxonomic Units (OTU) abundances and across microbial taxonomic levels, from phylum to species. The largest proportion of microbiome variation was explained by the host identity. Several phyla, classes, and OTUs were found differentially abundant in either group, which were considered “HMA indicators” and “LMA indicators”. Machine learning algorithms (classifiers) were trained to predict the HMA-LMA status of sponges. Among nine different classifiers, higher performances were achieved by Random Forest trained with phylum and class abundances. Random Forest with optimized parameters predicted the HMA-LMA status of additional 135 sponge species (1,232 specimens) without a priori knowledge. These sponges were grouped in four clusters, from which the largest two were composed of species consistently predicted as HMA (n=44) and LMA (n=74). In summary, our analyses shown distinct features of the microbial communities associated with HMA and LMA sponges. The prediction of the HMA-LMA status based on the microbiome profiles of sponges demonstrates the application of machine learning to explore patterns of host-associated microbial communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-02-06
    Description: Redox-sensitive mobilization of nutrients from sediments strongly affects the eutrophic state of the central Baltic Sea; a region associated with the spread of hypoxia and almost permanently anoxic and sulfidic conditions in the deeper basins. Ventilation of these basins depends on renewal by inflow of water enriched in oxygen (O2) from the North Sea, occurring roughly once per decade. Benthic fluxes and water column distributions of dissolved inorganic nitrogen species, phosphate (PO43-), dissolved inorganic carbon (DIC), sulfide (HS-), and total oxygen uptake (TOU) were measured along a depth gradient in the Eastern Gotland Basin (EGB). Campaigns were conducted during euxinic conditions of the deep basin in Aug./Sept. 2013 and after two inflow events in July/Aug. 2015 and March 2016 when O2 concentrations in deep waters reached 60 μM. The intrusion of O2-rich North Sea water into the EGB led to an approximate 33 and 10% reduction of the seabed PO43- and ammonium (NH4+) release from deep basin sediments. Post-inflow, the deep basin sediment was rapidly colonized by HS- oxidizing bacteria tentatively assigned to the family Beggiatoaceae, and HS- release was completely suppressed. The presence of a hypoxic transition zone (HTZ) between 80 and 120 m water depth was confirmed not only for euxinic deep-water conditions during 2013 but also for post-inflow conditions. Because deep-water renewal did not ventilate the HTZ, where PO43- and NH4+ fluxes were highest, high seabed nutrient release there was relatively unchanged. Extrapolation of the in situ nutrient fluxes indicated that, overall, the reduction in PO43- and NH4+ release in response to deep-water renewal can be considered as minor, reducing the internal nutrient load by 2 and 12% only, respectively. Infrequent inflow events thus have a limited capacity to sustainably reduce internal nutrient loading in the EGB and mitigate eutrophication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-02-06
    Description: Cold-water corals are important bioengineers that provide structural habitat for a diverse species community. About 70% of the presently known scleractinian cold-water corals are expected to be exposed to corrosive waters by the end of this century due to ocean acidification. At the same time, the corals will experience a steady warming of their environment. Studies on the sensitivity of cold-water corals to climate change mainly concentrated on single stressors in short-term incubation approaches, thus not accounting for possible long-term acclimatisation and the interactive effects of multiple stressors. Besides, preceding studies did not test for possible compensatory effects of a change in food availability. In this study a multifactorial long-term experiment (6 months) was conducted with end-of-the-century scenarios of elevated pCO2 and temperature levels in order to examine the acclimatisation potential of the cosmopolitan cold-water coral Lophelia pertusa to future climate change related threats. For the first time multiple ocean change impacts including the role of the nutritional status were tested on L. pertusa with regard to growth, “fitness,” and survival. Our results show that while L. pertusa is capable of calcifying under elevated CO2 and temperature, its condition (fitness) is more strongly influenced by food availability rather than changes in seawater chemistry. Whereas growth rates increased at elevated temperature (+4°C), they decreased under elevated CO2 concentrations (~800 μatm). No difference in net growth was detected when corals were exposed to the combination of increased CO2 and temperature compared to ambient conditions. A 10-fold higher food supply stimulated growth under elevated temperature, which was not observed in the combined treatment. This indicates that increased food supply does not compensate for adverse effects of ocean acidification and underlines the importance of considering the nutritional status in studies investigating organism responses under environmental changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Elsevier
    In:  Cell Host & Microbe, 21 (4). pp. 419-420.
    Publication Date: 2020-07-24
    Description: Commensal microbes colonize the skin where they promote immune development and prevent infection without inducing damaging inflammatory responses. In this issue of Cell Host & Microbe, Scharschmidt et al. (2017) show that during hair follicle development, commensals induce regulatory T cell migration to the skin to ensure cutaneous homeostasis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-02-06
    Description: This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15–0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about -1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s−1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with general physical principals of the coastal shelf circulation. A southerly wind is associated with surface layer flow toward the coast, a near coast positive SSHa with a current in the direction of the wind, down-welling and export of shelf water. The Fraser Gyre influenced cross-shelf exchanges are possibly facilitating the offshore transport of fish larvae, sediments, nutrients, river discharges, and other properties across the shelf break and into the southward flowing EAC during the austral autumn and winter.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-02-06
    Description: In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in aragonite we performed precipitation experiments decoupling temperature and precipitation rates (R∗, μmol/m2.h) in the interval of about 2.3 to 4.5 μmol/m2.h. Aragonite is the only pure solid phase precipitated from a stirred solutions exposed to an atmosphere of NH3 and CO2 gases throughout the spontaneous decomposition of (NH4)2CO3. The order of reaction with respect to Ca ions is one and independent of temperature. However, the order of reaction with respect to the dissolved inorganic carbon (DIC) is temperature dependent and decreases from three via two to one as temperature increases from 12.5 and 25.0 to 37.0 °C, respectively. Strontium distribution coefficient (DSr) increases with decreasing temperature. However, R∗ responds differently depending on the initial Sr/Ca concentration and temperature: at 37.5 °C DSr increase as a function of increasing R∗ but decrease for 12.5 and 25 °C. Not seen at 12.5 and 37.5 °C but at 25°C the DSr-R∗ gradient is also changing sign depending on the initial Sr/Ca ratio. Magnesium (Mg) adsorption coefficient between aragonite and aqueous solution (DMg) decreases with temperature but increases with R∗ in the range of 2.4 to 3.8 μmol/m2.h. Strontium isotope fractionation (Δ88/86Sraragonite-aq) follows the kinetic type of fractionation and become increasingly negative as a function of R∗ for all temperatures. In contrast Ca isotope fractionation (Δ44/40Caaragonite-aq) shows a different behavior than the Sr isotopes. At low temperatures (12.5 and 25°C) Ca isotope fractionation (Δ44/40Caaragonite-aq) becomes positive as a function of R∗. In contrast, at 37.5°C and as a function of increasing R∗ the Δ44/40Caaragonite-aq show a Sr type like behavior and becomes increasingly negative. Concerning both the discrepant behavior of DSr as a function of temperature as well as for the Ca isotope fractionation as a function of temperature we infer that the switch of sign in the trace element partitioning as well as in the direction of the Ca isotope fractionation is probably due to the switch of complexation from a Ca2+-NH3 complexation at and below 25 °C to an Ca2+-H2O aquacomplex at 37.5 °C. The DSr - Δ88/86Srcalcite-aq correlation for calcite is independent of temperature in contrast to aragonite. We interpreted the strong DSr-temperature dependency of aragonite, the smaller range of Sr isotope fractionation as well as the shallower Δ88/86Srcalcite-aq-R∗ gradients to be a consequence of the increased aragonite solubility and the “Mg blocking effect”. In contrast to Sr the Ca isotope fractionation values in calcite and aragonite depend both on the complexation in solution and independent on polymorphism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-02-06
    Description: Nitrous oxide (N2O) is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations, and fluxes across the surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ±94%), with an average estuarine N2O flux density of 48 μmol m−2 d−1 and an overall emission of 0.18 Gg N2O y−1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuarine freshwater part have changed from predominant denitrification in the 1980s toward significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid-90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still remains an important source of N2O to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-02-06
    Description: Gel particles—a class of abundant transparent organic particles—have increasingly gathered attention in marine research. Field studies on the bacterial colonization of marine gels however are still scarce. So far, most studies on respective particles have focused on the upper ocean, while little is known on their occurrence in the deep sea. Here, we report on the vertical distribution of the two most common gel particle types, which are polysaccharide-containing transparent exopolymer particles (TEP) and proteinaceous Coomassie stainable particles (CSP), as well as numbers of bacteria attached to gel particles throughout the water column, from the surface ocean down to the bathypelagial (〈 3,000 m). Our study was conducted in the Arctic Fram Strait during northern hemispheres' summer in 2015. Besides data on the bacterial colonization of the two gel particle types (TEP and CSP), we present bacterial densities on different gel particle size classes according to 12 different sampling depths at four sampling locations. Gel particles were frequently abundant at all sampled depths, and their concentrations decreased from the euphotic zone to the dark ocean. They were colonized by bacteria at all sampled water depths with risen importance at the deepest water layers, where fractions of bacteria attached to gel particles (%) increased within the total bacterial community. Due to the omnipresent bacterial colonization of gel particles at all sampled depths in our study, we presume that euphotic production of this type of organic matter may affect microbial species distribution within the whole water column in the Fram Strait, down to the deep sea. Our results raise the question if changes in the bacterial community composition and functioning on gel particles occur over depth, which may affect microbial respiration and remineralization rates of respective particles in different water layers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-12-23
    Description: Highlights • Sediment accumulation rates in Nicobar Fan abruptly increase 9.5 Ma. • Increased sediment flux to eastern Indian Ocean and restructuring of sediment routing. • Nicobar Fan holds significant record of Indian Ocean sedimentation in late Neogene. • Shillong Plateau and Indo–Burmese wedge uplift drive sediment south in late Miocene. A holistic view of the Bengal–Nicobar Fan system requires sampling the full sedimentary section of the Nicobar Fan, which was achieved for the first time by International Ocean Discovery Program (IODP) Expedition 362 west of North Sumatra. We identified a distinct rise in sediment accumulation rate (SAR) beginning ∼9.5 Ma and reaching 250–350 m/Myr in the 9.5–2 Ma interval, which equal or far exceed rates on the Bengal Fan at similar latitudes. This marked rise in SAR and a constant Himalayan-derived provenance necessitates a major restructuring of sediment routing in the Bengal–Nicobar submarine fan. This coincides with the inversion of the Eastern Himalayan Shillong Plateau and encroachment of the west-propagating Indo–Burmese wedge, which reduced continental accommodation space and increased sediment supply directly to the fan. Our results challenge a commonly held view that changes in sediment flux seen in the Bengal–Nicobar submarine fan were caused by discrete tectonic or climatic events acting on the Himalayan–Tibetan Plateau. Instead, an interplay of tectonic and climatic processes caused the fan system to develop by punctuated changes rather than gradual progradation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-02-06
    Description: Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12 ‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32 ‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26 ‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40 ‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with warming high latitude peatlands, Fe export from soils as Fe-organic complexes will increase, which in turn has implications for Fe transport in rivers, and ultimately the delivery of Fe to the oceans.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-02-06
    Description: Tertiary rift-related intraplate basanites from the Batain basin of northeastern Oman have low SiO2 (〈 45.6 wt.%), high MgO (〉 9.73 wt.%) and moderate to high Cr and Ni contents (Cr 〉 261 ppm, Ni 〉 181 ppm), representing near primary magmas that have undergone fractionation of mainly olivine and magnetite. Rare earth element systematics and p-T estimates suggest that the alkaline rocks are generated by different degrees of partial melting (4–13%) of a spinel-peridotite lithospheric mantle containing residual amphibole. The alkaline rocks show restricted variations of 87Sr/86Sr and 143Nd/144Nd ranging from 0.70340 to 0.70405 and 0.51275 to 0.51284, respectively. Variations in Pb isotopes (206Pb/204Pb: 18.59–18.82, 207Pb/204Pb: 15.54–15.56, 208Pb/204Pb: 38.65–38.98) of the alkaline rocks fall in the range of most OIB. Trace element constraints together with Sr–Nd–Pb isotope composition indicate that assimilation through crustal material did not affect the lavas. Instead, trace element variations can be explained by melting of a lithospheric mantle source that was metasomatized by an OIB-type magma that was accumulated at the base of the lithosphere sometimes in the past. Although only an area of less than 1000 km2 was sampled, magmatic activity lasted for about 5.5 Ma with a virtually continuous activity from 40.7 ± 0.7 to 35.3 ± 0.6 Ma. During this period magma composition was nearly constant, i.e. the degree of melting and the nature of the tapped source did not change significantly over time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-02-06
    Description: Highlights • Deep-sea mineral exploration and exploitation licenses have been issued recently. • Mining will modify the abiotic and biotic environment. • At directly mined sites, species are removed and cannot resist disturbance. • Recovery is highly variable in distinct ecosystems and among benthic taxa. • Community changes may persist over geological time-scales at directly mined sites. Abstract With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species’ potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-04-23
    Description: The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-02-06
    Description: The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates “root structures” that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-04-23
    Description: Dissolved free amino acids (DFAA) in seawater are a form of nitrogen (N) available for marine microbes. In oligotrophic environments where N-containing nutrients are the limiting factor for microbial growth, N nutrition from DFAA could be crucial, but as yet it is poorly resolved. Measurements of individual DFAA are challenging as concentrations are typically in the low nmol L− 1 range. Here we report modifications to methodology using o-phthaldialdehyde (OPA) derivatization and reversed phase high performance liquid chromatography (HPLC) that provide a 30-fold improvement in sensitivity enabling the detection of 15 amino acids in seawater with a limit of detection as low as 10 pmol L− 1 with accuracy and precision of better than 10%. This analytical methodology is now suitable for the challenging quantitation of DFAA in oligotrophic seawaters. The method was successfully applied to a suite of seawater samples collected on a cruise crossing the South Atlantic Ocean, where concentrations of DFAAs were generally low (sub nmol L− 1), revealing basin-scale features in the oceanographic distributions of DFAA. This unique dataset implies that DFAAs are an important component of the N cycle in both near-coastal and open oceans. Further calculations suggest that the proportions of organic N originating from DFAA sources were significant, contributing between 0.2 and 200% that of NH4 + and up to 77% that of total inorganic nitrogen in the upper 400 m in some regions of the transect.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR News, 2017 (03). pp. 10-11.
    Publication Date: 2018-01-18
    Description: Seit mehr als 25 Jahren lernen, arbeiten und leben Meereswissenschaftlerinnen und Meereswissenschaftler auf dem Kieler Forschungsschiff ALKOR. 500 Expeditionen hat das 55 Meter lange Schiff mittlerweile absolviert. Es ist neben der POSEIDON das zweite „mittelgroße“ Forschungsschiff, das am GEOMAR stationiert ist.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-02-06
    Description: The study area is close to the boundary of three tectonic plates (Anatolian, Arabian, and African plates) and is characterized by important tectonic lineaments, which consist mainly of the Dead Sea Fault (DSF), the Karasu Fault, and the East Anatolian Fault (EAF) systems. To understand the origin of soil gas emanation and its relationships with the tectonics of the Amik Basin (Hatay), a detailed soil gas sampling was systematically performed. Together with CO2 flux measurements, 〉 220 soil gas samples were analyzed for Rn and CO2 concentrations. The distribution of soil Rn (kBq/m3), CO2 concentration (ppm), and CO2 flux (g/m2/day) in the area appears as a point source (spot) and/or diffuses (halo) anomalies along the buried faults/fractures due to crustal leaks. The results revealed that Rn and CO2 concentrations in the soil gas show anomalous values at the specific positions in the Amik Basin. The trace of these anomalous values is coincident with the N-S trending DSF. CO2 is believed to act as a carrier for Rn gas. Based on the Rn and CO2 concentrations of soil gases, at least three gas components are required to explain the observed variations. In addition to the atmospheric component, two other gas sources can be recognized. One is the deep crust component, which exhibits high Rn and CO2 concentrations, and is considered the best indicator for the surface location of fault/fracture zones in the region. The other component is a shallower gas source with high Rn concentration and low CO2 concentration. Moreover, He isotopic compositions of representative samples vary from 0.94 to 0.99 Ra, illustrating that most samples have a soil air component and may have mixed with some crustal component, without significant input of the mantle component. Based on the repeated measurements at a few sites, soil gas concentrations at the same site were observed to be higher in 2014 than in 2013, which may be associated with the activity of the DSF in 2013–2014. This suggests that soil gas variations at fault zone are closely related to the local crustal stress, and hence are suitable for monitoring fault activities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-04-23
    Description: Highlights • Detection and quantification of AgNP at ppb levels in natural seawater samples. • The use of long path cells (up to 200 cm) in UV–visible spectrophotometry is proposed. • Knowledge of the molar attenuation coefficient of the NP under study in the sample matrix is required. Abstract Silver nanoparticles (AgNPs) are emerging contaminants that are difficult to detect in natural waters. UV–visible spectrophotometry is a simple technique that allows detection of AgNPs through analysis of their characteristic surface plasmon resonance band. The detection limit for nanoparticles using up to 10 cm path length cuvettes with UV–visible spectrophotometry is in the 0.1–10 ppm range. This detection limit is insufficiently low to observe AgNPs in natural environments. Here we show how the use of capillary cells with an optical path length up to 200 cm, forms an excellent technique for rapid detection and quantification of non-aggregated AgNPs at ppb concentrations in complex natural matrices such as seawater.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-02-06
    Description: Highlights • The upper headwall region of Sahara Slide is mapped for the first time. • The upper headwall region comprises multiple slope failures. • Slope failure occurred on pronounced glide planes at different stratigraphic levels. • Failure is young (~ 2 ka) contradicting the hypotheses of a relatively stable continental margin at present. • This young age requires a reassessment of slope instability and associated risks off NW Africa. Abstract The Sahara Slide Complex in Northwest Africa is a giant submarine landslide with an estimated run-out length of ~ 900 km. We present newly acquired high-resolution multibeam bathymetry, sidescan sonar, and sub-bottom profiler data to investigate the seafloor morphology, sediment dynamics and the timing of formation of the upper headwall area of the Sahara Slide Complex. The data reveal a ~ 35 km-wide upper headwall opening towards the northwest with multiple slide scarps, glide planes, plateaus, lobes, slide blocks and slide debris. The slide scarps in the study area are formed by retrogressive failure events, which resulted in two types of mass movements, translational sliding and spreading. Three different glide planes (GP I, II, and III) can be distinguished approximately 100 m, 50 m and 20 m below the seafloor. These glide planes are widespread and suggest failure along pronounced, continuous weak layers. Our new data suggest an age of only about 2 ka for the failure of the upper headwall area, a date much younger than derived for the landslide deposits on the lower reaches of the Sahara Slide Complex, which are dated at 50–60 ka. The young age of the failure contradicts the postulate of a stable slope off Northwest Africa during times of relative stable sea-level highstands. Such an observation suggests that submarine-landslide risk along the continental margin of Northwest Africa should be reassessed based on a robust dating of proximal and distal slope failures.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-02-06
    Description: Highlights • The South Tibetan detachment system played a major role in Himalayan evolution. • Near Mt Everest, the detachment system accommodated large displacements under both brittle and ductile conditions. • Rapid cooling of footwall rocks reflected tectonic denudation by brittle slip from ca. 15.6 to at least 13.0 Ma. • Thermal–kinematic modeling suggests displacement on the detachment to be at least 61 km. Abstract North-dipping, low-angle normal faults of the South Tibetan detachment system (STDS) are tectonically important features of the Himalayan–Tibetan orogenic system. The STDS is best exposed in the N–S-trending Rongbuk Valley in southern Tibet, where the primary strand of the system – the Qomolangma detachment – can be traced down dip from the summit of Everest for a distance of over 30 km. The metamorphic discontinuity across this detachment implies a large net displacement, with previous studies suggesting 〉200 km of slip. Here we refine those estimates through thermal–kinematic modeling of new (U–Th)/He and 40Ar/39Ar data from deformed footwall leucogranites. While previous studies focused on the early ductile history of deformation along the detachment, our data provide new insights regarding the brittle–ductile to brittle slip history. Thermal modeling results generated with the program QTQt indicate rapid, monotonic cooling from muscovite 40Ar/39Ar closure (ca. 15.4–14.4 Ma at ca. 490 °C) to zircon (U–Th)/He closure (ca. 14.3–11.0 Ma at ca. 200 °C), followed by slower cooling to apatite (U–Th)/He closure at ca. 9–8 Ma (at ca. 70 °C). Although previous work has suggested that ductile slip on the detachment lasted only until ca. 15.6 Ma, thermal–kinematic modeling of our new data suggests that rapid (ca. 3–4 km/Ma) tectonic exhumation by brittle–ductile to brittle fault slip continued to at least ca. 13.0 Ma. Much lower modeled exhumation rates (≤0.5 km/Ma) after ca. 13 Ma are interpreted to reflect erosional denudation rather than tectonic exhumation. Projection of fault-related exhumation rates backward through time suggests total slip of ca. 61 to 289 km on the Qomolangma detachment, with slightly more than a third of that slip occurring under brittle–ductile to brittle conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-02-06
    Description: Offshore western Svalbard plumes of gas bubbles rise from the seafloor at the landward limit of the gas hydrate stability zone (LLGHSZ; ∼400 m water depth). It is hypothesized that this methane may, in part, come from dissociation of gas hydrate in the underlying sediments in response to recent warming of ocean bottom waters. To evaluate the potential role of gas hydrate in the supply of methane to the shallow subsurface sediments, and the role of anaerobic oxidation in regulating methane fluxes across the sediment–seawater interface, we have characterised the chemical and isotopic compositions of the gases and sediment pore waters. The molecular and isotopic signatures of gas in the bubble plumes (C1/C2+ = 1 × 104; δ13C-CH4 = −55 to −51‰; δD-CH4 = −187 to −184‰) are similar to gas hydrate recovered from within sediments ∼30 km away from the LLGHSZ. Modelling of pore water sulphate profiles indicates that subsurface methane fluxes are largely at steady state in the vicinity of the LLGHSZ, providing no evidence for any recent change in methane supply due to gas hydrate dissociation. However, at greater water depths, within the GHSZ, there is some evidence that the supply of methane to the shallow sediments has recently increased, which is consistent with downslope retreat of the GHSZ due to bottom water warming although other explanations are possible. We estimate that the upward diffusive methane flux into shallow subsurface sediments close to the LLGHSZ is 30,550 mmol m−2 yr−1, but it is 〈20 mmol m−2 yr−1 in sediments further away from the seafloor bubble plumes. While anaerobic oxidation within the sediments prevents significant transport of dissolved methane into ocean bottom waters this amounts to less than 10% of the total methane flux (dissolved + gas) into the shallow subsurface sediments, most of which escapes AOM as it is transported in the gas phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-02-06
    Description: The presence of a wedge of offshore permafrost on the shelf of the Canadian Beaufort Sea has been previously recognized and the consequence of a prolonged occurrence of such permafrost is the possibility of an underlying gas hydrate regime. We present the first evidence for wide-spread occurrences of gas hydrates across the shelf in water depths of 60–100 m using 3D and 2D multichannel seismic (MCS) data. A reflection with a polarity opposite to the seafloor was identified ∼1000 m below the seafloor that mimics some of the bottom-simulating reflections (BSRs) in marine gas hydrate regimes. However, the reflection is not truly bottom-simulating, as its depth is controlled by offshore permafrost. The depth of the reflection decreases with increasing water depth, as predicted from thermal modeling of the late Wisconsin transgression. The reflection crosscuts strata and defines a zone of enhanced reflectivity beneath it, which originates from free gas accumulated at the phase boundary over time as permafrost and associated gas hydrate stability zones thin in response to the transgression. The wide-spread gas hydrate occurrence beneath permafrost has implications on the region including drilling hazards associated with the presence of free gas, possible overpressure, lateral migration of fluids and expulsion at the seafloor. In contrast to the permafrost-associated gas hydrates, a deep-water marine BSR was also identified on MCS profiles. The MCS data show a polarity-reversed seismic reflection associated with a low-velocity zone beneath it. The seismic data coverage in the southern Beaufort Sea shows that the deep-water marine BSR is not uniformly present across the entire region. The regional discrepancy of the BSR occurrence between the US Alaska portion and the Mackenzie Delta region may be a result of high sedimentation rates expected for the central Mackenzie delta and high abundance of mass-transport deposits that prohibit gas to accumulate within and beneath the gas hydrate stability zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-04-23
    Description: Highlights • Evaluation of currently available marine pCO2 sensors with respect to in situ deployment potential. • In depth review of novel optode technology for pCO2. • A pCO2 optode was calibrated using modified time-domain dual lifetime referencing, over the range 280–480 μatm, with a precision of 0.8 μatm. Abstract The oceanic uptake of anthropogenic CO2 causes pronounced changes to the marine carbonate system. High quality pCO2 measurements with good temporal and spatial coverage are required to monitor the oceanic uptake, identify regions with pronounced carbonate system changes, and observe the effectiveness of CO2 emission mitigation strategies. There are currently several instruments available, but many are unsuitable for autonomous deployments on in situ platforms such as gliders, moorings and Argo floats. We assess currently available technology on its suitability for in situ deployment, with a focus on optode technology developments. Optodes for pCO2 measurements provide a promising new technological approach, and were successfully calibrated over the range of 280–480 μatm applying modified time-domain dual lifetime referencing. A laboratory precision of 0.8 μatm (n = 10) and a response time (τ90) of 165 s were achieved, and with further development pCO2 optodes may become as widely used as their oxygen counterparts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-02-06
    Description: Highlights • Dextral strike-slip faulting occurs offshore E Sicily above a lateral slab tear fault. • Proposed dextral Ionian Fault becomes sinistral to the south, in external wedge. • Compressional (folding and thrusting) tectonics occur throughout the wedge. • Morpho-tectonics indicate ongoing subduction and advance of Calabrian backstop. The detailed morphology and internal structure of the Calabrian accretionary wedge and adjacent Eastern Sicily margin are imaged in unprecedented detail by a combined dataset of multi-beam bathymetry and high-resolution seismic profiles. The bathymetric data represent the results of 6 recent marine geophysical surveys since 2010 as well as a compilation of earlier surveys presented as a 2 arc-sec (60 m) grid. Several distinct morpho-tectonic provinces are identified including: the deeply incised Malta–Hyblean Escarpment, numerous submarine canyons, broad regions of relatively flat seafloor dominated by fields of sediment waves, the gently undulating anticlinal fold-and-thrust belts of the external Calabrian accretionary wedge and the adjacent portion of the Western Mediterranean Ridge. The Calabrian arc can be divided into 4 domains (from SE to NW): 1) the undeformed Ionian abyssal plain, 2) the external evaporitic wedge, 3) the internal clastic wedge, 4) the Calabrian backstop (Variscan crystalline basement). The Calabrian accretionary wedge can also be divided laterally into two major lobes, the NE- and the SW lobes, and two minor lobes. The kinematics of the limit between the two major lobes is investigated and shown to be sinistral in the external (evaporitic) wedge. A network of radial slip lines within the southernmost external wedge unequivocally demonstrate ongoing dextral displacement of a rigid indenter (representing the corner of the clastic wedge) into the evaporitic wedge thereby confirming the geodynamic model of an active lateral slab tear fault here off eastern Sicily. The slab tear produces a series of major sub-parallel dextral strike-slip faults offshore Mt. Etna and south of the Straits of Messina consistent with the relative motions between Calabria and the Peloritan domain (NE Sicily). Abundant strike-slip faulting, and wide-spread folding and thrusting observed throughout the entire accretionary wedge, indicate regional shortening between the Ionian abyssal plain (foreland) and the Calabrian–Peloritan backstop caused by active subduction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 203 . pp. 265-283.
    Publication Date: 2020-02-06
    Description: We present measurements of Ge isotope composition and ancillary data for samples of river water, low- and high-temperature hydrothermal fluids, and seawater. The dissolved δ74Ge composition of analyzed rivers ranges from 2.0 to 5.6‰, which is significantly heavier than previously determined values for silicate rocks (δ74Ge = 0.4–0.7‰, Escoube et al., Geostand. Geoanal. Res., 36(2), 2012) from which dissolved Ge is primarily derived. An observed negative correlation between riverine Ge/Si and δ74Ge signatures suggests that the primary δ74Ge fractionation mechanism during rock weathering is the preferential incorporation of light isotopes into secondary weathering products. High temperature (〉150 °C) hydrothermal fluids analyzed in this study have δ74Ge of 0.7–1.6‰, most likely fractionated during fluid equilibration with quartz in the reaction zone. Low temperature (25–63 °C) hydrothermal fluids are heavier (δ74Ge between 2.9‰ and 4.1‰) and most likely fractionated during Ge precipitation with hydrothermal clays. Seawater from the open ocean has a δ74Gesw value of 3.2 ± 0.4‰, and is indistinguishable among the different ocean basins at the current level of precision. This value should be regulated over time by the isotopic balance of Ge sources and sinks, and a new compilation of these fluxes is presented, along with their estimated isotopic compositions. Assuming steady-state, non-opal Ge sequestration during sediment authigenesis likely involves isotopic fractionation Δ74Gesolid-solution that is −0.6 ± 1.8‰.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-02-06
    Description: Monthly time-series data (1998–2009) of bottom water oxygen, nitrate and nitrite concentrations from the outer shelf (150 m water depth) in the oxygen minimum zone offshore Peru were coupled to a layered biogeochemical sediment model to investigate benthic-pelagic coupling over multi-annual time scales. The model includes the mineralization of four reactive pools of particulate organic carbon (POC) with lifetimes of 0.13, 1.3, 20, and 1700 year that were constrained using empirical data. Total POC rain rates to the seafloor were derived from satellite based estimates of primary production. Solute fluxes and concentrations in sediment porewater showed highly dynamic behavior over the course of a typical year. Conversion of fixed N to N2 by denitrification varied from 1.1 mmol m−2 d−1 of N in winter to 1.8 mmol m−2 d−1 of N in summer with a long term mean N loss for the shelf of 1.5 mmol m−2 d−1 of N. Fixed N loss across the whole time-series agreed very well with a previously-published vertically-integrated sediment model for coupling the benthic and pelagic N cycle in regional and global models. Dissimilatory nitrate reduction to ammonium (DNRA) emerges as a major process in the benthic N cycle, producing on average 1.9 mmol m−2 d−1 of ammonium: more than twice the rate of ammonification of organic nitrogen. The model predicts sulfide emissions from the sediment of up to 1 mmol m−2 d−1 when POC rain rate exceeds 20 mmol m−2 d−1, in agreement with past observations of benthic sulfide fluxes and sulfide plume distributions in the water column. This study demonstrates that sediments on the Peruvian shelf are not static repositories that are independent of changes taking place in the water column. Our results strongly suggest the shelf sediments must exert an important feedback on biogeochemical processes in the overlying waters, and should be considered in regional model studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-07-29
    Description: Lateralization is widespread throughout the animal kingdom [1; 2; 3; 4; 5; 6 ; 7] and can increase task efficiency via shortening reaction times and saving on neural tissue [8; 9; 10; 11; 12; 13; 14; 15 ; 16]. However, lateralization might be costly because it increases predictability [17; 18; 19; 20 ; 21]. In predator-prey interactions, for example, predators might increase capture success because of specialization in a lateralized attack, but at the cost of increased predictability to their prey, constraining the evolution of lateralization. One unexplored mechanism for evading such costs is group hunting: this would allow individual-level specialization, while still allowing for group-level unpredictability. We investigated this mechanism in group hunting sailfish, Istiophorus platypterus, attacking schooling sardines, Sardinella aurita. During these attacks, sailfish alternate in attacking the prey using their elongated bills to slash or tap the prey [ 22; 23 ; 24]. This rapid bill movement is either leftward or rightward. Using behavioral observations of identifiable individual sailfish hunting in groups, we provide evidence for individual-level attack lateralization in sailfish. More strongly lateralized individuals had a higher capture success. Further evidence of lateralization comes from morphological analyses of sailfish bills that show strong evidence of one-sided micro-teeth abrasions. Finally, we show that attacks by single sailfish are indeed highly predictable, but predictability rapidly declines with increasing group size because of a lack of population-level lateralization. Our results present a novel benefit of group hunting: by alternating attacks, individual-level attack lateralization can evolve, without the negative consequences of individual-level predictability. More generally, our results suggest that group hunting in predators might provide more suitable conditions for the evolution of strategy diversity compared to solitary life.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 124 . pp. 103-125.
    Publication Date: 2021-05-18
    Description: Highlights: • Analysis of hydrographic and current observations (1989–2014) in the western equatorial Atlantic. • Lower NADW and lighter AABW form an interactive transition layer in the northern Brazil Basin. • Proof of long-term abyssal warming on isobars in the western tropical Atlantic. • Warming of densest AABW is mainly caused by descent of isopycnal surfaces and volume loss of dense water masses. • Changes on isopycnal surfaces show warming in the 1990s and cooling in the 2000s. Abstract: The flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) contributes to the Atlantic meridional overturning circulation. Changes in the associated water mass formation might impact the deep ocean's capacity to take up anthropogenic CO2 while a warming of the deep ocean significantly contributes to global sea level rise. Here we compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view of water mass distribution, pathways, along-path transformation and long-term temperature changes of NADW and AABW in the western South and Equatorial Atlantic. We confirm previous results which show that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic – along the deep western boundary and eastward, parallel to the equator - as well as the hot-spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5 °S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5 ± 0.7∙10−3 °C yr−1 of the waters in the northern Brazil Basin at temperatures colder than 0.6 °C throughout the period 1989–2014 and can relate this warming to a thinning of the dense AABW layer. Whereas isopycnal heave is the dominant effect which defines the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the lower NADW and AABW layers. There temperatures on isopycnals exhibit decadal variations with warming in the 1990s and cooling in the 2000s - the contributions to the trends on isobars range from about 50% in the lighter AABW layers in the EQCH up to a maximum of 80% in the transition layer the lower NADW and lighter AABW form in the northern Brazil Basin.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-02-06
    Description: Highlights: • Egg specific gravity vary between areas/subpopulations as an adaptation to salinity. • Egg diameter differ between areas/subpopulations whereas egg dry weight does not. • Habitat suitability for egg survival vary depending on salinity and oxygen conditions. • Egg survival probabilities increased following a major saline water inflow event. Abstract: Vertical distribution of eggs as determined by the egg buoyancy, i.e. the difference in specific gravity between the egg and the ambient water, have profound implications for the reproductive success and hence recruitment in fish. Here variability in egg specific gravity of flounder, Platichthys flesus, was studied along a salinity gradient and by comparing two reproductive strategies, spawning pelagic or demersal eggs. Egg characteristics of 209 egg batches (covering ICES subdivisions (SD) 22–29 in the brackish water Baltic Sea) was used to reveal the significance of egg diameter and egg dry weight for egg specific gravity (ESG), subpopulations, and egg survival probabilities of pelagic eggs following a major saline water inflow event. As an adaptation to salinity, ESG (at 7 °C) differed (p 〈 0.001) between areas; three subpopulations of flounder with pelagic eggs: 1.0152 ± 0.0021 (mean ± sd) g cm−3 in SD 22, 1.0116 ± 0.0013 g cm−3 in SD 24 and 25, and 1.0096 ± 0.0007 g cm−3 in SD 26 and 28, contrasting to flounder with demersal eggs, 1.0161 ± 0.0008 g cm−3. Egg diameter differed (p 〈 0.001) between subpopulations; from 1.08 ± 0.06 mm (SD 22) to 1.26 ± 0.06 mm (SD 26 and 28) for pelagic eggs and 1.02 ± 0.04 mm for demersal eggs, whereas egg dry weight was similar; 37.9 ± 5.0 μg (SD 22) and 37.2 ± 3.9 μg (SD 28) for pelagic, and 36.5 ± 6.5 μg for demersal eggs. Both egg diameter and egg dry weight were identified as explanatory variables, explaining 87% of the variation in ESG. ESG changed during ontogeny; a slight decrease initially but an increase prior to hatching. Egg survival probabilities judged by combining ESG and hydrographic data suggested higher egg survival in SD 25 (26 vs 100%) and SD 26 (32 vs 99%) but not in SD 28 (0 and 3%) after the inflow event, i.e. highly fluctuating habitat suitability. The results confirm the significance of ESG for egg survival and show that variability in ESG as and adaptation to salinity is determined mainly by water content manifested as differences in egg diameter; increase in diameter with decreasing salinity for pelagic eggs, and decreased diameter resulting in demersal eggs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-02-06
    Description: Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT) system. Untreated (without simulated petroleum seepage) and SOFT sediment microbial communities shared 43% bacterial genuslevel 16S rRNA-based operational taxonomic units (OTU0:945) but shared only 23% archaeal OTU0:945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkyl)succinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0:96.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-02-06
    Description: Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM) ~21,000 years before present constrained by nitrogen isotopes. The model predicts a large decrease in nitrogen loss rates due to higher oxygen concentrations in the thermocline and sea level drop, and, as a response, reduced nitrogen fixation. Model experiments are performed to evaluate effects of hypothesized increases of atmospheric iron fluxes and oceanic phosphorus inventory relative to present-day conditions. Enhanced atmospheric iron deposition, which is required to reproduce observations, fuels export production in the Southern Ocean causing increased deep ocean nutrient storage. This reduces transport of preformed nutrients to the tropics via mode waters, thereby decreasing productivity, oxygen deficient zones, and water column N-loss there. A larger global phosphorus inventory up to 15% cannot be excluded from the currently available nitrogen isotope data. It stimulates additional nitrogen fixation that increases the global oceanic nitrogen inventory, productivity, and water column N-loss. Among our sensitivity simulations, the best agreements with nitrogen isotope data from LGM sediments indicate that water column and sedimentary N-loss were reduced by 17–62% and 35–69%, respectively, relative to preindustrial values. Our model demonstrates that multiple processes alter the nitrogen isotopic signal in most locations, which creates large uncertainties when quantitatively constraining individual nitrogen cycling processes. One key uncertainty is nitrogen fixation, which decreases by 25–65% in the model during the LGM mainly in response to reduced N-loss, due to the lack of observations in the open ocean most notably in the tropical and subtropical southern hemisphere. Nevertheless, the model estimated large increase to the global nitrate inventory of 6.5–22% suggests it may play an important role enhancing the biological carbon pump that contributes to lower atmospheric CO2 during the LGM.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-02-06
    Description: Despite the huge extent of the ocean's surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean's surface, in particular involving the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-02-06
    Description: Highlights • Reconstruction of the Holocene tephrochronological model for Kamchatsky Peninsula. • New major element EPMA glass data for ∼60 tephras from seven volcanoes. • New Bayesian age estimates for 40 marker tephra layers based on 223 14C dates. • This study supports future work on volcanic and tectonic hazards. • Reference tephra dataset applicable for Kamchatka, northwest Pacific, North America. Abstract Geochemically fingerprinted widespread tephra layers serve as excellent marker horizons which can directly link and synchronize disparate sedimentary archives and be used for dating various deposits related to climate shifts, faulting events, tsunami, and human occupation. In addition, tephras represent records of explosive volcanic activity and permit assessment of regional ashfall hazard. In this paper we report a detailed Holocene tephrochronological model developed for the Kamchatsky Peninsula region of eastern Kamchatka (NW Pacific) based on ∼2800 new electron microprobe analyses of single glass shards from tephra samples collected in the area as well as on previously published data. Tephra ages are modeled based on a compilation of 223 14C dates, including published dates for Shiveluch proximal tephra sequence and regional marker tephras; new AMS 14C dates; and modeled calibrated ages from the Krutoberegovo key site. The main source volcanoes for tephra in the region are Shiveluch and Kliuchevskoi located 60–100 km to the west. In addition, local tephra sequences contain two tephras from the Plosky volcanic massif and three regional marker tephras from Ksudach and Avachinsky volcanoes located in the Eastern volcanic front of Kamchatka. This tephrochronological framework contributes to the combined history of environmental change, tectonic events, and volcanic impact in the study area and farther afield. This study is another step in the construction of the Kamchatka-wide Holocene tephrochronological framework under the same methodological umbrella. Our dataset provides a research reference for tephra and cryptotephra studies in the northwest Pacific, the Bering Sea, and North America.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-02-06
    Description: We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are ‘distant neritic.’ While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-02-06
    Description: Highlights • Low upper mantle seismic velocity indicates mantle hydration in the Porcupine Basin. • Crustal stretching factors suggest crustal break up in the Porcupine Basin. • Fault-controlled mantle hydration explains across-axis mantle velocity variations. • Along-axis variations in mantle hydration control the development of low-angle faults. Abstract Mantle hydration (serpentinisation) at magma-poor rifted margins is thought to play a key role in controlling the kinematics of low-angle faults and thus, hyperextension and crustal breakup. However, because geophysical data principally provide observations of the final structure of a margin, little is known about the evolution of serpentinisation and how this governs tectonics during hyperextension. Here we present new observational evidence on how crustal strain-dependent serpentinisation influences hyperextension from rifting to possible crustal breakup along the axis of the Porcupine Basin, offshore Ireland. We present three new P-wave seismic velocity models that show the seismic structure of the uppermost lithosphere and the geometry of the Moho across and along the basin axis. We use neighbouring seismic reflection lines to our tomographic models to estimate crustal stretching ( ) of ∼2.5 in the north at 52.5° N and 〉10 in the south at 51.7° N. These values suggest that no crustal embrittlement occurred in the northernmost region, and that rifting may have progressed to crustal breakup in the southern part of the study area. We observed a decrease in mantle velocities across the basin axis from east to west. These variations occur in a region where is within the range at which crustal embrittlement and serpentinisation are possible ( 3–4). Across the basin axis, the lowest seismic velocity in the mantle spatially coincides with the maximum amount of crustal faulting, indicating fault-controlled mantle hydration. Mantle velocities also suggest that the degree of serpentinisation, together with the amount of crustal faulting, increases southwards along the basin axis. Seismic reflection lines show a major detachment fault surface that grows southwards along the basin axis and is only visible where the inferred degree of serpentinisation is 〉15%. This observation is consistent with laboratory measurements that show that at this degree of serpentinisation, mantle rocks are sufficiently weak to allow low-angle normal faulting. Based on these results, we propose two alternative formation models for the Porcupine Basin. The first involves a northward propagation of the hyperextension processes, while the second model suggests higher extension rates in the centre of the basin than in the north. Both scenarios postulate that the amount of crustal strain determines the extent and degree of serpentinisation, which eventually controls the development of detachments faults with advanced stretching.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-02-06
    Description: Highlights • Original 2D/3D seismic data present structural styles across the deformation front. • Dynamic process of the deformation front shifts as plate convergence moving westward. • Migration of submarine canyons is related to the incipient arc-continent collision. • Temporal changes in the stress regime leads to structural/sedimentary alterations. Abstract This study analyzes both 2D and 3D seismic images around the Palm Ridge area offshore of southwestern Taiwan to understand how the deformation front shifted westward and how tectonic activities interact with submarine canyon paths in the transition area between the active and passive margins. Palm Ridge is a submarine ridge that developed on the passive China continental margin by down-dip erosion of several tributaries of Penghu Canyon; it extends eastward across the deformation front into the submarine Taiwan accretionary wedge. The presence of proto-thrusts that are located west of the frontal thrust implies that the compressional stress field has advanced westward due to the convergence of the Philippine Sea Plate and Eurasian Plate. Since the deformation front is defined as the location of the most frontal contractional structure, no significant contractional structure should appear west of it. We thus suggest moving the location of the previously mapped deformation front farther west to where the westernmost proto-thrust lies. High-resolution seismic and bathymetric data reveal that the directions of the paleo-submarine canyons run transverse to the present slope dip, while the present submarine canyons head down slope in the study area. We propose that this might be the result of the westward migration of the deformation front that changed the paleo-bathymetry and thus the canyon path directions. The interactions of down-slope processes and active tectonics control the canyon paths in our study area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-02-06
    Description: Highlights • The Lofoten/Vesterålen margin has less Early Cenozoic lava flows than believed. • Breakup of the L/V margin is delayed ∼1 m.y. from the Vøring Plateau to the south. • Late arrival of the Iceland Plume may explain delayed breakup and prolonged extension. The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5. km thick and ∼50. km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8. km), but is reduced to 6. km after 1. m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5. km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1. Ma, ∼1. m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-02-06
    Description: Highlights • Debunscha Maar magmas mixed and fractional crystallised at upper mantle depths • Its main magma source is peridotite with a minor pyroxenite component • Amphibole signal and high olivine Ca/Al indicate a metasomatised peridotite mantle • Mantle potential temperatures give no sign of an anomalous hot mantle Abstract Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77–87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9–11.7 wt.%), and are generally more primitive than the matrix glasses (MgO 5.0–5.5 wt.%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-02-06
    Description: We present seawater Cd isotopic compositions in five depth profiles and a continuous surface water transect, from 50 degrees S to the Equator, in the western South Atlantic, sampled during GEOTRACES cruise 74JC057 (GA02 section, Leg 3), and investigate the mechanisms governing Cd isotope cycling in the upper and deep ocean. The depth profiles generally display high epsilon Cd-112/110 at the surface and decrease with increasing depth toward values typical of Antarctic Bottom Water (AABW). However, at stations north of the Subantarctic Front, the decrease in epsilon Cd-112/110 is interrupted by a shift to values intermediate between those of surface and bottom waters, which occurs at depths occupied by North Atlantic Deep Water (NADW). This pattern is associated with variations in Cd concentration from low surface values to a maximum at mid-depths and is attributed to preferential utilization of light Cd by phytoplankton in the surface ocean. Our new results show that in this region Cd-deficient waters do not display the extreme, highly fractionated epsilon Cd-112/110 reported in some earlier studies from other oceanic regions. Instead, in the surface and subsurface southwest (SW) Atlantic, when [Cd] drops below 0.1 nmol kg(-1), epsilon Cd-112/110 are relatively homogeneous and cluster around a value of +3.7, in agreement with the mean value of 3.8 +/- 3.3 (2SD, n = 164) obtained from a statistical evaluation of the global ocean Cd isotope dataset. We suggest that Cd-deficient surface waters may acquire their Cd isotope signature via sorption of Cd onto organic ligands, colloids or bacteriallpicoplankton extracellular functional groups. Alternatively, we show that an open system, steady-state model is in good accord with the observed Cd isotope systematics in the upper ocean north of the Southern Ocean. The distribution of epsilon Cd-112/110 in intermediate and deep waters is consistent with the water mass distribution, with the north-south variations reflecting changes in the mixing proportion of NADW and either AABW or AAIW depending on the depth. Overall, the SW Atlantic Cd isotope dataset demonstrates that the large-scale ocean circulation exerts the primary control on epsilon(112/110) Cd cycling in the global deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-08-11
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    GEOMAR
    In:  Alkor-Berichte, AL493 . GEOMAR, Kiel, Germany, 20 pp.
    Publication Date: 2021-01-29
    Description: Dates of Cruise: 13.05. – 29.05.2017 Areas of Research: Physical, chemical, biological and fishery oceanography Port Calls: Visby, Sweden, 19.05. – 21.05.2016
    Type: Report , NonPeerReviewed
    Format: text
    Format: other
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-02-06
    Description: Highlights • Seismic chimneys represent potential leakage pathways for CCS sites. • Simulations indicate that CO2 will not reach chimney structures at Sleipner. • Detailed palaeo fluid system reconstruction is crucial for CCS site selection. The integrity of the caprock of a storage formation is the most crucial parameter for the long-term performance of a geological CO2 storage site. The Sleipner area in the Southern Viking Graben hosts the first and longest operating industrial scale CO2 storage project, where CO2 is injected in a saline aquifer of the Utsira Formation. Time-lapse seismic monitoring shows neither that CO2 has left the Utsira Formation nor indications for fracturing of the caprock by the CO2 injection activity, which is in agreement with previous numerical simulations. However, large chimney structures as close as 7 km from the injection point indicate that the caprock has been breached in the geological past, which may raise questions about the integrity of the caprock above the Sleipner CO2 storage site. Here, we present seismically constrained numerical fluid flow simulations that evaluate the influence of chimney structures on the long-term performance of the CO2 storage operation at Sleipner. The simulation could reproduce the spreading of the Sleipner CO2 plume, which is controlled by the anisotropic permeability field of the Utsira Formation and the regional dip of the formation top. We have performed long-term plume evolution simulations, which show that the injected CO2 will not reach the existing chimney structures assuming a realistic injection duration of 30 years. Our simulations indicate that an unrealistically long injection period between 92 and 140 years would be required for the CO2 to reach the existing chimney structures. In this case, a comparably low chimney permeability of 10 mD may be sufficient to facilitate CO2 migration from the storage formation to the seafloor, once the CO2 has reached a chimney structure. However, the simulations indicate that it is very unlikely that the CO2 may migrate along existing chimney structures at Sleipner. Our results highlight that the reconstruction of palaeo fluid flow systems and the identification of focused fluid conduits should be considered in the assessment of CO2 storage sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-02-06
    Description: The Southwest Indian Ridge is an ultraslow-spreading mid-ocean ridge with numerous poorly-explored seamounts. The benthic fauna of seamounts are thought to be highly heterogeneous, within even small geographic areas. Here we report observations from a two-year opportunistic experiment, which was comprised of two deployments of mango wood and whale bones. One was deployed at 732 m on Coral Seamount (~32 °S) and the other at 750 m on Atlantis Bank (~41 °S), two areas with little background faunal knowledge and a significant distance from the continental shelf. The packages mimic natural organic falls, large parcels of food on the deep-sea floor that are important in fulfilling the nutritional needs and providing shelter and substratum for many deep-sea animals. A large number of species colonised the deployments: 69 species at Coral Seamount and 42 species at Atlantis Bank. The two colonising assemblages were different, however, with only 11 species in common. This is suggestive of both differing environmental conditions and potentially, barriers to dispersal between these seamounts. Apart from Xylophaga and Idas bivalves, few organic-fall specialists were present. Several putative new species have been observed, and three new species have been described from the experiments thus far. It is not clear, however, whether this is indicative of high degrees of endemism or simply a result of under-sampling at the regional level.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-02-06
    Description: An increasing number of studies have described the presence of microplastics (≤5mm) in many different fish species, raising ecological concerns. The factors influencing the ingestion of microplastics by fish remain unclear despite their importance to a better understanding of the routes of microplastics through marine food webs. Here, we compare microplastics and planktonic organisms in surface waters and as food items of 20 Amberstripe scads (Decapterus muroadsi) captured along the coast of Rapa Nui (Easter Island) to assess the hypothesis that fish ingest microplastics resembling their natural prey. Sixteen (80%) of the scad had ingested one to five microplastics, mainly blue polyethylene fragments that were similar in colour and size to blue copepod species consumed by the same fish. These results suggest that planktivorous fish, as a consequence of their feeding behaviour as visual predators, are directly exposed to floating microplastics. This threat may be exacerbated in the clear oceanic waters of the subtropical gyres, where anthropogenic litter accumulates in great quantity. Our study highlights the menace of microplastic contamination on the integrity of fragile remote ecosystems and the urgent need for efficient plastic waste management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...